Stéphane Devismes 
  
David Ilcinkas 
  
Colette Johnen 
  
Self-Stabilizing Disconnected Components Detection and Rooted Shortest-Path Tree Maintenance in Polynomial Steps *

Keywords: distributed algorithm, self-stabilization, routing algorithm, shortest path, disconnected network, shortestpath tree

We deal with the problem of maintaining a shortest-path tree rooted at some process r in a network that may be disconnected after topological changes. The goal is then to maintain a shortest-path tree rooted at r in its connected component, Vr, and make all processes of other components detecting that r is not part of their connected component. We propose, in the composite atomicity model, a silent self-stabilizing algorithm for this problem working in semi-anonymous networks, where edges have strictly positive weights. This algorithm does not require any a priori knowledge about global parameters of the network. We prove its correctness assuming the distributed unfair daemon, the most general daemon. Its stabilization time in rounds is at most 3nmaxCC + D, where nmaxCC is the maximum number of non-root processes in a connected component and D is the hop-diameter of Vr. Furthermore, if we additionally assume that edge weights are positive integers, then it stabilizes in a polynomial number of steps: namely, we exhibit a bound in O(WmaxnmaxCC 3 n), where Wmax is the maximum weight of an edge and n is the number of processes.

Introduction

Given a connected undirected edge-weighted graph G, a shortest-path (spanning) tree rooted at node r is a spanning tree T of G, such that for every node u, the unique path from u to r in T is a shortest path from u to r in G. This data structure finds applications in the networking area (n.b., in this context, nodes actually represent processes), since many distance-vector routing protocols, like RIP (Routing Information Protocol) and BGP (Border Gateway Protocol), are based on the construction of shortest-path trees. Indeed, such algorithms implicitly builds a shortest-path tree rooted at each destination.

havior. Now, recently, several self-stabilizing algorithms, which work under a distributed unfair daemon, have been shown to have an exponential stabilization time in steps in the worst case. In [ACD + 17], silent leader election algorithms from [START_REF] Ajoy | An o(n)-time self-stabilizing leader election algorithm[END_REF][START_REF] Kumar Datta | Self-stabilizing leader election in optimal space under an arbitrary scheduler[END_REF] are shown to be exponential in steps in the worst case. In [START_REF] Devismes | Silent self-stabilizing {BFS} tree algorithms revisited[END_REF], the Breadth-First Search (BFS) algorithm of Huang and Chen [START_REF] Huang | A self-stabilizing algorithm for constructing breadth-first trees[END_REF] is also shown to be exponential in steps. Finally, in [START_REF] Glacet | Disconnected components detection and rooted shortest-path tree maintenance in networks -extended version[END_REF] authors show that the first silent self-stabilizing algorithm for the DCDSPM problem (still assuming a single destination) they proposed in [START_REF] Glacet | Disconnected components detection and rooted shortest-path tree maintenance in networks[END_REF] is also exponential in steps.

Contribution

Algorithm RSP proposed here is proven assuming the distributed unfair daemon. We also study its stabilization time in rounds. We establish a bound of at most 3n maxCC + D rounds, where n maxCC is the maximum number of non-root processes in a connected component and D is the hop-diameter of V r (defined as the maximum over all pairs {u, v} of nodes in V r of the minimum number of edges in a shortest path from u to v).

Furthermore, RSP is the first silent self-stabilizing algorithm for the DCDSPM problem which, assuming that the edge weights are positive integers, achieves a polynomial stabilization time in steps. Namely, in this case, the stabilization time of RSP is at most (W max n maxCC 3 + (3 -W max )n maxCC + 3)(n -1), where W max is the maximum weight of an edge and n is the number of processes. (N.b., this stabilization time is less than or equal to W max n 4 , for all n ≥ 3.)

Finally, notice that when all weights are equal to one, the DCDSPM problem reduces to a BFS tree maintenance and the step complexity becomes at most (n maxCC 3 + 2n maxCC + 3)(n -1), which is less than or equal to n 4 for all n ≥ 2.

Related Work

To the best of our knowledge, only one self-stabilizing algorithm for the DCDSPM problem has been previously proposed in the literature [START_REF] Glacet | Disconnected components detection and rooted shortest-path tree maintenance in networks[END_REF]. This algorithm is silent and works under the distributed unfair daemon, but, as previously mentioned, it is exponential in steps. However, it has a slightly better stabilization time in rounds, precisely at most 2(n maxCC + 1) + D rounds (i) .

There are several shortest-path spanning tree algorithms in the literature that do not consider the problem of disconnected components detection. The oldest distributed algorithms are inspired by the Bellman-Ford algorithm [START_REF] Bellman | On a routing problem[END_REF][START_REF] Lester | Network flow theory[END_REF]. Self-stabilizing shortest-path spanning tree algorithms have then been proposed in [START_REF] Chandrasekar | A self-stabilizing distributed algorithm for all-pairs shortest path problem[END_REF][START_REF] Tetz | A self-stabilizing algorithm for the shortest path problem in a distributed system[END_REF], but these two algorithms are proven assuming a central daemon, which only allows sequential executions. However, in [START_REF] Tetz | A self-stabilizing algorithm for the shortest path problem assuming the distributed demon[END_REF], Tetz Huang proves that these algorithms actually work assuming the distributed unfair daemon. Nevertheless, no upper bounds on the stabilization time (in rounds or steps) are given. More recently, Cobb and Huang [START_REF] Cobb | Stabilization of maximal-metric routing without knowledge of network size[END_REF] proposed an algorithm constructing shortest-path trees based on any maximizable routing metrics. This algorithm does not require a priori knowledge about the network but it is proven only for the central weakly-fair daemon. It runs in a linear number of rounds and no analysis is given on the number of steps.

