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FAST AND EXACT SYNTHESIS OF SOME OPERATOR SCALING GAUSSIAN

RANDOM FIELDS

HERMINE BIERMÉ AND CÉLINE LACAUX

Abstract. Operator scaling Gaussian random fields, as anisotropic generalizations of self-similar
fields, know an increasing interest for theoretical studies in the literature. However, up to now, they
were only defined through stochastic integrals, without explicit covariance functions. In this paper we
exhibit explicit covariance functions, as anisotropic generalizations of fractional Brownian fields ones,
and define corresponding Operator scaling Gaussian random fields. This allows us to propose a fast
and exact method of simulation based on the circulant embedding matrix method, following ideas of
Stein [34] for fractional Brownian surfaces syntheses. This is a first piece of work to popularize these
models in anisotropic spatial data modeling.
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1. Introduction

In spatial or image analysis, the correlation dependency is of crucial interest. Scale invariance
properties are also usually investigated, in particular for rough data, where fractal analysis might
help for classification (see [26] for a good review in medical imaging). Actually, numerous natural
phenomena have been shown to be self-similar. Let us recall that a scalar-valued random field
(X(x))x∈Rd is said to be H-self-similar with H > 0 if

(1) {X(cx);x ∈ Rd} (fdd)
= {cHX(x);x ∈ Rd}

for every c > 0, where
(fdd)
= means equality of finite dimensional distributions. For instance, self-

similar random fields can model persistent phenomena in internet traffic, hydrology, geophysics or
financial markets, e.g. [24, 1, 31, 35]. An additional invariance assumption often required is the
stationary property. A random field (X(x))x∈Rd is called stationary if its law is invariant under

translation meaning that for all h ∈ Rd,

{X(x+ h);x ∈ Rd} (fdd)
= {X(x);x ∈ Rd}.

This property is useful for homogeneous modeling. However this is not compatible with the self-
similarity property. Hence it is usually relaxed using the assumption of stationary increments prop-
erty, also named as intrinsically stationary property. This means that for all lag h ∈ Rd, the increment
process with lag h defined by

(2) ∀x ∈ Rd, ∆hX(x) = X(x+ h)−X(x),

is a stationary random field. Note that any stationary random field has stationary increments but
the converse is false. A very important and common class of fields are given by centered Gaussian
random fields. In this setting, according to stationary increments property (2), assuming that X is
centered with X(0) = 0 almost surely, the distribution of the field is entirely characterized by its
covariance function given by

(3) ∀x, y ∈ Rd, Cov(X(x), X(y)) = vX (y) + vX (x)− vX (x− y),
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where vX is the so-called semi-variogram of X defined by

(4) ∀h ∈ Rd, vX (h) =
1

2
E
(

(X(x+ h)−X(x))2
)
.

Self-similarity property (1) implies now that vX (ch) = c2HvX (h), for all h ∈ Rd and c > 0. The
most famous example of self-similar Gaussian random field with stationary increments is given by
the fractional Brownian field BH (fBf), where H ∈ (0, 1) is the so-called Hurst parameter. It is
an isotropic generalization of the famous one-dimensional fractional Brownian motion, implicitly
introduced in [23] and defined in [27], obtained replacing the absolute value | · | by the Euclidean
norm ‖ · ‖ in the semi-variogram:

(5) ∀x ∈ Rd, vBH (x) = ‖x‖2H .

Let us quote here that the standard fractional Brownian field with Hurst index H is usually defined
with vBH /2 as semi-variogram and corresponds to BH/

√
2 with our convention. However, the choice

of the Euclidean norm implies that the fractional Brownian field is isotropic. This is very restrictive
for spatial data where anisotropy may be an important feature to take into account. Hence several
anisotropic generalizations have been proposed. Most of them rely on the introduction of a topothesy
function taking into account the influence of the direction in the semi-variogram (see [17]). Semi-
variograms are usually obtained through integral formula (see [2] for instance) except for marginal
cases (see Proposition 2.1 of [11]) and self-similarity does not vary according to directions. In order
to exhibit this kind of anisotropy, observed for instance in geoscience [6, 13] or medical imaging
[7], operator scaling property has been introduced as an anisotropic generalization of self-similarity
property. More precisely, a scalar-valued random field (X(x))x∈Rd is called operator scaling for E
and H > 0 if for every c > 0

(6) {X(cEx);x ∈ Rd} (fdd)
= {cHX(x);x ∈ Rd},

where E is a real d×d matrix whose eigenvalues have positive real parts and as usual cE = exp(E log c)

with exp(A) =
∑∞

k=0
Ak

k! the matrix exponential. In particular for E = diag(λ1, . . . , λd), since

cE = diag(cλ1 , . . . , c
λ
d), this rewrites as

{X(cλ1x1, . . . , c
λdxd);x = (x1, . . . , xd) ∈ Rd} (fdd)

= {cHX(x1, . . . , xd);x ∈ Rd},
so that {X(tej); t ∈ R} is H/λj self-similar, for any canonical direction ej . Let us quote that when
X is operator scaling for E and H > 0, it is also for E/H and 1 and (E,H) is not uniquely defined.
We refer to [18] who characterized the possible set of exponents in the vectorial-valued framework of
operator self-similar random fields. Note also that an H-self-similar field is also an operator scaling
field for the matrix E = Id, where Id is the identity matrix of size d × d. Now, for X a centered
Gaussian field with stationary increments and semi-variogram vX defined by (4), operator scaling

property implies that the function τE := v1/2H
X

: Rd → R+ is an E-homogeneous function in the sense
of Definition 2.6 of [10] ie, for all c > 0

∀x ∈ Rd, τE (cEx) = cτE (x).

Operator scaling Gaussian and α-stable random fields with stationary increments have been con-
structed in [10], using classical harmonizable or moving average representation under the assumption
that H ∈ (0,min1≤j≤d λj) where {λj ; 1 ≤ j ≤ d} are the positive real parts of the eigenvalues of the
matrix E (see Section 2). Therefore, using harmonizable representation, approximate simulations
methods known as spectral methods [29, 33] can be used. Based on a discretization of the spectral
density used in the kernel of the stochastic integral, these methods induce periodization effects which
allow the use of Fast Fourier Transform to get a very few computational cost. However they can
not be exact and error bounds are not computed in general. When explicit covariance functions are
known, exact methods of simulation for Gaussian random fields are usually based on the diagonal-
ization of their covariance matrix [12, 14]. However, stochastic integral representations only allow
to get integral formula for semi-variograms and no explicit semi-variograms for general E-operator
scaling Gaussian random fields were known up to now.
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In this paper, we define explicit semi-variograms for operator scaling Gaussian random fields. In
particular, in Theorem 1, we prove that the function defined by

(7) ∀x ∈ Rd, vX (x) = τE (x)2H , with τE (x) =

(
d∑
i=1

|〈x, θi〉|2ai
)1/2

,

is the semi-variogram function of a Gaussian operator scaling random field for 0 < H ≤ 1 and E a
diagonalizable matrix satisfying Etθi = a−1

i θi, with ai ∈ (0, 1] for 1 ≤ i ≤ d and Et the transpose
matrix of E. Here and in the sequel 〈·, ·〉 denotes the Euclidean scalar product such that vBH is
obtained for E = Id. Let us also quote that the case H = 1 corresponds to the case of indepen-
dence between eigenvectors directions. Actually, it is clear that the centered Gaussian random field(∑d

i=1B
(i)
ai (〈x, θi〉)

)
x∈Rd

, where (B
(i)
ai )1≤i≤d are d independent fractional Brownian motions on R

with respective semi-variograms given by (5), admits τ2
E

for semi-variogram.

