
HAL Id: hal-01485587
https://hal.science/hal-01485587

Submitted on 9 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive-Mesh-Refinement for hyperbolic systems of
conservation laws based on a posteriori stabilized high

order polynomial reconstructions
Matteo Semplice, Raphaël Loubère

To cite this version:
Matteo Semplice, Raphaël Loubère. Adaptive-Mesh-Refinement for hyperbolic systems of conservation
laws based on a posteriori stabilized high order polynomial reconstructions. Journal of Computational
Physics, 2018. �hal-01485587�

https://hal.science/hal-01485587
https://hal.archives-ouvertes.fr

Adaptive-Mesh-Refinement for hyperbolic systems of conservation laws
based on a posteriori stabilized high order polynomial reconstructions

Matteo Semplicea, Raphaël Loubère∗b

aDipartimento di Matematica G. Peano Università di Torino Via C. Alberto, 10 10123 Torino, Italy
bCNRS and Institut de Mathématiques de Bordeaux (IMB) Université de Bordeaux, France

Abstract

In this paper we propose a third order accurate finite volume scheme based on polynomial reconstruction
along with a posteriori limiting within an Adaptive-Mesh-Refinement (AMR) simulation code for hydro-
dynamics equations in 2D. The a posteriori limiting is based on the detection of problematic cells on a
so-called candidate solution computed at each stage of a third order Runge-Kutta scheme. Such detection
may include different properties, derived from physics, such as positivity, from numerics, such as a non-
oscillatory behavior, or from computer requirements such as the absence of NaN’s. Troubled cell values
are discarded and re-computed starting again from the previous time-step using this time a more dissipating
scheme but only locally to these cells. By decrementing the degree of the polynomial reconstructions from
2 to 0 we switch from a third-order to a first-order accurate scheme. Ultimately some troubled cells may
be updated with a first order accurate scheme for instance close to steep gradients. The entropy indicator
sensor is used to refine/coarsen the mesh. This sensor is also employed in an a posteriori manner because
if some refinement is needed at the end of a time step, then the current time-step is recomputed but only
locally with such refined mesh. We show on a large set of numerical tests that this a posteriori limiting pro-
cedure coupled with the entropy-based AMR technology not only can maintain optimal accuracy on smooth
flows but also stability on discontinuous profiles such as shock waves, contacts, interfaces, etc. Moreover
numerical evidences show that this approach is comparable in terms of accuracy and cost to a more classical
CWENO approach within the same AMR context.

Key words: Adaptive Mesh Refinement, a posteriori limiter, MOOD paradigm, High order of accuracy in
space and time, Entropy production, Hyperbolic conservation laws, Hydrodynamics, h/p adaptation.

1. Introduction

The quest for developing reliable, robust, accurate and efficient simulation codes for general hyperbolic
systems of conservation laws is a work in progress since the very first simulations on computers around
1942, along with the first implemented numerical methods. Efficient simulations are based on several
building-blocks or paradigms.

The first one, and, presumably, the most obvious one, is the development of robust and accurate con-
servative numerical methods based on the seminal works of Lax and Wendoff [LW60, LW64], Godunov
[S.K59] and many others. There exist highly popular numerical schemes for time and space discretizations

∗Corresponding author
Email addresses: matteo.semplice@unito.it (Matteo Semplice), raphael.loubere@math.u-bordeaux.fr (Raphaël

Loubère∗)

Preprint submitted to Journal of Computational Physics March 8, 2017

and, it is a matter of taste to determine the more appropriate one for a given situation. In this work we
have chosen a third-order accurate Runge-Kutta time integration scheme, and, third-order accurate polyno-
mial reconstruction with local Lax-Friedrichs approximate Riemann solver: this scheme assures a nominal
third-order of accuracy. What remains to design is a valid strategy of limiting to ensure robustness and an
essentially non-oscillatory behavior. In fact, any scheme of high accuracy inexorably develops spurious os-
cillations which must be damped by locally reducing the accuracy of the scheme to first order in the vicinity
of any discontinuity. Most of these damping techniques rely on some sort of artificial viscosity, should it be
described in a von Neumann and Richtmyer fashion [NR50], in terms of Riemann solvers [Tor99], (slope)
limiters [van74, van79, Ven95, MB05, Kol10] or stabilization techniques [HST10]. All have in common
the desire to detect within a solution where the numerical oscillations are or may appear, —in others words,
to locate where some artificial viscosity or numerical damping is needed—, and, how much of dissipation
is sufficient to avoid the growth of spurious oscillations. All of the above-mentioned techniques, more
or less, answer these two questions, sometimes independently. In this work, we rely on the a posteriori
MOOD paradigm which was developed initially in [CDL11a, DCL12, DLC13] and further extended to
different contexts for instance in [LDD14, ZDLS14, VC13, ZFDH15a, ZFDH15b, NRCL16]. This a poste-
riori procedure checks at the end of the timestep for troubled cell, and further recomputes them with a more
dissipative scheme. This procedure allows to maintain the physical admissibility of the solution, preserves
an essentially-non-oscillatory behavior and even cures pathological behavior (like unrepresentable numbers
such as NaN’s and Inf’s).
The resolution of any numerical simulation depends on the mesh (and the degrees of freedom) employed
and on the ability of the numerical method to employ the best possible accuracy (high on smooth flow
regions, low close to discontinuities). Thus, if the first ingredient to perform accurate simulations is the
numerical method, the second one is certainly the proper use of the available computer resources espe-
cially on large meshes. While we tend to separate them, clearly, both ingredients are not uncorrelated from
each other. The first possibility relies on parallel computing using vectorization, recent hybrid architec-
tures (CPU/GPU), light parallelization with shared memory (OpenMP), or massively parallel machinery
with distributed memory (MPI) for instance. Parallel computing is a genuine efficient way to improve even
further the resolution of numerical simulations.
A second possibility relies on redirecting the available resolution resources (i.e. the computational cells,
the degrees of freedom) to important locations of the simulation. Since this technique can be later coupled
with parallelization, we focus on it for the purposes of this paper. Many different solutions have been ex-
plored since the 70’s, which fall into two main classes: adaptive mesh redistribution and adaptive mesh
refinement (AMR). The redistribution implies that the code runs with a fixed number of cells but they are
continuously and automatically relocated following the flow (Lagrangian or Arbitrary-Lagrangian-Eulerian
schemes (ALE) [HAC74, Mai09, Lou13]) or manually (Moving Mesh techniques [TT03]). Some tech-
niques allow local changes of connectivity [LMS+10, Pin11], or, simply, emancipate from the strict notion
of mesh, like for particle methods such as the Smoothed Particle Hydrodynamics (SPH) method [NRCL16].
Contrarily, the refinement strategy adds new cells where appropriate and removes old cells which are no
longer required. This technique is known under the acronym AMR and many improvements and publica-
tions are available since the 80’s [BO84, BC89]. A drastic reduction of the costs without sacrificing the level
of accuracy is the main reason why those techniques were developed and are still in use today [SCR15]. In
this work we rely on AMR technology using the so-called numerical entropy production refinement crite-
rion [Pup04, PS11, SCR15], with a subtle but important difference compared to classical AMR procedures:
each timestep is performed with the best possible refined mesh driven by the entropy production between
tn and tn+1. In other words, if the numerical solution associated to its AMR mesh at time tn+1 could be
improved (dixit the entropy production criterion) then, the mesh is appropriately refined, and, second, the
solution is sent back at tn for re-computation. Consequently a solution is always computed with the more
appropriately refined mesh possible according to the entropy production criteria.

2

The main difficulty is to ensure that the association of computer technologies (parallelization and/or
AMR like techniques) with a specific numerical method leads to a simulation code that is

Robust: intense shocks, wave interactions should not lead to a failure of the code;

Accurate: it is desirable to avoid inappropriate and sometimes excessive numerical diffusion and dissi-
pation especially in regions of smooth flow. This is cured with clever numerical methods and/or
adaptive mesh refinement techniques;

Efficient: the computer resources are continuously growing. Nonetheless they are finite, and thus precious
enough not to be wasted. To build an efficient code, any part of development matters; from code ar-
chitecture to parallelization environment, thrifty numerical schemes, AMR technology, implementing
skills, efficient compiler and computers, etc.

Many other properties could be listed, such as re-usability, non-invasive add-ons, portability, etc. but in this
work we simply focus on those three.
Our goal in this work is to show that, for 2D hydrodynamics equation, the coupling of a posteriori lim-
iting strategy with a posteriori AMR technology leads to improvement in terms of resolution capability
and effectiveness. This work will prove that the a posteriori limiting and AMR technology are relatively
non-invasive to an existing serial code and also they pair together efficiently, by avoiding any prediction
from data at the beginning of the timestep, but rather observing an updated numerical solution and possibly
re-computing the same timestep if and where troubles have been detected.
Classically any a priori technique relies on data at discrete time tn and on the ability of the mathematics
to predict the behavior of the scheme at tn+1, and, consequently, ensure good properties for the associated
numerical solution. When a non-linear system of PDEs is solved by a non-linear high accurate scheme,
such predictions are no more based on firm mathematical demonstrations, but often extrapolated from lin-
ear theory. Because we believe that observing problematic situations is easier than predicting their possible
occurrence, we rely on a posteriori paradigms. Once problematic situations are detected at tn+1, then, start-
ing again from data at tn, the numerical method must adapt (locally), and, provide a better suited numerical
solution. In this work, both the AMR procedure based on entropy production diagnostics and the MOOD
limiting procedure for the hydrodynamics solver rely on such a posteriori paradigm.

The rest of this paper is organized as follows. The second section briefly presents the system of PDEs
solved, namely Euler equations in 2D on Cartesian geometry. Next in section 3 we present the third-
order accurate finite volume scheme under Adaptive Mesh Refinement (AMR) framework. Space and time
accurate discretizations are described supplemented by the AMR technology and, more specifically, the
numerical entropy production used as the AMR threshold variable. Then in section 4 the a posteriori
MOOD technique is presented as a limiting strategy to stabilize the previous third-order accurate scheme
independently of the AMR procedure. The specific detection criteria, decrementing technique are discussed
in the same section. This overall numerical method (2D third-order accurate FV scheme under AMR) is
further validated and tested in section 5. Here, we gather the numerical results for a large set of test
cases involving complex flows, interacting shock waves, contact discontinuities, rarefaction waves and
re-circulation areas involving vortices. These tests assess the ability of the numerical method to maintain
the optimal order of accuracy on smooth flow, and, an essentially non-oscillatory behavior on discontinuous
solutions. Moreover the AMR technology permits to drastically increase the resolution of the computational
mesh by appropriately allocating available computer resources. This is done at little cost compared to a fully
refined mesh simulation. Conclusions and perspectives are drawn in section 6.

