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Using the semiclassical neutral atom theory, we extend to fourth order the modified gradient expansion of the
exchange energy of density functional theory. This expansion can be applied both to large atoms and solid-state
problems. Moreover, we show that it can be employed to construct a simple and nonempirical generalized gradient
approximation (GGA) exchange-correlation functional competitive with state-of-the-art GGAs for solids, but also
reasonably accurate for large atoms and ordinary chemistry.
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I. INTRODUCTION

Density functional theory (DFT) [1–3] is one of the most
popular computational approaches to material science and
condensed-matter physics. However, the final accuracy of
DFT calculations depends on the approximation used for the
exchange-correlation (XC) functional, which describes the
quantum effects on the electron-electron interaction. Thus,
the development and testing of new XC functionals have been
active research fields during the last decades [4–6].

Model systems are fundamental tools for the development
of nonempirical DFT functionals. One popular model is the
electron gas with slowly varying density. Performing a second-
order gradient expansion (GE2) of the exchange energy density
εx , this model gives

εx = εLDA
x (1 + μGE2s2), (1)

where εLDA
x = −(3/4)(3/π )1/3n4/3 is the exchange energy

density in the local density approximation (LDA) [2], n is
the electron density, s = |∇n|/[2(3π2)1/3n4/3] is the dimen-
sionless reduced gradient, and μGE2 = 10/81 is the GE2
coefficient. The slowly varying density regime is considered
a paradigm for solid-state physics, and the GE2 has been
successfully used as a key tool to develop generalized gradient
approximation (GGA) functionals [7–15] as well as meta-
GGA functionals [16–22].

Another important model system is the semiclassical
neutral atom (SCA), whose theory was established several
years ago [23–29]. This model has been recently used to
derive a modified second-order gradient expansion (MGE2)
for exchange [30]

εx = εLDA
x (1 + μMGE2s2), (2)

where μMGE2 = 0.26. This expansion has been shown to
be relevant for the accurate DFT description of atoms and
molecules [30–36].

The two gradient expansions discussed above have been
employed to develop GGA functionals accurate either for solid
state (e.g., the PBEsol functional of Ref. [7]), or for chemistry
(e.g., the APBE of Ref. [34]). Nevertheless, the exchange
enhancement factor Fx [defined by Ex[n] = ∫

dr εLDA
x Fx(s)]

of both both PBEsol and APBE behaves as

Fx(s → 0) → 1 + μs2 + νs4 + O(s6) with ν = −μ2

κ
, (3)

where κ = 0.804 is fixed from the Lieb-Oxford bound [37,38],
and μ is the pertinent second-order coefficient. The importance
of the fourth-order term in this development has been already
discussed in literature [14,39–41]. It is important for intermedi-
ate values of the reduced gradient (0.3 � s � 1) as those often
encountered in bulk solids. Indeed, functionals which recover
GE2, but with the s4 term in the Taylor expansion of exchange
set to zero, e.g., the ones in Refs [10,14], show a quite different
behavior with respect to PBEsol (see also results in Ref. [15]).
On the other hand, the relevance of higher-order terms in the
modified gradient expansion has not yet been investigated.

In this work we consider this issue and we use the SCA
theory to introduce an extension of the modified gradient
expansion to fourth order (MGE4). We show that this
expansion is appropriate for both semiclassical atoms and
solid-state problems. Moreover, a simple GGA, based on
MGE4, is constructed. These achievements will emphasize
the importance of the SCA model for DFT, not only when one
is concerned with finite systems [34], but also in the popular
field of solid-state physics.

II. THEORY

In Ref. [30] the MGE2 coefficient was derived by requiring
that the expansion given in Eq. (2) has to be large-Z
asymptotically exact to the first degree. Thus, in practice,
an energy constraint was applied and the MGE2 was forced
to recover the correct lowest coefficient of the semiclassical
expansion of the exchange energy.

An alternative way to derive the MGE2 is to impose that,
in the slowly varying density region of nonrelativistic large
neutral atoms (i.e., with Z → ∞), the modified gradient
expansion recovers the exact exchange energy. Thus, for
Z → ∞, we have

∫
V

εexact
x dr =

∫
V

εLDA
x (1 + μs2 + νs4 + · · · )dr. (4)
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FIG. 1. Right-hand-side ratios of Eqs. (6) and (7) (i.e., μ and
ν values) computed for different noble-gas atoms up to Z = 290.
The extrapolation to Z → ∞ was done using a parabolic fit as in
Refs. [30,33,36].

