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Abstract

Enabling a humanoid robot to drive a car, requires the development of a set of
basic primitive actions. These include: walking to the vehicle, manually con-
trolling its commands (e.g., ignition, gas pedal and steering), and moving with
the whole-body, to ingress/egress the car. In this paper, we present a sensor-
based reactive framework for realizing the central part of the complete task,
consisting in driving the car along unknown roads. The proposed framework
provides three driving strategies by which a human supervisor can teleoperate
the car, ask for assistive driving, or give the robot full control of the car. A
visual servoing scheme uses features of the road image to provide the reference
angle for the steering wheel to drive the car at the center of the road. Simulta-
neously, a Kalman filter merges optical flow and accelerometer measurements,
to estimate the car linear velocity and correspondingly compute the gas pedal
command for driving at a desired speed. The steering wheel and gas pedal
reference are sent to the robot control to achieve the driving task with the hu-
manoid. We present results from a driving experience with a real car and the
humanoid robot HRP-2Kai. Part of the framework has been used to perform
the driving task at the DARPA Robotics Challenge.



1 Introduction

The potential of humanoid robots in the context of disaster has been exhibited recently
at the DARPA Robotics Challenge (DRC), where robots performed complex locomotion
and manipulation tasks (DARPA Robotics Challenge, 2015). The DRC has shown that
humanoids should be capable of operating machinery, originally designed for humans. The
DRC utility car driving task is a good illustration of the complexity of such tasks.

Worldwide, to have the right to drive a vehicle, one needs to be delivered a license, requiring
months of practice, followed by an examination test. To make a robot drive in similar
conditions, the perception and control algorithms should reproduce the human driving skills.

If the vehicle can neither be customized nor automated, it is more convenient to think of a
robot in terms of anthropomorphic design. A driving robot must have motion capabilities for
operations such as: reaching the vehicle, entering it, sitting in a stable posture, controlling its
commands (e.g., ignition, steering wheel, pedals), and finally egressing it. All these skills can
be seen as action templates, to be tailored to each vehicle and robot, and, more importantly,
to be properly combined and sequenced to achieve driving tasks.

Noticeable research is currently made, to automate the driving operation of unmanned
vehicles, with the ultimate goal of reproducing the tasks usually performed by human
drivers (Nunes et al., 2009; Zhang et al., 2008; Hentschel and Wagner, 2010), by relying
on visual sensors (Newman et al., 2009; Broggi et al., 2010; Cherubini et al., 2014). The
success of the DARPA Urban Challenges (Buehler et al., 2008; Thrun et al., 2006), and the
impressive demonstrations made by Google (Google, 2015), have heightened expectations
that autonomous cars will very soon be able to operate in urban environments. Considering
this, why bother making a robot drive a car, if the car can make its way without a robot?
Although both approaches are not exclusive, this is certainly a legitimate question.

One possible answer springs from the complexity of autonomous cars, which host a distributed
robot, with various sensors and actuators controlling the different tasks. With a centralized
robot, such embedded devices can be removed from the car. The reader may also wonder
when should a centralized robot be preferred to a distributed one, i.e., a fully automated car?

We answer this question through concrete application examples. In the DRC (Pratt and
Manzo, 2013), one of the eight tasks that robot must overtake is driving a utility vehicle. The
reason is that in disaster situations, the intervention robot must operate vehicles – usually
driven by humans – to transport tools, debris, etc. Once the vehicle reaches the intervention
area, the robot should execute other tasks, (e.g., turning a valve, operating a drill). Without
a humanoid, these tasks can be hardly achieved by a unique system. Moreover, the robot
should operate cranks or other tools attached to the vehicle (Hasunuma et al., 2003; Yokoi
et al., 2006). A second demand comes from the car manufacturing industry (Hirata et al.,
2015). In fact, current crash-tests dummies are passive and non-actuated. Instead, in crash
situations, real humans perform protective motions and stiffen their body, all behaviors that
are programmable on humanoid robots. Therefore, robotic crash-test dummies would be
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more realistic in reproducing typical human behaviors.

These applications, along with the DRC itself, and with the related algorithmic questions,
motivate the interest for developing a robot driver. However, this requires the solution of
an unprecedented “humanoid-in-the-loop” control problem. In our work, we successfully
address this, and demonstrate the capability of a humanoid robot to drive a real car. This
work is based on preliminary results carried out with the HRP-4 robot, driving a simu-
lated car (Paolillo et al., 2014). Here, we add new features to that framework, and present
experiments with humanoid HRP-2Kai driving a real car outdoor on an unknown road.

The proposed framework presents the following main features:

• car steering control, to keep the car at a defined center of the road;

• car velocity control, to drive the car at a desired speed;

• admittance control, to ensure safe manipulation of the steering wheel;

• three different driving strategies, allowing intervention or supervision of a human
operator, in a smooth shared autonomy manner.

The modularity of the approach allows to easily enable or disable each of the modules that
compose the framework. Furthermore, to achieve the driving task, we propose to use only
standard sensors for a common full-size humanoid robot, i.e., a monocular camera mounted
on the head of the robot, the Inertial Measurement Unit (IMU) in the chest, and the force
sensors at the wrists. Finally, the approach being purely reactive, it does not need any
a priori knowledge of the environment. As a result, the framework allows - under certain
assumptions - to make the robot drive along a previously unknown road.

The paper organization reflects the schematic description of the approach given in the next
Sect. 2, at the end of which we also provide a short description of the paper sections.

2 Problem formulation and proposed approach

The objective of this work is to enable a humanoid robot to autonomously drive a car at the
center of an unknown road, at a desired velocity. More specifically, we focus on the driving
task and, therefore, consider the robot sitting in the car, already in a correct driving posture.

Most of the existing approaches have achieved this goal by relying on teleoperation (DRC-
Teams, 2015; Kim et al., 2015; McGill et al., 2015). Atkeson and colleagues (Atkeson et al.,
2015) propose an hybrid solution, with teleoperated steering and autonomous speed control.
The velocity of the car, estimated with stereo cameras, is fed back to a PI controller, while
LIDAR, IMU and visual odometry data support the operator during the steering procedures.
In (Kumagai et al., 2015), the gas pedal is teleoperated and a local planner, using robot
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kinematics for vehicle path estimation, and point cloud data for obstacle detection, enables
autonomous steering. An impedance system is used to ensure safe manipulation of the
steering wheel.

Other researchers have proposed fully autonomous solutions. For instance, in (Jeong et al.,
2015), autonomous robot driving is achieved by following the proper trajectory among obsta-
cles, detected with laser measurements. LIDAR scans are used in (Rasmussen et al., 2014)
to plan a path for the car, while the velocity is estimated with a visual odometry module.
The operation of the steering wheel and gas pedal is realized with simple controllers.

We propose a reactive approach for autonomous driving that relies solely on standard hu-
manoids sensor equipment, thus making it independent from the vehicle sensorial capabili-
ties, and does not require expensive data elaboration for building local representations of the
environment and planning safe paths. In particular, we use data from the robot on-board
camera and IMU, to close the autonomous driver feedback loop. The force measured on the
robot wrists is exploited to operate the car steering wheel.