3

2. Hydrodynamics system of conservation laws

The model considered in this paper is the Euler equations of compressible gas dynamics. This system
of partial differential equations (PDEs) reads

∂

∂t

 ρ
ρv
ρE

 + ∇ ·

 ρv
ρv ⊗ v + pI
v(ρE + p)

 =

 0
0
0

 , (1)

where ρ denotes the mass density, v = (u, v) the velocity vector, p the fluid pressure, E the total energy
density and I the 2 × 2 identity matrix. v ⊗ v is the dyadic product of the velocity vector with itself. The
system is closed thanks to a perfect gas law (the equation of state (EOS)) with ratio of specific heats γ:

p = (γ − 1)
(
ρE −

1
2
ρv2

)
. (2)

Classically the pressure is a function of two thermodynamics variables, namely the density and the specific
internal energy ε = E − 1

2 v2 and the gas constant γ. The sound speed is defined as a2 = γp/ρ = γ(γ − 1)ε.
From this definition one deduces that physically admissible states are such that ρ > 0 and p > 0, or,
equivalently ρ > 0 and ε > 0.
A general formulation of this nonlinear system of hyperbolic balance laws is given by

∂U
∂t

+ ∇ · F(U) = 0, x ∈ Ω ⊂ R2, t ∈ R+
0 , (3)

with appropriate initial and boundary conditions where x = (x, y) is the coordinate vector, U = (ρ, ρu, ρv, ρE)
is the vector of 4 conserved variables, F = (f, g) is the conservative nonlinear flux tensor depending on U.
The computational domain Ω ⊂ R2 is discretized by a set of NE not necessarily conforming quadrangular
elements Ωi, see figure 1. The union of all elements is referred to as the mesh or grid,MΩ =

⋃NE
i=1 Ωi. The

time is also discretized into cells Θn+1/2 = [tn, tn+1] defined by n = 0, . . . ,N discrete times tn < tn+1 with the
time step ∆t = tn+1 − tn and the initial and final times being t0 = tinit and tN = tfinal. We will see later that the
time step, which need not be constant, is restricted by stability condition which depends on the numerical
scheme employed. A so-called finite volume is one space-time cell Ωi × Θn+1/2 onto which the numerical
scheme will operate by considering interactions with neighboring finite volumes.

3. High accurate finite volume scheme for the Euler system of PDEs

In this paper we solve system of equations (3) by a highly accurate finite volume scheme. We first
introduce the cell averages of the solution as

Ui(t) =
1
|Ωi|

∫
Ωi

U(x, t)dx. (4)

Furthermore, let un
i be the approximation of Ui(tn) computed by the numerical scheme. In this section we

describe the algorithm that computes un+1
i from the cell averages at time level tn. To this end, we consider

the following semidiscretization of (3):

d
dt

ui(t) = −

∫
∂Ωi

F(u(s, t)) · n(s)ds, (5)

where n denotes the outgoing unit normal to the boundary of Ωi. Next, we will describe first the high order
discretization Li(u(t)) of the spatial operator on the right hand side of (5) and then the time discretization
will be achieved with a third order time accurate Runge-Kutta (RK3) scheme maintaining, at the same

4

time, better than second order of accuracy in space and time. At a difference from [SCR15, CS15], here
stabilization of the high accurate reconstructions is obtained by means of an a posteriori MOOD limiting
[CDL11a, DCL12, DLC13, LDD14] under the classical CFL condition of a RK3 scheme. At last an adaptive
mesh refinement (AMR) technique is employed [SCR15] to enhance even further the accuracy of the overall
scheme.
Next sub-sections describe the main aspects of this numerical method.

3.1. Polynomial reconstruction operator
The main ingredient of the proposed numerical method to reach high order of accuracy in space is the

reconstruction operator on structured or unstructured meshes. In order to simplify the formulas, we drop the
time dependence from our notation. The task of the reconstruction operator R is to compute a piece-wise
polynomial approximation of the data represented by the cell averages ui over the whole computational
domain. More precisely, the restriction of R to a generic cell Ωi is

R(x)
∣∣∣
Ωi

= wi(x) = ui +

nK∑
k=1

ŵn
i,k Ψi,k(x), ∀i = 1, . . . ,NE . (6)

In order to obtain third order accuracy, it is sufficient to take nK = 5 and we choose the basis functions

Ψi,1 = x − xi, Ψi,2 = y − yi, (7a)

Ψi,3 = (x − xi)2 −
1

12
∆x2

i , Ψi,4 = (y − yi)2 −
1

12
∆y2

i , Ψi,5 = (x − xi)(y − yi), (7b)

where xi = (xi, yi) is the centroid of cell Ωi the size of which is ∆xi × ∆yi. Following [SCR15], we have
introduced the constant terms in Ψi,3 and Ψi,4 so that all basis functions have null cell average.

The reconstruction on element Ωi requires a so-called reconstruction stencil Si, that is an appropriate
set including Ωi and a number of its neighbors that we denote as

Si =

ne⋃
k=1

Ω ji(k), (8)

where ne(i) is the number cells contained. Here k is a local index listing the elements in the stencil, and
ji(k) represents the mapping from local index k is Si to the global indexation in meshMΩ. Let us further
assume that ji(1) = i. In order to reach the nominal order of accuracy M + 1, we must choose ne(i) ≥
(M + 1)(M + 2)/2, see [BF90, OGA02, KI05]. In our case we include in Si all the cells intersecting Ωi at
least in a point (see [SCR15] for a proof that there are at least 5 neighbors in a generic quad-tree mesh and
for a discussion of the three-dimensional generalization). The local polynomial wi is then defined by the
requirements that

1
Ω ji(k)

∫
Ω ji (k)

wi(x)dx = u ji(k) ∀k = 1, . . . , ne(i) (9)

The above, since ne is larger than the number of coefficients of a degree 2 polynomial in 2 space variables,
represents an over-determined system of linear equations in the coefficients of wi. This system should be
solved in a least square sense, but, for conservation, the equation for k = 1 should be satisfied exactly. This
is facilitated by our choice of basis functions with zero average, so that it is sufficient to solve the equations
(9) for k ≥ 2 as an unconstrained least squares problem.

Finally, we point out that the stencil Si employed in this work is strictly smaller than the stencils em-
ployed by [DK07, DKTT07a] for the same level of accuracy. Si is the same as the stencil of the CWENO3
reconstruction of [SCR15]. Here, by employing a single central unlimited polynomial, we save the extra-
cost of several polynomial reconstructions and the associated cost of blending them, but we will need to
devise an appropriate a-posteriori limiting strategy in order to avoid the onset of spurious oscillations.

5

3.2. Finite volume spatial discretization

The nature and accuracy of the finite volume scheme employed to solve (5) entirely depends on the way
the integrals on its right hand side are approximated. Let us assume that ∂Ωi is decomposed into edges ei j

separating Ωi from a neighbor cell Ω j. Usually solving the spatial flux in (5) requires the use of a quadrature
formula along each edge ei j so that∫

∂Ωi

F(U) · n(s) ds ≈
∑
ei j

|ei j|

G∑
g=1

ωg F(U(ξg)) · ni j(ξg), (10)

where ωg, ξg are respectively the weights and integration points of the quadrature formula having G inte-
gration points and |ei j| is the length of edge ei j. In this work, we employ the 2-point Gaussian formula.

On the two sides of any edge two reconstructions are defined, namely wi(s) and w j(s), with s ∈ ei j, and,
usually, they do not coincide. A numerical flux F is then employed to choose uniquely the flux at the point
s, to finally get

Li(u) =
1
|Ωi|

∑
ei j

|ei j|

G∑
g=1

ωgF (wi(ξg),w j(ξg), ni j(ξg)). (11)

In this work we employ the simple Local Lax-Friedrichs (LLF) flux, i.e. F (a, b) = (F(a)+F(b)−α(b−a))/2,
where α is the largest of the eigenvalues of F′(a) and F′(b). Of course other exact or approximate Riemann
solver could be employed for this matter [Tor99], like the classical HLLC solver.

The accuracy in space of this finite volume scheme is related to the accuracy with which representations
wi are built, assuming that the quadrature formula is of appropriate accuracy. The procedure to compute
the operator Li(u) at given time t is: (i) compute the polynomial reconstructions wi(x) for every cell in
the mesh using the cell averages at time t as data, (ii) compute the approximate values of wi and w j at all
integration points ξg on each side of every edge ei j, (iii) solve the Riemann problem at integration points,
or, equivalently compute the associated numerical flux F (wn

i (ξg),wn
j (ξg), ni j), (iv) gather all fluxes in (11).

3.3. Time discretization

The accuracy in time is entirely related to the ability of the scheme to accurately integrate in time the
semi-discrete equation (5). In this work we employ the classical TVD Runge-Kutta scheme or order 3
introduced in [GS98]. More in details our fully discrete scheme reads

u(1)
i = un

i − ∆t Li(un), (12a)

u(2)
i =

3
4

un
i +

1
4

u(1)
i −

1
4

∆t Li(u(1)), (12b)

un+1
i =

1
3

un
i +

2
3

u(2)
i −

2
3

∆t Li(u(2)), (12c)

where ∆t = tn+1 − tn and the spatial operator is defined in (11).
The method (12) is by construction 3rd order accurate in time for smooth solutions. Its stability is

guaranteed under a classical CFL condition

∆t ≤ λmin
i

hi (13)

where hi is the characteristic length of cell Ωi. The value of λ is computed easily from the α’s employed in
the LLF flux, since they record the maximal eigenvalues of the flux function.

6

3.4. Formal accuracy and robustness

Starting from un and using the previous numerical method, we formally obtain un+1 which is a high-
order accurate solution. More precisely the order of accuracy of the scheme is 3 in both space and time. Of
course there would be no theoretical difficulty in considering spatial reconstruction operators with polyno-
mials of larger degree, ensuring a higher spatial accuracy, but large values of M imply the use of associated
larger stencils Si which may render the scheme much less compact than the present one.
The scheme as described above is “unlimited”, in the sense that there is no embedded extra-dissipating
mechanism which can assure that shock waves or steep gradients will not lead to spurious oscillations.
Obviously a limiting procedure is to be employed to assure robustness and an essentially non-oscillatory
behavior. Our chosen stabilization technique is described in section 4. However, any such procedure in-
eluctably reduces the accuracy of the method to 1 in the vicinity of the steep gradients.
To increase the accuracy even further we consider the AMR technique described in section 3.5. This tech-
nique coarsens the computational grid in locations where the flow can be described with less degrees of
freedom. Conversely the AMR procedure refines the grid in locations where more cells are needed to cap-
ture small scale features and compensates for the local order reduction often induced in those areas by the
limiting procedure.

3.5. Adaptive Mesh Refinement (AMR)

The adaptive grid is recursively generated starting by a coarse uniform, two-dimensional, Cartesian
mesh of grid size H at level ` = 0. According to some criterion each cell can be recursively subdivided into
four equal squares. At the end of the recursive subdivision, the grid structure is described by a quad-tree.
One example of subdivision of an original cell with `max = 3 levels of refinement is illustrated in figure 1,
together with the corresponding quad-tree. The cell corresponding to the level ` = 0 is the root of the quad-
tree. Each cell of level ` ∈ {1, . . . , `max = 3} has a father cell, which corresponds to its neighbor node in the
quad-tree at level ` − 1. The four nodes connected to the father node are called the children of the node.
The children of each subdivided cell are given some prescribed ordering, in our case it is counter-clockwise
starting from the upper-right cell.

Such subdivisions may lead to non-conformal cells as can be observed on the right panel of figure 1.
When integration along the boundary of a non-conformal cell is invoked, in order to attain a third order
accuracy, at least two quadrature points per intersection are needed. An intersection is defined as being a
co-dimension 1 intersection between two adjacent cells. On the example of the right panel of figure 1 the
blue cell has six neighbor cells, each demanding at least two quadrature points, leading to 12 flux evalua-
tions to update this cell in each of the stages of (12). At each quadrature point one uses the cell centered
polynomial reconstructions to extrapolate the physical state variables on each side of the intersection to feed
the numerical flux function.