The integration is performed on the slowly varying density
region V , defined by the condition −1 � q � 1, where q =
∇2n/{4(3π2)2/3n5/3}. Note that this region dominates for an
atom with an infinite number of electrons and it is also the
only one where a gradient expansion makes sense. The use of
the reduced Laplacian q in the definition of V is motivated by
the fact that slowly varying density regions of atoms cannot
be defined in terms of s only, because the reduced gradient
is small also near the nuclear cusp [42], where the density is
rapidly varying. Instead, they are well identified by considering
the reduced Laplacian q and using the condition |q| ≈ s2 � 1
(conversely q → −∞ near the nucleus and q → ∞ in the
tail).

The semiclassical theory of atoms is based on the Thomas-
Fermi scaling [31], which implies the following scaling rules
for the density and the reduced gradients:

nλ(r) = λ2n(λ1/3r), rsλ(r) = λ−2/3rs(λ
1/3r),

sλ(r) = λ−1/3s(λ1/3r), qλ(r) = λ−2/3q(λ1/3r), (5)

with λ → ∞, while the nuclear charge behaves as Z → λZ,
in order to preserve the total charge neutrality. In Eq. (5), rs =
(3/4πn)1/3 is the Wigner-Seitz radius. Using these scaling
relations, we obtain (in the limit λ → ∞)

μMGE2 = lim
Z→∞

∫
V

(
εexact
x [Z] − εLDA

x [Z]
)
dr∫

V
εLDA
x [Z]s[Z]2dr

. (6)

Here [Z] denotes that all quantities are computed for the
nonrelativistic atom with Z electrons.

The values of the ratio on the right-hand side of Eq. (6)
for different noble-gas atoms, up to Z = 290, are reported in
Fig. 1 together with the extrapolation to Z → ∞. We obtain
μMGE2 = 0.262, that is practically the same result as in Ref.
[30].

In principle, Eq. (4) could be also used to obtain higher-
order results. Nevertheless, such an approach is prone to
large oscillations because the integral of εexact

x − εLDA
x (1 +

μMGE2s2) is small by construction, as it is that of εLDA
x s4,

for Z → ∞. Thus, in order to extend the modified gradient

expansion to fourth order, we need to impose an additional
constraint beyond the energy one. We do this by requiring
that the modified gradient expansion not only reproduces the
SCA asymptotic energy (which yields MGE2), but also gives a
realistic SCA enhancement factor in the slowly varying density
limit. With this choice we also obtain to reduce the importance
of high-density regions, which instead dominate the MGE2
behavior, since they are the ones that mostly contribute to
the energy density, Thus we can achieve a more balanced
description of the whole slowly varying regime (including low-
density regions, which are rather important in real bulk solids).
We recall that the enhancement factor is not an observable
and is defined only up to a gauge transformation [43].
Nevertheless, the enhancement factor F exact

x = εexact
x /εLDA

x

of the conventional exact exchange energy density is well
defined and has a clear physical meaning (i.e., it measures the
interaction between an electron and the true exchange hole).
Note also that the nonuniqueness problem is reduced in the
slowly varying density limit, where the exact exchange hole
has a semilocal expansion [44–46] which becomes unique for
the uniform electron gas. Thus, F exact

x can be safely used as a
reference for our scope.

Following Eq. (6), we define an effective fourth-order
coefficient [in the spirit of Eq. (3)] as

νMGE4 = lim
Z→∞

∫
V

dr
(
F exact

x [Z] − F MGE2
x [Z]

)
∫
V

dr s[Z]4
. (7)

We remark that any fourth-order gradient expansion of the ex-
change energy diverges for atoms, because of the exponential
decay of the density. Using the integration technique proposed
in Eq. (7), we remove this difficulty and we focus on the slowly
varying density regime, that is the only one where a gradient
expansion is well defined.

Finally, we highlight that the fourth-order gradient expan-
sion of exchange depends, in general, on both the reduced
gradient and the Laplacian. However, a Laplacian dependence
is beyond the scope of this paper. Instead, using Eq. (7), we
aim to extract an effective fourth-order coefficient in the spirit
of Eq. (3).