It follows that covariance matrix may now be computed but the computational cost for diago-
nalization is prohibitive, especially for dimension d ≥ 2. In dimension d = 1 and d = 2, fast and
exact simulation of stationary Gaussian random fields may be obtained on equispaced grid using
circulant embedding matrix techniques developped in [19, 36]. They rely on the Toeplitz structure of
covariance matrices and are exact as soon as a periodic representation may be found, with a circulant
covariance matrix diagonalized by discrete Fourier transform. These ideas have been generalized for
the exact simulation of fractional Brownian fields in [34]. Since fractional Brownian fields are not
stationary, nor periodic, the main idea of Stein [34] is to consider a locally stationary representation
of such fields. We follow this point of view in this paper. It consists in finding a stationary covari-
ance function with compact support whose semi-variogram is close enough from the target one in a
given window. Compact support ensures that its periodization remains a covariance function. Hence
the circulant embedding matrix method may apply to simulate equispaced point of the associated
stationary Gaussian random field.

This paper is organized as follows. Section 2 recalls some background on operator scaling Gaussian
random fields and proposes a class of such fields with an explicit known semi-variogram. Then
Section 3 presents the method of simulation, based on the simulation of a periodic stationary random
field. The last section is devoted to a numerical study of the proposed method. Algorithms of
simulation are postponed to Appendix.

2. Operator Scaling Gaussian Random fields

Explicit constructions of operator scaling Gaussian random fields were firstly given in [10]. Let E
be a fixed d × d matrix such that {λj ; 1 ≤ j ≤ d} denote the positive real parts of its eigenvalues
and q = tr(E). Choosing W a complex Gaussian random measure with Lebesgue control measure
(see [31] p.281 for details on such measures), according to Theorem 4.1 and Corollary 4.2 of [10],
when ψ : Rd → [0,∞) is a continuous, Et-homogeneous function such that ψ(x) 6= 0 for x 6= 0, the
harmonizable Gaussian random field

(8) Xψ(x) = <
∫
Rd

(
ei〈x,ξ〉 − 1

)
ψ(ξ)−H−q/2W (dξ) , x ∈ Rd

is (E,H)-operator scaling with stationary increments as soon as H ∈ (0,min1≤j≤d λj). Its semi-
variogram is therefore given by

∀x ∈ Rd, vXψ (x) =
1

2

∫
Rd

∣∣∣ei〈x,ξ〉 − 1
∣∣∣2 ψ(ξ)−2H−qdξ.

A moving average representation is also obtained, choosing M a real Gaussian random measure
with Lebesgue control measure and ϕ : Rd → [0,∞) a continuous, E-homogeneous function such
that ϕ(x) 6= 0 for x 6= 0, under an additional assumption of (β,E)-admissibility (see Definition 2.7
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of [10]), by considering

(9) Xϕ(x) =

∫
Rd

(
ϕ(x− y)H−q/α − ϕ(−y)H−q/2

)
M(dy) , x ∈ Rd,

for H ∈ (0, β). In this case, its semi-variogram is given by

∀x ∈ Rd, vXϕ (x) =
1

2

∫
Rd

∣∣∣ϕ(x− y)H−q/α − ϕ(−y)H−q/2
∣∣∣2 dy.

Several examples for ψ or ϕ are given. In particular, when E is a diagonalizable matrix with positive
eigenvalues λ1, . . . , λd, one can choose θ1, . . . , θd the eigenvectors for Et such that Etθi = λiθi for
i = 1, . . . , d that form a basis of Rd. Let us introduce ai = 1/λi, 1 ≤ i ≤ 1, then the function

(10) τE (x) =

(
d∑
i=1

|〈x, θi〉|2ai
)1/2

, x ∈ Rd,

is a continuous E-homogeneous and β-admissible for convenient β (see Corollary 2.12 of [10] fore
more details and generalizations).

Let us remark that the set

SE := {x ∈ Rd; τE (x) = 1}
is bounded (it follows for instance from Corollary 3.4 of [9]). Thus, using also continuity of τE , we
obtain that SE is a compact set of Rd. Hence, defining for x 6= 0, the direction È (x) = τE (x)−Ex ∈ SE
we obtain the unique “E-radial” decomposition of x as

x = τE (x)E È (x),

with (τE (x), È (x)) ∈ (0,+∞)×SE . Let us mention that (τE , È ) corresponds to the polar coordinates
introduced in Lemma 6.1.5 of [28]: here the difference is that explicit expressions of SE and τE are
known, whereas Lemma 6.1.5 ibid establishes their existence. Then the operator scaling property
implies that

vXψ (x) = τE (x)2HvXψ ( È (x)) as well as vXϕ (x) = τE (x)2HvXϕ ( È (x)),

for all x ∈ Rd (since Xψ(0) = Xϕ(0) = 0 a.s.). However the explicit computation of vXψ or vXϕ are

not known in general (see also Remark 4.3 of [10]). Our main result in this section gives assumption
in order to use τ2H

E
as a semi-variogram function.

Theorem 1. Let E be a real d × d diagonalizable matrix with eigenvalues a−1
1 , . . . , a−1

d ∈ [1,+∞)

and eigenvectors θ1, . . . , θd such that Etθi = a−1
i θi, for every 1 ≤ i ≤ d. For H ∈ (0, 1], define the

function vE,H : Rd → R+ by

(11) ∀x ∈ Rd, vE,H (x) = τE (x)2H

with τE defined by (10).

(1) Then there exists a real-valued centered Gaussian random field XE,H =
{
XE,H (x);x ∈ Rd

}
with stationary increments such that

∀x, y ∈ Rd,
1

2
E
[(
XE,H (x)−XE,H (y)

)2]
= vE,H (x− y).

In other words, vE,H is the semi-variogram function of the random field XE,H .

(2) Moreover, the random field XE,H is also (E,H)-operator scaling.

Proof. Let us consider d independent fractional Brownian motions
{
B

(i)
ai (t); t ∈ R

}
with respective

Hurst index ai for 1 ≤ i ≤ d and semi-variogram given by (5) that is by

∀t, s ∈ R, v
B
(i)
ai

(t) =
1

2
E
((

B(i)
ai (t+ s)−B(i)

ai (s)
)2
)

= |t|2ai .
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Note that when ai = 1, the fractional Brownian motion Bai with Hurst index ai may be defined as

B
(i)
ai (t) = tZi for Zi ∼ N (0, 2). Let us now consider the random field Y defined by

∀x ∈ Rd, Y (x) =
d∑
i=1

B(i)
ai (〈x, θi〉).

Then Y has stationary increments and its semi-variogram is given by

γ(x) =
1

2
E
[
(Y (x+ h)− Y (h))2

]
=

d∑
i=1

|〈x, θi〉|2ai = τE (x)2

for any x, h ∈ Rd. As a semi-variogram, γ is then a function of negative type, i.e. for all integer
n ∈ N\{0}, for all x(1), . . . , x(n) ∈ Rd and for all λ1, . . . , λn ∈ R such that

∑n
i=1 λi = 0, we have:

n∑
i=1

n∑
j=1

λiλjγ
(
x(i) − x(j)

)
≤ 0.