Any AMR procedure must have a mechanism which decides where to refine or derefine the mesh. In
the present paper we employ the numerical entropy production, that was introduced in [Pup04] and further
extended in [PS11]. Numerical entropy is available for any system of conservation laws with an entropy
inequality. Moreover it scales as the truncation error in the regular regions, and its behavior allows to
distinguish between contact discontinuities and shocks. Its definition considers an admissible entropy pair
(η, ψ) and forms the quantity

S n
i =

1
∆t

∣∣∣∣∣∣∣∣ηn+1
i − ηn

i +
∆t
|Ωi|

∑
ei j

|ei j|

G∑
g=1

ωgΨ(ξg)

∣∣∣∣∣∣∣∣ , (14)

where Ψ(ξg) is the numerical entropy flux function evaluated at integration point ξg using the reconstructions
on both sides of intersection ei j and ηn

i , ηn+1
i denote the cell averages of the entropy on the numerical

solution. Note that the computation of S n
i is non-intrusive in a numerical scheme, since it amounts to the

7

l=0

l=3

l=2

l=1

A B C D AB

DC

Polynomial reconstr.

Pol.reconstr.

Polynomial reconstr.

Figure 1: Left: Example of subdivision of an original cell with `max = 3 levels of refinement: quad tree (left) and associate grid
(right) — Right: Example of subdivision of an original cell and associated non-conformal mesh. Quadrature points are represented
by red bullets. The blue cell has six neighbor cells each demanding at minima two quadrature points to reach third order accurate
integration along the cell boundary. At each quadrature point one uses the polynomial reconstructions to extrapolate physical states
(colored squares) on each side of the intersection to feed the numerical flux function.

addition of an extra variable in the vector u, whose numerical flux Ψ can be computed using the same
intermediate results (notably the polynomial reconstructions) that are needed to be fed into F .

Following [PS11] if the solution is locally smooth then S n
i = O(hr) where r is the order of the scheme

and h a characteristics length. If S n
i = O(h) (resp. O(1/h)) then a contact discontinuity (resp. shock) is

located in Ωi.
At the end of each time-step, the quantity (14) is computed in every cell i, and compared to a threshold

S ref. If S n
i > S ref and the maximal refinement level `max is not yet reached then the cell is refined, and

the cell averages in the newly created cells are set by averaging the reconstruction of wn
i and the time-step

recomputed locally, that is un+1
j is recomputed only in the numerical domain of dependence of the cell Ωi

(see figure 2). When no further refinement is needed (or possible), a coarsening pass checks if all 4 direct
children of a previously refined cell have an entropy production lower than a given coarsening threshold,
i.e. S n

i < S coa. In this situation the 4 children are then replaced with their ancestor cell, where one sets Un+1

to the average of the cell averages from the children cells. Following [PS11] we employ S coa = S ref/4.

More explicitly the AMR procedure consists in the following algorithm

-1. Initialization

Choose a maximal number of refinement `max, an initial mesh Mn=0,

threshold values S ref, S coa and set the associated data un=0
i ;

0. Mark cells for re-computation

Mark cells having a new value un
i , and store their index in set C;

1. Compute the candidate solution

Compute a candidate solution un+1 and the diagnostics S n+1/2
i on mesh Mn from data

un for all cells in the domain of dependence of cells in C

2. Decision on refining

Do for all cell i

8

R
K

 s
ta

g
es

R
K

 s
ta

g
es

t n

t n+1

t n

t n+1

x

x

Figure 2: Re-computation after refinement — The top row depicts the tentative computation of the time advancement after which
the red shaded cell is marked for refinement. Bullets (black or green) represent the cell averages and the arrows the numerical fluxes
computed during the three Runge-Kutta stages — The bottom row depicts the re-computation performed after splitting the shaded cell.
The dashed line indicates the numerical domain of dependence originating from the split cell. The stage values of the Runge-Kutta
scheme that are recomputed are indicated by empty circles. The other stage values are not indicated for easier reading.

(a) If S n+1/2
i > S ref and `i < `

max, re-computation is needed;

(b) Then split cell i into children cells, associate new children data averaging

the polynomial reconstruction wi(un);
(c) Mark the children cells as having a new value un

j;

End do for.

3. Decision on re-computation

If re-computation is needed, Mn and un have changed, go back to 1;

If re-computation is not needed then accept un+1 and continue;

4. Decision on coarsening

Do for all set of sister cells (emanating from a common ancestor)

(a) If S n+1/2
i < S coa and `i > 0 for all sister cells, then coarsen the children

cells into their common ancestor cell;

(b) Average sister data to set ancestor data into un+1;

Step -1 is performed only at the beginning of the time evolution, while steps 0-4 are performed for
each time-step. In order to increase the accuracy, only at time t = 0, in step 2b the children values are set
with the initial condition.

3.6. Summary

Up to now we have described a third-order accurate in space and time finite volume scheme within our
AMR framework.
As such this scheme has no embedded limiting procedure to dissipate the occurrence of spurious numerical
oscillations due to the Gibbs phenomenon. Therefore the scheme as it stands will produce numerical oscil-
lations in the vicinity of shock waves and steep fronts. Moreover the generated oscillating solution would
spoil the refining and coarsening procedures of the AMR framework.
In previous works, CWENO polynomial reconstructions have been used to limit and stabilize this scheme
[PS11, SCR15, CS15]. In this work we will use an a posteriori stabilization procedure based on a trou-
bled cell detector and subsequent re-computations with a second- or first-order finite volume scheme. This
procedure is based on the so called MOOD paradigm, see [CDL11a, DCL12, DLC13, LDD14].

9

4. a posteriori limited Finite Volume scheme

Classical WENO or CWENO reconstruction techniques have been developed elsewhere [JS96, HS99,
DKTT07b, KI05, DK07, CS15] and, it has been shown that this approach maintains the overall accuracy
and provides the necessary robustness of the scheme. In this paper we rely on an alternative technique
using the so-called a posteriori MOOD (Multi-dimensional Optimal Order Detection) method. MOOD has
been designed originally on fixed grids for Euler equations [CDL11a, DCL12, DLC13, CDL11b]. The a
posteriori MOOD concept has also been used as a limiter for ADER schemes [LDD14], as a subcell limiter
for high accurate Discontinuous Galerkin schemes in [ZDLS14, ZFDH15a] or as a high-order finite volume
solver for convection-diffusion problems [CMNP13, CM14] and also to construct all-entropy finite volume
schemes [VC13, V.D13].
Most classical limiting procedures (slope limiter, artificial viscosity, WENO, CWENO, etc.) are a priori
procedures as for they only use data at time tn to perform two conceptually distinct operations: 1- predict
in which cells extra-dissipation is needed, and, 2- define how much of such dissipation is sufficient. Ideally
one demands that those operations lead to a provably robust scheme, free from spurious (possibly lethal)
oscillations, and, equally importantly, maintaining the physical admissibility of the numerical solution.
Moreover we desire that this limiting procedure reduce the accuracy as locally as possible. Maintaining the
physical admissibility of the numerical solution is generally a difficult task for a priori limiting strategies
specifically when a complex system of PDEs is solved.
Contrarily the a posteriori MOOD paradigm is based on the viewpoint that it is easier to observe an invalid
numerical solution at tn+1 instead of predicting its occurrence from data at tn. In the MOOD philosophy, a
candidate solution is computed at tn+1, this solution is tested through a list of admissible criteria (physically-
or numerically-based), then troubled cells are sent back for re-computation with a more dissipating scheme,
starting again from valid data at tn. Several iterations (MOOD loop) may be needed because adding dissipa-
tion on one cell only in the vicinity of shocks may not be sufficient, and enlarging the stencil for dissipation
is often mandatory. Let us describe in more details the approach.

4.1. MOOD paradigm as an a posteriori stabilization technique
An a posteriori MOOD limiting strategy is therefore based on three objects: (i) a list of detection

criteria, (ii) an ultra dissipative and robust scheme, the parachute scheme, (iii) a cascade of numerical
schemes ordered from the more accurate to the parachute scheme.

1. The Detection criteria. The detection criteria set is a list of properties which are checked to assess if
a numerical solution in a cell is acceptable at the end of a time-step. The first set of criteria is based
on the underlying physics, these correspond to properties that must be fulfilled to ensure physical
admissibility of a numerical solution. They are called the Physical Admissible Detection (PAD) criteria
and can not be decorrelated from the system of PDEs which are solved. Here, for the hydrodynamics
system of conservation laws, the PAD criteria are the positivity of the density and the specific internal
energy.
The second set of criteria relies on numerical properties. These are called Numerical Admissible
Detection (NAD) criteria and they ensure that the numerical solution is essentially non-oscillatory.
In [CDL11a, DCL12, DLC13, LDD14, ZDLS14] the NAD criteria are based on a relaxed discrete
maximum principle (DMP). Also we check if the computed solution is a representable datum, that is
to say we check from a computer science point of view for the occurence of non-numeric values like
Not-a-Number (NaN) or Infinite (Inf). If either the PAD or the NAD criteria are not fulfilled, then,
locally, some action must be taken to supplement the scheme with more dissipation.

2. The parachute or bullet-proof scheme. The last scheme which one uses is called the parachute to
express the fact that, for extremely difficult cases, this scheme is used as a last resort scheme. The
candidate numerical solution provided by this scheme must always be considered as an acceptable one.
As in most works involving a MOOD loop, as instance [CDL11a, DCL12, DLC13, CDL11b, LDD14],
also in this work the first-order Godunov finite volume scheme is used.

10

M,
n

U
n

t
n

BACK AT

MLoop 1

(j)

d

U
(2)

d
(2)

,
U

(1) (1)

d, U
(3)

d
(3)

,U
(2)

d
(2)

,(S =f
n

*

UU
(3)

d
(j)

d
(j)

*

U

d
(j)

(1)

d

U
(0)

U
(0)

HYDRO. SOLVER AMR PROCEDURE

M,

Refine the mesh?

YES NO

Refine Coarsen Project

mesh, solution

RK3

RK1

RK2 MLoop 2

MLoop 3

DECREMENT

MLoop j

), ,,

mesh, solution

M,
n+1 n+1

U

, d
(3)

U
(j−1) Unlimited Reconstr.

of degree
Ucandidate

BAD CELLS PAD, NAD, NaN
DETECT

GOOD CELLS
1 or 0

,U
(1)

Reconstruct

FV SOLVER

B
A

D

CELLS

U
(j)

U= U
n+1

U =
n+1

M= M MM =

Figure 3: Sketch of our 3rd order Finite Volume AMR scheme. A single MOOD loop is depicted on the bottom part of the figure.

3. The cascade. The cascade is a list of ordered numerical schemes from the most accurate and prone to
instability scheme, up to the least accurate but robust one [LDD14]. Here this sequence is related to the
degree of the polynomial reconstructions. Precisely one sets a maximal polynomial degree dmax = 2
and we use the simplest sequence P2 → P0

1.

The MOOD loop embraces the main evolution routines of the high order numerical scheme, and, possibly,
iterates to recompute some cells marked as problematic by the detection criteria, see figure 3. At the end
of the MOOD loop the numerical solution is composed of good cells only, i.e. cells which have passed the
detection criteria. This loop operates for each of the Runge-Kutta steps, and, furnished a valid numerical
solution to the AMR procedure, which may require to refine the mesh and recompute the current time-step
with this more adapted mesh.
The gain in efficiency brought by using the a posteriori MOOD paradigm is mainly due to the fact that

usually few cells need decrementing the local polynomial degree. Therefore the extra-work implied by the
MOOD loop to recompute a new candidate solution on those few problematic cells is genuinely low.
Without any doubt the detection criteria is the most important entity of the a posteriori MOOD procedure.
It is based on physical and numerical properties considered as mandatory to accept the numerical solution
within a cell.