The values of the ratio on the right-hand side of Eq. (7) for
different noble-gas atoms, up to Z = 290, are reported in Fig. 1
together with the extrapolation to Z → ∞. The behavior with
Z is regular, showing the physical meaningfulness of Eq. (7).
Extrapolation to Z → ∞ gives

νMGE4 = −0.195. (8)

Note that this limit value is independent on the exact values
used to define the boundaries of region V . Indeed, the same
νMGE4 is obtained using −0.8 � q � 0.8 or −1.2 � q � 1.2
(plots not reported).

The coefficient of Eq. (8), together with μMGE2, define the
modified fourth-order gradient expansion (MGE4), with the
following enhancement factor:

F MGE4
x = 1 + μMGE2s2 + νMGE4s4. (9)

This reproduces, as close as possible, the conventional exact
exchange enhancement factor in the slowly varying density
regime of nonrelativistic large neutral atoms. Note that νMGE4
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FIG. 2. Radial LDA exchange energy density (top panel), reduced
gradients s and q (middle panel), and the deviation (lower panel), with
respect to the exact conventional one, of the exchange enhancement
factors of several gradient expansions, as functions of the distance
r from the nucleus, for the nonrelativistic noble atom with 290
electrons.

is rather different from the fourth-order coefficient that is
implicitly employed in APBE [−(μMGE2)2/κ = −0.084].

The main features of the MGE4 can be seen in Fig. 2
where we plot, for the nonrelativistic noble atom with 290
electrons and in the region V defined before: the radial LDA
exchange energy density, the reduced gradients s and q, and
the deviation, with respect to the exact conventional one, of the
exchange enhancement factors of several gradient expansions.
Here GE4 is the conventional fourth-order gradient expansion
defined by the enhancement factor F GE4

x = 1 + 10/81s2 +
146/2025q2 − 73/405qs2 + Ds4, where D = 0 is the best
numerical estimation for this parameter [16].

We observe that:
(i) In the inner atomic core (i.e., for r � 1), MGE2 is

very accurate and, because both s and q are relatively small,
the fourth-order terms in gradient expansions are not much
significant. Consequently, MGE4 is as accurate as MGE2.
On the other hand, the GE2 and GE4 exchange enhancement
factors are smaller, on average, than the exact one and they
do not describe with high accuracy this energetical region. In
fact, despite both s and q are not large in this region, only q is
very close to zero, while s ≈ 0.3. Therefore, the conventional
gradient expansions do not work very well in this regime.
Note that the inner-core high-density region gives the main
contribution to the exchange energy (99.3% of it).

(ii) In the outer atomic core (i.e., for 1 � r � 4), the reduced
gradients s and q start to increase, but they are still smaller
than 1, thus the density is still slowly varying. This atomic
region is not very important for the total exchange energy of
atoms, but it is a model for solid-state problems (where the
high-density limit is not common). While MGE2 fails in this
region, the MGE4 and GE2 are very accurate.
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FIG. 3. Relative exchange errors |�Ex | = |(Eexact
x −

Eapprox
x )/ELDA

x | for jellium clusters of bulk parameter rs = 4
and up to Z = 2048.

A. Assessment of MGE4 for jellium cluster models

The MGE4 is accurate by construction for the slowly
varying density regime of large nonrelativistic neutral atoms.
To test it on a different model, we consider its performance for
jellium clusters. These systems satisfy the uniform-electron-
gas scaling [47] [nλ(r) = n(λ−1/3r)] and, in the limit of a large
number of electrons, they are representative for solid-state
systems.

In Fig. 3 we have plotted the relative error �Ex = (Eexact
x −

E
approx
x )/ELDA

x , computed over the volume [V defined as in
Eq. (7)], for jellium clusters of bulk parameter rs = 4 and up
to Z = 2048 electrons. The restriction of the integral domain
to the volume V allows us to remove the nonintegrable region
for the fourth-order terms (i.e., the tail of the density) and to
consider solely the slowly varying density region. The LDA,
MGE2, and GE4 results are also reported in the figure.

It can be seen that MGE4 behaves similarly to GE4, which
is derived from the slowly varying density limit behavior.
Actually, MGE4 gives even the best results for larger clusters.
For these latter systems, MGE4 also outperforms MGE2,
which is instead more accurate for the smallest clusters.
To our knowledge, MGE4 is the only expansion which is
realistic for atoms [that are characterized by the Thomas-Fermi
scaling [47] nλ(r) = λ2n(λ1/3r)] and jellium models [which
are models for solid state and are based on the uniform-
electron-gas scaling [47] nλ(r) = n(λ−1/3r)].