In designing the proposed solution, some simplifying assumptions have been introduced, to
capture the conceptual structure of the problem, without losing generality:

1. The car brake and clutch pedals are not considered, and the driving speed is assumed
to be positive and independently controlled through the gas pedal. Hence, the steering
wheel and the gas pedals are the only vehicle controls used by the robot for driving.

2. The robot is already in its driving posture on the seat, with one hand on the steering
wheel, the foot on the pedal, and the camera pointing the road, with focal axis
aligned with the car sagittal plane. The hand grasping configuration is unchanged
during operation.

3. The road is assumed to be locally flat, horizontal, straight, and delimited by parallel
borders1. Although global convergence can be proved only for straight roads, turns
with admissible curvature bounds are also feasible, as shown in the Experimental
section. Instead, crossings, traffic lights, and pedestrians are not negotiated, and
road signs are not interpreted.

Given these assumptions, we propose the control architecture in Fig. 1. The robot sits in the
car, with its camera pointing to the road. The acquired images and IMU data are used by
two branches of the framework running in parallel: car steering and velocity control. These
are described hereby.

The car steering algorithm guarantees that the car is maintained at the center of the road.
To this end, the IMU is used to get the camera orientation with respect to the road, while
an image processing algorithm detects the road borders (road detection). These borders

1The assumption on parallel road borders can be relaxed, as proved in (Paolillo et al., 2016). We maintain
the assumption here to keep the description of the controller simpler, as will be shown in Sect. 5.1.
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Figure 1: Conceptual block diagram of the driving framework.

are used to compute the visual features feeding the steering control block. Finally, the
computed steering wheel reference angle is transformed by the wheel operation block into a
desired trajectory for the robot hand that is operating the steering wheel. This trajectory
can be adjusted by an admittance system, depending on the force exchanged between the
robot hand and the steering wheel.

The car velocity control branch aims at making the car progress at a desired speed, through
the gas pedal operation by the robot foot. A Kalman Filter (KF) fuses visual and inertial
data to estimate the velocity of the vehicle (car velocity estimation) sent as feedback to the
car velocity control, which provides the gas pedal reference angle for obtaining the desired
velocity. The pedal operation block transforms this signal into a reference for the robot foot.

Finally, the reference trajectories for the hand and the foot respectively operating the steering
wheel and the pedal, are converted into robot postural tasks, by the task-based quadratic
programming controller.

The driving framework, as described above, allows a humanoid robot to autonomously drive
a car along an unknown road, at a desired velocity. We further extend the versatility of
our framework by implementing three different “driving modes”, in order to ease human
supervision and eventual intervention if needed:

• Autonomous. Car steering and velocity control are both enabled, as indicated above,
and the robot autonomously drives the car without any human aid.
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Table 1: Driving modes. For each mode, the steering and the car velocity control are properly
enabled or disabled.

Driving mode Steering Car velocity
control control

Autonomous enabled enabled
Assisted enabled? disabled
Teleoperated disabled disabled
? Road detection is assisted by the human.

• Assisted. A human takes care of the road detection, the car velocity estimation,
and the control, by teleoperating the robot ankle, and manually selecting the visual
features (road borders). These are then used by the steering controller to compute
the robot arm command.

• Teleoperated. Both the robot hand and foot are teleoperated for steering the wheel
and the gas pedal operation, respectively. The reference signals are sent to the task-
based quadratic programming control through a keyboard or joystick. The human
uses the robot camera images as visual feedback for driving.

For each of the driving modes, the car steering and velocity controllers are enabled or dis-
abled, as described in Table 1. The human user/supervisor can intervene at any moment
during the execution of the driving task, to select one of the three driving modes. The
selection, as well as the switching between modes, is done by pushing proper joystick (or
keyboard) buttons.

The framework has a modular structure, as presented in Fig. 1. In the following Sections,
we detail the primitive functionalities required by the autonomous mode, since the assisted
and teleoperation modes use a subset of such functionalities.

The rest of paper is organized as follows. Section 3 describes the model used for the car-
robot system. Then, the main components of the proposed framework are detailed. Sect. 4
presents the perception part, i.e., the algorithms used to detect the road and to estimate the
car velocity. Section 5 deals with car control, i.e., how the feedback signals are transformed
into references for the steering wheel and for the gas pedal, while Sect. 6 focuses on hu-
manoid control, i.e., on the computation of the commands for the robot hand and foot. The
experiments carried out with HRP-2Kai are presented in Sect. 7. Finally, Sect. 8 concludes
the paper and outlines future research perspectives.

3 Modelling

The design of the steering controller is based on the car kinematic model. This is a reasonable
choice since, for nonholonomic systems, it is possible to cancel the dynamic parameters via
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Figure 2: Side (a) and top view (b) of a humanoid robot driving a car with relevant variables.

feedback, and to solve the control problem at the velocity level, provided that the velocity
issued by the controller is differentiable (De Luca and Oriolo, 1995). To recover the dynamic
system control input, it is however necessary to know the exact dynamic model, which is in
general not available. Although some approximations are therefore necessary, these do not
affect the controller in the considered scenario (low accelerations, flat and horizontal road).
On-line car dynamic parameter identification could be envisaged, and seamlessly integrated
in our framework, whenever the above assumptions are not valid. Note, however, that the
proposed kinematic controller would remain valid, since it captures the theoretic challenge
of driving in the presence of nonholonomic constraints.

To derive the car control model, consider the reference frame Fw placed on the car rear axle
midpoint W , with the y-axis pointing forward, the z-axis upward and the x-axis completing
the right handed frame (see Fig. 2a). The path to be followed is defined as the set of points
that maximize the distance from both the left and right road borders. On this path, we
consider a tangent Frenet Frame Fp, with origin on the normal projection of W on the path.
Then, the car configuration with respect to the path is defined by x, the Cartesian abscissa
of W in Fp, and by θ, the car orientation with respect to the path tangent (see Fig. 2b).
Describing the car motion through the model of a unicycle, with an upper curvature bound
cM ∈ R+, x and θ evolve according to:

ẋ = v sin θ

θ̇ = ω

∣∣∣ω
v

∣∣∣ < cM , (1)

where v and ω represent respectively the linear and angular velocity of the unicycle. The
front wheel orientation φ can be approximately related to v and ω through:

φ = arctan

(
ωl

v

)
, (2)

with l the constant distance between the rear and front wheel axes2.
2Bounds on the front wheels orientation characterizing common service cars induce the maximum curva-
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The parameters r, the radius of the wheel, and β, characterizing the grasp configuration, are
also shown here.

Note that a complete car-like model could have been used, for control design purposes,
by considering the front wheels orientation derivative as the control input. The unicycle
stabilizing controller adopted in this paper can in fact be easily extended to include the
dynamics of the front wheels orientation, for example through backstepping techniques.
However, in this case, a feedback from wheel orientation would have been required by the
controller, but is, generally, not available. A far more practical solution is to neglect the
front wheels orientation dynamics, usually faster than that of the car, and consider a static
relationship between the front wheels orientation and the car angular velocity. This will only
require a rough guess on the value of the parameter l, since the developed controller shows
some robustness with respect to model parameters uncertainties as will be shown in Sect. 5.

The steering wheel is shown in Fig. 3, where we indicate, respectively with Fh and Fs, the
hand and steering wheel reference frames. The origin of Fs is placed at the center of the
wheel, and α is the rotation around its z-axis, that points upward. Thus, positive values of
α make the car turn left (i.e., lead to negative ω).