4.2. Physical Admissible Detection criteria (PAD)
The Physical Admissible Detection criteria state that for a candidate numerical solution at tn+1 to be

valid in the case of Euler equations with perfect gas equation of state, the solution must obey the following
positivity criteria:

ρcandidate
i > 0, and εcandidate

i = Ecandidate
i −

1
2
|vcandidate

i |2 > 0, (15)

1 Note that more advance cascades have been employed elsewhere [CDL11a, DCL12, DLC13, LDD14], but, here we would like
to demonstrate that even without fine tuning, obvious improvements are attained.

11

Yes No

Y
e
s

Valid Valid

Plateau?Positivity?

N
o

Valid

Y
e
s

NaN?
No

Extrema? Smooth extrema?
Yes

Y
e
s

Unvalid

N
o

Unvalid Unvalid

N
o

Valid cell ensured

Troubled cell detected

PAD NAD NAD NADNAD

Figure 4: Sketch of the chain detector employed in the MOOD loop. A candidate solution in cell enters the chain from the left (black
arrow), and successively passes through detection boxes. Each detection box answers by Yes or No, some answers directly validate
the candidate solution (for instance: Is the cell value on a plateau?), or invalidate the solution (for instance: Is the solution polluted by
a NaN?) which is flagged as problematic and sent back for re-computation.

so that pressure and sound-speed are unambiguously determined.

4.3. Numerical Admissible Detection criteria (NAD)
The Numerical Admissible Detection criteria are based on the Discrete Maximum Principle (DMP) with

the so-called relaxed u2 criteria [DLC13, BLD15], a plateau detection and a NaN (Not-A-Number) detec-
tion. All these NAD criteria must detect spurious numerical oscillations or lethal situations but ignoring
smooth extrema or too small oscillations.
The DMP+u2 detection procedure acts on a generic variable w = (uh). For a candidate solution wcandidate

i
at time tn+1 in cell i for a given set of neighbor cells of index j ∈ Vi, we first check if wcandidate

i fulfills the
DMP. That is, if the local min/max are defined by mn

i = min j∈Vi (w
n
j ,w

n
i) and Mn

i = max j∈Vi (w
n
j ,w

n
i), the

solution is considered as valid if mn
i ≤ wcandidate

i ≤ Mn
i . The set of neighbors Vi contains all neighbors

of cell Ti sharing at least a common vertex with Ti. If the DMP is not fulfilled, then one must determine
if this new extremum represents a smooth underlying function. To do so, one checks the u2 criterion de-
scribed in [DCL12, DLC13] which states that a candidate solution which violates the DMP is nonetheless
eligible if: Xmax

i Xmin
i > 0 and

∣∣∣∣ Xmin
i
Xmax

i

∣∣∣∣ ≥ 1 − ε, where ε is a smoothness parameter set to 1/2, Xcandidate
i

represents a measure of local discrete directional curvature. In our case the second derivative in the x direc-
tion of the local third order polynomial reconstruction is used. The minimal/maximal values are defined as
Xmin

i = min
j∈Vi

(
X∗i , X

∗
j

)
likewise for the max value. The same check is done for the y component. In our case

w is chosen as ρ only.
A second numerical detection criteria consists in ignoring cells on a numerical plateau. Obviously, the
notion of a numerical plateau or flat area is not properly defined, but in this work we consider that a cell
is always valid if (Mn

i − mn
i) < h3

i , where hi is the (smallest) local characteristics length of current cell i if
hi < 1.
We also add a test for undefined or unrepresentable discrete values such as NaN (Not-a-Number) and Inf
(Infinite). This last test allows the code to restart at the previous time step at any occurrence of non-numeric
floating point values and thus genuinely helps for the robustness of the whole numerical method.
These detection checks are finally ordered into a chain, see figure 4, which allows fast exits to avoid unnec-
essary computations.

4.4. Decrementing
In general the decrementing designs the procedure that determines the next scheme of the cascade that

will be tried on troubled cells and their neighbors. In this work the numerical fluxes can be computed
with only two possibility, either the cell is flagged with degree di = 2 as ’high-accurate’, then all fluxes
are computed with P2 reconstructions, or the cell is flagged by di = 0 as ’low-accurate’ then all fluxes are
computed with piece-wise constant data, see figure 5 for an illustration. Therefore when two neighbor cells
are assigned a different cell polynomial degree, say di = 2 and d j = 0 (black and blue cells in the figure),

12

1st order pol. evaluation

3rd order pol. evaluation

Cell pol. degree0

2

2 2

2

2

2
2

2 2

0

Figure 5: Illustration of the decrementing procedure. When two neighbor cells are assigned different polynomial degrees, then the
reconstructions at their interface uses the smallest degree. When two cells have the same degree, then the reconstructions on both sides
also employ this degree.

then the effective polynomial evaluations at both sides of the common intersection ei j are made using the
lowest degree di j = min(di, d j) = 0, refer to a blue/black cell intersection in figure 5.
For an AMR mesh, this decrementing is slightly more demanding because several control points must
be considered around the current cell, each being assigned a polynomial degree according to the current
degree and the degree of the cell across. With such a procedure we ensure that if a cell is assigned a degree
0, then, all its fluxes are computed with a first-order of accuracy. Some cells assigned a degree 2 are de
facto updated with a mix of third-order and first-order accurate fluxes. However this has no impact on
conservation because the numerical method is written in flux form, therefore each flux at interface point is
used on each side with opposite signs.

4.5. Iterative MOOD loop
For each stage of the RK3 scheme an iterative MOOP loop is run until convergence, as

0. High order unlimited solution

Compute the third order accurate candidate solution U(j), where di = 2 for all cell

i starting from U(j−1) (U(0 = un;

(a) Detect and build a list of Nb bad cells B0.
(b) Set di = 0 for all i ∈ B0.

1. MOOD loop

Do while Nb > 0
Compute the candidate solution U(j) in the domain of dependence of the newly decremented

cells

(a) Detect and build a list of Nb bad cells Bk.
(b) Set di = 0 for all i ∈ Bk.

End do while.

Notice that this iterative loop always converges if the first order FV scheme is compatible with the
detection criteria. Moreover we set as valid any cell computed with di = 0, in other word, the first order
Godunov FV scheme is supposed to always furnish an acceptable solution. As such, at the end of each
RK3 stage, the provided solution is either high-order accurate and acceptable with respect to the detection
criteria, or is locally first-order accurate.

13

5. Numerical experiments

This section introduces and describes a list of representative test cases for the hydrodynamics system
of PDEs. Numerical solutions given by the AMR-MOOD numerical method are compared with the results
from the classical AMR-CWENO numerical method to assess the gain brought by the use of the new
limiting strategy. Next, we illustrate the gain brought by increasing the number of level of refinement
within our AMR-MOOD framework.

The goals of this section on numerical test cases can be summarized as follows.

1. We want to numerically validate that the coupling of MOOD and AMR techniques provides an accurate
and robust numerical method in 2D

• for smooth solutions, we want to show that the effective optimal accuracy is attained with and
without AMR, see the isentropic vortex in motion test case;

• for non smooth flows (shock tubes, double Mach reflection, forward facing step) we would like to
observe that the AMR-MOOD scheme is able to provide non oscillatory and accurate numerical
solutions. Two complementary effects are acting: (i) maintaining optimal 3rd order of accuracy
on regions where smooth flows are detected, and using a first-order accurate scheme only for few
cells where steep gradients are detected, and, (ii) adaptation of the mesh by refining/coarsening
where appropriate.

2. We will show that this AMR-MOOD numerical scheme is efficient in terms of CPU time, and accuracy
The comparison is made against the classical AMR-CWENO numerical method in 2D of [SCR15].

3. We will monitor the number of troubled cells detected by MOOD to prove that the detection procedure
does not flag many cells, and, as such, limit the number of MOOD iterations.

4. Last, we will show that the a posteriori treatment in the numerical scheme renders the overall method
robust when notoriously difficult tests are simulated (double Mach reflection or forward facing step
problems).

In order to perform our tests, the numerical scheme described in this paper was coded with the help of the
DUNE numerics library [BBD+08], employing the ALUGrid quad-tree mesh [ADKN16]. The simulations
with the AMR-CWENO method were performed with the dune-fv module [SC14].

5.1. Initialization

In an AMR simulation, the initial mesh made of N0 cells in any direction and with ` refinement levels
must be adapted to the initial condition (IC). From these data we define Neq = N0 × ` which is the number
of cells if a full refined mesh were to be employed. Our preferred strategy consists in recomputing the first
time step several times, by letting the AMR machinery refine where appropriate. An alternative solution
consists in adapting the mesh to the initial gradients contained in the IC if any. As such we can produce
initial refined grids like the ones depicted in figure 6 with ` = 5 levels. The colors correspond to data values
in order to show how the AMR procedure does adapt the mesh to the presence of gradient (first two panels),
or, to waves emanating during the very first time iteration (third panel). (Those meshes will be employed in
the following sections.)

5.2. Isentropic vortex in motion

The isentropic vortex problem [Shu97] tests the accuracy of numerical methods since an exact, smooth
and analytic solution exists. The computational domain is set to Ω = [−5, 5] × [−5, 5]. The ambient flow
is characterized by ρ∞ = 1.0, u∞ = 1.0, v∞ = 1.0 and p∞ = 1.0, with a normalized ambient temperature
T ∗∞ = 1.0. The perfect gas equation of state with γ = 1.4 is considered. At the initial time t = 0, onto

14

Figure 6: Examples of initial meshes (zooms) obtained with the AMR machinery at t = 0 showing the adaptation to gradients in the
initial conditions (left-middle panels) or to the waves emanating during the very first time-step (right panel).

this ambient flow is superimposed a vortex centered at (xvortex, yvortex) = (0, 0) with the following state:
u = u∞ + δu, v = v∞ + δv, w = w∞, T ∗ = T ∗∞ + δT ∗, where the increments are given by

δu = −y′
β

2π
exp

(
1 − r2

2

)
, δv = x′

β

2π
exp

(
1 − r2

2

)
, δT ∗ = −

(γ − 1)β
8γπ2 exp

(
1 − r2

)
,

with r =
√

x′2 + y′2 and x′ = x− xvortex, y′ = y− yvortex. The so-called strength of the vortex is set to β = 5.0
and the initial density is given by

ρ = ρ∞

(
T ∗

T ∗∞

) 1
γ−1

=

(
1 −

(γ − 1)β
8γπ2 exp

(
1 − r2

)) 1
γ−1

. (16)

Periodic boundary conditions are prescribed. At final time t = tfinal = 10 the vortex is back to its original
position. Therefore the initial and final numerical solutions should match up to precision of the numerical
method. Because the solution is a smooth solution, then it must be simulated with effective optimal high
accuracy, in other words the limiting/stabilization procedure employed in the scheme should not have any
effect along all the time evolution.

The simulations reported here for this test were computed with a fixed ∆t = 0.125 minΩn
i
{hi}. The

results with the classical CFL restricted time-step were analogous are not reported. For each simulation, we
compute the discrete L2 and L∞ norm errors between the initial and final piece-wise constant data for the
density variable.