B. Construction of a generalized gradient approximation
functional based on MGE4

To demonstrate the practical utility of MGE4, we employ
it to construct a simple generalized gradient approximation
(GGA) functional named the semiclassical GGA at fourth
order (SG4). Being based on MGE4, we expect that the SG4
functional performs well for both large atoms and solid-state
systems; moreover, we will see that it is rather accurate also
for ordinary chemistry.

The SG4 exchange enhancement factor takes the form

F SG4
x = 1 + κ1 + κ2 − κ1(1 − μ1s

2/κ1)

1 − (μ1s2/κ1)5
− κ2

1 + μ2s2/κ2
,

(10)

where the condition κ1 + κ2 = 0.804 is fixed from the Lieb-
Oxford bound [37], while μ1 + μ2 = μMGE2 = 0.26 and
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κ2 = −μ2
2/ν

MGE4 are imposed to recover MGE2 and MGE4,
respectively. Note that in a Taylor expansion around s = 0,
the fourth term on the right-hand side of Eq. (10) contributes
only with μ1s

2 + O(s10), whereas the MGE4 behavior is
completely described by the last term. Such a simple splitting
allows a better understanding of the physics behind the
functional. It remains only one free parameter not fixed by
the previous slowly varying density conditions. We fix it to
μ1 = 0.042 by fitting to the exchange ionization potential in
the SCA limit (see Fig. 4).

In such a way, the SG4 exchange functional is completely
constructed from the SCA model. Its enhancement factor is
reported in Fig. 5. For small values of the reduced gradient
s, it is close to the APBE one, since in this case MGE2 and
MGE4 are very similar (they coincide in the limit of very small
s values). However, unlike APBE, the SG4 functional recovers
MGE4 until s ≈ 0.6. For larger values of the reduced gradient
the SG4 enhancement factor is between the APBE and the
PBEsol ones.

To complete the SG4 functional we need to complement it
with a correlation functional. This must describe accurately the
SCA correlation expansion Ec ≈ 0.02072Z ln(Z) + BZ +
· · · (where B = 0.038 is the best estimate for the first-order
coefficient [48]), and recover the APBE correlation in the core
of a large atom (i.e., for rs → 0 and s → 0; note that, for
exchange, SG4 → APBE in this limit). Hence, we consider
the simple correlation energy per particle

εSG4
c = εLDA

c + φαt3
H (rs,ζ,t), (11)
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FIG. 5. Enhancement factors of different functionals as functions
of the reduced gradient s.
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x ) for noble-gas atoms up to Z = 290 electrons
(upper panel) and for jellium clusters (lower panel) with rs = 4, up
to Z = 2048.

where t = |∇n|/(2ksφn) is the reduced gradient for cor-
relation [49], with ks = (4kF /π )1/2 being the Thomas-
Fermi screening wave vector [kF = (3π2n)1/3], φ =
[(1 + ζ )2/3 + (1 − ζ )2/3]/2 is a spin-scaling factor, ζ = (n↑ −
n↓)/n is the relative spin polarization, and H is a localized
PBE-like gradient correction [49,50] where we use

β = β0 + σ t(1 − e−r2
s ). (12)

In order to recover the accurate LDA linear response [34,51],
we fix β0 = 3μMGE2/π2. Moreover, we fix the parameter σ =
0.07 fitting to jellium surface exchange-correlation energies
[52] (in analogy to PBEsol [7]) and α = 0.8 minimizing the
information entropy function described in Ref. [53]. We recall
that the spin-correction factor φαt3

is always equal to one
for spin-unpolarized systems (e.g., nonmagnetic solids), being
important only in the rapidly varying spin-dependent density
regime (e.g., small atoms) [53].

Equations (10) and (11) define the SG4 exchange-
correlation functional which satisfies, with no empirical
parameters, many exact properties, including the constraints
derived from the SCA theory.

III. RESULTS

In this section we present a general assessment of the
performance of the SG4 functional for solid-state problems,
which is the main topic of this work. For completeness, several
atomic and molecular tests are also reported. Finally, we
consider some application examples, to show the practical
utility of MGE4 and the related SG4 functional in condensed-
matter physics.