Neglecting the dynamics of the steering mechanism (Mohellebi et al., 2009), assuming the
front wheels orientation φ to be proportional to the steering wheel angle α, controlled by the
driver hands, and finally assuming small angles ωl/v in (2), leads to:

α = kα
ω

v
, (3)

with kα a negative3 scalar, characteristic of the car, accounting also for l.

The gas pedal is modeled by its inclination angle ζ, that yields a given car acceleration a =
dv/dt. According to experimental observations, at low velocities, the relationship between
the pedal inclination and the car acceleration is linear:

ζ = kζa. (4)

The pedal is actuated by the motion of the robot foot, that is pushing it (see Fig. 4a).

ture constraint in (1).
3Because of the chosen angular conventions.
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Figure 4: (a) The robot foot operates the gas pedal by regulating the joint angle at the ankle
qa, to set a pedal angle ζ, and yield car acceleration a. (b) Geometric relationship between
the ankle and the gas pedal angles.

Assuming small values of ∆qa and ∆ζ, the point of contact between the foot and the pedal
can be considered fixed on both the foot and the pedal, i.e., the length of the segment C2C3

in Fig. 4b can be considered close to zero4. Hence, the relationship between ∆qa and ∆ζ is
easily found to be

∆ζ =
la
lp

∆qa, (5)

where la (lp) is the distance of the ankle (pedal) rotation axis from the contact point of the
foot with the pedal.

The robot body reference frame Fb is placed on the robot chest, with x-axis pointing forward,
and z-axis upward. Both the accelerations measured by the IMU, and the humanoid tasks,
are expressed in this frame. We also indicate with Fc the robot camera frame (see Fig. 2).
Its origin is in the optical center of the camera, with z-axis coincident with the focal axis.
The y-axis points downwards, and the x-axis completes the right-handed frame. Fc is tilted
by an angle γ (taken positive downwards) with respect to the frame Fw, whereas the vector
pwc = (xwc , y

w
c , z

w
c )T indicates the position vector of the camera frame expressed in the car

reference frame.

Now, the driving task can be formulated. It consists in leading the car on the path, and
aligning it with the path tangent:

(x, θ)→ (0, 0) , (6)

while driving at a desired velocity:
v → v∗. (7)

Task (6) is achieved by the steering control that uses the kinematic model (1), and is realized
by the robot hand according to the steering angle α. Concurrently, (7) is achieved by the car

4For the sake of clarity, in Fig. 4b the length of the segment C2C3 is much bigger than zero. However,
this length, along with angles ∆qa and ∆ζ, is almost null.
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velocity control realized by the robot foot that sets a proper angle ζ for the gas pedal. The
computation of α and ζ rely on the perception module, that is detailed in the next Section.

4 Perception

The block diagram of Fig. 1 shows our perception-action approach. At a higher level, the
perception block, whose details are described in this Section, provides the feedback signals
for the car and robot control.

4.1 Road detection

This Section describes the procedure used to derive the road visual features, required to
control the steering wheel. These visual features are: (i) the vanishing point (V ), i.e., the
intersection of the two borders, and (ii) the middle point (M), i.e., the midpoint of the
segment connecting the intersections of the borders with the image horizontal axis. Both
are shown in Fig. 5.

Hence, road detection consists of extracting the road borders from the robot camera images.
After this operation, deriving the vanishing and middle point is trivial. Since the focus
of this work is not to advance the state-of-the-art on road/lane detection, but rather to
propose a control architecture for humanoid car driving, we develop a simple image processing
algorithm for road border extraction. More complex algorithms can be used to improve the
detection and tracking of the road (Liu et al., 2008; Lim et al., 2009; Meuter et al., 2009;
Nieto et al., 2012), or even to detect road markings (Vacek et al., 2007). However, our
method has the advantage of being based solely on vision, avoiding the complexity induced
by integration of other sensors (Dahlkamp et al., 2006; Ma et al., 2000). Note that more
advanced software is owned by car industries, and therefore hard to find in open-code source
or binary.

Part of the road borders extraction procedure follows standard techniques used in the field
10



(a) On-board camera image with the red detected
road borders. The vanishing and middle point
are shown respectively in cyan and green.

(b) First color detection.

(c) Second color detection.

(d) Mask obtained after dilation and erosion.

(e) Convex hull after Gaussian filtering. (f) Canny edge detection.

(g) Hough transform. (h) Merged segments.

Figure 6: Main steps of the road detection algorithm. Although the acquired robot image (a)
is shown in gray-scale here, the proposed road detection algorithm processes color images.

of computer vision (Laganière, 2011) and is based on the OpenCV library (Bradski, 2000)
that provides ready-to-use methods for our vision-based algorithm. More in detail, the steps
used for the detection of the road borders on the currently acquired image are described
below, with reference to Fig. 6.

• From the image, a Region Of Interest (ROI), shown with white borders in Fig. 6a,
is manually selected at the initialization, and kept constant during the driving ex-
periment. Then, at each cycle of the image processing, we compute the average and
standard deviation of hue and saturation channels of the HSV (Hue, Saturation and
Value) color space on two central rectangular areas in the ROI. These values are
considered for the thresholding operations described in the next step.

• Two binary images (Fig. 6b and 6c) are obtained by discerning the pixels in the ROI,
whose hue and saturation value are in the ranges (average ± standard deviation)
defined in the previous step. This operation allows to detect the road, while being
adaptive to color variation. The HSV value channel is not considered, in order to be
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robust to luminosity changes.

• To remove “salt and pepper noise”, the dilation and erosion operators are applied to
the binary images. Then, the two images are merged by using the OR logic operator
to obtain a mask of the road (Fig. 6d).

• The convex hull is computed with areas greater than a given threshold on the mask
found in the previous step; then, a Gaussian filter is applied for smoothing. The
result is shown in Fig. 6e.

• The Canny edge detector (Fig. 6f), followed by Hough transform (Fig. 6g) are applied,
to detect the line segments on the image.

• Similar segments are merged5, as depicted in Fig. 6h.

This procedure gives two lines corresponding to the image projection of the road borders.
However, in real working conditions, it may happen that one or both the borders are not
detectable because of noise on the image, or failures in the detection process. For this
reason, we added a recovery strategy, as well as a tracking procedure, to the pipeline. The
recovery strategy consists in substituting the borders, that are not detected, with artificial
ones, defined offline as oblique lines that, according to the geometry of the road and to the
configuration of the camera, most likely correspond to the road borders. This allows the
computation of the vanishing and middle point even when one (or both) real road borders
are not correctly detected. On the other hand, the tracking procedure gives continuity and
robustness to the detection process, by taking into account the borders detected on the
previous image. It consists of a simple KF, with state composed of the slope and intercept
of the two borders6. In the prediction step, the KF models the position of lines on the
image plane as constant (a reasonable design choice, under Assumption 3, of locally flat
and straight road), whereas the measurement step uses the road borders as detected in the
current image.

From the obtained road borders (shown in red in Fig.6a), the vanishing and middle point
are derived, with simple geometrical computations. Their values are then smoothed with
a low-pass frequency filter, and finally fed to the steering control, that will be described in
Sect. 5.1.