5.2.1. Fixed grids
Successively refined Cartesian grids made of Nc = N2 squares are constructed given a number of cells

in x/y directions starting from N = 32 (coarse grid) up to N = 512 (fine grid). For this test we shut off

the AMR capability of the schemes because the goal is to observe if the effective high accuracy is attained
when the a posteriori stabilization technique is active.
In Table 1 we report these errors and the associated orders of convergence for three schemes as a function
of the CPU time. First, the simulation is ran with the unlimited 3rd order accurate scheme (with PAD safety
check). This is the most accurate, less expensive and physically valid scheme we could employ for such a
smooth problem. Second, we test the 3rd order accurate CWENO scheme and, third, the proposed MOOD
schemes of same nominal accuracy. We run several MOOD versions which differ in the detection criteria
used. We have employed a full DMP on all conservative variables, DMP+u2 on density and DMP+u2
on entropy. Three runs are made with the same scheme configuration and the CPU times to complete the
simulations are averaged in order to mitigate unavoidable fluctuations in the speed of computers (in all
cases the standard deviation of the data was below 1% of their average). CWENO and MOOD schemes

15

have an embedded limiting strategy, therefore they must be slightly more expensive than the unlimited
scheme, and, possibly less accurate if the limiting strategy is activated when it should not. We can observe
from the errors and orders of convergence that the three schemes converge with an asymptotic third order
of accuracy both in L2 and L∞ norms. We also deduce that the a posteriori MOOD limiting is not activated
as the errors are exactly the same as the unlimited results ones. This is one key feature of the a posteriori
stabilization technique. Contrarily, the CWENO procedure is always active and therefore the errors are
slightly different. This table furnishes a base results for the next table where the AMR strategy is employed.
Note that the very same results are obtained when entropy is checked instead of density or if the DMP on
all variables is to be checked. Consequently we omit these results in this table. In Table 2 we propose

Unlimited (PAD) CWENO MOOD ρ P2 −→ P0

Nc L2 error L∞ error L2 error L∞ error L2 error L∞ error

322 2.47E-02 — 3.29E-01 — 2.44E-02 — 3.27E-01 — 2.47E-02 — 3.29E-01 —

642 1.16E-02 1.10 1.88E-01 0.81 1.02E-02 1.26 1.68E-01 0.96 1.16E-02 1.10 1.87E-01 0.81

1282 2.36E-03 2.30 3.03E-02 2.63 2.12E-03 2.26 2.92E-02 2.53 2.36E-03 2.30 3.03E-02 2.63

2562 4.14E-04 2.51 5.07E-03 2.58 4.02E-04 2.40 6.33E-03 2.21 4.14E-04 2.51 5.07E-03 2.58

5122 5.61E-05 2.88 6.78E-04 2.90 5.44E-05 2.88 6.09E-04 3.38 5.61E-05 2.88 6.78E-04 2.90

Expected order 3 3 3 3 3 3

Table 1: L2 and L∞ errors and convergence rate for the isentropic vortex problem for the unlimited 3rd order scheme, the MOOD
P2 −→ P0 scheme and the CWENO P2 scheme.

the cost in terms of CPU time for the unlimited (with PAD check), CWENO and MOOD schemes, all
being nominally 3rd order accurate. From this data we can again observe that the unlimited and MOOD
schemes are rather equivalent as they produce comparable timings. (Recall that these timings derive from
an averaging procedure.) CWENO is slightly more expensive in terms CPU time. This is due to the fact that
the whole CWENO procedure is acting while only the detection part of the MOOD procedure is operating
for this test because no bad cell is ever detected. Last in figure 7 we present in curves the data from the

CPU time [s]
Unlimit. CWENO MOOD MOOD MOOD ← scheme

Nc PAD ρ η DMP ← detection

322 7.00 7.25 6.87 6.79 6.93

642 54.24 56.61 53.90 53.71 54.91

1282 445.41 475.05 443.46 447.65 444.94

2562 3632.84 3775.71 3622.88 3662.43 3956.82

5122 30006.20 30391.90 29434.95 29424.60 32860.72

Table 2: Wall-clock times and memory consumption for the vortex problem and CWENO and MOOD methods compared to the
unlimited scheme — All schemes are nominally 3rd order accurate ones. The unlimited scheme results are considered as the basis to
compute the ratio of computer resource consumption for CWENO and MOOD schemes.

previous tables, namely the errors as a function of CPU time for L1, L2 and L∞ norms. The data for uniform
grids are plotted with symbols linked by straight line. As already mentioned all schemes tested are almost
equivalent for uniform grids, as the lower errors obtained by CWENO (Table 1) are counterbalanced by the
longer computational times (Table 2).

5.2.2. AMR grids
In this section we allow the AMR during the simulation. The grid is initially set to be uniform made

of N0 × N0 square cells. Here we employ N0 = 32, 64 and 128. Next, this uniform grid is further adapted
to the flow, with the parameter controlling the AMR set such that the entire vortex structure is refined with

16

10
-5

10
-4

10
-3

10
-2

 1 10 100 1000 10000 100000

E
rr

o
r

L
1

CPU Time

CWENO (unif.)

MOOD PAD (unif.)

MOOD entropy (unif.)

MOOD density (unif.)

CWENO (non-unif.)

MOOD PAD (non-unif.)

MOOD entropy (non-unif.)

MOOD density (non-unif.)

32

64

128

10
-5

10
-4

10
-3

10
-2

10
-1

 1 10 100 1000 10000 100000

E
rr

o
r

L
2

CPU Time

CWENO (unif.)

MOOD PAD (unif.)

MOOD entropy (unif.)

MOOD density (unif.)

CWENO (non-unif.)

MOOD PAD (non-unif.)

MOOD entropy (non-unif.)

MOOD density (non-unif.)

10
-4

10
-3

10
-2

10
-1

10
0

 1 10 100 1000 10000 100000

E
rr

o
r

L
o
o

CPU Time

CWENO (unif.)

MOOD PAD (unif.)

MOOD entropy (unif.)

MOOD density (unif.)

CWENO (non-unif.)

MOOD PAD (non-unif.)

MOOD entropy (non-unif.)

MOOD density (non-unif.)

10
-5

10
-4

10
-3

10
-2

10
-1

 1 10 100 1000 10000 100000

E
rr

o
r

L
2

CPU Time

CWENO (unif.)

MOOD PAD (unif.)

CWENO (non-unif.)

MOOD PAD (non-unif.)

10
-4

10
-3

10
-2

10
-1

10
0

 1 10 100 1000 10000 100000

E
rr

o
r

L
o

o

CPU Time

CWENO (unif.)

MOOD PAD (unif.)

CWENO (non-unif.)

MOOD PAD (non-unif.)

10
-5

10
-4

10
-3

10
-2

10
-1

 1 10 100 1000 10000 100000

E
rr

o
r

L
2

CPU Time

CWENO (unif.)

MOOD density (unif.)

CWENO (non-unif.)

MOOD density (non-unif.)

10
-4

10
-3

10
-2

10
-1

10
0

 1 10 100 1000 10000 100000

E
rr

o
r

L
o

o

CPU Time

CWENO (unif.)

MOOD density (unif.)

CWENO (non-unif.)

MOOD density (non-unif.)

L2 errors L∞ errors L2 errors L∞ errors

Figure 7: Isentropic vortex problem — L1, L2 and L∞ error curves for CWENO and MOOD simulations as a function of CPU time
— Top panels: results for uniform (line) and AMR (symbols) grids for all simulations for L1 (left), L2 (middle) and L∞ (right) error
norms. Bottom panels: comparison CWENO vs MOOD with PAD detection (first and second panels), and CWENO vs MOOD with
u2 on density variable (third and fourth panels) — Each symbol corresponds to a specific threshold parameter, while each set of three
symbols employs a grid made of N0 = 32, 64 or 128 cells with ` = 3 refinement levels.

` = 3 levels, leading to Neq = 256, 512 and 1024 respectively. The AMR procedure strongly depends on
the threshold values S ref.
First, the value S ref = e = 10−3 was made for the run with N0 = 32 and ` = 3. Since the error indicator on
smooth flows scales as the formal order of the scheme, i.e. O(h3), the corresponding choice for the N0 = 64
and N0 = 128 runs are thus e/8 and e/64 (see [PS11, SCR15]). In order to better assess the influence of
the refinement parameter on the results, each of these reference runs was compared with other ones with a
10-fold increase and 10-fold decrease in S ref (see Table 3).
As expected the AMR grid initially covers, and later follows, the vortex structure during its drift for any

Threshold value. Base: e= 10−3

N0 Run 1 Run 2 Run 3

32 10e e 0.1e
64 10e/8 e/8 0.1e/8
128 10e/64 e/64 0.1e/64

Table 3: Isentropic vortex problem — Threshold values used for different meshes.

(N0, `), see the meshes and density (color) in figure 8 at final time for the three threshold values from
table 3 and N0 = 64, ` = 3. We observe that the threshold value reduces or increases the layer of fine cells
around the vortex structure for all schemes. Its choice hence drives the number of fine cells employed to
capture small scale structures, and, as a consequence, the CPU time needed to complete the simulation. In
table 4 are gathered the L2 and L∞ errors when the initial coarse grid is made of N0 cells per direction and `
refinement levels are used leading to the effective finest grid of Neq cells. Ideally the error for N0 = 32 and
` = 3 in this table should be comparable with the results from table 1 with Nc = Neq × Neq = 1282, but the
computational time is expected to be lower. In this table we also report the final total number of cells Nc(t)

17

R
u
n
1

R
u
n
2

R
u
n
3

Unlimited with PAD CWENO MOOD entropy MOOD DMP

Figure 8: Isentropic vortex problem — Zoom on the final AMR grids for different threshold values (Run 1, 2, 3) starting with 64× 64
uniform cells and ` = 3 levels of refinement — From left to right panels: Unlimited (with PAD check), CWENO, MOOD with u2 on
entropy, MOOD with DMP on all variables.

and the CPU time needed to complete the simulations. Data are reported for the three threshold values from
table 3 and referred to as Run 1, 2, and 3.
To ease the analysis of these data, we have also reported them in figure 7 as free symbols. We can observe
that they gather as triplets ordered from the smallest to the largest threshold values. The first triplet, below
100 units of time corresponds to N0 = 32, the second one to N0 = 64 and the last one to N0 = 128. For each
triplet, the error decreases while the CPU time increases, because the number of fine and total cells also
increases. Nevertheless, all these AMR simulation data are located below the uniform curves (line) meaning
that the AMR simulations are more accurate and less expensive. Moreover we have plot on the L1 norm
error curve the expected range of error (red segments) into which the AMR simulations should lie. These
segments correspond to the range of error for uniform grid simulations when the grid is refined two times.
For instance the first segment corresponds to the range between the first (uniform grid with N = 32) and
third (N = 128) data, because any AMR simulation with (N0, `) = (32, 3) must provide a better accuracy
than the uniform 32 grid simulation, and can not exceed the accuracy of a Neq = 128 grid.

Next we propose in figure 9 the evolution of the number and the percentage of cells in each level of
refinement during the MOOD with u2 on density simulation when N0 = 32 and ` = 3. We observe an
almost constant total number of cells and the number of cells in each refinement level. More specifically
the middle level N1 is less populated due to the fact that these cells pave a transition layer between coarse
and fine levels. Because the vortex does change neither its shape nor its size, the distributions of coarse,
intermediate and fine cells are expected to behave as observed. The very same behavior is reported for
all schemes for this relative mild test, therefore we omit these figures. Let us emphasize that the MOOD
detection process does not mark any bad cell, or so few that it is barely of no impact on accuracy, nor on
computational timings.