By Lemma 2.1 of [22] using Schoenberg Theorem, since H ∈ (0, 1], vE,H = γH is also a function of
negative type and thus it is the semi-variogram of a real-valued centered random field XE,H with
stationary increments. The second assertion of the theorem simply follows from the fact that τE is
an E-homogeneous function. �

Remark 1. Note that, for all C1, . . . , Cd non-negative constants, we can prove similarly that the

function x 7→
(∑d

i=1Ci|〈x, θi〉|
2ai
)1/2

is a semi-variogram.

In the case where the eigenvalues of E are all equals, we can write for x = (x1, . . . , xd) ∈ Rd,

(12) vE,H (x) = cα(x)αH ,

where cα(x) =
(∑d

i=1 |xi|
α
)1/α

corresponds to the α-(quasi)-norm for some α ∈ (0, 2]. It follows

that E = 2
αId and the Gaussian random field XE,H is α

2H-self-similar. Moreover, XE,H is anisotropic
for α 6= 2. This provides new examples of topothesy functions (see Figures 3 and 4) as considered in
[17], that also could be useful for spatial modelling, see for instance [2].

Let us conclude this section with some sample path properties of the operator scaling random field
with semi-variogram vE,H (see [9]) implying their fractal properties.

Proposition 1. Let K = [0, 1]d and let XE,H be a centered Gaussian random field with stationary
increments and semi-variogram vE,H defined by (11). Then there exists a modification X∗

E,H
of XE,H

on K satisfying the two following assertions.

(1) For any ε > 0

lim
δ↓0

sup
x,y∈K

0<‖x−y‖≤δ

∣∣∣X∗
E,H

(x)−X∗
E,H

(y)
∣∣∣

τE (x− y)|log τE (x− y)|1/2+ε
= 0 almost surely

where τE is given by (10).

(2) For all i = 1, . . . , d, for any ε > 0

lim
δ↓0

sup
x+tθ̃i,x+sθ̃i∈K

0<|t−s|≤δ

∣∣∣X∗
E,H

(x+ tθ̃i)−X∗E,H (x+ sθ̃i)
∣∣∣

|t− s|Hi |log |t− s|Hi |1/2+ε
= 0 almost surely,

where θ̃1, . . . , θ̃d are the unit eigenvectors of E such that Eθ̃i = a−1
i θ̃i and Hi = Hai for

1 ≤ i ≤ d.
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Let us quote that exact moduli of continuity for harmonizable operator-scaling Gaussian random
fields have been established in Theorem 4.2 of [25]. The proof of this result highly relies on the
existence of a spectral density from which strong local nondeterminism properties are deduced. Let
us quote that XE,H may not admit an harmonizable representation as Xψ. Actually, it is not difficult
to see that for H = 1, the spectral measure XE,H is not absolutely continuous with respect to
Lebesgue measure. We refer to [4] for the interested reader.

In particular XE,H gives an interesting example of Gaussian random field with stationary incre-
ments that may admit particular directions in which its regularity is greater. This could be of
importance for some applications in medical imaging. For instance, such a behavior is observed on
trabecular bone radiographs, for which fractal analysis allows to improve osteoporosis diagnosis (see
[5, 7] for example).

Let us also quote that when XE,H is (E,H)-operator scaling, for any invertible matrix P ∈ GL(Rd)
the random field XE,H (P ·) is (P−1EP,H)-operator scaling. Hence, in the sequel we restrict our
simulation study to the case where E is diagonal.

3. Fast and exact Method of Simulation

3.1. Method of the circulant embedding matrix. Let us briefly describe the circulant embed-
ding matrix method for simulations of stationary Gaussian processes and fields.

Case of stationary processes d = 1.
We consider (Y (t))t∈R a centered stationary Gaussian process with covariance function given by

∀t, s ∈ R, r(t) = E(Y (t+ s)Y (s)).

In order to simulate the centered Gaussian vector

y = (Y (t0), Y (t1), . . . , Y (tN )),

where G := {t0, . . . , tN} ⊂ RN+1 is an ordered subspace of points in R with constant mesh ti+1 − ti,
one has to consider the covariance matrix of y (identified with the column vector) given by

R := (r(|tj − ti|))0≤i,j≤N .

Using Choleski decomposition, one can find a lower triangular matrix A such that R = AAt and

y
d
= Aε for ε ∼ N (0, IN+1). The cost to find A of the order O(N3) may be quickly prohibitive.

However, due to stationarity and equispaced grid, the matrix R is a Toeplitz matrix meaning that
Ri,j only depends on i − j. In this case the embedding circulant method consists in embedding R
in a circulant matrix that is diagonalized by the Discrete Fourier Transform matrix. More precisely,
due to Toeplitz structure, R is entirely characterized by its first column

r = (r0, r1, . . . , rN ), with rk = r(|xk − x0|) for k = 0 . . . N,

Let us consider an integer M ≥ N . One can construct a symmetric circulant matrix S ∈ M2M (R)
by defining its first column s ∈ R2M such that{

s0 = r0

sk = s2M−k = rk, 1 ≤ k ≤ N − 1.

In addition, if M > N , sN+1, . . . , s2M−N are arbitrarily (or artfully) chosen such that sj = s2M−j
for j = 1 . . . 2M − 1. Then

S =

2M−1∑
k=0

skT
k
2M

=

N∑
k=0

rkT
k
2M

+

2M−N∑
k=N+1

skT
k
2M

+

N−1∑
k=1

rkT
2M−k
2M

,

with T2M the circulant 2M × 2M matrix defined by{
T2M fj = fj+1, 1 ≤ j ≤ 2M − 1

T2M f2M = f1,
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where (f1, . . . , f2M ) is the canonical basis of R2M . Recall that

T t
2M

= T 2M−1
2M

, T 2M
2M

= I2M

and that the powers of T2M generate the set of 2M×2M circulant matrices. Note that R is embedded
in S since (Si,j)0≤i,j≤N = R.
Now, let us recall that a circulant matrix is diagonalized by the matrix of discrete Fourier transform
in such a way that its eigenvalues are also given by the discrete Fourier transform of its first row.
More precisely, let us denote by F2M the discrete Fourier matrix defined by

F2M =
1√
2M

(
ω(k−1)(l−1)

2M

)
0≤k,l≤2M

with ω2M = e−iπ/M ∈ C and recall that F2MF
t
2M

= I2M . Since S is circulant one has

S = F t
2M

diag(F2M s)F2M .

Writing s̃ = F2M s, the matrix S is a covariance matrix if and only if its eigenvalues are non negative
meaning that s̃ ≥ 0 in the sense that s̃j ≥ 0 for all j = 1, . . . , 2M .

In such a case, one may obtain two independent copies of y by considering

ỹ(1) = <(A2M (ε1 + iε2)) and ỹ(2) = =(A2M (ε1 + iε2)),

with ε1 and ε2 two independent Gaussian vectors with common distribution N (0, I2M ) and

A2M = F t
2M

(diag(s̃))1/2 = F−1
2M

(diag(s̃))1/2

such that S = A2MA2M

t
and ỹ(1) and ỹ(2) are independent vectors of distribution N (0, S). Hence

restricting to the N + 1 first entries we get two independent copies of y.
The minimal embedding method consists in choosing M = N and

s = (r0, r1, . . . , rN , rN−1, . . . , r1).

In this case, it follows that for l ∈ {1, . . . , 2N},

(13) s̃l =
1√
2N

(
r0 + (−1)lrN + 2

N−1∑
k=1

rk cos

(
2π

kl

2N

))
.