Self-stabilizing shortest-path spanning tree algorithms are also given in [AGH90, CG02, JT03]. These algorithms additionally ensure the loop-free property in the sense that they guarantee that a spanning tree structure is always preserved while edge costs change dynamically. However, none of these papers consider the unfair daemon, and consequently their step complexity cannot be analyzed. (i) In fact, [START_REF] Glacet | Disconnected components detection and rooted shortest-path tree maintenance in networks[END_REF] announced 2n + D rounds, but it is easy to see that this complexity can be reduced to 2(nmaxCC + 1) + D. Whenever all edges have weight one, shortest-path trees correspond to BFS trees. In [START_REF] Kumar Datta | Brief announcement: Self-stabilizing silent disjunction in an anonymous network[END_REF], the authors introduce the disjunction problem as follows. Each process has a constant input bit, 0 or 1. Then, the problem consists for each process in computing an output value equal to the disjunction of all input bits in the network. Moreover, each process with input bit 1 (if any) should be the root of a tree, and each other process should join the tree of the closest input bit 1 process, if any. If there is no process with input bit 1, the execution should terminate and all processes should output 0. The proposed algorithm is silent and self-stabilizing. Hence, if we set the input of a process to 1 if and only if it is the root, then their algorithm solves the DCDSPM problem when all edge-weights are equal to one, since any process which is not in V r will compute an output 0, instead of 1 for the processes in V r . The authors show that their algorithm stabilizes in O(n) rounds, but no step complexity analysis is given. Now, as their approach is similar to [START_REF] Kumar Datta | Self-stabilizing leader election in optimal space under an arbitrary scheduler[END_REF], it is not difficult to see that their algorithm is also exponential in steps.

Several other self-stabilizing BFS tree algorithms have been proposed, but without considering the problem of disconnected components detection. Chen et al. present the first self-stabilizing BFS tree construction in [START_REF] Ns Chen | A self-stabilizing algorithm for constructing spanning trees[END_REF] under the central daemon. Huang and Chen present the first self-stabilizing BFS tree construction in [START_REF] Huang | A self-stabilizing algorithm for constructing breadth-first trees[END_REF] under the distributed unfair daemon, but recall that this algorithm has been proven to be exponential in steps in [START_REF] Devismes | Silent self-stabilizing {BFS} tree algorithms revisited[END_REF]. Finally, notice that these two latter algorithms [START_REF] Ns Chen | A self-stabilizing algorithm for constructing spanning trees[END_REF][START_REF] Huang | A self-stabilizing algorithm for constructing breadth-first trees[END_REF] require that the processes know the exact number of processes in the network.

According to our knowledge, only the following works [START_REF] Cournier | Light enabling snap-stabilization of fundamental protocols[END_REF][START_REF] Cournier | The first fully polynomial stabilizing algorithm for BFS tree construction[END_REF] take interest in the computation of the number of steps required by their BFS algorithms. The algorithm in [START_REF] Cournier | Light enabling snap-stabilization of fundamental protocols[END_REF] is not silent and has a stabilization time in O(∆n 3 ) steps, where ∆ is the maximum degree in the network. The silent algorithm given in [START_REF] Cournier | The first fully polynomial stabilizing algorithm for BFS tree construction[END_REF] has a stabilization time O(D 2 ) rounds and O(n 6 ) steps.

Silent self-stabilizing algorithms that construct spanning trees of arbitrary topologies are given in [START_REF] Cournier | A new polynomial silent stabilizing spanning-tree construction algorithm[END_REF][START_REF] Kosowski | A self-stabilizing algorithm for finding a spanning tree in a polynomial number of moves[END_REF]. The solution proposed in [START_REF] Cournier | A new polynomial silent stabilizing spanning-tree construction algorithm[END_REF] stabilizes in at most 4n rounds and 5n 2 steps, while the algorithm given in [START_REF] Kosowski | A self-stabilizing algorithm for finding a spanning tree in a polynomial number of moves[END_REF] stabilizes in nD steps (its round complexity is not analyzed).

Several other papers propose self-stabilizing algorithms stabilizing in both a polynomial number of rounds and a polynomial number of steps, e.g., [ACD + 17] (for the leader election), [START_REF] Cournier | Snap-stabilizing depth-first search on arbitrary networks[END_REF][START_REF] Cournier | A snap-stabilizing dfs with a lower space requirement[END_REF] (for the DFS token circulation). The silent leader election algorithm proposed in [ACD + 17] stabilizes in at most 3n + D rounds and O(n 3 ) steps. DFS token circulations given in [START_REF] Cournier | Snap-stabilizing depth-first search on arbitrary networks[END_REF][START_REF] Cournier | A snap-stabilizing dfs with a lower space requirement[END_REF] execute each wave in O(n) rounds and O(n 2 ) steps using O(n log n) space per process for the former, and O(n 3 ) rounds and O(n 3 ) steps using O(log n) space per process for the latter.

Roadmap

In the next section, we present the computational model and basic definitions. In Section 3, we describe Algorithm RSP. Its proof of correctness and a complexity analysis in steps are given in Section 4, whereas an analysis of the stabilization time in rounds is proposed in Section 5. Finally, we make concluding remarks in Section 6.

Preliminaries

We consider distributed systems made of n ≥ 1 interconnected processes. Each process can directly communicate with a subset of other processes, called its neighbors. Communication is assumed to be bidirectional. Hence, the topology of the system can be represented as a simple undirected graph G = (V, E), where V is the set of processes and E the set of edges, representing communication links. Every process v can distinguish its neighbors using a local labeling of a given datatype Lbl. All labels of v's neighbors are stored into the set Γ(v). Moreover, we assume that each process v can identify its local label in the set Γ(u) of each neighbor u. Such labeling is called indirect naming in the literature [START_REF] Sloman | Distributed systems and computer networks[END_REF]. By an abuse of notation, we use v to designate both the process v itself, and its local labels.

Each edge {u, v} has a strictly positive weight, denoted by ω(u, v). This notion naturally extends to paths: the weight of a path in G is the sum of its edge weights. The weighted distance between the processes u and v, denoted by d(u, v), is the minimum weight of a path from u to v. Of course, d(u, v) = ∞ if and only if u and v belong to two distinct connected components of G.

We use the composite atomicity model of computation [START_REF] Edsger | Self-stabilizing Systems in Spite of Distributed Control[END_REF][START_REF] Dolev | Self-stabilization[END_REF] in which the processes communicate using a finite number of locally shared registers, called variables. Each process can read its own variables and those of its neighbors, but can write only to its own variables. The state of a process is defined by the values of its local variables. A configuration of the system is a vector consisting of the states of every process.