4.2 Car velocity estimation

To keep the proposed framework independent from the car characteristics, we propose to
estimate the car speed v, by using only the robot sensors, and avoiding information coming
from the car equipment, such as GPS, or speedometer. To this end, we use the robot camera,

5For details on this step, refer to (Paolillo et al., 2016).
6Although 3 parameters are sufficient if the borders are parallel, a 4-dimensional state vector will cover

all cases, while guaranteeing robustness to image processing noise.
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Figure 7: Schematic representation of the robot camera looking at the road. (a) Any visible
cartesian point (xg, yg, zg) on the ground has a projection on the camera image plane, whose
coordinates expressed in pixels are (xp, yp). (b) The measurement of this point on the image
plane, together with the camera configuration parameters, can be used to estimate the depth
zg of the point.

to measure the optical flow, i.e. the apparent motion of selected visual features, due to the
relative motion between camera and scene.

The literature in the field of autonomous car control provides numerous methods for esti-
mating the car speed by means of optical flow (Giachetti et al., 1998; Barbosa et al., 2007).
To improve the velocity estimate, the optical flow can be fused with inertial measurements,
as done in the case of aerial robots, in (Grabe et al., 2012). Inspired by that approach, we
design a KF, fusing the acceleration measured by the robot IMU and the velocity measured
with optical flow.

Considering the linear velocity and acceleration along the forward car axis yw as state ξ =
(v a)T of the KF, we use a simple discrete-time stochastic model to describe the car motion:

ξk+1 =

(
1 ∆T
0 1

)
ξk + nk, (8)

with ∆T the sampling time, and nk the zero-mean white gaussian noise. The corresponding
output of the KF is modeled as:

ηk = ξk +mk, (9)

where mk indicates the zero-mean white gaussian noise associated to the measurement pro-
cess. The state estimate is corrected, thanks to the computation of the residual, i.e., the
difference between measured and predicted outputs. The measurement is based on both the
optical flow (vOF ), and the output of the IMU accelerometers (aIMU). Then, the estimation
of the car velocity v will correspond to the first element of state vector ξ. The process to
obtain vOF and aIMU is detailed below.
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4.2.1 Measure of the car speed with optical flow

To measure the car velocity vOF in the KF, we use optical flow. Optical flow can be used
to reconstruct the motion of the camera, and from that, assuming that the transformation
from the robot camera frame to the car frame is known, it is straightforward to derive the
vehicle velocity.

More in detail, the 6D velocity vector vc of the frame Fc can be related to the velocity of
the point tracked in the image ẋp through the following relation:

ẋp = Lvc, (10)

where the interaction matrix L is expressed as follows (Chaumette and Hutchinson, 2006):

L =

(
−Sx

zg
0 xp

zg

xpyp
Sy

−(Sx +
x2p
Sx

) ypSx

Sy

0 −Sy

zg

yp
zg

Sy +
y2p
Sy

−xpyp
Sy

−xpSy

Sx

)
. (11)

Here, (xp, yp) are the image coordinates (in pixels) of the point on the ground, expressed as
(xg, yg, zg) in the camera frame (see Fig. 7). Furthermore, it is Sx,y = fαx,y, where f is the
camera focal length and αx/αy the pixel aspect ratio. In the computation of L, we consider
that the image principal point coincides with the image center. As shown in Fig. 7b, the
point depth zg can be reconstructed through the image point ordinate yp and the camera
configuration (tilt angle γ and height zwc ):

zg =
zwc cos ε

sin(γ + ε)
, ε = arctan

(
yp
Sy

)
. (12)

Actually, the camera velocity vc is computed by taking into account n tracked points, i.e.,
in (10), we consider respectively L̂ = (L1 · · ·Ln)T and ˆ̇xp = (ẋp,1 · · · ẋp,n)T , instead of L
and ẋp. Then, vc is obtained by solving a least-squares problem7:

vc = arg min
χ
||L̂χ− ˆ̇xp||2. (13)

The reconstruction of ˆ̇xp in (13) is based on the computation of the optical flow. However,
during the navigation of the car, the vibration of the engine, poor textured views and other
un-modeled effects add noise to the measurement process (Giachetti et al., 1998). Further-
more, other factors, such as variable light conditions, shadows, and repetitive textures, can
jeopardize feature tracking. Therefore, raw optical flow, as provided by off-the-shelf algo-
rithms –e.g., from the OpenCV library (Bradski, 2000), gives noisy data that are insufficient
for accurate velocity estimation; so filtering and outlier rejection techniques must be added.

7To solve the least-square problem, n ≥ 3 points are necessary. In our implementation, we used the
openCV solve function, and in order to filter the noise due to few contributions, we set n ≥ 25. If n < 25,
we set vc = 0.
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Since the roads are generally poor in features, we use a dense optical flow algorithm, that
differs from sparse algorithms, in that it computes the apparent motion of all the pixels of the
image plane. Then, we filter the dense optical flow, first according to geometric rationales,
and then with an outlier rejection method (Barbosa et al., 2007). The whole procedure is
described below, step-by-step:

• Take two consecutive images from the robot on-board camera.

• Consider only the pixels in a ROI that includes the area of the image plane corre-
sponding to the road. This ROI is kept constant along all the experiment and, thus,
identical for the two consecutive frames.

• Covert the frames to gray scale, apply a Gaussian filter, and equalize with respect
to the histogram. This operation reduces the measurement noise, and robustifies the
method with respect to light changes.

• Compute the dense optical flow, using the Farnebäck algorithm (Farnebäck, 2003)
implemented in OpenCV.

• Since the car is supposed to move forward, in the dense optical flow vector, consider
only those elements pointing downwards on the image plane, and discard those not
having a significant centrifugal motion from the principal point. Furthermore, con-
sider only contributions with length between an upper and a lower threshold, and
whose origin is on an image edge (detected applying Canny operator).

• Reject the outliers, i.e., the contributions (ẋp,i, ẏp,i), i ∈ {1, . . . , n}, such that ẋp,i /∈
[¯̇xp ± σx] and ẏp,i /∈ [¯̇yp ± σy], where ¯̇xp (¯̇yp ) and σx (σy) are the average and standard
deviation of the optical flow horizontal (vertical) contributions. This operation is
made separately for the contributions of the right and left side of the image, where
the module and the direction of the optical flow vectors can be quite different (e.g.,
on turns).

The final output of this procedure, ˆ̇xp, is fed to (13), to obtain vc, that is then low-pass
filtered. To transform the velocity vc in frame Fc, obtained from (13), into velocity vw in
the car frame Fw, we apply:

vw = W w
c vc, (14)

with W w
c the twist transformation matrix

W w
c =

(
Rw
c SwcR

w
c

03×3 Rw
c

)
, (15)

Rw
c the rotation matrix from car to camera frame, and Swc the skew symmetric matrix

associated to the position pwc of the origin of Fc in Fw.

Finally, the speed of the car is set as the y-component of vw: vOF = vw,y. This will constitute
the first component of the KF measurement vector.
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4.2.2 Measure of the car acceleration with robot accelerometers

The IMU mounted on-board the humanoid robot is used to measure acceleration, in order to
improve the car velocity estimation through the KF. In particular, given the raw accelerom-
eter data, we first compensate the gravity component, with a calibration executed at the
beginning of each experiment8. This gives ab, the 3D robot acceleration, expressed in the
robot frame Fb. Then, we transform ab in the car frame Fw, to obtain:

aw = Rw
b ab, (16)

where Rw
b is the rotation matrix relative to the robot body - vehicle transformation. Fi-

nally, aIMU is obtained by selecting the y-component of aw. This will constitute the second
component of the KF measurement vector.