Hence, as soon as s̃l ≥ 0 for all l ∈ {1, . . . , 2N}, using N as a power of two, the Fast Fourier transform
allows to reduce the cost of simulation to O(N log (N)). In [19], several assumptions on r are given
to provide this non-negativeness assumption. One can also include a test of non-negativeness in the
algorithm to ensure that S is a covariance matrix. Note that it implies also that R should be a
covariance matrix. A well adapted situation is when Y is also periodic. Actually, if Y is periodic
of period T > 0, its covariance function also satisfies r(t + T ) = r(t), for t ∈ R. Hence considering,
tk = kT

2N for k = 0, . . . , 2N − 1, the minimal circulant embedding matrix S of R is exactly the covari-
ance matrix of the Gaussian vector (Y (t0), Y (t1), . . . , Y (tN ), . . . , Y (t2N−1)).

Case of stationary fields d = 2.
Let us consider now a stationary centered Gaussian random field in dimension d = 2 given by
Y =

{
Y (x, y); (x, y) ∈ R2

}
, with covariance function

∀(x, y), (x′, y′) ∈ R2, r(x, y) = E(Y (x+ x′, y + y′)Y (x′, y′)),

satisfying the additional assumption that r(x, y) = r(|x|, |y|). To simulate the Gaussian vector

{Y (xp, yq); 0 ≤ p, q ≤ N}

of size (N + 1)2 corresponding to the values of Y on a rectangular grid G = {(xp, yq); 0 ≤ p, q ≤ N}
with constant mesh, one can order this vector using lexicographical order. Then its covariance matrix
R is block Toeplitz with each block being also Toeplitz. The matrix R is characterized by its first
column constituted by blocks

(R0, R1, . . . , RN ) ,
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where

Rk = (E(Y (xi, yk)Y (xj , y0)))0≤i,j≤N = (r(xi − xj , yk − y0))0≤i,j≤N

is symmetric due to the additional assumption on r. Each block Rk may be embedded in a minimal
symmetric circulant matrix Sk ∈ M2N (R). Hence the minimal symmetric circulant embedding
matrix of R, denoted by S, is defined by its first block column given by

(S0, S1, . . . , SN , SN−1, . . . , S1) .

Now, eigenvectors of S are given by the 2-dimensional discrete Fourier matrix and its eigenvalues are
computed by the 2-dimensional discrete Fourier transform of the periodized matrix

(14) Kper =

(
K K1

K2 K3

)
,

where 

K = (r(xi − x0, yj − y0))0≤i,j≤N ,

K1 = (r(xi − x0, yN−j − y0))0≤i≤N,1≤j≤N−1 ,

K2 = (r(xN−i − x0, yj − y0))1≤i≤N−1,0≤j≤N

K3 = (r(xN−i − x0, yN−j − y0))1≤i,j≤N−1

Hence, when the 2-dimensional discrete Fourier transform of Kper is non-negative, one can simply
used the spectral decomposition of S in order to simulate Y . Note that when Y is periodic of period
T > 0 in each coordinate, its covariance function also satisfies r(x+T, y+T ) = r(x, y), for (x, y) ∈ R2.
Hence considering, xk = yk = kT

2N for k = 0, . . . , 2N − 1, the minimal circulant embedding matrix S
of R is exactly the covariance matrix of the Gaussian vector (Y (t0), Y (t1), . . . , Y (tN ), . . . , Y (t2N−1))
such that the 2-dimensional discrete Fourier transform of the periodized matrix Kper is non-negative.

3.2. Simulation of OSGRF for H = 1. Let us recall that we can restrict our study to the case
of a diagonal matrix E.

Let E = diag(1/a1, . . . , 1/ad) with a1, . . . , ad ∈ (0, 1] and XE,1 be an operator scaling centered

Gaussian random field with semi-variogram vE,1 = τE
2 for τE defined by (10). It follows that

{XE,1(x);x ∈ Rd} (fdd)
=

{
d∑
i=1

B(i)
ai (〈x, ei〉);x ∈ Rd

}
,

with B
(1)
a1 , . . . , B

(d)
ad independent fractional Brownian motions with respective Hurst indices a1, . . . , ad

and (e1, . . . , ed) the canonical basis of Rd. Here the semi-variogram of the fractional Brownian motion
Ba with Hurst index a is given by (5) for H = a. We recall that for a = 1 and Z ∼ N (0, 2), we

simply have {Ba(t); t ∈ R} (fdd)
= {tZ; t ∈ R}. Now, for a ∈ (0, 1), the fractional Brownian motion Ba

is not a stationary process but we may consider the associated fractional Gaussian noise

Ya = {Ba(t+ 1)−Ba(t); t ∈ R},

which is a stationary process with covariance function given by

Cov(Ya(t), Ya(s)) = ra(|t− s|) with ra(t) = |t+ 1|2a − 2|t|2a + |t− 1|2a.

Hence, we may consider the method of the circulant embedding matrix described in Section 3.1 to
simulate the centered Gaussian vector (Ya(0), . . . , Ya(N)), with covariance matrix

(15) Ra = (ra(|j − i|))0≤i,j≤N ,

using tj = j for 0 ≤ j ≤ N , as done in [15]. Let us recall the main result of [30], also stated in [16]:
for all a ∈ (0, 1), N ≥ 1 and l ∈ {1, . . . , 2N},

1√
2N

(
ra(0) + (−1)lra(N) + 2

N−1∑
k=1

ra(k) cos

(
2π

kl

2N

))
≥ 0.



FAST AND EXACT SYNTHESIS OF SOME OPERATOR SCALING GAUSSIAN RANDOM FIELDS 9

In other words, since the eigenvalues of the minimal circulant embedding matrix Sa of Ra are given
by (13), the symmetric circulant matrix Sa is the covariance matrix of a centered Gaussian random

vector Ỹa =
(
Ỹa(0, . . . , Ỹa(2N − 1)

)
and there is no need to check numerically the non-negativity of

its eigenvalues.
It follows that the method of the circulant embedding matrix can always be used for the synthesis

of a fBm on an equispaced interval (see Algorithm 1 in appendix). Actually using stationarity of the
increments and self-similarity of Ba and the fact that Ba(0) = 0 a.s., one has for any step δ > 0

{Ba(δk); 0 ≤ k ≤ N} d
= δa

∑
j<k

Ya(j); 0 ≤ k ≤ N

 d
= δa

∑
j<k

Ỹa(j); 0 ≤ k ≤ N

,
with the convention that

∑
j<0 = 0. Hence, in dimension d = 2 for instance, one has simply exact

simulation of the (E, 1)-operator scaling random field XE,1 on the grid G = {(δi, δj); 0 ≤ i, j ≤ N}
with a cost O(N log(N)) using{

XE,1(δi, δj); 0 ≤ i, j ≤ N
} d

=
{
B(1)
a1 (δi) +B(2)

a2 (δj); 0 ≤ i, j ≤ N
}
.

In the sequel we investigate the case where H ∈ (0, 1).