A distributed algorithm consists of one local program per process. We consider semi-uniform algorithms, meaning that all processes except one, the root r, execute the same program. In the following, for every process u, we denote by V u the set of processes (including u) in the same connected component of G as u. In the following V u is simply referred to as the connected component of u. We denote by n maxCC the maximum number of non-root processes in a connected component of G. By definition, n maxCC ≤ n -1.

The program of each process consists of a finite set of rules of the form label : guard → action. Labels are only used to identify rules in the reasoning. A guard is a Boolean predicate involving the state of the process and that of its neighbors. The action part of a rule updates the state of the process. A rule can be executed only if its guard evaluates to true; in this case, the rule is said to be enabled. A process is said to be enabled if at least one of its rules is enabled. We denote by Enabled(γ) the subset of processes that are enabled in configuration γ.

When the configuration is γ and Enabled(γ) = ∅, a non-empty set X ⊆ Enabled(γ) is selected; then every process of X atomically executes one of its enabled rules, leading to a new configuration γ , and so on. The transition from γ to γ is called a step. The possible steps induce a binary relation over C, denoted by →. An execution is a maximal sequence of configurations e = γ 0 γ 1 . . . γ i . . . such that γ i-1 → γ i for all i > 0. The term "maximal" means that the execution is either infinite, or ends at a terminal configuration in which no rule is enabled at any process.

Each step from a configuration to another is driven by a daemon. We define a daemon as a predicate over executions. We said that an execution e is an execution under the daemon S, if S(e) holds. In this paper we assume that the daemon is distributed and unfair. "Distributed" means that while the configuration is not terminal, the daemon should select at least one enabled process, maybe more. "Unfair" means that there is no fairness constraint, i.e., the daemon might never select an enabled process unless it is the only enabled process. In other words, the distributed unfair daemon corresponds to the predicate true, i.e., this is the most general daemon.

In the composite atomicity model, an algorithm is silent if all its possible executions are finite. Hence, we can define silent self-stabilization as follows. Definition 1 (Silent Self-Stabilization) Let L be a non-empty subset of configurations, called set of legitimate configurations. A distributed system is silent and self-stabilizing under the daemon S for L if and only if the following two conditions hold:

• all executions under S are finite, and • all terminal configurations belong to L.

We use the notion of round [START_REF] Dolev | Self-stabilization of dynamic systems assuming only Read/Write atomicity[END_REF] to measure the time complexity. The definition of round uses the concept of neutralization: a process v is neutralized during a step γ i → γ i+1 , if v is enabled in γ i but not in configuration γ i+1 . Then, the rounds are inductively defined as follows. The first round of an execution e = γ 0 , γ 1 , • • • is the minimal prefix e = γ 0 , • • • , γ j , such that every process that is enabled in γ 0 either executes a rule or is neutralized during a step of e . Let e be the suffix γ j , γ j+1 , • • • of e. The second round of e is the first round of e , and so on.

The stabilization time of a silent self-stabilizing algorithm is the maximum time (in steps or rounds) over every execution possible under the considered daemon S (starting from any initial configuration) to reach a terminal (legitimate) configuration.

Algorithm RSP

This section is devoted to the presentation of our algorithm, Algorithm RSP (which stands for Rooted Shortest-Path). The code of Algorithm RSP is given in Algorithm 1. 

∈ {I, C, EB, EF } paru ∈ Lbl du ∈ R + Predicates: abRoot(u) ≡ stu = I ∧ paru / ∈ Γ(u) ∨ stpar u = I ∨ du < dpar u + ω(u, paru)∨ (stu = stpar u ∧ stpar u = EB) P reset(u) ≡ stu = EF ∧ abRoot(u) P correction(u) ≡ (∃v ∈ Γ(u) | stv = C ∧ dv + ω(u, v) < du) Macro: computeP ath(u) : paru := argmin (v∈Γ(u)∧stv =C) (dv + ω(u, v)); du := dpar u + ω(u, paru); stu := C Rules R C (u) : stu = C ∧ P correction(u) → computeP ath(u) R EB (u) : stu = C ∧ ¬P correction(u)∧ → stu := EB (abRoot(u) ∨ stpar u = EB) R EF (u) : stu = EB ∧ (∀v ∈ children(u) | stv = EF ) → stu := EF R I (u) : P reset(u) ∧ (∀v ∈ Γ(u) | stv = C) → stu := I R R (u) : (P reset(u) ∨ stu = I) ∧ (∃v ∈ Γ(u) | stv = C) → computeP ath(u)

Variables

In RSP, each process u maintains three variables: st u , par u , and d u . Those three variables are constant for the root process (ii) , r: st r = C, par r =⊥ (iii) , and d r = 0. For each non-root process u, we have:

• st u ∈ {I, C, EB, EF }, this variable gives the status of the process. I, C, EB, and EF respectively stand for Isolated, Correct, Error Broadcast, and Error Feedback. The two first states, I and C, are involved in the normal behavior of the algorithm, while the two last ones, EB and EF , are used during the correction mechanism. Precisely, st u = C (resp. st u = I) means that u believes it is in V r (resp. not in V r ). The meaning of status EB and EF will be further detailed in Subsection 3.3.

• par u ∈ Lbl, a parent pointer. If u ∈ V r , par u should designate a neighbor of u, referred to as its parent, and in a terminal configuration, the parent pointers exhibit a shortest path from u to r.

Otherwise (u / ∈ V r ), the variable is meaningless.

• d u ∈ R + , the distance value. If u ∈ V r
, then in a terminal configuration, d u gives the weight of the shortest path from u to r.

Otherwise (u / ∈ V r ), the variable is meaningless.

Normal Execution

Consider any configuration, where every process u = r satisfies st u = I, and refer to such a configuration as a normal initial configuration. Each configuration reachable from a normal initial configuration is called a normal configuration, otherwise it is an abnormal configuration. Recall that st r = C in all configurations. Then, starting from a normal initial configuration, all processes in a connected component different from V r are disabled forever. Focus now on the connected component V r . Each neighbor u of r is enabled to execute R R (u). A process eventually chooses r as parent by executing this rule, which in particular sets its status to C. Then, executions of rule R R are asynchronously propagated in V r until all its processes have status C: when a process u with status I finds one of its neighbor with status C it executes R R (u), i.e. u takes status C and chooses as parent its neighbor v with status C such that d v + ω(u, v) is minimum, d u being updated accordingly. In parallel, rules R C are executed to reduce the weight of the tree rooted at r: when a process u with status C can reduce d u by selecting another neighbor with status C as parent, it chooses the one allowing to minimize d u by executing R C (u). Hence, eventually, the system reaches a terminal configuration, where the tree rooted at r is a shortest-path tree spanning all processes of V r .