This isentropic vortex test case has shown that in the case of a smooth problem the finite volume numer-

18

(N0, `),Neq Run Nc(t) L2 error L∞ error CPU Nc(t) L2 error L∞ error CPU Nc(t) L2 error L∞ error CPU

Unlimited (with PAD check) CWENO MOOD u2 on density

(32,3),128

1 1117 7.68E-03 2.13E-01 36.84 1150 5.63E-03 1.77E-01 38.24 1117 7.68E-03 2.13E-01 37.63

2 1678 1.19E-03 3.84E-02 55.25 1687 1.04E-03 3.77E-02 54.96 1678 1.19E-03 3.84E-02 55.14

3 2407 6.40E-04 3.15E-02 77.97 2380 5.83E-04 3.07E-02 77.22 2407 6.40E-04 3.15E-02 79.69

(64,3),256

1 5254 1.02E-03 2.49E-01 333.26 5305 9.26E-04 2.26E-02 332.62 5194 1.08E-03 2.51E-02 341.80

2 6757 2.90E-04 5.83E-03 478.43 6832 2.76E-04 6.53E-03 477.02 6757 2.90E-04 5.83E-03 483.21

3 9277 1.10E-04 5.12E-03 684.24 9505 1.08E-04 6.34E-03 662.18 9277 1.10E-04 5.12E-03 689.91

(128,3),512

1 21496 1.96E-04 2.91E-03 3099.37 21559 1.96E-04 3.13E-03 3036.33 21514 1.96E-04 2.99E-03 3173.55

2 27757 4.61E-05 7.99E-04 4530.64 27901 4.48E-05 7.32E-04 4347.57 27757 4.61E-05 7.99E-04 4583.56

3 36712 1.52E-05 6.71E-04 6364.56 36664 1.48E-05 6.09E-04 6145.22 36712 1.52E-05 6.71E-04 6415.37

Table 4: Final number of cells Nc(t), L2 and L∞ errors, CPU time, for the isentropic vortex problem at t = 10 simulated by
limited/unlimited 3rd order schemes using AMR capability. Results for the unlimited (with PAD check), CWENO and MOOD with
u2 detection on density schemes. N0 is the number of cell in each direction for the initial grid, ` if the number of refinement level
leading to Neq, the number of cell for each direction in an equivalent fixed grid.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 100 200 300 400 500

N
u
m

b
e
r

o
f
c
e
ll
s
 a

t
e
a
c
h
 r

e
fi
n
e
m

e
n
t
le

v
e
l

Iteration #

N0
N1
N2

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

%
 o

f
c
e
ll
s
 a

t
e
a
c
h
 r

e
fi
n
e
m

e
n
t
le

v
e
l

Iteration #

N0
N1
N2

Figure 9: Evolution of the number of cells for each level of refinement as a function of the iteration number for the vortex problem
— AMR simulation for MOOD with u2 detection on density for N0 = 32 and ` = 3 — Left panel: number of cell — Right panel:
percentage of cell.

ical scheme supplemented with a posteriori MOOD stabilization is able to maintain its effective optimal
accuracy at a reasonable cost in terms of CPU time. The coupling of a posteriori MOOD limiting with
AMR capability produces comparable results with standard CWENO results. Playing with the threshold
parameter we can still fine tune the amount of cells, which is a classical situation for any AMR simulation.
In the next section we deal with discontinuous solutions for which some amount of limiting is mandatory.

5.3. Radial Sod shock tube

Next we run the cylindrical Sod shock tube problem in 2D. We plan to assess the ability of the scheme
to capture simple but non-aligned cylindrical waves without producing spurious oscillations. The initial
conditions for velocity component are u, v = 0 everywhere, while density and pressure are (ρH , pH) = (1, 1)
for the central region r =

√
x2 + y2 < 0.5 and (ρL, pL) = (0.125, 0.1) elsewhere. The ratio of specific heats is

γ = 1.4, along with the perfect gas equation of state. The computational domain is set to Ω = [0; 1] × [0; 1]
with symmetry boundary conditions. The final time is set to tfinal = 0.2. This one-dimensional radial
Riemann problem can be solved following for instance [Tor99] and our reference solution is computed
using a classical 1D MUSCL TVD scheme with 25000 cells.
The initial grid is either uniform, made of N×N quadrangular cells with N = 32, 64, 128, 256 or 512. AMR
type of grids is also employed starting from N0 = 32 and ` = 3, 4 or 5 levels of refinements. Likewise for
the previous test, the grid is refined and adapted to the discontinuity with ` levels. We run the MOOD and
CWENO versions of the code. The MOOD schemes employs the u2 detection either on density or entropy.

The AMR procedure strongly depends on the threshold values S ref. Again, the threshold value S ref was

19

selected as e = 10−3 by examining few (N0, `) = (32, 3) runs. The thresholds for the other grids were then
set in the same fashion as for the previous test, except that, due to the different scaling of the error on the
discontinuities, the correct scaling factor is now 2 (and not 8) per each level added [PS11, SCR15]. The
values of S ref actually employed are gathered in table 5. However we will focus on results produced by the
bold faced values.

Threshold value. Base: e= 10−3

(N0, `) Run 1 Run 2 Run 3

(32,3) e 0.1 e 0.01e

(32,4) e/2 0.1 e/2 0.01e/2

(32,5) e/4 0.1 e /4 0.01e/4

Table 5: Isentropic vortex problem — Threshold values used for different refined meshes. We focus on bold faced value simulations.

5.3.1. Uniform grids
In figure 10 we present the density for CWENO (left) and MOOD with u2 on entropy (middle) or u2

on density (right) schemes. Each panel is decomposed into four quadrants and each quadrant is dedicated

to one particular uniform mesh:

NW NE
N = 256 N = 32

SW SE
N = 128 N = 64

. As such in figure 10 we have plotted the results for

12 simulations. The same color scale is used for all top panels where the density is displayed. Moreover
the MOOD marker is also plotted on bottom panels. Red cells are problematic ones and therefore updated
by a first order scheme, while blue ones are updated with the unlimited third-order accurate scheme. Note
that the 256 × 256 mesh is not plotted for the NW panel to ease the visualization. We observe that the
troubled cells are on average located along the main waves but the detection criteria, density or entropy
may produce different patterns. The density criteria seems to better capture the cylindricity of the wave.
Note that when enough dissipation is deposited, then the detection criteria may not mark any cell for limiting
anymore, therefore not marking the cells on known discontinuous waves does not imply that the detection
fails, rather it implies that, at this particular time of visualization, the scheme does not consider those cells
as problematic. As such the very next time step could produce different patterns of troubled cells.
Next in figure 11 we present the density as a function of the cell center radius for all cells and all meshes.
Moreover we focus on the contact and shock zones in the middle and bottom panels of this figure. From
these plots we can observe that, as expected when the mesh is refined the waves (contact, shock) and the
tail/head of the rarefaction are sharper. It is also clear that for any scheme or mesh the waves seem to
converge to the same place, which is adequate according to the reference solution. On average, the same
defaults can be attributed to all schemes: when an excessive diffusion is not observed (N ≥ 128) then over-
and under-shoots occur. While these are not observed at the same location for the three tested scheme,
nonetheless they are a general characteristics.
At last, we present the error in L2 and L∞ norms in table 6. Because of the presence of discontinuities we

can expect a maximal first order of convergence of all schemes on this test for L2 norm. The data in this
table show that the three schemes provide the same accuracy even if MOOD schemes seem slightly more
accurate. As expected the errors decrease almost systematically in L2 and L∞ norms. Due to the presence
of discontinuity we can not expect a convergence in L∞ norm at any rate, as observed.

20

(128,1) (64,1)

(256,1) (32,1)

CWENO MOOD (u2 on entropy) MOOD (u2 on density)

Figure 10: 2D radial Sod shock tube problem at tfinal = 0.2 — Uniform N × N quadrangular mesh with N = 32 (NE), 64 (SE), 128
(SW), 256 (NW) — Top panels: Colored density as a function of cell center location — Bottom panels: meshes and valid/troubled
cells (blue/red). Left: CWENO, middle: MOOD with u2 on entropy, right: MOOD with u2 on density results.

CWENO MOOD density MOOD entropy

Nc L2 error L∞ error L2 error L∞ error L2 error L∞ error

322 6.21E-02 — 8.82E-02 5.18E-02 — 7.44E-02 5.24E-02 — 7.50E-02

642 4.01E-02 0.63 6.19E-02 3.48E-02 0.57 6.22E-02 3.51E-02 0.58 5.95E-02

1282 2.70E-02 0.57 5.85E-02 2.41E-02 0.53 6.30E-02 2.42E-02 0.54 5.78E-02

2562 1.84E-02 0.55 5.40E-02 1.66E-02 0.54 5.75E-02 1.65E-02 0.55 5.48E-02

5122 1.21E-02 0.60 4.86E-02 1.09E-02 0.61 5.08E-02 1.08E-02 0.61 4.71E-02

Expected order 1 1 1

Table 6: L2 and L∞ errors and convergence rate for the radial Sod problem for the MOOD P2 −→ P0 schemes (entropy or density
detection) and the CWENO P2 scheme.

5.3.2. AMR grids
Next we employ the AMR procedure and produce the results for CWENO and MOOD schemes. In

figure 13 we present the results in four quadrants for each panel:

NW NE
Unif.256 (32, 3)

SW SE
(32, 5) (32, 4)

. In this figure one

can see, from top to bottom, the colored density, the troubled cells detected by MOOD and the meshes. The
same three schemes are tested as before. Recall that the uniform mesh result with N = 256 (NW) must
be compared to the AMR results (32, 4) (SE). The first obvious comment is related to the number of cells,
which is drastically reduced with the AMR procedure. Moreover the refinement zones seem to be located

21

CWENO MOOD (u2 on entropy) MOOD (u2 on density)

Figure 11: 2D radial Sod shock tube problem at tfinal = 0.2 — Uniform N × N quadrangular mesh with N = 32, 64, 128, 256 —
Density as a function of cell center radius for all cells — Left: CWENO, middle: MOOD with u2 on entropy, right: MOOD with u2
on density — Top: full view — Middle: Zoom on the contact — Bottom: Zoom on the shock.

22

10
-3

10
-2

10
-1

 1 10 100 1000 10000 100000

E
rr

o
r

L
1

CPU Time

CWENO (unif.)

MOOD density (unif.)

MOOD entropy (unif.)

CWENO (non-unif.)

MOOD density (non-unif.)

MOOD entropy (non-unif.)

32,3 32,4 32,5

Figure 12: Radial Sod problem — L1 error curves for CWENO and MOOD simulations as a function of CPU time — Results for
uniform (line) and AMR (symbols) grids for all simulations — Each symbols corresponds to a specific threshold parameter, while
each set of three symbols employs a grid made of (32, 3), (32, 4) or (32, 5) cells.

along cylindrical waves as expected, apart from unexpected patches in the MOOD results certainly due to a
non-perfect choice of the threshold parameters. The troubled cells detected by MOOD procedure (middle
panel) are also properly located along these waves, meaning that few cells are actually limited. All blue cells
are updated with the unlimited third-order accurate scheme. These behaviors tend to prove that the AMR
results are equivalent in terms of accuracy to the uniform grid simulations for the previous section. The
AMR procedure couples nicely with the a posteriori MOOD limiting, even if needlessly refined zones can
be sometimes observed. Next in figure 14 we plot the 1D results as a function of the cell radius following
the display of figure 11. The same conclusion as in the uniform case holds.

To assess that the AMR simulations are as accurate as uniform ones, we observe their comparison
in figure 15 for the MOOD scheme with u2 on entropy. Both simulations are visually extremely close,
meaning that there is no obvious loss of accuracy on the discontinuous waves. We do not report zooms on
rarefaction fan but the results are alike. Moreover the same behavior if observed for CWENO and MOOD
with u2 on density schemes, these results are omitted accordingly.