A. General assessment

At first we consider a general assessment of the exchange
only SG4 functional. This will allow a more direct evaluation
of the importance of the MGE4 recovery. In Fig. 6 we show
the relative errors �Ex = |Eexact

x − E
approx
x |/ELDA

x for noble
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atoms (upper panel) and jellium clusters (lower panel), for
several exchange functionals.

The PBEsol exchange, which is not based on the SCA
theory, is not accurate for atoms [33], while APBE and SG4 are
very accurate. This result is not highly surprising, since both
these functionals are constructed to recover the SCA theory.
Nevertheless, it is interesting to note that a good performance
is obtained not only for very large atoms, but also for the
moderately small ones. In the case of jellium clusters, APBE
is the best for Z < 100, while SG4 becomes more accurate for
larger values of Z. According to the liquid-drop model theory
of jellium spheres [47], this means that it describes accurately
the exchange quantum effects present in these systems.

Next, we discuss the performance of the full exchange-
correlation SG4 functional for some basic solid-state
tests. For completeness, several molecular tests are also
reported.

In Table I we show the results of SG4 calculations for the
lattice constants, bulk moduli, and cohesive energies of a set
of 29 bulk solids (see Sec. V). Our benchmark set for lattice
constants includes, as a subset, the LC20 benchmark set of
Refs. [21,54], which is also reported in Table I. The comparison
is done with APBE [34], that is the other nonempirical XC
functional based on the SCA theory, as well as with the PBEsol
[7], PBE [49], and Wu-Cohen (WC) [40] functionals, which
are among the most popular GGAs for solids (another popular
solid-state functional is the AM05 [55–57] (not reported),
which performs similarly to PBEsol and WC).

It can be seen that SG4 works remarkably well for solids. It
outperforms APBE (and PBE) and is often even better than
the state-of-the-art GGA for solids PBEsol and WC. The
comparison of the SG4 results for lattice constants and bulk
moduli with the APBE ones shows the relevance of MGE4
for solid-state systems. We highlight that the SG4 result for
the LC20 test (MAE = 23.1 mÅ) also competes with the ones
of the best meta-GGAs for solids. From literature we found
indeed the following MAEs for the LC20 test set: TPSS =
43 mÅ [54], revTPSS = 32 mÅ [54], SCAN = 16 mÅ [21].
This is a remarkable performance of the SG4 functional for the
equilibrium lattice constants of bulk solids, suggesting that the
MGE4 gradient expansion can also be a useful tool for further
meta-GGA development.

The results for the cohesive energies display a quite
different trend. Actually, this property involves a difference
between results from bulk and atomic calculations. Thus, the
best results are found for the PBE functional, which provides
the best error cancellation (note that PBE is the best neither
for solid state nor for atoms). The SG4 functional performs
overall similarly as the APBE one, being slightly penalized by
the need to include small atoms’ calculations. Nevertheless,
SG4 definitely outperforms PBEsol, which yields a quite poor
description of all atoms.

Cohesive energy results can be rationalized even better
looking at the outcome of several molecular tests. These tests
are also useful to obtain a more comprehensive assessment
of the performance of the functionals, even though we recall
that the focus of the present paper is on solid-state properties.
Moreover, the comparison of SG4 with PBEsol provides a
hint of the relevance of the SCA theory underlying the SG4
construction.

TABLE I. Mean absolute errors for equilibrium lattice constants
and bulk moduli of a set of 29 bulk materials and for several chemistry
tests [in detail, atomization energies of main-group molecules (G2/97)
and transition metal complexes (TM10AE), metal-organic interfaces
(SI12), bond lengths involving H atoms (MGHBL9) and not involving
H atoms (MGNHBL11), interaction energies of hydrogen bond
and dipole-dipole complexes (HB6+DI6), interaction energies of
dihydrogen bond complexes (DHB23)]. The best (worst) results of
each line are in boldface (underlined).