Error Correction

Assume now that the system is in an abnormal configuration. Thanks to the predicate abRoot, some nonroot processes locally detect that their state is inconsistent with that of their neighbors. We call abnormal roots such processes. Informally (see Algorithm RSP for the formal definition), a process u = r is an abnormal root if u is not isolated (i.e., st u = I) and satisfies one of the following four conditions: (ii) We should emphasize that the use of constants at the root is not a limitation, rather it allows to simplify the design and proof of the algorithm. Indeed, these constants can be removed by adding a rule to correct all root's variables, if necessary, within a single step.

(iii) ⊥ is a particular value which is different from any value in Lbl.

1. its parent pointer does not designate a neighbor, 2. its parent has status I, 3. its distance value d u is inconsistent with the distance value of its parent, or 4. its status is inconsistent with the status of its parent.

Every non-root process u that is not an abnormal root satisfies one of the two following cases. Either u is isolated, i.e., st u = I, or u points to some neighbor (i.e., par u ∈ Γ(u)) and the state of u is coherent w.r.t. the state of its parent. In this latter case, u ∈ children(par u ), i.e., u is a "real" child of its parent (see Algorithm RSP for the formal definition). Consider a path P = u 1 , . . . , u k (with k ≥ 1) such that u 1 is either r or an abnormal root, and ∀i, 1 ≤ i < k, u i+1 ∈ children(u i ). P is acyclic and called a branch rooted at u 1 . Hence, we define the normal tree T (r) (resp. an abnormal tree T (v), for any abnormal root v) as the set of all processes that belong to a branch rooted at r (resp. v).

Then, the goal is to remove all abnormal trees so that the system recovers a normal configuration. For each abnormal tree T , we have two cases. In the former case, the abnormal root u of T can join another tree T using rule R C (u), making T a subtree of T . In the latter case, T is entirely removed in a top-down manner starting from its (abnormal) root u. Now, in that case, we have to prevent the following situation: u leaves T ; this removal creates some trees, each of those is rooted at a previous child of u; and later u joins one of those (created) trees. Hence, the idea is to freeze T , before removing it. By freezing we mean assigning each member of the tree to a particular state, here EF , so that (1) no member v of the tree is allowed to execute R C (v), and (2) no process w can join the tree by executing R R (w). Once frozen, the tree can be safely deleted from its root to its leaves.

The freezing mechanism (inspired from [START_REF] Blin | An improved snap-stabilizing PIF algorithm[END_REF]) is achieved using the status EB and EF , and the rules R EB and R EF . If a process is not involved into any freezing operation, then its status is I or C. Otherwise, it has status EB or EF and no neighbor can select it as its parent. These two latter states are actually used to perform a "Propagation of Information with Feedback" [START_REF] Ernest | Echo Algorithms: Depth Parallel Operations on General Graphs[END_REF][START_REF] Segall | Distributed Network Protocols[END_REF] in the abnormal trees. This is why status EB means "Error Broadcast" and EF means "Error Feedback". From an abnormal root, the status EB is broadcast down in the tree using rule R EB . Then, once the EB wave reaches a leaf, the leaf initiates a convergecast EF -wave using rule R EF . Once the EF -wave reaches the abnormal root, the tree is said to be dead, meaning that all processes in the tree have status EF and, consequently, no other process can join it. So, the tree can be safely deleted from its abnormal root toward its leaves. There is two possibilities for the deletion. If the process u to be deleted has a neighbor with status C, then it executes rule R R (u) to directly join another "alive" tree. Otherwise, u becomes isolated by executing rule R I (u), and u may join another tree later.

Let u be a process belonging to an abnormal tree of which it is not the root. Let v be its parent. From the previous explanation, it follows that during the correction, (st v , st u ) ∈ {(C, C), (EB, C), (EB, EB), (EB, EF ), (EF, EF )} until v resets by R R (v) or R I (v). Now, due to the arbitrary initialization, the status of u and v may not be coherent, in this case u should also be an abnormal root. Precisely, as formally defined in Algorithm 1, the status of u is incoherent w.r.t the status of its parent v if st u = st v and st v = EB.

Actually, the freezing mechanism ensures that if a process is the root of an abnormal alive tree, it is in that situation since the initial configuration (see Lemma 4, page 12). The polynomial step complexity mainly relies on this strong property.

Example

An example of synchronous execution of RSP is given in Figure 1. We consider the network topology given on the top left of the figure. The names v 1 , . . . , v 10 are only given to ease the explanation (recall that we consider semi-anonymous networks where only the root r is distinguished). The network contains eleven processes divided into two connected components. Let v i be a process. In the synchronous execution described from configuration a) to configuration m), the color of v i indicates its status st vi , according to the legend on the top of the figure. The number next to v i gives its distance value, d vi . If there is an arrow outgoing from v i , this arrow designates the neighbor u of v i pointed as parent, i.e., par vi = u. Otherwise, this means that par vi / ∈ Γ(v i ). In the initial configuration a), there are two abnormal roots: v 2 and v 9 , indeed par v2 / ∈ Γ(v 2 ) and par v9 / ∈ Γ(v 9 ). The status of v 2 is already equal to EB and this value should be broadcast down in its subtree. In contrast, v 9 has status C and, consequently, should initiate the broadcast of EB. Note also that v 10 can reduce its distance value by modifying its parent pointer. Hence, in the step a) → b), v 9 takes status EB (rule R EB (v 9 )), v 10 selects v 9 as parent (rule R C (v 10 )), and finally v 3 the unique child of v 2 takes status EB (rule R EB (v 3 )).

In the step b) → c), EB is propagated down the two abnormal trees: v 5 , v 7 , v 8 , and v 10 execute R EB . In configuration c), the value EB has reached three leaves: v 5 , v 7 , and v 10 . These processes are then enabled to initiate a convergecast EF -wave. Hence, in the step c) → d), v 5 , v 7 , and v 10 execute R EF , while the last leaf v 4 takes status EB (R EB (v 4 )).