Visually we have observed that AMR and uniform mesh simulations seem to perform alike in terms of
accuracy. Moreover the final spacial distribution of troubled cells seem to be coherent. In figure 16 we
present, for MOOD schemes (u2 on entropy or density), the histograms of the number of cells Nk in each of
the refinement level as a function of the time iteration for the cases ` = 3, ` = 4 and ` = 5. We observe that
the majority of cells are on the finest level in all cases. The number of cells in all other levels are slightly
increasing during the simulation apart from the number in the initial level. The initial linear increase in the
total number of cells is consistent with the smallest cells being located on the discontinuities, which are
expanding during time evolution. Later on, the number of small cells levels out as a result of the balance
between new ones being created along the expanding shock and contact discontinuity and other ones being
coarsened in the smooth part of the rarefaction.

Note that the number of time-step is approximately doubled from one simulation to the next one which
is coherent with the fact that the smallest cell characteristics length is divided by two. We observe that the
results for the CWENO present the same behaviors and we omit them. On the same figure the number of
bad cells detected by MOOD are represented with red symbols, (the axis is on the right of the figures in red).
After the same high increase around the 50th iteration, the number of troubled cell seems to approximately
follow the behavior of the number of fine cells.
In figure 17 we plot the evolution of the total number of troubled cells as a function of the time. For the

23

(256,1)
uniform

(32,3)
N eq = 128

(32,4)
N eq = 256

(32,5)
N eq = 512

CWENO MOOD (u2 on entropy) MOOD (u2 on density)

Figure 13: 2D radial Sod shock tube problem at tfinal = 0.2 — AMR simulations with N0 = 32 and ` = 3 (NE), ` = 4 (SE), ` = 5
(SW), and uniform 256×256 mesh results (NW) — Colored density as a function of cell center location (top), MOOD marker (middle)
and meshes — Left: CWENO, middle: MOOD with u2 on entropy, right: MOOD with u2 on density.

24

CWENO MOOD (u2 on entropy) MOOD (u2 on density)

Figure 14: 2D radial Sod shock tube problem at tfinal = 0.2 — AMR simulations with N0 = 32 and ` = 3 (NE), ` = 4 (SE), ` = 5
(SW), and uniform 256 × 256 mesh results (NW) — Density as a function of cell center radius for all cells — Left: CWENO, middle:
MOOD with u2 on entropy, right: MOOD with u2 on density — Top: full view — Middle: Zoom on the contact — Bottom: Zoom on
the shock.

25

Z
oo

m
on

co
nt

ac
t

Z
oo

m
on

sh
oc

k

(32, 3) versus 128 × 128 (32, 5) versus 512 × 512

Figure 15: 2D radial Sod shock tube problem at tfinal = 0.2 — MOOD with u2 on entropy simulations — AMR simulations (red
symbols) versus uniform ones (blue symbols) — Density as a function of cell center radius for all cells, zooms on contact (top panels)
and shock (bottom panels) waves — Top: (32, 3) versus 128 × 128 uniform mesh — Bottom: (32, 5) versus 512 × 512 uniform mesh.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 50 100 150 200 250 300
 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

N
u

m
b

e
r

o
f

c
e

ll
s
 a

t
e

a
c
h

 r
e

fi
n

e
m

e
n

t
le

v
e

l

N
u

m
b

e
r

o
f

b
a

d
 c

e
ll
s

Iteration #

Ncells

N0

N1

Bad cells

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 100 200 300 400 500 600
 100

 150

 200

 250

 300

 350

 400

 450

N
u

m
b

e
r

o
f

c
e

ll
s
 a

t
e

a
c
h

 r
e

fi
n

e
m

e
n

t
le

v
e

l

N
u

m
b

e
r

o
f

b
a

d
 c

e
ll
s

Iteration #

Ncells

N0

N1

N2

Bad cells

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 200 400 600 800 1000 1200
 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

N
u

m
b

e
r

o
f

c
e

ll
s
 a

t
e

a
c
h

 r
e

fi
n

e
m

e
n

t
le

v
e

l

N
u

m
b

e
r

o
f

b
a

d
 c

e
ll
s

Iteration #

N0

N1

N2

N3

N4

Bad cells

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 50 100 150 200 250 300
 0

 50

 100

 150

 200

 250

 300

N
u

m
b

e
r

o
f

c
e

ll
s
 a

t
e

a
c
h

 r
e

fi
n

e
m

e
n

t
le

v
e

l

N
u

m
b

e
r

o
f

b
a

d
 c

e
ll
s

Iteration #

Ncells

N0

N1

Bad cells

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 100 200 300 400 500 600
 100

 200

 300

 400

 500

 600

 700

N
u

m
b

e
r

o
f

c
e

ll
s
 a

t
e

a
c
h

 r
e

fi
n

e
m

e
n

t
le

v
e

l

N
u

m
b

e
r

o
f

b
a

d
 c

e
ll
s

Iteration #

Ncells

N0

N1

N2

Bad cells

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 200 400 600 800 1000 1200
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

N
u

m
b

e
r

o
f

c
e

ll
s
 a

t
e

a
c
h

 r
e

fi
n

e
m

e
n

t
le

v
e

l

N
u

m
b

e
r

o
f

b
a

d
 c

e
ll
s

Iteration #

Ncells

N0

N1

N2

N3

Bad cells

(N0, `) = (32, 3) (N0, `) = (32, 4) (N0, `) = (32, 5)

Figure 16: 2D radial Sod shock tube problem — MOOD scheme with u2 on entropy (top panels) or density (bottom panels) —
Results for a mesh with 3 (left), 4 (middle) or 5 (right) levels of refinements — Colored histograms for the number Nk (k = 0, · · · 4)
of cells of each level (black vertical scale on the left) and number of bad cells (red symbols and red vertical scale on the right) as a
function of time iteration.

26

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.05 0.1 0.15 0.2 0.25

%
 o

f
b
a
d
 c

e
ll
s

Time

5 levels

4 levels

3 levels

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.05 0.1 0.15 0.2 0.25

%
 o

f
b
a
d
 c

e
ll
s

Time

5 levels

4 levels

3 levels

Figure 17: 2D radial Sod shock tube problem — Evolution of the total number of bad cells as a function of time for the MOOD
schemes using 3, 4 or 5 levels of refinements and N0 = 32. Left: MOOD with u2 on entropy — Right: MOOD with u2 on density.

two MOOD schemes the percentage of limited cells is of the order 3% to 5% apart from the first iterations
for which the percentage can reach up to 14%. As such, for this test we conclude that the MOOD limiting
procedure acts on a small amount of cells for the most part of the simulations. Note that in the last time-step
much less troubled cells are detected. This is due to the fact that typically this time-step is shorter than the
∆t allowed by the CFL condition, since it is cut short to meet exactly the final time for this simulation.

In table 7 we report the final number of cells Nc(t), L2 and L∞ errors and, CPU time needed by the three
schemes under AMR strategy. (Recall that (N0, 1) simulations are uniform grid simulations.) Moreover
we have computed the acceleration (Acc.), that is the ratio between the CPU time needed to solve the Neq

uniform grid simulation, and the current CPU time needed by the AMR simulation. We can note that for the
AMR simulations, the number of cells may be truly different even if the threshold parameters are the same
for given (N0, `). For instance MOOD with u2 on entropy is the scheme which refine the most, CWENO
the less. Recalling that the AMR is driven by the numerical entropy production, it is to be expected that
different spatial discretizations lead to different levels of entropy production and thus to different refinement
pattern. Of course, one could obtain a MOOD simulation with the same number of cells as a CWENO one
by tweaking the AMR threshold parameter. More important is the fact that the errors in both norms are of
the same order for all scheme at equivalent mesh resolution. But the acceleration is about 2, 4 and between
5 and 6 for respectively ` = 3, 4, and 5. This means that the more levels of refinement allowed, the more
efficient the AMR strategy is. The gain in terms of number of cells oscillates between 2 and 10 at final
time, whereas at t = 0, these ratio of cells are of the order 7, 17 and 36 with respect to `. The L1 error norm

(N0, `),Neq Nc(t) L2 error L∞ error CPU Acc. Nc(t) L2 error L∞ error CPU Acc. Nc(t) L2 error L∞ error CPU Acc.

CWENO MOOD u2 on density MOOD u2 on entropy

(128,1),128 16384 2.70E-02 5.85E-02 259.8 — 16384 2.41E-03 6.30E-02 365.8 — 16384 2.42E-03 5.78E-02 364.5 —

(32,3),128 4540 1.66E-02 5.88E-02 91.4 2.8 5251 1.53E-02 6.13E-02 145.3 2.5 4852 1.33E-02 5.81E-02 145.1 2.5

(256,1),256 65536 1.84E-02 5.40E-02 2126.2 — 65536 1.66E-02 5.75E-02 3242.5 — 65536 1.65E-02 5.48E-02 3165.1 —

(32,4),256 10936 6.90E-03 5.41E-02 517.8 4.1 9709 7.41E-03 5.64E-02 830.4 3.9 18910 5.94E-03 5.39E-02 813.2 3.9

(512,1),512 262144 1.21E-02 4.86E-02 17618.2 — 262144 1.09E-02 5.08E-02 27384.7 — 262144 1.08E-02 4.71E-02 26456.8 —

(32,5),512 25054 3.76E-03 4.83E-02 2621.05 6.7 32011 3.18E-03 5.10E-02 5258.2 5.2 51796 3.07E-03 4.62E-02 4744.5 5.6

Table 7: Final number of cells Nc(t), L2 and L∞ errors, CPU time, for the radial Sod problem simulated by several 3rd order schemes
using AMR capability. Results for the CWENO and MOOD with u2 detection or density schemes. N0 is the number of cell in each
direction for the initial grid, ` if the number of refinement level leading to Neq, the number of cell for each direction in an equivalent
fixed grid. Acc. is the acceleration, i.e. the ratio between the CPU time (needed to solve the (N0, 1) uniform grid simulation) and the
current CPU time (ie needed for the AMR (N0, `) simulation).

obtained from different threshold values, see table 5, as a function of the CPU time needed to complete
the simulation are reported in figure 12 with symbols. This figure proves that the AMR simulations are

27

more efficient than uniform ones. This also shows that MOOD simulations are slightly more efficient than
CWENO.

This test has shown that in the case of non smooth problem the numerical scheme supplemented with
MOOD is able to maintain its essential non-oscillatory property at reasonable cost. Compared to classical
CWENO strategy from [SCR15], MOOD approach does not behave as nicely with the AMR framework,
mostly due to the fact that best working parameters for CWENO do not coincide with those for MOOD.
Nevertheless, this issue is classical for any scheme working under AMR. We have observed that the number
of a posteriori detected bad cells which are further recomputed with a first order accurate scheme is of
the order of few percents. The efficiency of MOOD is however shown as the errors as a function of CPU
time is generally lower than CWENO. Because none of the two MOOD schemes based either on entropy
or density variable is clearly superior, we only present results obtained with limiting on density for the
rest of the paper. The radial Sod shock tube has assessed the ability of the method to capture non-aligned
smooth and discontinuous waves in an accurate way by automatically refining the mesh in the vicinity of
those waves. The solution is accurately captured and the AMR strategy with MOOD approach provide an
efficient couple to tackle more advanced problems. For the next cases, we increase the difficulty in order to
observe how the numerical scheme will adapt when robustness is the main criteria and accuracy a secondary
one.