APBE PBE SG4 PBEsol WC

Lattice constants (mÅ)
Simple metals 34.1 31.4 41.7 55.6 58.4
Transition metals 63.7 44.9 23.9 25.6 23.7
Semiconductors 102.3 85.3 21.0 32.7 31.5
Ionic solids 95.6 76.0 20.8 20.0 18.8
Insulators 34.0 27.8 8.0 8.5 8.0
Total MAE 66.0 53.0 24.9 31.0 30.7
LC20 70.3 55.9 23.1 34.0 31.8

Bulk moduli (GPa)
Simple metals 1.3 1.1 0.7 0.2 0.54
Transition metals 26.3 21.2 20.0 20.2 18.9
Semiconductors 18.7 16.9 5.8 8.2 8.0
Ionic solids 9.6 8.5 6.2 3.9 4.8
Insulators 18.6 15.3 4.9 6.2 6.1
Total MAE 14.8 12.4 7.9 8.2 8.0

Cohesive energies (eV)
Simple metals 0.09 0.05 0.21 0.15 0.13
Transition metals 0.32 0.21 0.39 0.62 0.51
Semiconductors 0.29 0.13 0.09 0.28 0.20
Ionic solids 0.19 0.14 0.20 0.07 0.06
Insulators 0.12 0.16 0.36 0.57 0.47
Total MAE 0.21 0.14 0.24 0.33 0.27

Molecular tests (kcal/mol; mÅ)
G2/97 8.9 14.8 15.7 37.7 27.6
TM10AE 11.1 13.0 11.9 18.3 15.8
SI12 5.9 3.7 2.6 3.8 3.3
MGHBL9 10.0 11.5 10.3 14.5 13.9
MGNHBL11 9.2 7.6 3.7 5.2 6.1
HB6+DI6 0.4 0.4 0.5 1.3 0.9
DHB23 0.8 1.0 1.1 1.8 1.6

Inspection of the lowest panel of Table I shows that SG4 is
quite accurate for molecular tests. It is comparable with PBE
for atomization and noncovalent energies (within chemical
accuracy), and very accurate for geometry and interaction
energies at interfaces. The latter results are especially inter-
esting, since these tests require a delicate balance between
the description of different density regimes [51], which is
important for broad applicability at the GGA level [10,51,58].
In particular, the molecular bond lengths in the MGNHBL11
test (that do not imply bonds with hydrogen atoms) are best
described by semilocal functionals with low nonlocality [51]
(e.g., PBEsol), while the ones in the MGHBL9 test require
a large amount of nonlocality (APBE works at best). SG4
appears to be able to capture well both situations and yields
a total mean absolute error (MAE) for geometry of 6.7 mÅ,
better than both APBE (9.5 mÅ) and PBE (9.4 mÅ).
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B. Surface and monovacancy formation energies

In Table II we report the surface energies of three simple
metals and five transition metals, as well as the monovacancy
formation energies in several transition metals. These tests
involve a comparison between bulk energies in a delocalized
electronic system (metal) and the energy of the quite localized
surface/vacancy. Thus, they may be the ideal playground for
the SG4 functional which shows a good performance for bulk,
being simultaneously quite accurate also for confined systems
thanks to the underlying SCA theory.

Indeed, SG4 performs remarkably well for both problems,
yielding MAEs of 0.23 J/m2 and 0.13 eV, which compare
favorably with those of PBEsol (0.27 J/m2 and 0.19 eV). WC
is close to PBEsol but slightly worse (MAEs are 0.29 J/m2

and 0.22 eV); PBE and APBE are systematically worse than
PBEsol and are not reported. Notably, the improvement is also
systematic, since SG4 is always closer to the experimental
values than PBEsol, with the only exception of Ca and Cu for
surface and monovacacy formation energies, respectively.

C. Structure of boehmite and diaspore crystals

In Table III we list the structural parameters, as defined in
Fig. 7, computed for the boehmite and diaspore crystals.

These systems consist of layers of aluminum hydroxides
bound together by hydrogen bonds. We recall that layered
solids are becoming increasingly important in materials
science applications, thanks to their anisotropic behavior.
However, an accurate description of the equilibrium structure
of these systems requires the ability to describe both covalent
and noncovalent bonds in the bulk with similar accuracy. This
is a quite difficult task for GGAs [69].

In general, the PBEsol functional is among the best
GGAs for boehmite and diaspore [69]. It describes with

TABLE II. (111) surface energies (J/m2) and monovacancy
formation energies (eV) in several simple and transition metals. Mean
absolute errors (MAE) are reported in the last line. Values in best
agreement with experiments [59–66] are in boldface.

Metal PBEsol SG4 Expt.