In configuration d), all children of v 9 have status EF , so v 9 is enabled to take status EF too (R EF (v 9 )). In contrast, v 3 should wait until its child v 8 takes status EF . Hence, in the step d) → e), v 9 takes status EF (R EF (v 9 )), its abnormal tree becomes frozen, while the last leaf v 4 of the second abnormal tree initiates a convergecast EF -wave (rule R EF (v 4 )).

In the step e) → f), v 9 leaves its tree and becomes isolated by rule R I (v 9 ), while v 8 takes status EF by R EF (v 8 ). Since all its children have now status EF , v 3 can take status EF by R EF (v 3 ) in step f) → g), while v5 and v 10 become isolated by rule R I in the same step. Remark then that in g), all processes in the connected component {v 5 , v 9 , v 10 } are isolated and, since r is not part of this component, they are disabled forever. In the step g) → h), the abnormal root v 2 of the remaining abnormal tree takes status EF (R EF (v 2 )). So, the abnormal tree rooted at v 2 is frozen in configuration h). In the step h) → i), v 2 leaves its tree and becomes isolated by rule R I (v 2 ). Then, v 3 becomes isolated in step i) → j) (rule R I (v 3 )). In step j) → k), v 8 becomes isolated (rule R I (v 8 )), while v 7 joins the normal tree (the tree rooted at r) by rule R R (v 7 ). In the last two steps, v 2 , v 3 , v 8 , and then v 4 successively join the normal tree by rule R R , and configuration m) is terminal.

Correctness and Step Complexity of Algorithm RSP

Definitions

Before proceeding with the proof of correctness and the step complexity analysis, we define some useful concepts. Definition 2 (Abnormal Root) Every process u = r that satisfies abRoot(u) is said to be an abnormal root.

Definition 3 (Alive Abnormal Root) A process u = r is said to be an alive abnormal root (resp. a dead abnormal root) if u is an abnormal root and has a status different from EF (resp. has status EF ). 

v 1 v 2 v 3 v 4 v 5 v 6 v 7 v 8 v 9 v 10 root r ) c) d) e) f) g) h) i) j) k) l) m) 
Fig. 1: A synchronous execution of RSP Definition 4 (Branch) A branch is a sequence of processes v 1 , • • • , v k for some integer k ≥ 1, such that v 1 is r or an abnormal root and, for every 1 ≤ i < k, we have v i+1 ∈ children(v i ). The process v i is said to be at depth i and v i , • • • , v k is called a sub-branch. If v 1 = r, the branch is said to be illegal, otherwise, the branch is said to be legal.

Observation 1 A branch depth is at most n maxCC . A process v having status I does not belong to any branch. If a process v has status C (resp. EF ), then all processes of a sub-branch starting at v have status C (resp. EF ).

Definition 5 (Legitimate State) A process u is said to be in a legitimate state if u satisfies one of the following three conditions: Definition 6 (Legitimate Configuration) A legitimate configuration is any configuration where every process is in a legitimate state. We denote by LC RSP the set of all legitimate configurations of Algorithm RSP.

1. u = r, 2. u = r, u ∈ V r , st u = C, d u = d(u,
Let γ be a configuration. Let T γ = (V r , E Tγ ) be the subgraph, where E Tγ = {{p, q} ∈ E | p ∈ V r \ {r} ∧ par p = q}. By Definition 5 (point 2), we deduce the following observation.

Observation 3 In every legitimate configuration γ, T γ is a shortest-path tree spanning all processes of V r .

Partial Correctness

We now prove that the set of terminal configurations is exactly the set of legitimate configurations. We start by proving the following intermediate statement.

Lemma 1 In any terminal configuration, every process has either status I or C.

Proof: This is trivially true for the root process, r. Assume that there exists a non-root process with status EB in a terminal configuration γ. Consider the non-root process u with status EB having the largest distance value d u in γ. In γ, no process v with status C can be a child of u, otherwise either R EB or R C is enabled at v in γ, a contradiction. Moreover, by maximality of d u , u cannot have a child with status EB in γ. Therefore, in γ process u has no child or it has only children with status EF , and thus rule R EF is enabled at u, a contradiction. Thus, every process has status C, I, or EF in γ.

Assume now that there exists a non-root process with status EF in a terminal configuration γ. Consider the process u with status EF having the smallest distance value d u in γ. By construction, u is an abnormal root in γ. So, either R I or R R is enabled at u in γ, a contradiction. 2

The next lemma, Lemma 2, deals with the connected components that do not contain r, if any. Then, Lemma 3 deals with the connected component V r .

Lemma 2 In any terminal configuration, every process that does not belong to V r is in a legitimate state.

an abnormal root in γ: it executes R EB (u) in γ → γ because st v = EB in γ. Hence, in either case v has status EB in γ, and this in particular means that v = r (this status does not exist for r). Moreover, u belongs to children(v) in γ (again because par u = v and u is not an abnormal root in γ). So, v is not enabled in γ and u ∈ children(v) remains true in γ . Hence, we can conclude that u is still not an alive abnormal root in γ .

Consider now the other case, i.e., u has status C in γ . During γ → γ , the only rules that u may execute are R R or R C . If u executes R R or R C , we have st v = C in γ (because it is a requirement to execute any of these rules) and consequently, the only rules that v may execute in γ → γ are R C or R EB . Otherwise (i.e., u does not execute any rule in γ → γ ), par u = v and st u = C already hold in γ. In this case, u being not an alive abnormal root and st u = C in γ implies that u ∈ children(v) and thus st v ∈ {C, EB} in γ, which further implies that the only rules that v may execute in γ → γ in this case are R C or R EB . Thus, in either case, during γ → γ , v either takes the status EB, decreases its distance value, or does not change the value of its variables. Consequently, u belongs to children(v) in γ , which prevents u from being an alive abnormal root in γ .