3.3. Simulation of OSGRF for H ∈ (0, 1) and E = Id: Stein Method for fBf. When E = Id
and H ∈ (0, 1), the operator scaling centered Gaussian random field XE,H with semi-variogram

vE,H = τE
2 for τE defined by (10) is simply a fractional Brownian field, which is an isotropic field. To

simulate it, [34] proposes to contruct it owing a stationary isotropic Gaussian random field Y whose
semi-variogram is closed enough to the fBf one. More precisely, for H ∈ (0, 1), [34] introduces the
compactly supported continuous function

kH(r) =

{
cH − r2H + (1− cH)r2 if r ≤ 1

0 else

where cH ∈ (0, 1). The main idea is then to choose the constant cH such that KH(x) := kH(‖x‖),
x ∈ Rd, is a radial continuous isotropic covariance, which means that

(x, y) 7→ kH(‖x− y‖)
is a covariance function on Rd ×Rd. Then this function is mapped to a function KH defined on Rd,
which has periodicity 2 in each coordinate, satisfying

(16) ∀x ∈ [−1, 1]d, KH(x) = KH(x).

Theorem 2 in [34] asserts that for cH = 1−H, KH is a covariance function on Rd for d ≤ 3, as soon
as H ∈ (0, 1/2]. Theorem 3 ibid. states that when d ≤ 2, this remains valid for H ∈ (1/2, 3/4]. Let
us quote a mistake in the proof of Theorem 2 in [34]: in equation (A.1), a term in cosinus is missing
and we were not able to correct this proof taking into account this term. However, we give here an
alternative proof.

Theorem 2. Let H ∈ (0, 1/2] and cH = 1 −H. Then, for d ≤ 3, the isotropic function KH(x) :=
kH(‖x‖), x ∈ Rd, is a covariance function.

Proof. Our proof uses a d-dimensional isotropic extension of Polya’s 1949 result about positive defi-
niteness of even function, convex on [0,+∞) and vanishing at infinity, due to [3]. Note that Schoen-
berg [32] gives a complete characterization of the class of functions that are radial and positive definite
on Rd for all d ∈ N. In particular, such functions are linked to completely monotone functions accord-
ing to Hausdorff-Bernstein-Widder theorem and can not be compactly supported. A weaker notion
of complete monotony, called multiply monotony has been introduced: a function ϕ : (0,+∞)→ Rd
is l-multiply monotone, with l ≥ 2, if it is Cl−2 and (−1)jϕ(j) is non-negative, non-increasing and
convex for all j = 0, . . . , k − 2. Due to Askey [3], it follows that such a function may define a radial
positive function on Rd, for all [d/2] ≤ l − 2 (see also [20]). Hence, the theorem will follow from
the 3-multiply monotony of the function kH , which means that kH ∈ C1(0,+∞) with kH and −k′H
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non-negative, non-decreasing and convex on (0,+∞). First let us remark that kH is continuous on
(0,+∞) and is differentiable on (0, 1) ∪ (1,+∞), with, for all r ∈ (0, 1)

k′H(r) = −2Hr2H−1 + 2(1− cH)r.

Since 1− cH = H, we get that kH is also differentiable at point r = 1 with k′H(1) = 0, ensuring that
k′H is continuous on (0,+∞) and therefore kH ∈ C1((0,+∞)).
When H = 1/2, we clearly get that −k′H(r) = 2H(1−r)+ is non-negative, non-increasing and convex
so that kH is also convex and non-increasing. Since kH is a non-increasing function with compact
support, it is also non-negative.
Moreover, for H ∈ (0, 1/2), kH ∈ C3((0, 1) ∪ (1,+∞)), with for r ∈ (0, 1),

k
(2)
H (r) = −2H(2H − 1)r2H−2 + 2(1− cH) and k

(3)
H (r) = −4H(2H − 1)(H − 1)r2H−3.

It follows that, k
(3)
H (r) ≤ 0 for all r ∈ (0, 1) ∪ (1,+∞) and k

(2)
H is non-increasing on (0, 1) ∪ (1,+∞).

Hence k
(2)
H (r) ≥ k

(2)
H (1) = 4H(1 − H) ≥ 0 for r ∈ (0, 1) and k

′
H is non-decreasing and concave on

(0,+∞). Finally, since k′H(r) ≤ k′H(1) = 0, we also get that kH is non-increasing and convex on
[0,+∞). This proves that kH is 3-times monotone and concludes the proof. �

Following the one dimensional case stated in Corollary p.631 of [21], using Poisson formula, the
periodic function KH , given by (16), is a continuous covariance, as soon as KH is a continuous
covariance. Moreover, since it is periodic, the method of the circulant embedding matrix described
in Section 3.1 in dimension d = 2, allows to simulate exactly, on an equispaced square grid of [0, 2]2,
the stationary Gaussian centered random field YH with covariance KH , i.e. such that

∀x, y ∈ Rd, E(YH(x)YH(y)) = KH(x− y).

To simulate BH the fBf of order H, whose semi-variogram is given by (5), [34] then remarks that{
BH(x) ; x ∈ [0,

1√
2

]2
}

(fdd)
=

{
YH(x)− YH(0) +

√
1− cH(x1G1 + x2G2); x = (x1, x2) ∈ [0,

1√
2

]2
}

where G1, G2 are two independent Gaussian random variables with common law N (0, 2) and are
independent of YH . Algorithm 2 (see the appendix), applied with a1 = a2 = 1, leads to the simulation
of BH on the grid G = {(δi, δj); 0 ≤ i, j ≤ N} with a cost O

(
N2 log(N)

)
.

3.4. Simulation of OSGRF for H ∈ (0, 1) and E diagonal. In the general case where

E = diag(a−1
1 , a−1

2 , . . . , a−1
d )

for ai ∈ (0, 1] for all i, we consider anisotropic generalization of previous results by substituting the
Euclidean norm ‖ · ‖ with τE defined by (10), that is we define KE,H (x) := kH(τE (x)) by

KE,H (x) =

 cH − τE (x)2H + (1− cH)τE (x)2 if τE (x) :=
(∑d

i=1 |xi|
2ai
)1/2

≤ 1

0 else.

Let us quote that {x ∈ Rd; τE (x) ≤ 1} ⊂ [−1, 1]d so that KE,H has compact support included in

[−1, 1]d. Then we may define the function KE,H on Rd, which has periodicity 2 in each coordinate,
satisfying

∀x ∈ [−1, 1]d, KE,H (x) = KE,H (x).

Theorem 3. Assume that KE,H is the covariance function of a stationary centered Gaussian random
field. Then, there exists a periodic stationary centered Gaussian random field YE,H such that

∀x, y ∈ Rd, E
(
YE,H (x)YE,H (y)

)
= KE,H (x− y).

Let B
(i)
ai , 1 ≤ i ≤ d, be d independent fractional Brownian motions, with respective index ai, that is

with respective semi-variograms defined by (5). Assume that this family
{
B

(i)
ai ; 1 ≤ i ≤ d

}
and YE,H
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are independent. Then define the random field Z by

∀x = (x1, . . . , xd) ∈ Rd, ZE,H (x) = YE,H (x)− YE,H (0) +
√

1− cH
d∑
i=1

B(i)
ai (xi).

Let M ∈ [0, 1] be defined by

M = min

{
0 ≤ r ≤ 1 ;

d∑
i=1

|r|2ai ≤ 1

}
.

Then
{
ZE,H (x);x ∈ [0,M ]d

} (fdd)
=

{
XE,H (x);x ∈ [0,M ]d

}
, where we recall that XE,H is defined in

Theorem 1.