5 Car control

The objective of car control is (i) to drive the rear wheel axis center W along the curvilinear
path that is equally distant from the left and right road borders (see Fig. 2b), while aligning
the car with the tangent to this path, and (ii) to track desired vehicle velocity v∗. Basi-
cally, car control consists in achieving tasks (6) and (7), with the steering and car velocity
controllers described in the following subsections.

5.1 Steering control

Given the visual features extracted from the images of the robot on-board camera, the vision-
based steering controller generates the car angular velocity input ω to regulate both x and
θ to zero. This reference input is eventually translated in motion commands for the robot
hands.

The controller is based on the algorithm introduced by (Toibero et al., 2009) for unicycle
corridor following, and recently extended to the navigation of humanoids in environments
with corridors connected through curves and T-junctions (Paolillo et al., 2016). In view of
Assumption 3 in Sect. 2, the same algorithm can be applied here. For the sake of complete-
ness, in the following, we briefly recall the derivation of the features model (that can be
found, for example, also in (Vassallo et al., 2000)) and the control law originally presented
by (Toibero et al., 2009). In doing so, we illustrate the adaptations needed to deal with the
specificity of our problem.

The projection matrix transforming the homogeneous coordinates of a point, expressed in
Fp, to its homogeneous coordinates in the image, is:

P = K T c
w T

w
p , (17)

8The assumption on horizontal road in Sect. 3 avoids the need for repeating this calibration.
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where K is the camera calibration matrix (Ma et al., 2003), T c
w the transformation from

the car frame Fw to Fc, and T w
p from the path frame Fp to Fw.

As intuitive from Fig. 2, the projection matrix depends on both the car coordinates, and the
camera intrinsic and extrinsic parameters. Here, we assume that the camera principal point
coincides with the image center, and we neglect image distortion. Furthermore, P has been
computed neglecting the z-coordinates of the features, since they do not affect the control
task. Under these assumptions, using P , the abscissas of the vanishing and middle point,
respectively denoted by xv and xm, can be expressed as (Toibero et al., 2009; Vassallo et al.,
2000):

xv = k1 tan θ

xm = k2
x

cθ
+ k3 tan θ + k4,

(18)

where

k1 = −Sx/cγ
k2 = −Sxsγ/zwc
k3 = −Sxcγ − Sxsγywc /zwc
k4 = −Sxsγxwc /zwc .

We denote cos(∗) and sin(∗) with c∗ and s∗, respectively. Note that with respect to the visual
features model in (Toibero et al., 2009; Vassallo et al., 2000), the expression of the middle
point changes, due to the introduction of the lateral and longitudinal displacement, xwc and
ywc respectively, of the camera frame with respect to the car frame. As a consequence, to
regulate the car position to the road center, we must define a new visual feature x̄m = xm−k4.
Then, the navigation task (6) is equivalent to the following visual task:

(x̄m, xv)→ (0, 0) . (19)

In fact, according to (18), asymptotic convergence of xv and x̄m to zero implies convergence
of x and θ to zero, achieving the desired path following task.

Feedback stabilization of the dynamics of x̄m, is given by the following angular velocity
controller (Toibero et al., 2009):

ω =
k1

k1k3 + x̄mxv

(
−k2
k1
vxv − kpx̄m

)
, (20)

with kp a positive scalar gain. This controller guarantees asymptotic convergence of both
x̄m and xv to zero, under the conditions that v > 0, and that k2 and k3 have the same sign,
which is always true if (i) γ ∈ (0, π/2) and (ii) ywc > −zwc / tan γ, two conditions always
verified with the proposed setup.

Note that this controller has been obtained considering the assumption of parallel road
borders. Nevertheless, this assumption can be easily relaxed since we showed in (Paolillo
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et al., 2016) that the presence of non-parallel borders does not jeopardize the controller’s
local convergence.

To realize the desired ω in (20), the steering wheel must be turned according to (3):

α =
kαk1

k1k3 + x̄mxv

(
−k2
k1
xv − kp

x̄m
v

)
, (21)

where x̄m and xv are obtained by the image processing algorithm of Sect. 4.1, while the value
of v is estimated through the velocity estimation module presented in Sect. 4.2.

5.2 Car velocity control

In view of the assumption of low acceleration, and by virtue of the linear relationship between
the car acceleration and the pedal angle (eq. (4)), to track a desired car linear velocity v∗

we designed a PID feedback controller to compute the gas pedal command:

ζ = kv,p ev + kv,i

∫
ev + kv,d

d

dt
ev. (22)

Here, ev = (v∗ − v) is the difference between the desired and current value of the velocity,
as computed by the car velocity estimation block, while kv,p, kv,i and kv,d are the positive
proportional, integral and derivative gains, respectively. In the design of the velocity control
law, we decided to insert an integral action to compensate for constant disturbances (like,
e.g., the effect of a small road slope) at steady state. The derivative term helped achieving
a damped control action. The desired velocity v∗ is set constant here.

6 Robot control

This section presents the lower level of our controller, which enables the humanoid robot to
turn the driving wheel by α, and push the pedal by ζ.

6.1 Wheel operation

The reference steering angle α is converted to the reference pose of the hand grasping the
wheel, through the rigid transformation

T b∗
h = T b

s (α)T s
h (r, β) .

Here, T b∗
h and T b

s are the transformation matrices expressing respectively the poses of frames
Fh and Fs in Fig. 3 with respect to Fb in Fig. 2a. Constant matrix T s

h expresses the pose
of Fh with respect to Fs, and depends on the steering wheel radius r, and on the angle β
parameterizing the hand position on the wheel.
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For a safe interaction between the robot hand and the steering wheel, it is obvious to
think of an admittance or impedance controller, rather than solely a force or position con-
troller (Hogan, 1985). We choose to use the following admittance scheme:

f − f ∗ = M∆ẍ+B∆ẋ+K∆x, (23)

where f and f ∗ are respectively the sensed and desired generalized interaction forces in Fh;
M , B and K ∈ R6×6 are respectively the mass, damping and stiffness diagonal matrices. As
a consequence of the force f applied on Fh, and on the base of the values of the admittance
matrices, (23) generates variations of pose ∆x, velocity ∆ẋ and acceleration ∆ẍ of Fh with
respect to Fs. Thus, the solution of (23) leads to the vector ∆x that can be used to compute
the transformation matrix ∆T , and to build up the new desired pose for the robot hands:

T b
h = T b∗

h ·∆T . (24)

In cases where the admittance controller is not necessary, we simply set ∆T = I.

6.2 Pedal operation

Since there exists a linear relationship between the variation of the robot ankle and the
variation of the gas pedal angle, to operate the gas pedal it is sufficient to move the ankle
joint angle qa. From (22), we compute the command for the robot ankle’s angle as:

qa =
ζ

ζmax

(qa,max − qa,min) + qa,min. (25)

Here, qa,max is the robot ankle configuration, at which the foot pushes the gas pedal, pro-
ducing a significant car acceleration. Instead, at qa = qa,min, the foot is in contact with the
pedal, but not yet pushing it. These values depend both on the car type, and on the posi-
tion of the foot with respect to the gas pedal. A calibration procedure is run before starting
driving, to identify the proper values of qa,min and qa,max. Finally, ζmax is set to avoid large
accelerations, while saturating the control action.