2

Let AAR(γ) be the set of alive abnormal roots in any configuration γ. From the previous lemma, we know that, for every step γ → γ , we have AAR(γ ) ⊆ AAR(γ) (precisely, for every process u and every step γ → γ , u / ∈ AAR(γ) ⇒ u / ∈ AAR(γ )). So, we can use the notion of u-segment (inspired from [ACD + 17]) to bound the total number of steps in an execution.

Definition 7 (u-Segment) Let u be any non-root process. Let e = γ 0 , γ 1 , • • • be an execution.

If there is no step γ i → γ i+1 in e, where there is a non-root process in V u which is an alive abnormal root in γ i , but not in γ i+1 , then the first u-segment of e is e itself and there is no other u-segment.

Otherwise, let γ i → γ i+1 be the first step of e, where there is a non-root process in V u which is an alive abnormal root in γ i , but not in γ i+1 . The first u-segment of e is the prefix γ 0 , • • • , γ i+1 . The second u-segment of e is the first u-segment of the suffix γ i+1 , γ i+2 , • • • , and so forth.

By Lemma 4, we have

Observation 4 For every non-root process u, for every execution e, e contains at most n maxCC + 1 usegments, because there are initially at most n maxCC alive abnormal roots in V u .

Lemma 5 Let u be any non-root process. During a u-segment, if u executes the rule R EF , then u does not execute any other rule in the remaining of the u-segment.

Proof: Let seg u be a u-segment. Let s 1 be a step of seg u in which u executes R EF . Let s 2 be the next step in which u executes its next rule. (If s 1 or s 2 do not exist, then the lemma trivially holds for seg u .) Just before s 1 , all branches containing u have an alive abnormal root, namely the non-root process v at depth 1 in any of these branches. (Note that we may have v = u.) On the other hand, just before s 2 , u is the dead abnormal root of all branches it belongs to. This implies that v must have executed the rule R EF in the meantime and thus is not an alive abnormal root anymore when the step s 2 is executed. Therefore, s 1 and s 2 belong to two distinct u-segments of the execution.

2

Corollary 2 Let u be a non-root process. The sequence of rules executed by u during a u-segment belongs to the following language:

(R I + ε)(R R + ε)R C * (R EB + ε)(R EF + ε).
We use the notion of maximal causal chain to further analyze the number of steps in a u-segment.

which is at depth smaller than i in an illegal branch because those processes will never have status C, by induction hypothesis. Moreover, no process with status C can have its depth decreasing to i or smaller by an action of one of its ancestors at depth smaller than i, because these processes have status EB and have at least one child not having status EF . Thus, they cannot execute any rule. Therefore, no process can take state C at depth smaller or equal to i in an illegal branch. Consider any process u with status C at depth i in an illegal branch at the beginning of the round i. u = r. Moreover, by induction hypothesis, u is an abnormal root, or the parent of u is not in state C (i.e., it is in the state EB). During round i, u will execute rule R EB or R C and thus either switch to state EB or join another branch at a depth greater than i. This concludes the proof of the lemma.

2

Corollary 4 After at most n maxCC rounds, the system is in a configuration from which no process in any illegal branch has status C forever. Moreover, once such a configuration is reached, each time a process executes a rule other than R EF , this process is outside any illegal branch forever.

The next lemma essentially claims that, once no process in an illegal branch has status C forever, processes in illegal branches progressively switch to status EF within at most n maxCC rounds, in order of decreasing depth.

Lemma 9 Let i ∈ N * . Starting from the beginning of round n maxCC + i, there does not exist any process at depth larger than n maxCC -i + 1 in an illegal branch having the status EB.

Proof: We prove this lemma by induction on i. The base case (i = 1) is vacuum (by Observation 1), so we assume that the lemma holds for some integer i ≥ 1. At the beginning of round n maxCC + i, no process at depth larger than n maxCC -i + 1 has the status EB (by induction hypothesis) or status C (by Corollary 4). Therefore, processes with status EB at depth n maxCC -i + 1 in an illegal branch can execute the rule R EF at the beginning of round n maxCC + i. These processes will thus all execute within round n maxCC + i (they cannot be neutralized as no children can connect to them). We conclude the proof by noticing that, from Corollary 4, once round n maxCC has terminated, any process in an illegal branch that executes either gets status EF , or will be outside any illegal branch forever.

2

The next lemma essentially claims that, after the propagation of status EF in illegal branches, the maximum length of illegal branches progressively decreases until all illegal branches vanish.

Lemma 10 Let i ∈ N * . Starting from the beginning of round 2n maxCC +i, there does not exist any process at depth larger than n maxCC -i + 1 in an illegal branch.

Proof: We prove this lemma by induction on i. The base case (i = 1) is vacuum (by Observation 1), so we assume that the lemma holds for some integer i ≥ 1. By induction hypothesis, at the beginning of round 2n maxCC + i, no process is at depth larger than or equal to n maxCC -i + 1 in an illegal branch. All processes in an illegal branch have the status EF . So, at the beginning of round 2n maxCC +i, any abnormal root satisfies the predicate P reset, they are enabled to execute either R I , or R R . So, all abnormal roots at the beginning of the round 2n maxCC + i are no more in an illegal branch at the end of this round: the maximal depth of the illegal branches has decreased, since by Corollary 4, no process can join an illegal tree during the round 2n maxCC + i.

2

Corollary 5 After at most round 3n maxCC , there are no illegal branches forever. may be superficial. For example, a topological change in a network commonly consists of a single link failure. Some specializations of self-stabilization, such as superstabilization [START_REF] Dolev | Superstabilizing protocols for dynamic distributed systems[END_REF], self-stabilization with service guarantee [START_REF] Johnen | Self-stabilizing with service guarantee construction of 1-hop weight-based bounded size clusters[END_REF], or gradual stabilization [START_REF] Altisen | Gradual stabilization under τ -dynamics[END_REF] have been proposed to target recovery from such favorable cases as a performance issue. Proposing silent algorithms for the DCDSPM problem implementing one of these aforementioned stronger properties, while achieving polynomial step complexity, is an interesting perspective of our work.