Proof. If KE,H is a covariance function, since it has compact support, as already remarked in the
previous section, using Poisson formula and Bochner Theorem (see chapter XIX [21] for instance), this
implies that KE,H is also a covariance function. Hence one may define YE,H as a periodic stationary

centered Gaussian random field with covariance function given by KE,H . Since B
(i)
ai , 1 ≤ i ≤ d

and YE,H , are independent centered Gaussian random field with stationary increments, ZE,H is also
a centered Gaussian random field with stationary increments. Let us compute its semi-variogram,
which is defined on Rd. Let x = (x1, . . . , xd) ∈ Rd and first note that ZE,H (0) = 0 = XE,H (0) almost

surely. By independence of the random fields B
(i)
ai , 1 ≤ i ≤ d and YE,H

1
2E
((
ZE,H (x)− ZE,H (0)

)2)
=

1

2
E

(YE,H (x)− YE,H (0) +
√

1− cH
d∑
i=1

B(i)
ai (xi)

)2


=
1

2
E
((
YE,H (x)− YE,H (0)

)2)
+

1− cH
2

d∑
i=1

E
((

B(i)
ai (xi)

)2
)

= KE,H (0)−KE,H (x) + (1− cH)

d∑
i=1

|xi|2ai

Therefore,

1

2
E
((
ZE,H (x)− ZE,H (0)

)2)
= cH −KE,H (x) + (1− cH)τE (x)2.

As soon as x ∈ [−M,M ]d, τE (x) ≤ 1, and then by definition of KE,H and KE,H ,

1

2
E
((
ZE,H (x)− ZE,H (0)

)2)
= τE (x)2H = vE,H (x).

This implies that, for z, y ∈ [0,M ]d,

Cov(ZE,H (z), ZE,H (y)) = vE,H (z) + vE,H (y)− vE,H (z − y) = Cov(XE,H (z), XE,H (y)),

which concludes the proof. �

As in the case of fBf (which corresponds to E = Id), the method of the circulant embedding
matrix described in Section 3.1 in dimension d = 2, allows to simulate exactly, on an equispaced
square grid of [0, 2]2, the stationary Gaussian centered random field YE,H with covariance KE,H , and
then to simulate the operator scaling Gaussian random field XE,H (using Theorem 3) with a cost

O
(
N2 log(N)

)
(see Algorithm 2 in the appendix).
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4. Numerical study

4.1. Procedure and comments. In our numerical study, we focus on operator scaling random
fields XE,H in dimension d = 2 and with H 6= 1. The first part of our numerical study focus on the
range of valid parameters. Let us note that the random field XE,H can be parametrized either by
(a1, a2, H) or by (H1, H2, H) where H1 = a1H and H2 = a2H prescribe the sample path smoothness
(see Proposition 1). The parametrization (a1, a2, H) allows to fix the anisotropic quasi-norm τE ,
choosing a1 and a2: the directional Hölder regularity will then depend on H.

In lots of practical applications, especially in medical imaging, self-similarity or Hölder regularity
exponents are used as indicators (see [26] for instance). Hence, the parametrization (H1, H2, H) may
be more relevant: it allows to fix the Hölder regularity properties and to study the anisotropy by
letting the parameter H varies. The assumptions a1 ∈ (0, 1), a2 ∈ (0, 1) and H ∈ (0, 1) rewrite as
H1 ∈ (0, 1), H2 ∈ (0, 1) and H ≥ max(H1, H2). In the self-similar case, where a1 = a2 = α/2 ∈ (0, 1]
or equivalently H1 = H2, the semi-variogram is given by a power of the α-(quasi)-norm (see (12)).
Self-similarity is given by α

2H for H ∈ (0, 1) while anisotropy is controlled by α ∈ (0, 2), the case
where α = 2 corresponding to isotropic fractional Brownian fields. A specific attention is given to
this case in Section 4.2.2.

The first numerical results concern the range of parameters (H1, H2, H) (or (α,H) for self-similar
fields) for which the circulant embedding method is valid on a specific grid of points in order to
simulate XE,H (see Section 4.1.1). Then, for the numerical evaluation of our proposed algorithm, we
compare the empirical semi-variogram obtained by a Monte-Carlo estimation with the theoretical
one (see Section 4.1.2) and perform estimation of the Hölder exponents H1 = a1H and H2 = a2H
(see Section 4.1.3). Numerical results are presented in Section 4.2.

4.1.1. Range of valid parameters. Let us first quote that, for simulation purpose, Theorem 3 may
be weaken in a discrete setting. Actually, if N ≥ 1 and d = 2, we have for a1, a2, H ∈ (0, 1) and
E = diag(a−1

1 , a−1
2 ),{
XE,H (x);x ∈

(
[0,M ] ∩N−1Z

)2} (fdd)
=

{
ZE,H (x);x ∈

(
[0,M ] ∩N−1Z

)2}
,

where for all x = (x1, x2) ∈ ([0, 1] ∩N−1Z)2,

ZE,H (x) = YE,H (x)− YE,H (0) +
√

1− cHB(1)
a1 (x1) +

√
1− cHB(2)

a2 (x2).

and

M = inf
{
r ∈ (0, 1] / r2H1/H + r2H2/H ≤ 1

}
.

The Gaussian random vector {
YE,H

(
k

N
,
l

N

)
; 0 ≤ k, l ≤ 2N − 1

}
is well-defined as soon as the circulant matrix of size 2N ×2N defined by its first column constituted
by blocks (S0, S1, . . . , S2N−1), where

Sk =

(
KE,H

(
i− j
N

,
k

N

))
0≤i,j≤2N−1

,

is positive definite. Since eigenvalues of this matrix are given by the 2-dimensional Fourier transform
of size 2N × 2N , we check numerically non-negativeness of these eigenvalues, which is enough to
simulate the realization of the vector{

XE,H

(
k

N
,
l

N

)
; 0 ≤ k, l ≤ [NM ]

}
where [y] denotes the integer part of y. We have computed the minimum of these eigenvalues in
function of the parameters (H1, H2, H) ∈ (0, 1)3 discretizing the interval (0, 1) on a regular grid
with mesh ∆ = 0.01. Let us also emphasize that an other important issue is the size ([NM ] + 1)2

of the discretized generated image: since the anisotropic quasi-norm τE varies with the parameters
(H1, H2, H), this size also varies and then we also compute it with respect to the parameters.
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Choosing N = 210, Figure 1 presents the range of the parameters (H1, H2, H), for which our
algorithm works and the size of the obtained images. More precisely, Figure 1 (a) associates to each
valid parameter (H1, H2, H) the size [MN ] and Figures 1 (b)–(e) correspond to cross-sections for
special values of H; the last figure presents the largest image that one can generate for prescribed
smoothness properties, i.e. if the only parameters of interest are (H1, H2). When H increases, the
range of admissible parameters (H1, H2) also increases: in other words, once (H1, H2) is chosen, it
seems that there exists a critical value Hc such that for any H > Hc the algorithm works. In addition,
once (H1, H2) is chosen, the greater H is, the smaller the generated image is. And according to
Figure 1 (f), when the sample directional regularities are prescribed, one can generate an important
image, up to choose well H.

Figure 2 illustrates the specific case of self-similar random fields (H1 = H2 = αH/2), giving the
size of the generated image in term of valid parameters (α,H). When the Euclidean norm (α = 2)
is replaced by an anisotropic α-(quasi)-norm (α ∈ (0, 2)), the range of valid H seems to increase
whereas the image size is lower. As already mentionned, α-(quasi)-norms provide new examples of
topothesy functions as considered in [17] and Figures 3 and 4 illustrate their behavior.