6.3 Humanoid task-based control

As shown above, wheel and pedal operation are realized respectively in the operational space
(by defining a desired hand pose T b

h) and in the articular space (via the desired ankle joint
angle qa). Both can be realized using our task-based quadratic programming (QP) controller,
assessed in complex tasks such as ladder climbing (Vaillant et al., 2016). The joint angles
and desired hand pose are formulated as errors that appear among the sum of weighted least-
squares terms in the QP cost function. Other intrinsic robot constraints are formulated as
linear expressions of the QP variables, and appear in the constraints. The QP controller
is solved at each control step. The QP variable vector x = (q̈T ,λT )T , gathers the joint
acceleration q̈, and the linearized friction cones’ base weights λ, such that the contact forces
f are equal to Kfλ (with Kf the discretized friction cone matrix). The desired acceleration
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q̈ is integrated twice to feed the low level built-in PD control of HRP-2Kai. The driving task
with the QP controller writes as follows:

minimize
x

N∑
i=1

wi‖Ei(q, q̇, q̈)‖2 + wλ‖λ‖2

subject to

1) dynamic constraints

2) sustained contact positions

3) joint limits

4) non-desired collision avoidance constraints

5) self-collision avoidance constraints,

(26)

where wi and wλ are task weights or gains, and Ei(q, q̇, q̈) is the error in the task space.
Details on the QP constraints (since they are common to most tasks) can be found in (Vaillant
et al., 2016).

Here, we explicit the tasks used specifically during the driving (i.e. after the driving posture
is reached). We use four (N = 4) set-point objective tasks; each task (i) is defined by its
associated task-error εi so that Ei = Kpiεi +Kvi ε̇i + ε̈i.

The driving wheel of the car has been modeled as another ‘robot’ having one joint (rotation).
We then merged the model of the driving wheel to that of the humanoid and linked them,
through a position and orientation constraint, so that the desired driving wheel steering
angle α, as computed by (24), induces a motion on the robot (right arm) gripper. The task
linking the humanoid robot to the driving wheel ‘robot’ is set as part of the QP constraints,
along with all sustained contacts (e.g. buttock on the car seat, thighs, left foot).

The steering angle α (i.e. the posture of the driving wheel robot) is a set-point task (E1).
The robot whole-body posture including the right ankle joint control (pedal) is also a set-
point task (E2), which realizes the angle qa provided by (25). Additional tasks were set to
keep the gaze direction constant (E3), and to fix the left arm, to avoid collisions with the
car cockpit during the driving operation (E4).

7 Experimental results

We tested our driving framework with the full-size humanoid robot HRP-2Kai built by
Kawada Industries. For the experiments, we used the Polaris Ranger XP900, the same
utility vehicle employed at the DRC. HRP-2Kai has 32 degrees of freedom, is 1.71 m tall and
weighs 65 kg. It is equipped with an Asus Xtion Pro 3D sensor, mounted on its head and
used in this work as a monocular camera. The Xtion camera provides images at 30 Hz with
a resolution of 640×480 pixels. From camera calibration, it results Sx ' Sy = 535 pixels. In
the presented experiments, xwc = −0.4 m, ywc = 1 m and zwc = 1.5 m were manually measured.
However, it would be possible to estimate the robot camera position, with respect to the
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car frame, by localization of the humanoid (Oriolo et al., 2015), or by using the geometric
information of the car (that can be known, e.g., in the form of a CAD model, as shown
in Fig. 2). HRP-2Kai is also equipped with an IMU (of rate 500 Hz) located in the chest.
Accelerometer data have been merged with the optical flow to estimate the car linear velocity,
as explained in Sect. 4.2. Furthermore, a built-in filter processes the IMU data to provide
an accurate measurement of the robot chest orientation. This is kinematically propagated
up to the Xtion sensor to get γ, the tilt angle of the camera with respect to the ground.

The task-based control is realized through the QP framework (see Sect. 6.3) which allows to
easily set different tasks that can be achieved concurently by the robot. The following table
gives the weights of the 4 set-point tasks described in Sect. 6.3. Note that Kvi = 2×

√
Kpi .

Table 2: QP weights and set-point gains.

E1 E2 E3 E4

w 100 5 1000 1000
Kp 5 1 (ankle = 100) 10 10

As for the gains in Section 5, we set kv,p = 10−8, kv,d = 3 ·10−9 and kv,i = 2 ·10−9 to track the
car desired velocity v∗, whereas in the steering wheel controller we choose the gain kp = 3,
and we set the parameter kα = −5. While the controller gains have been chosen as a tradeoff
between reactivity and control effort, the parameter kα was roughly estimated. Given the
considered scenario, an exact knowledge of this parameter is generally not possible, since
it depends on the car characteristics. It is however possible to show that, at the kinematic
level, this kind of parameter uncertainty will induce a non-persistent perturbation on the
nominal closed loop dynamics.

Proving the boundedness of the perturbation term induced by parameter uncertainties would
allow to conclude about the local asymptotic stability of the perturbed system. In general,
this would imply a bound on the parameter uncertainty, to be satisfied to preserve local
stability. While this analysis is beyond the scope of this paper, we note also that in prac-
tice it is not possible to limit the parameter uncertainty, that depends on the car and the
environment characteristics. Therefore, we rely on the experimental verification of the vision-
based controller robustness, delegating to the autonomous-assisted-teleoperated framework
the task of taking the autonomous mode controller within its region of local asymptotic
stability. In other words, when the system is too far from the equilibrium condition, and
convergence of the vision-based controller could be compromised, due to model uncertainties
and unexpected perturbations, the user can always resort to the other driving modes.

In the KF used for the car velocity estimation, the process and the measurement noise
covariances matrices are set to diag(1e−4, 1e−4) and diag(1e2, 1e2), respectively. Since the
forward axis of the robot frame is aligned with the forward axis of the vehicle frame, to get
aIMU we didn’t apply the transformation (16), but we simply collected the acceleration along
the forward axis of the robot frame, as given by the accelerometers. The sampling time of
the KF was set to ∆T = 0.002 s (being 500 Hz the frequency of the IMU measurements, the
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(a) Human-like grasp.

0 50 100 150 200 250 300
−20

0

20

time [s]

f x [N
]

0 50 100 150 200 250 300
−0.02

0

0.02

∆ 
x 

[m
]

(b) Admittance along x-axis
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(c) Admittance along y-axis
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(d) Admittance along z-axis

Figure 8: Left: setup of an experiment that requires admittance control on the steering hand.
Right: output of the admittance controller in the hand frame during the same experiment.

filter runs at the same rate).

The cut-off frequencies of the low-pass filters applied to the visual features and the car
velocity estimate were set to 8 and 2.5 Hz, respectively.

At the beginning of each campaign of experiments, we arrange the robot in the correct
driving posture in the car as shown in Fig. 9a. This posture (except for the driving leg
and arm) is assumed constant during driving: all control parameters are kept constant. At
initialization, we also correct eventual bad orientations of the camera with respect to the
ground plane, by applying a rotation to the acquired image, and by regulating the pitch and
yaw angles of the robot neck, so as to align the focal axis with the forward axis of the car
reference frame. The right foot is positioned on the gas pedal, and the calibration procedure
described in Sect. 6.2 is used to obtain qa,max and qa,min.