Algorithm 1 :

 1 Code of RSP Macro of RSP for any process u children(u) = {v ∈ Γ(u) | stu = I ∧ stv = I ∧ parv = u ∧ dv ≥ du + ω(v, u) ∧ (stv = stu ∨ stu = EB)} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Code of RSP for the root process r Constants: str = C parr = ⊥ dr = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Code of RSP for any process u = r Variables: stu

  r), and d u = d paru + ω(u, par u ), or 3. u / ∈ V r and st u = I. Observation 2 Every process u = r such that st u = C and d u = d paru + ω(u, par u ) is enabled.

by the ANR projects DESCARTES (ANR-16-CE40-0023), ESTATE (ANR-16-CE25-0009), and MACARON (ANR-13-JS02-002). This study has been carried out in the frame of "the Investments for the future" Programme IdEx Bordeaux -CPU (ANR-10-IDEX-03-02). Systems (OPODIS 2016) [DIJ16].

Proof: Consider, by contradiction, that there exists a process u that belongs to the connected component CC other than V r which is not in a legitimate state in some terminal configuration γ. By definition, u is not the root, moreover it has status C in γ, by Lemma 1. So, consider the process v of CC with status C having the smallest distance value d v in γ. By construction, v is an abnormal root in γ. Thus, rule R EB is enabled at v in γ, a contradiction. 2

Lemma 3 In any terminal configuration, every process of V r is in a legitimate state.

Proof: Assume, by contradiction, that there exists a terminal configuration γ where at least one process in the connected component V r is not in a legitimate state.

Assume also that there exists some process of V r that has status I in γ. Consider now a process u of V r such that in γ, u has status I and at least one of its neighbors has status C. Such a process exists because no process has status EB or EF in γ (Lemma 1), but at least one process of V r has status C, namely r. Then, R R is enabled at u in γ, a contradiction. So, every process in V r must have status C in γ. Moreover, for all processes in V r , we have

Assume now that there exists a process u such that d u < d(u, r) in γ. Consider a process u of V r having the smallest distance value d u among the processes in V r such that d u < d(u, r) in γ. By definition, u = r and we have

Finally, assume that there exists a process u such that d u > d(u, r) in γ. Consider a process u in V r having the smallest distance to r among the processes in V r such that d u > d(u, r) in γ. By definition, u = r and there exists some process

After noticing that any legitimate configuration is a terminal one (by construction of the algorithm), we deduce the following corollary from the two previous lemmas.

Corollary 1 For every configuration γ, γ is terminal if and only if γ is legitimate.

Termination

In this section, we establish that every execution of Algorithm RSP under a distributed unfair daemon is finite. Furthermore, we compute the following bound on the number of steps of every execution: [W max n maxCC 3 + (3 -W max )n maxCC + 3](n -1), where n is the number of processes, W max is the maximum weight of an edge, and n maxCC is the maximum number of non-root processes in a connected component, when all weights are strictly positive integers.

Lemma 4 No alive abnormal root is created along any execution.

Proof: Let γ → γ be a step. Let u be a non-root process that is not an alive abnormal root in γ, and let v be the process such that par u = v in γ . If the status of u is EF or I in γ , then u is not an alive abnormal root in γ . So, let us assume now that the status of u is either EB or C in γ .

Consider then the case where u has status EB in γ . The only rule u can execute in γ → γ is R EB . So, st u ∈ {C, EB} in γ. Moreover, whether u executes R EB or not, par u = v in γ. Since st u ∈ {C, EB} and u is not an alive abnormal root in γ, we can deduce that u is not an abnormal root in γ (whether dead or alive). So, if st u = EB in γ, then st v = EB in γ too. Otherwise, u has status C in γ while not being Definition 8 (Maximal Causal Chain) Let u be a non-root process and seg u be any u-segment. A maximal causal chain of seg u rooted at u 0 ∈ V u is a maximal sequence of actions a 1 , a 2 , • • • , a k executed in seg u such that the action a 1 sets par u1 to u 0 ∈ V u not later than any other action by u 0 in seg u , and for all 2 ≤ i ≤ k, the action a i sets par ui to u i-1 after the action a i-1 but not later than u i-1 's next action.

Observation 5

• An action a i belongs to a maximal causal chain if and only if a i consists in a call to the macro computeP ath by a non-root process.

• Only actions of Rules R R and R C contain the execution of computeP ath.

Let u be a non-root process and seg u be any u-segment. Let a 1 , a 2 , • • • , a k be a maximal causal chain of seg u rooted at u 0 .

• For all 1 ≤ i ≤ k, a i consists in the execution of computeP ath by u i (i.e., u i executes the rule R R or R C ) where u i ∈ V u .

• Denote by ds seg u ,v the distance value of process v at the beginning of seg u . For all 1 ≤ i ≤ k, a i sets d ui to ds seg u ,u0 + j=i j=1 w(u j , u j-1 ), where u i is the process that executes a i .

For the next lemmas and theorems, we recall that n maxCC ≤ n -1 is the maximum number of non-root processes in a connected component of G.

Lemma 6 Let u be a non-root process. All actions in a maximal causal chain of a u-segment are caused by different non-root processes of V u . Moreover, an execution of computeP ath by some non-root process v never belongs to any maximal causal chain rooted at v.

Proof: First note that any rule R C executed by a process v makes the value of d v decrease.

Assume now, by the contradiction, that there exists a process v such that, in some maximal causal chain a 1 , a 2 , • • • , a k of a u-segment, v is used as parent in some action a i and executes the action a j , with j > i. The value of d v is strictly larger just after the action a j than just before the action a i . This implies that process v must have executed the rule R R in the meantime. So, a i and a j are executed in two different u-segments by Corollary 2 and the fact that v has status C just before the action a i . Consequently, they do not belong to the same maximal causal chain, a contradiction.

Therefore, all actions in a maximal causal chain are caused by different processes, and a process never executes an action in a maximal causal chain it is the root of. As all actions in a maximal causal chain are executed by processes in the same connected component, we are done.

2

Definition 9 (S seg u ,v ) Given a non-root process u and a u-segment seg u , we define S seg u ,v as the set of all the distance values obtained after executing an action belonging to any maximal causal chain of seg u rooted at process v (v ∈ V u )).

Note that, from Observation 5 and Lemma 6, we have the following observation:

Observation 6 The size of the set S seg u ,v is bounded by a function of the number of processes in V u .

Lemma 7 Given a non-root process u and a u-segment seg u , if the size of S seg u ,v is bounded by X for all process v ∈ V u , then the number of computeP ath executions done by u in seg u is bounded by X(n maxCC -1).