4.1.2. Comparison of empirical and theoretical semi-variograms. The empirical semi-variogram vemp
E,H

is computed using n = 5000 realizations of the operator scaling random field XE,H on an equispaced

grid with meshN = 210. Hence the empirical semi-variogram vemp
E,H

is also evaluated on this equispaced

grid, that is at ([NM ])2 points and we compare it with the theoretical semi-variogram vemp
E,H

computing

the mean relative error

MRE =
1

([NM ])2

[NM ]∑
i=1

[NM ]∑
j=1

∣∣∣vemp
E,H

(
i
N ,

j
N

)
− vE,H

(
i
N ,

j
N

)∣∣∣
vE,H

(
i
N ,

j
N

)
on the grid.

We first illustrate the case H1 = H2 = α
2H (see Figures 5–7), which corresponds to self-similar

random fields XE,H with Hurst index H1. As expected, since the simulation algorithm is exact
in principle, the error MRE is reasonable, meaning that the empirical semi-variogram fits well the
theoretical one. In this framework, the Hölder regularity does not vary with the direction: the
pointwise Hölder exponent in direction θ is always H1. In particular, when α = 2, H = H1 = H2, τE
is the Euclidean norm and the simulated random field XE,H is the isotropic fractional Brownian field
with Hurst index H1. These figures allow to illustrate the anisotropic structure when the isotropic
Euclidean norm ‖ · ‖ is replaced by an anisotropic α-quasi-norm for α = 2H1/H. Note that even for
H closed to H1, the anisotropic structure appears on the realization. Moreover, when H → 1−, the
structure looks like a sheet, this follows from the fact that the limit field XE,1 is given

(17) XE,1(x1, x2) = B
(1)
H1

(x1) +B
(2)
H2

(x2)

with B
(1)
H1

and B
(2)
H2

two independent fractional Brownian motions.
Then Figures 8–10 are devoted to examples of operator scaling random fields XE,H with different

directional regularity (that is H1 6= H2). The mean relative error MRE is still reasonable. Note that
in this case, all the simulated fields are anisotropic and the direction in which the field is greater
(the vertical one choosing H2 ≥ H1) is always perceptible on the realizations. Moreover, as in the
self-similar framework, when H → 1−, we recover the sheet structure of XE,1 , corresponding to the
sum of two independent fractional Brownian motions (17).

4.1.3. Parameter estimation using quadratic variations. Let us now briefly introduce estimators we
used for the parameters H1 and H2. Considering a realization of{

XE,H

(
k

N
,
l

N

)
; 0 ≤ k, l ≤ [NM ]

}
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by our method of simulation, we can compute for u ∈ N\{0}

V
(1)
N,u(k) =

1

[NM ]− 2u+ 1

[NM ]−2u∑
l=0

(
XE,H

(
l + 2u

N
,
k

N

)
− 2XE,H

(
l + u

N
,
k

N

)
+XE,H

(
k

N
,
l

N

))2

,

that corresponds to the quadratic variations of second order of the horizontal line process

L
(1)
k :=

{
XE,H

(
t,
k

N

)
; t ∈ R

}
.

Note that L
(1)
k − L

(1)
k (0) is simply a fractional Brownian motion on R with Hurst index given by

H1 = a1H. Since this is true for all k ≤ [NM ], we consider the mean of this quadratic variations
given by

V (1)
N,u

=
1

[NM ] + 1

[NM ]∑
k=0

V
(1)
N,u(k).

Our estimator of H1 is then defined by

Ĥ1,N =
1

2 log
(
u
v

) log

(
V (1)
N,u

V
(1)
N,v

)
,

where we set u = 2 and v = 1 in experiments. Let us quote that since the order of variations is
K = 2 > H + d/4 in dimension d = 2 for any H ∈ (0, 1), adaptation of the proof of Theorem 4.1 of
[8], stated in terms of spectral density, should allow to prove asymptotic normality of this estimator,
but this is not the purpose of the present paper. Similarly we consider

Ĥ2,N =
1

2 log
(
u
v

) log

(
V (2)
N,u

V
(2)
N,v

)
,

with ([NM ] + 1)([NM ]− 2u+ 1)V (2)
N,u

given by

[NM ]−2u∑
l=0

(
XE,H

(
k

N
,
l + 2u

N

)
− 2XE,H

(
l + u

N
,
k

N

)
+XE,H

(
k

N
,
l

N

))2

.

Note that the vertical line processes L
(2)
k :=

{
XE,H (k/N, t); t ∈ R

}
are such that L

(2)
k − L

(2)
k (0) is a

fractional Brownian motion on R with Hurst index given by H2 = a2H, for any k ∈ N. The results
of estimation are presented for N = 210 on 100 realizations in Tables 1–6. The estimators perform
very well, which suggests that the discretized simulation allows to recover the sample path regularity
properties. Note the standard deviation increases with H: this should be due to the image size which
is lower when H increases.
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4.2. Numerical results.

4.2.1. Range of valid parameters and topothesy.

(a) (b) (c)

(d) (e) (f)

Figure 1. Contour plots of the size [MN ] of the generated image. From top to the
bottom: (a) in function of (H1, H2, H); (b) in plane H = 0.3; (c) in plane H = 0.5;
(d) in plane H = 0.8; (e) in plane H = 0.99; (f) Maximum size in function of (H1, H2).

4.2.2. Self-similar framework (H1 = H2).

Figure 2. Image size [MN ] of the generated image in function of (α,H) with α =
2a1, H1 = H2 = αH/2
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Figure 3. Topothesy function θ 7→ (| cos(θ)|α + | sin(θ)|α)H for θ ∈ [−π/2, π/2]

corresponding to θ 7→ cα ((cos(θ), sin(θ)))αH for semi-variogram of αH/2 self-similar
random fields given by (12)

Figure 4. Topothesy function θ 7→ (| cos(θ)|α + | sin(θ)|α)H for θ ∈ [−π/2, π/2]

corresponding to θ 7→ cα ((cos(θ), sin(θ)))αH for semi-variogram of H1 = H2 self-
similar random fields given by (12) with α = 2H1/H



FAST AND EXACT SYNTHESIS OF SOME OPERATOR SCALING GAUSSIAN RANDOM FIELDS 17

Parameter H and
MRE

Realization
Empirical

semi-variogram
Exact

semi-variogram

H 0.2

MRE 0.0165

H 0.3

MRE 0.0246

H 0.5

MRE 0.0251

Figure 5. OSGRF with H1 = H2 = 0.2

H = 0.2 H = 0.3 H = 0.5 H = 0.7 H = 0.9

Ĥ1 0.2001± 0.0019 0.1998± 0.0027 0.1987± 0.0071 0.1997± 0.0278 0.1997± 0.0688

Ĥ2 0.1999± 0.0022 0.1994± 0.0026 0.1987± 0.0058 0.2003± 0.0271 0.2037± 0.0661

[MN ] 724 608 430 304 215

Table 1. Estimation of H1 and H2 using quadratic variations on 100 realizations
with a mesh size N = 210 ; Exact values of the parameters H1 = H2 = 0.2
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Parameter H and
MRE

Realization
Empirical

semi-variogram
Exact

semi-variogram

H 0.5

MRE 0.0314

H 0.6

MRE 0.0133

H 0.8

MRE 0.0241

Figure 6. OSGRF with H1 = H2 = 0.5

H = 0.5 H = 0.6 H = 0.7 H = 0.8 H = 0.9

Ĥ1 0.4998± 0.0021 0.5000± 0.0030 0.4996± 0.0050 0.4996± 0.0119 0.5046± 0.0301

Ĥ2 0.5000± 0.0020 0.5003± 0.0027 0.5000± 0.0055 0.5002± 0.0118 0.4986± 0.0362

[MN ] 724 675 630 588 548

Table 2. Estimation of H1 and H2 using quadratic variations on 100 realizations
with a mesh size N = 210 ; Exact values of the parameters H1 = H2 = 0.5