To ease full and stable grasping of the steering wheel, we designed a handle, fixed to the wheel
(visible in Fig. 9a), allowing the alignment of the wrist axis with that of the steer. With
reference to Fig. 3, this corresponds to configuring the hand grasp with r = 0 and, to comply
with the shape of the steering wheel, β = 0.57 rad. Due to the robot kinematic constraints,
such as joint limits and auto-collisions avoidance, imposed by our driving configuration, the
range of the steering angle α is restricted from approximately -2 rad to 3 rad. These limits
cause bounds on the maximum curvature realizable by the car. Nevertheless, all of the
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(a) Driving posture (b) Top view of the experimental area

Figure 9: The posture taken by HRP-2Kai during the experiments (a) and the experimental
area at the AIST campus (b).

followed paths were compatible with this constraint. For more challenging maneuvers, grasp
reconfiguration should be integrated in the framework.

With this grasping setup, we achieved a good alignment between the robot hand and the
steering wheel. Hence, during driving, the robot did not violate the geometrical constraints
imposed by the steering wheel mechanism. In this case, the use of the admittance control
for safe manipulation is not necessary. However, we showed in (Paolillo et al., 2014), that
the admittance control can be easily plugged in our framework, whenever needed. In fact, in
that work, an HRP-4, from Kawada Industries, turns the steering wheel with a more ‘human-
like’ grasp (r = 0.2 m and β = 1.05 rad, see Fig. 8a). Due to the characteristics of both
the grasp and the HRP-4 hand, admittance control is necessary. For sake of completeness,
we report, in Fig. 8b-8d, plots of the admittance behavior relative to that experiment. In
particular, to have good tracking of the steering angle α, while complying with the steering
wheel geometric constraint, we designed a fast (stiff) behavior along the z-axis of the hand
frame, Fh, and a slow (compliant) along the x and y-axes. To this end, we set the admittance
parameters: mx = my = 2000 kg, mz = 10 kg, bx = by = 1600 kg/s, bz = 240 kg/s, and
kx = ky = 20 kg/s2, kz = 1000 kg/s2. Furthermore, we set the desired forces f ∗

x = f ∗
z = 0 N,

while along the y-axis of the hand frame f ∗
y = 5 N, to improve the grasping stability. Note

that the evolution of the displacements along the x and y-axes (plots in Fig. 8b-8c), are the
results of a dynamic behavior that filters the high frequency of the input forces, while along
the z-axis the response of the system is more reactive.

In the rest of this section, we present the HRP-2Kai outdoor driving experiments. In par-
ticular, we present the results of the experiments performed at the authorized portion of
the AIST campus in Tsukuba, Japan. A top view of this experimental field is shown in
Fig. 9b. The areas highlighted in red and yellow correspond to the paths driven using
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Figure 10: First experiment: autonomous car driving.

the autonomous and teleoperated mode, respectively, as further described below. Further-
more, we present an experiment performed at the DRC final, showing the effectiveness of
the assisted driving mode. For a quantitative evaluation of the approach, we present the
plots of the variables of interest. The same experiments are shown in the video available
at https://youtu.be/SYHI2JmJ-lk, that also allows a qualitative evaluation of the online
image processing. Quantitatively, we successfully carried out 14 experiments over of 15 repe-
titions, executed at different times, between 10:30 a.m. and 4 p.m., proving image processing
robustness in different light conditions.

7.1 First experiment: autonomous car driving

In the first experiment, we tested the autonomous mode, i.e., the effectiveness of our frame-
work to make a humanoid robot drive a car autonomously. For this experiment, we choose
v∗ = 1.2 m/s, while the foot calibration procedure gave qa,max = −0.44 rad and qa,min =
−0.5 rad.

Figure 10 shows eight snapshots taken from the video of the experiment. The car starts with
an initial lateral offset, that is corrected after a few meters. The snapshots (as well as the
video) of the experiment show that the car correctly travels at the center of a curved path,
for about 100 m. Furthermore, one can observe that the differences in the light conditions
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Figure 11: First experiment: autonomous car driving. Acceleration aIMU measured with the
robot IMU (top), linear velocity vOF measured with the optical flow (center), and car speed
v estimated by the KF (bottom).

(due to the tree shadows) and in the color of the road, do not jeopardize the correct detection
of the borders and, consequently, the driving performance.

Figure 11 shows the plots related to the estimation of the car speed, as described in Sect. 4.2.
On the top, we plot aIMU, the acceleration along the forward axis of the car, as reconstructed
from the robot accelerometers. The center plot shows the car speed measured with the
optical flow-based method (vOF), whereas the bottom plot gives the trace of the car speed
v obtained by fusing aIMU and vOF. Note that the KF reduces the noise of the vOF signal, a
very important feature for keeping the derivative action in the velocity control law (22).

As well known, reconstruction from vision (e.g., the “structure from motion” problem) suffers
from a scale problem, in the translation vector estimate (Ma et al., 2003). This issue, due
to the loss of information in mapping 2D to 3D data, is also present in optical flow velocity
estimation methods. Here, this can lead to a scaled estimate of the car velocity. For this
reason, we decided to include another sensor information in the estimation process: the
acceleration provided by the IMU. Note, however, that in the current state of the work, the
velocity estimate accuracy has been only evaluated qualitatively. In fact, that high accuracy
is only important in the transient phases (initial error recovery and curve negotiation).
Instead, it can be easily shown that the perturbation induced by velocity estimate inaccuracy
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Figure 12: First experiment: autonomous car driving. (a) Middle point abscissa xm (top),
vanishing point abscissa xv (center), and steering angle α (bottom). (b) Car speed v (top),
already shown in fig 10, and ankle joint angle qa (bottom).

on the features dynamics vanishes at the regulation point corresponding to the desired driving
task, and that by limiting the uncertainty on the velocity value, it is possible to preserve local
stability. In fact, the driving performance showed that the estimation was accurate enough,
for the considered scenario. In different conditions, finer tuning of the velocity estimator
may be necessary.

Plots related to the steering wheel control are shown in Fig. 12a. The steering control is
activated about 8 s after the start of the experiment and, after a transient time of a few
seconds, it leads the car to the road center. Thus, the middle and vanishing points (the
top and center plots, respectively) correctly converge to the desired values, i.e., xm goes to
k4 = 30 pixels (since γ = 0.2145 rad –see expression of k4 in Sect. 5.1), and xv to 0. The
bottom plot shows the trend of the desired steering command α, as computed from the visual
features, and from the estimated car speed according to (21). The same signal, reconstructed
from the encoders (black dashed line) shows that the steering command is smoothed by the
task-based quadratic programming control, avoiding undesirable fast signal variations.

Fig. 12b presents the plots of the estimated vs desired car speed (top) and the ankle angle
command sent to the robot to operate the gas pedal and drive the car at the desired velocity
(bottom).