Proof: Except possibly the first, all computeP ath executions done by a u in a u-segment seg u are done through the rule R C . For all these, the variable d u is always decreasing. Therefore, all the values of d u obtained by the computeP ath executions done by u are different. By definition of S seg u ,v and by Lemma 6, all these values belong to the set v∈Vu\{u} S seg u ,v , which has size at most X(n maxCC -1). 2

By definition, each step contains at least one action, made by a non-root process. Let u be any non-root process. Assume that, in any u-segment seg u , the size of S seg u ,v is bounded by X for all process v ∈ V u . So, the number of step of u in seg u is bounded by X(n maxCC -1) + 3, by Lemma 7 and Corollary 2. Moreover, recall that each execution contains at most n maxCC + 1 u-segments (Observation 4). So, u executes in at most Xn maxCC 2 + 3n maxCC -X + 3 steps. Finally, as u is an arbitrary non-root process and there are n -1 non-root processes, follows.

Theorem 1 If the size of S seg u ,v is bounded by X for all non-root process u, for all u-segment seg u , and for all process v in V u , then the total number of steps during any execution, is bounded by (Xn maxCC 2 + 3n maxCC -X + 3)(n -1).

Let W max = max {u,v}∈E ω(u, v). If all weights are strictly positive integers, then the size of any S seg u ,v , where u is a non-root process and v ∈ V u , is bounded by

where n cc ≤ n maxCC + 1 is the number of processes in V u . Hence, we deduce the following theorem from Theorem 1, Observation 6, and Corollary 1.

Theorem 2 Algorithm RSP is silent self-stabilizing under the distributed unfair daemon for the set LC RSP and, when all weights are strictly positive integers, its stabilization time in steps is at most [W max n maxCC 3 + (3 -W max )n maxCC + 3](n -1), i.e., O(W max n maxCC 3 n).

If all edges in G have the same weight w, then the size of S seg u ,v , where u is a non-root process and v ∈ V u , is bounded by n maxCC . Indeed, in such a case, we have S seg u ,v ⊂ {ds seg u ,v + i.w | 1 ≤ i ≤ n cc -1}, where n cc ≤ n maxCC + 1 is the number of processes in V u . Hence, we obtain the following corollary.

Corollary 3 If all edges have the same weight, then the stabilization time in steps of Algorithm RSP is at most (n maxCC 3 + 2n maxCC + 3)(n -1), which is less than or equal to n 4 for all n ≥ 2.

Round Complexity of Algorithm RSP

We now prove that every execution of Algorithm RSP lasts at most 3n maxCC + D rounds, where n maxCC is the maximum number of non-root processes in a connected component and D is the hop-diameter of the connected component containing r, V r . The first lemma essentially claims that all processes that are in illegal branches progressively switch to status EB within n maxCC rounds, in order of increasing depth.

Lemma 8 Let i ∈ N * . Starting from the beginning of round i, there does not exist any process both in state C and at depth less than i in an illegal branch.

Proof: We prove this lemma by induction on i. The base case (i = 1) is vacuum, so we assume that the lemma holds for some integer i ≥ 1. From the beginning of round i, no process can ever choose a parent Note that in any connected component that does not contain the root r, there is no legal branch. Then, since the only way for a process to be in no branch is to have status I, we obtain the following corollary.

Corollary 6 For any connected component H other than V r , after at most 3n maxCC rounds, every process of H is in a legitimate state forever.

In the connected component V r , Algorithm RSP may need additional rounds to propagate the correct distances to r. In the next lemma, we use the notion of hop-distance to r defined below.

Definition 10 (Hop-Distance and Hop-Diameter) A process u is said to be at hop-distance k from v if the minimum number of edges in a shortest path from u to v is k.

The hop-diameter of a graph G (resp. of a connected component H of the graph G) is the maximum hop-distance between any two nodes of G (resp. of H).

Lemma 11 Let i ∈ N. In every execution of Algorithm RSP, starting from the beginning of round 3n maxCC + i, every process at hop-distance at most i from r is in a legitimate state.

Proof: We prove this lemma by induction on i. First, by definition, the root r is always in a legitimate state, so the base case (i = 0) trivially holds. Then, after at most 3n maxCC rounds, every process either belongs to a legal branch or has status I (by Corollary 5), thus any non-isolated process v ∈ V r always stores a distance d such that d ≥ d(v, r), its actual weighted distance to r. By induction hypothesis, every process at hop-distance at most i from r has converged to a legitimate state within at most 3n maxCC + i rounds. Therefore, at the beginning of round 3n maxCC + i + 1, every process v at hop-distance i + 1 from r which is not in a legitimate state is enabled for executing rule R C . Thus, at the end of round 3n maxCC +i+1, every process at hop-distance at most i + 1 from r is in a legitimate state (such processes cannot be neutralized during this round). Also, these processes will never change their state since there are no processes that can make them closer to r.

2

Summarizing all the results of this section, we obtain the following theorem.

Theorem 3 Every execution of Algorithm RSP lasts at most 3n maxCC + D rounds, where n maxCC is the maximum number of non-root processes in a connected component and D is the hop-diameter of the connected component containing r.

Conclusion

In this paper, we have proposed a silent self-stabilizing algorithm for the DCDSPM problem. This algorithm is written in the composite atomicity model, assuming a distributed unfair daemon (the weakest scheduling assumption of the model). Its stabilization time in rounds is at most 3n maxCC +D, where n maxCC is the maximum number of non-root processes in a connected component and D is the hop-diameter of V r . Furthermore, if we additionally assume that edge weights are positive integers, then it stabilizes in a polynomial number of steps: namely, we exhibit a bound in O(W max n maxCC 3 n), where W max is the maximum weight of an edge and n is the number of processes. To obtain this stabilization time polynomial in steps, the key idea was to freeze the growth of abnormal trees before removing them in a top-down manner. This freezing mechanism is implemented as a propagation of information with feedback in the tree. This technique is general. In particular, it can be used in other spanning tree or forest constructions.

The stabilization time is, by definition, evaluated from an arbitrary initial configuration, and so is drastically impacted by worst case scenarios. Now, in many cases, transient faults are sparse and their effect