FAST AND EXACT SYNTHESIS OF SOME OPERATOR SCALING GAUSSIAN RANDOM FIELDS 19

Parameter H and
MRE

Realization
Empirical

semi-variogram
Exact

semi-variogram

H 0.7

MRE 0.0096

H 0.8

MRE 0.0129

H 0.9

MRE 0.0279

Figure 7. OSGRF with H1 = H2 = 0.7

H = 0.7 H = 0.8 H = 0.9

Ĥ1 0.6997± 0.0022 0.6990± 0.0047 0.7014± 0.0167

Ĥ2 0.7001± 0.0021 0.7002± 0.0048 0.6991± 0.0194

[MN ] 724 689 655

Table 3. Estimation of H1 and H2 using quadratic variations on 100 realizations
with a mesh size N = 210 ; Exact values of the parameters H1 = H2 = 0.7
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4.2.3. Operator scaling fields with H1 6= H2.

Parameter H and
MRE

Realization
Empirical

semi-variogram
Exact

semi-variogram

H 0.2

MRE 0.0184

H 0.3

MRE 0.0205

H 0.5

MRE 0.0209

Figure 8. OSGRF with H1 = 0.1, H2 = 0.2

H = 0.2 H = 0.3 H = 0.5 H = 0.7 H = 0.9

Ĥ1 0.1022± 0.0078 0.1032± 0.0109 0.0981± 0.0302 0.0995± 0.0717 0.1076± 0.1089

Ĥ2 0.1997± 0.0022 0.2004± 0.0032 0.2005± 0.0061 0.2016± 0.0319 0.2041± 0.1098

[MN ] 632 497 307 190 117

Table 4. Estimation of H1 and H2 using quadratic variations on 100 realizations
with a mesh size N = 210 ; Exact values of the parameters H1 = 0.1 and H2 = 0.2
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Parameter H and
MRE

Realization
Empirical

semi-variogram
Exact

semi-variogram

H 0.5

MRE 0.0243

H 0.6

MRE 0.0151

H 0.8

MRE 0.0180

Figure 9. OSGRF with H1 = 0.3, H2 = 0.5

H = 0.5 H = 0.6 H = 0.7 H = 0.8 H = 0.9

Ĥ1 0.3003± 0.0099 0.2990± 0.0143 0.3046± 0.0207 0.3018± 0.0316 0.2990± 0.0520

Ĥ2 0.5000± 0.0022 0.4999± 0.0024 0.4998± 0.0044 0.5004± 0.0115 0.5045± 0.0299

[MN ] 657 601 550 504 461

Table 5. Estimation of H1 and H2 using quadratic variations on 100 realizations
with a mesh size N = 210 ; Exact values of the parameters H1 = 0.3 and H2 = 0.5
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Parameter H and
MRE

Realization
Empirical

semi-variogram
Exact

semi-variogram

H 0.7

MRE 0.0175

H 0.8

MRE 0.0156

H 0.9

MRE 0.0373

Figure 10. OSGRF with H1 = 0.6, H2 = 0.7

H = 0.7 H = 0.8 H = 0.9

Ĥ1 0.6002± 0.0046 0.5992± 0.0103 0.6014± 0.0231

Ĥ2 0.7002± 0.0019 0.6995± 0.0048 0.7000± 0.0157

[MN ] 704 667 633

Table 6. Estimation of H1 and H2 using quadratic variations on 100 realizations
with a mesh size N = 210 ; Exact values of the parameters H1 = 0.6 and H2 = 0.7
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Appendix A. Algorithms

Algorithm 1 Simulation of fractional Brownian motion with Hurst parameter a on [0, 1].

1: Inputs:
N ← mesh size parameter (e.g. N = 29)
a← Hurst parameter

.

2: Step 1. Compute the first line of the covariance matrix Ra defined by (15)
3: for k = 0 to N do
4: r(k)← N−2a

(
(k + 1)2a − 2k2a + |k − 1|2a

)
5: end for

6: Step 2. Compute the first line of the minimal embedding covariance matrix Sa

7: for k = 0 to N do
8: s(k)← r(k)

9: s(N + 1 + k)← r(N − 1− k)
10: end for

11: Step 3. Compute the eigenvalues s̃1, . . . , s̃2N of Sa

12: s̃← FFT(s) . we use the normalization associated with FFT command of Matlab

13: Step 4. Simulation of the periodic random field Ỹa

14: ε1 ← Generate a vector with law N (0, I2N )
15: ε2 ← Generate a vector with law N (0, I2N )

16: Ỹa ← <
(√

2N IFFT((ε1 + iε2). ∗
√
s̃
)

. we use the normalization associated with inverse FFT command of Matlab

17: Step 5. Compute the FBM Ba

18: Initialize : Ba(0)← 0
19: for k = 1 to N do
20: Ba(k)← Ỹa(0) + . . .+ Ỹa(k − 1)
21: end for

Output: Ba discretized FBM with Hurst index a
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Algorithm 2 Simulation of OSGRF XE,H .

1: Inputs:
N ← mesh size parameter (e.g. N = 29)
H, a1, a2 ← parameters of the covariance functions of XE,H

.

2: Step 1. Compute the periodized matrix Kper defined by (14)
3: for i = 0 to N do
4: for j = 0 to N do

5: Kper(i, j)← cH − τE
(
i
N ,

j
N

)2H
+ (1− cH) τE

(
i
N ,

j
N

)2

6: end for
7: end for
8: for i = 0 to N do
9: for j = 1 to N − 1 do

10: Kper(i,N + j)← Kper(i,N − j)
11: end for
12: end for
13: for j = 0 to N − 1 do
14: for i = 1 to N − 1 do

15: Kper(N + i, j)← Kper(N − i, j)
16: end for
17: end for
18: for i = 1 to N − 1 do
19: for j = 1 to N − 1 do

20: Kper(N + i,N + j)← Kper(N − i,N − j)
21: end for
22: end for

23: Step 2. Compute the eigenvalues of the minimal symmetric circulant embedding
matrix S

24: s̃← FFT2(Kper)

25: Step 3. Check the positivity of the eigenvalues
26: if min(min(<(s̃))) ≤ 0 then break
27: end if

28: Step 4. Simulation of the periodic field YE,H

29: ε1 ← Generate a (2N, 2N)-vector of i.i.d. N (0, 1) random variables
30: ε2 ← Generate a (2N, 2N)-vector of i.i.d. N (0, 1) random variables

31: YE,H ← <
(

FFT2((ε1 + iε2). ∗
√
s̃
)
/(2N)

32: Step 5. Compute the two FBM Ba1 and Ba2

33: Ba1 ← Apply Algorithm 1 with a = a1

34: Ba2 ← Apply Algorithm 1 with a = a2

35: Step 6. Compute the OSGRF XE,H

36: Compute the size M of the simulation grid
37: for i = 0 to M do
38: for j = 0 to M do

39: XE,H (i, j)← YE,H (i, j)− YE,H (0, 0) +
√

1− cH(Ba1(i) +Ba2(j))

40: end for
41: end for

Output: XE,H discretized OSGRF with parameter (E,H).
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