Also in this case, after the initial transient, the car speed converges to the nominal desired
values (no ground truth was available). The oscillations observable at steady state are due to
the fact that the resolution of the ankle joint is coarser than that of the gas pedal. Note, in
fact, that even if the robot ankle moves in a small range, the car speed changes significantly.
The noise on the ankle command, as well as the initial peak, are due to the derivative term
of the gas pedal control (22). However, the signal is smoothed by the task-based quadratic
programming control (see the dashed black line, i.e., the signal reconstructed by encoder

26



Figure 13: Second experiment: switching between teleoperated and autonomous modes.

readings), preventing jerky motion of the robot foot.

In the same campaign of experiments, we performed ten autonomous car driving experiments.
In nine of them (including the one presented just above), the robot successfully drove the
car for the entire path. One of the experiments failed due to a critical failure of the image
processing. It was not possible to perform experiments on other tracks (with different road
shapes and environmental conditions), because our application was rejected after complex
administrative paperwork required to access other roads in the campus.

7.2 Second experiment: switching between teleoperated and autonomous
modes

In some cases, the conditions ensuring the correct behaviour of the autonomous mode are
risky. Thus, it is important to allow a user to supervise the driving operation, and control
the car if required. As described in Sect. 2, our framework allows a human user to intervene
at any time, during the driving operation, to select a particular driving strategy. The
second experiment shows the switching between the autonomous and teleoperated modes.
In particular, in some phases of the experiment, the human takes control of the robot, by
selecting the teleoperated mode. In these phases, proper commands are sent to the robot,
to drive the car along two very sharp curves, connecting two straight roads traveled in
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Figure 14: Second experiment: switching between teleoperated and autonomous modes. (a)
Middle point abscissa xm (top), vanishing point abscissa xv (center), and steering angle α
(bottom). (b) Car speed v (top) and ankle joint angle qa (bottom).

autonomous mode. Snapshots of this second experiment are shown in Fig. 13.

For this experiment we set v∗ = 1.5 m/s, while after the initial calibration of the gas pedal,
qa,min = −0.5 rad and qa,max = −0.43 rad. Note that the difference in the admissible ankle
range with respect to the previous experiment is due to a slightly different position of the
robot foot on the gas pedal.

Figure 14a shows the signals of interest for the steering control. In particular, one can
observe that when the control is enabled (shadowed areas of the plots) there is the same
correct behavior of the system seen in the first experiment. When the user asks for the
teleoperated mode (non-shadowed areas of the plots), the visual features are not considered,
and the steering command is sent to the robot via keyboard or joystick by the user. Between
75 and 100 s, the user controlled the robot (in teleoperated mode) to make it steer on the right
as much as possible. Because of the kinematic limits and of the grasping configuration, the
robot saturated the steering angle at about -2 rad even if the user asked a wider steering. This
is evident on the plot of the steering angle command of Fig. 14a (bottom): note the difference
between the command (blue continuous curve), and the steering angle reconstructed from
the encoders (black dashed curve).

Similarly, Fig. 14b shows the gas pedal control behavior when switching between the two
modes. When the gas pedal control is enabled, the desired car speed is properly tracked by
operating the robot ankle joint (shadowed areas of the top plot in Fig. 14b). On the other
hand, when the control is disabled (non-shadowed areas of the plots), the ankle command
(blue curve in Fig. 14b, bottom), as computed by (25), is not considered, and the robot
ankle is teleoperated with the keyboard/joystick interface, as noticeable from the encoder
plot (black dashed curve).
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Figure 15: Third experiment: assisted driving mode at the DRC finals. Snapshots taken
from the DRC official video.

At the switching between the two modes, the control keeps sending commands to the robot
without any interruption, and the smoothness of the signals allows to have continuous robot
operation. In summary, the robot could perform the entire experiment (along a path of
130 m ca., for more than 160 s) without the need to stop the car. This was achieved thanks
to two main design choices. Firstly, from a perception viewpoint, monocular camera and
IMU data are light to be processed, allowing a fast and reactive behavior. Secondly, the
control framework at all the stages (from the higher level visual control to the low level
kinematic control) guarantees smooth signals, even at the switching moments.

The same experiment presented just above was performed five other times, during the same
day. Four experiments resulted successful, while two failed do to human errors during tele-
operation.

7.3 Third experiment: assisted driving at the DRC finals

The third experiment shows the effectiveness of the assisted driving mode. This strategy
was used to make the robot drive at the DRC finals, where the first of the eight tasks
consisted in driving a utility vehicle along a straight path, with two sets of obstacles. We
successfully completed the task, by using the assisted mode. Snapshots taken from the DRC
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finals official video (DARPAtv, 2015) are shown in Fig. 15. The human user teleoperated
HRP-2Kai remotely, by using the video stream from the robot camera as the only feedback
from the challenge field. In the received images, the user selected, via mouse, the proper
artificial road borders (red lines in the figure), to steer the car along the path. Note that these
artificial road borders, manually set by the user, may not correspond to the real borders of
the road. In fact, they just represent geometrical references - more intuitive for humans - to
easily define the vanishing and middle points and steer the car by using (21). Concurrently,
the robot ankle was teleoperated to achieve a desired car velocity. In other words, with
reference to the block diagram of Fig. 1, the user provides the visual features to the steering
control, and the gas pedal reference to the pedal operation block. Basically, s/he takes the
place of the road detection and car velocity estimation/control blocks. The assisted mode
could be seen as a sort of shared control between the robot and the a human supervisor, and
allows the human to interfere with the robot operation if required. As stated in the previous
section, at any time, during the execution of the driving experience, the user can instantly
and smoothly switch to one of the other two driving modes. At the DRC, we used a wide
angle camera, although the effectiveness of the assisted mode was also verified with a Xtion
camera.

8 Conclusions

In this paper, we have proposed a reactive control architecture for car driving by a humanoid
robot on unkown roads. The proposed approach consists in extracting road visual features,
to determine a reference steering angle to keep the car at the center of a road. The gas
pedal, operated by the robot foot, is controlled by estimating the car speed using visual and
inertial data. Three different driving modes (autonomous, assisted, and teleoperated) extend
the versatility of our framework. The experimental results carried out with the humanoid
robot HRP-2Kai have shown the effectiveness of the proposed approach. The assisted mode
was successfully used to complete the driving task at the DRC finals.

The driving task has addressed, as an explicative case-study of humanoids controlling human-
tailored devices. In fact, besides the achievement of the driving experience, we believe
that humanoids are the most sensible platforms for helping humans with everyday task,
and the proposed work shows that complex real-world tasks can be actually performed in
autonomous, assisted and teleoperated way. Obviously, the complexity of the task comes
also with the complexity of the framework design, on both perception and control point-of-
views. This led us to make some working assumptions that, in some cases, limited the range
of application of our methods.

Further investigations shall deal with the task complexity, to advance the state-of-art of
algorithms, and make humanoids capable of helping humans with dirty, dangerous and de-
manding jobs. Future work will be done, in order to make the autonomous mode work
efficiently in the presence of sharp curves. To this end, and to overcome the problem of lim-
ited steering motions, we plan to include, in the framework, the planning of variable grasping
configurations, to achieve more complex manoeuvres. We are also planning to go to driving
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on uneven terrains, where the robot has also to sustain its attitude, w.r.t. sharp changes of
the car orientation. Furthermore, the introduction of obstacle avoidance algorithms, based
on optical flow, will improve the driving safety. Finally, we plan to add brake control and to
perform the entire driving task, including car ingress and egress.
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