Surface energies (J/m2)
Al 0.96 1.06 1.14
Ca 0.52 0.54 0.50
Sr 0.40 0.41 0.42
Cu 1.61 1.67 1.79
Pt 1.83 1.89 2.49
Rh 2.45 2.51 2.70
Au 0.98 1.01 1.50
Pd 1.69 1.72 2.00
MAE 0.27 0.23

Monovacancy energy (eV)
Cu 1.25 1.35 1.28
Ni 1.73 1.83 1.79
Pd 1.49 1.59 1.85
Ir 1.88 2.04 1.97
Au 0.65 0.78 0.89
Pt 1.02 1.15 1.35
MAE 0.19 0.13

TABLE III. Lattice parameters (a,b,c) and various atomic dis-
tances for the boehmite and diaspore crystals. All data are in Å. The
reference data are taken from Refs. [67,68]. The best result for each
line is highlighted in bold.

PBEsol SG4 Expt.

Boehmite
a 2.868 2.863 2.868
b 11.839 11.858 12.234
c 3.714 3.713 3.692
Al-O 1.911 1.909 1.907
OH 1.027 1.019 0.970
H · · · O 1.545 1.565 1.738

Diaspore
a 4.360 4.362 4.401
b 9.411 9.399 9.425
c 2.848 2.842 2.845
Al-O 1.917 1.915 1.915
OH 1.039 1.031 0.989
H · · · O 1.524 1.535 1.676

good accuracy the covalent bonds, but it suffers of some
limitations in the description of the noncovalent ones. The SG4
functional preserves the good features of PBEsol and provides,
in addition, small but important and systematic improvements
for hydrogen bonds.

D. Ice lattice mismatch problem

The ice lattice mismatch problem is a popular problem in
solid-state physics [70,71]. It involves the calculation of the
lattice constant a of ice Ih and of the lattice constant b of
β-AgI, which are used to define the lattice mismatch

f = 2(b − a)

b + a
. (13)

The lattice mismatch f is an important quantity in many
applications, since it determines the growth rate of ice on a
β-AgI surface (for example, β-AgI is used as seed crystal
to produce artificial rainfall). However, the computational
determination of the lattice mismatch is a quite hard task, since
it involves the simultaneous calculation of the lattice constants
of two materials with quite different electronic properties. For

eropsaiDetimheoB

FIG. 7. Structural parameters of boehmite and diaspore crystals.
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TABLE IV. Calculated lattice constants (Å) for ice Ih and β-AgI
as well as the corresponding lattice mismatch. Experimental data are
taken from Ref. [70]. The best result for each line is highlighted in
bold.

PBE PBEsol SG4 Expt.

a (ice Ih) 4.42 4.29 4.33 4.50
b (β-AgI) 4.68 4.56 4.57 4.59
Mismatch 5.7% 6.1% 5.4% 2.2%

this reason its calculation is a challenge for semilocal density
functionals [70,71].

In Table IV we report the computed lattice constants and
the corresponding lattice mismatch, as obtained from several
functionals. In this case we also report PBE results, since for
this problem PBE is one of the best GGAs, performing better
than PBEsol.

Indeed, we see that PBE yields quite good results for the
lattice constant of both materials, showing errors below 0.1 Å
in both cases. However, because the errors for ice Ih and
β-AgI lattice constants have opposite signs, the final lattice
mismatch is computed rather inaccurately. On the other hand,
PBEsol performs well for β-AgI, but yields a much larger error
for ice Ih. Thus, the resulting lattice mismatch is definitely
overestimated. A better balance in the performance is seen
instead in the SG4 case. This functional is in fact the best
for β-AgI and between PBE and PBEsol for ice Ih. Hence,
it finally yields a lattice mismatch of 5.4%. This value is still
too large with respect to the experimental one (2.2%), but
improves with respect to the other GGAs.

IV. SUMMARY AND CONCLUDING REMARKS

In this paper we have used the SCA theory to introduce
a modified fourth-order gradient expansion (MGE4), which
is accurate for atoms and solid-state systems. The MGE4
includes and extends the well-known MGE2. The extension
over MGE2 is obtained by using, in the gradient expansion
construction, an additional constraint, beyond the energy
one, which provides an improved description of slowly
varying regions of different materials. To implement the new
constraint, an integration over slowly varying density regions
was introduced in order to reduce computational noise and
avoid the divergence of fourth-order terms in rapidly varying
density regions.

To exploit the good features of MGE4 we have used it
as a base to construct a simple GGA functional, named
SG4. This functional is free of parameters fitted on real
systems and satisfies several exact properties, including those
relevant for the SCA model, the Lieb-Oxford bound, the LDA
linear response behavior, and the rapidly varying as well as
the high-density limits of correlation. The SG4 functional
performs well for a broad range of problems in solid-state
physics, still preserving, thanks to the SCA underlying theory,
a reasonable performance also for molecular tests. Due to this
eclectic character, the SG4 functional is particularly promising
for problems involving multiple electronic structure features,

such as surface energies, vacancies, noncovalent interactions
in bulk solids, and interfaces.

The results of the present work highlight, through the
power of MGE4 for different problems, the importance of the
underlying SCA model as a reference system in DFT also for
solid-state systems. This was the primary goal of the present
work, since the relevance of the SCA model system was often
overlooked in the literature and the utility of this model has
been often considered to be limited to the atomic and molecular
framework.

To conclude we recall that gradient expansions are basic
tools for the construction of nonempirical DFT functionals,
even beyond the semilocal XC level [16,44,45,72–75]. Thus,
in the future, further studies may focus on the use of MGE4 to
construct and optimize highly accurate functionals of different
ranks, beyond the simple SG4 that we have presented here
mainly to illustrate the practical utility of the SCA theory.

V. COMPUTATIONAL DETAILS

All atomic calculations used to derive the MGE4 expansion
have been performed using the Engel code [76] with the exact
exchange functional. Further tests of the MGE4 on jellium
clusters have been carried out employing accurate LDA Kohn-
Sham densities [77].

The SG4 functional has been tested on different data sets,
including

(1) Atomization and interaction energies: atomization
energies of small molecules (G2/97 [78,79]), atomization
energies of small transition metal complexes (TM10AE
[53,80,81]), small gold-organic interfaces (SI12 [82]).

(2) Structural properties: bond lengths involving H atoms
(MGHBL9 [83]), bond lengths not involving H atoms (MGN-
HBL11 [83]) bonds.

(3) Noncovalent interactions: interaction energies of
hydrogen-bond and dipole-dipole complexes (HB6+DI6 [84])
as well as of dihydrogen bond complexes (DHB23 [85]).

(4) Solid-state tests: Equilibrium lattice constants and bulk
moduli of 29 solids, including Al, Ca, K, Li, Na, Sr, Ba (simple
metals); Ag, Cu, Pd, Rh, V, Pt, Ni (transition metals); LiCl, LiF,
MgO, NaCl, NaF (ionic solids); AlN, BN, BP, C (insulators);
GaAs, GaP, GaN, Si, SiC, Ge (semiconductors). Reference
data to construct this set were taken from Refs. [54,86–89].

All calculations for molecular systems have been performed
with the TURBOMOLE program package [90,91], using
a def2-TZVPP basis set [92,93]. Calculations concerning
solid-state tests have been performed with the VASP program
[94], using PBE-PAW pseudopotentials. We remark that the
use of the same pseudopotential for all the functionals may
lead to inaccuracies in the final results. Nevertheless, the
use of PAW core potentials ensures good transferability for
multiple functionals [57,95], since the core-valence interaction
is recalculated for each functional. Indeed, test calculations
employing different variants of the PAW potentials (GGA-
PAW) have shown that the estimated convergence level of
our calculations is about 1 mÅ for lattice constants, 0.5 GPa
for bulk moduli, and 0.01 eV for cohesive energies. All
Brillouin zone integrations were performed on -centered
symmetry-reduced Monkhorst-Pack k-point meshes, using
the tetrahedron method with Blöchl corrections. For all the
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calculations a 24 × 24 × 24 k-mesh grid was applied and the
plane-wave cutoff was chosen to be 30% larger than maximum
cutoff defined for the pseudopotential of each considered
atom. The bulk modulus was obtained using the Murnaghan
equation of state. The cohesive energy, defined as the energy
per atom needed to atomize the crystal, is calculated for each
functional from the energies of the crystal at its equilibrium
volume and the spin-polarized symmetry-broken solutions
of the constituent atoms. To generate symmetry breaking
solutions, atoms were placed in a large orthorhombic box with

dimensions 13 × 14 × 15 Å
3
.

Calculations for the examples reported in Secs. III B, III C,
and III D have been performed using the same computational
setups as in Refs. [61,63,69,70].
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B 79, 155107 (2009).

[89] P. Janthon, S. Luo, S. M. Kozlov, F. Viñes, J. Limtrakul,
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