5.4. Double Mach reflection problem
The 2D double Mach reflection problem of a strong shock was proposed in [WC84]. This problem

involves a Mach-10 traveling shock in a perfect gas (γ = 1.4) which further hits a ramp at 30◦ with the
x-axis. The initial conditions in front of and after the shock wave are given by

(ρ, u, v, p)(x, t = 0) =

 1
γ
(8.0, 8.25, 0.0, 116.5), if x′ < 0.1,

(1.0, 0.0, 0.0, 1
γ
), if x′ ≥ 0.1,

(17)

where x′ is the coordinate in a rotated coordinate system. Reflecting wall boundary conditions are pre-
scribed on the bottom and the exact solution of an isolated moving oblique shock wave with Mach number
Ms = 10 is imposed on the upper boundary. Inflow and outflow boundary conditions are set on the left and
the right sides. The computational domain is Ω = [0; 3.5] × [0; 1] and the problem has been rotated so that
the ramp is aligned with the x axis.
The mesh is built starting from a uniform coarse grid employing M = 30 square cells on length [0; 1] lead-
ing to an effective length h = 1/M. Next, the grid is adapted to the initial condition with 4, 5 and 6 levels of
refinement, leading to 4954, 7411 and 12247 squares respectively, see figure 18 for zooms. Consequently
we employ the AMR grids (N0, `) = (30, 4), (30, 5) and (30, 6) which should be equivalent to the fixed
grids made of 840 × 240, 1680 × 480 and 3360 × 960. The threshold value is fixed to 0.05 for ` = 4 and
consequently to 0.025 for ` = 5 and 0.01 for ` = 6 in order to refine approximately on the same features
also in the finer runs. The MOOD detection criteria considers the DMP+u2 criteria on the density variable
only.
The results are presented in color for the density variable at tfinal = 0.2, see figure 19. In the same figure
we present also the final AMR meshes along with the location of the bad cells detected by the MOOD
procedure (red cells). Zoom are proposed on the bottom panels of the same figure to enhance the meshes,
the bad cells and the re-circulation zones. Left panels gather the results for the ` = 5 and right ones for
` = 6 levels of refinement.
We observe that one more level of refinement improves the sharpness of the small scale structures such
as the shocks, the roll-ups and the reflected/refracted waves. The mesh is appropriately refined to cover
the main waves (even if erroneously refined cells can be observed along the boundaries for instance). To
enhance the differences between these three simulations we plot the results on figure 20 to compare ` = 4
with ` = 6 (left panel) and ` = 5 and ` = 6 (right panel). Contrarily to the previous 2D colored view,

28

Figure 18: Double Mach reflection problem — Initial adapted AMR grid (N0, `) starting from a coarse mesh of characteristics length
h = 1/N0 and ` levels of refinement — Left: situation (N0, `) = (30, 4) — Right: situation (N0, `) = (30, 5).

here the data are extruded in 3D and the plots are seen from above with light, enhancing the steep gradients
with shadowing. We can clearly observe that the discontinuities are sharper and some waves are (better or
simply) captured with a finer mesh. Most of the waves are Kelvin-Helmhotz unstable and only the finest
resolution starts to capture those instability. Also some spurious effects seems more present with finer mesh.
This behavior is consistently observed for intermediate times (not shown here).

Next we focus on diagnostics on the number of cells of each level Nk, k = 0, . . . , 4 or 5. On figure 21
we present the histograms for each Nk as a function of the time iteration for the cases ` = 4, ` = 5 and
` = 6. We observe that the majority of cells are on the finest level in all cases, and this number increases
in time as more structures to be refined appear and/or get bigger. The number of cells in all other levels are
slightly increasing during the simulation. Note that the number of time-step is approximately doubled from
one simulation to the next one. On the same figure we also plot with red symbols the number of bad cells
detected by MOOD (red axis on the right of the figures). The number of troubled cell seems to increase
with the number of fine cells.
Next in figure 22 one presents the percent of bad cells at each time-step for the three simulations. The full

view is presented on the left panel while a zoom is proposed on the right one. As expected the percent of
troubled cells detected by MOOD and further updated with a first order scheme, is of the order of 3% and
exceed 7% only for very few first iterations after initialization.
Next in table 8 we gather some diagnostics for these AMR meshes: number of cells (final, average and

(N0, `) Neq unif. Nc(t),Nc,Nc(t = 0) Ratio CPU CPU unif. Ratio

(30,4) 840×240' 2×105 30253, 17982, 4954 7, 11, 41 3.3h (3h) ≈16.4h (16h) 5

(30,5) 1680×480' 8×105 79549, 46310, 7411 10, 17, 109 20h (1d) ≈149h (6d) 7.5

(30,6) 3360×960' 32×105 274989, 136978, 12247 12, 24, 263 187h (8d) ≈1346h (56d) 7

Table 8: Double Mach Reflection problem — Equivalent uniform runs; final, average and initial number of AMR cells (and ratio);
CPU times of the AMR run, expected CPU time of the equivalent uniform run (extrapolated) and ratio.

initial), ratio versus the equivalent uniform number of cells, the CPU time, the CPU time for a uniform
equivalent number of cells, and the ratio of CPU time. Our simulation code demands 3h19mn for ` = 4,
19h55mn for ` = 5 and 187h20mn for ` = 6 on a single CPU. In order to compare the execution times
of AMR and uniform runs, we measured the execution times of the (30, 1), (60, 1) and (120, 1) runs and
extrapolated the data to the Neq grids. The ratio is around 5 for the (30, 4) grid and 7 for the two finer runs,
indicating that AMR simulations is five to seven times faster than uniform simulations. The efficiency of the

29

(N0, `) = (30, 5) (N0, `) = (30, 6)

Figure 19: Double Mach reflection problem at tfinal = 0.2 with AMR — All panels: final colored density (top part) and mesh and
troubled cells (bottom part) — Results for a mesh with ` = 5 (left), and ` = 6 (right) levels of refinements. Top: full view, bottom:
zoom.

Figure 20: Double Mach reflection problem at tfinal = 0.2 with AMR — Density for a mesh with 4 (left-top), 5 (right-top) and 6
(left-right-bottom) levels of refinements.

30

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 500 1000 1500 2000 2500
 200

 300

 400

 500

 600

 700

 800

 900

 1000

N
u
m

b
e
r

o
f
c
e
ll
s
 a

t
e
a
c
h
 r

e
fi
n
e
m

e
n
t
le

v
e
l

N
u
m

b
e
r

o
f
b
a
d
 c

e
ll
s

Iteration #

N0

N1

N2

N3

Bad cells

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 1000 2000 3000 4000 5000
 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

N
u
m

b
e
r

o
f
c
e
ll
s
 a

t
e
a
c
h
 r

e
fi
n
e
m

e
n
t
le

v
e
l

N
u
m

b
e
r

o
f
b
a
d
 c

e
ll
s

Iteration #

N0

N1

N2

N3

N4

Bad cells

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 2000 4000 6000 8000 10000
 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

N
u
m

b
e
r

o
f
c
e
ll
s
 a

t
e
a
c
h
 r

e
fi
n
e
m

e
n
t
le

v
e
l

N
u
m

b
e
r

o
f
b
a
d
 c

e
ll
s

Iteration #

N0

N1

N2

N3

N4

N5

Bad cells

(N0, `) = (30, 4) (N0, `) = (30, 5) (N0, `) = (30, 6)

Figure 21: Double Mach reflection problem at tfinal = 0.2 with AMR — Results for a mesh with 4 (left), 5 (middle) or 6 (right) levels
of refinements — Colored histograms for the number of cells of each level (Nk , k = 0, · · · 4) and number of bad cells (red symbols) as
a function of time iteration

 0

 2

 4

 6

 8

 10

 12

 0 0.05 0.1 0.15 0.2

%
 o

f
b
a
d
 c

e
ll
s

Time

6 levels
5 levels
4 levels

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0 0.005 0.01 0.015 0.02 0.025

%
 o

f
b
a
d
 c

e
ll
s

Time

6 levels
5 levels
4 levels

Figure 22: Double Mach reflection problem at tfinal = 0.2 with AMR — Results for a mesh with 4 (left), 5 (middle) or 6 (right) levels
of refinements — Percent of bad cells detected by MOOD loop as a function of iteration (left) and time (right). Left: full view —
Right: zoom on the first 700 iterations.

31

Figure 23: Forward Facing Step problem — Refined meshes with ` = 3 (bottom part of each panel) and ` = 5 (top parts) levels of
refinement — Initial, intermediate (t ' 1.2) and final refined meshes.

AMR scheme is linked to its ability to perform the computation with 10 to 25 times less cells on average.
The ratios of AMR cells versus Neq keeps increasing when finer and finer levels are allowed because the
main waves in this problem are well separated.

This difficult problem exhibits strong shock waves and smooth flow features. The detection procedure
properly identifies the discontinuities associated with the shock waves. However, the a posteriori detec-
tion procedure is able to ignore regions of complex but nonetheless smooth vortex-type flow region, thus
maintaining the maximum accuracy of the scheme. Moreover the AMR procedure keeps the finest allowed
mesh in this zone and in the vicinity of strong waves, leading to the maximal possible accuracy. Note that
falsely detected cells are sometimes associated to falsely refined regions. While this does misuse computer
resources, it does not seem to pollute the numerical solution.

5.5. Forward facing step

The forward facing step (FFS) problem is considered next, see [WC84]. This problem describes a Mach
3 wind tunnel with a step filled with a uniform gas with density ρ = γ, pressure p = 1, velocity components
u = 3, v = 0 and γ = 1.4. The computational domain is fixed to Ω = [0; 3]× [0; 1]\[0.6; 3]× [0; 0.2]. Reflec-
tive wall boundary conditions are applied on the upper/lower boundaries of the domain, whereas inflow and
outflow boundary conditions are imposed at the entrance and the exit, respectively on the left and right parts
of the computational domain. The final time is set to tfinal = 4. As reported in the literature, the solution of
this problem involves shock waves interacting with themselves after bouncing on the boundaries. No exact
solution exists nowadays, but reference ones can be found in the literature.
The initial coarse mesh is uniform with characteristics length h = 1/20 in both directions. Next it is refined
up to the finest level close to the corner of the domain from where the first fluid structures will emanate. We
employ ` = 3 or 5 levels of refinement leading to an equivalent mesh made of about h′ = h

2` , that is to say
h′ = h

8 or h′ = h
32 , see figure 23-left panels. In this section, for comparison purposes we plot the case ` = 5

on the top part of each panel and the case ` = 3 is symetrized with respect to the x axis, therefore being
plotted on the bottom part of each panel, see figure 23. The threshold parameter is fixed to S ref = 0.05 and
0.0125 for the two refinements respectively.
In figure 23 are plotted the initial, intermediate (t ' 1.2) and final refined meshes. As expected the refine-

ment zones follow the main waves and structures and the ` = 5 level simulation is a lot sharper in capturing
those dynamical elements of the flow. In figure 24 we display the results for three times t = 0.4, t = 1.2
and final time t = 4.0 from top to bottom. Left panels present the density variable, the middle ones the
bad cell MOOD marker, and the right ones the density and mesh in a 3D elevation fashion to enhance the
location and the complex structures of the flow, and the fact that the mesh is refined in appropriate locations.
From this figure we can clearly see several smooth zones separated by the shock waves. The refinement
regions are properly covering the waves and adapt to their motion in time. As expected, the great majority

32

Figure 24: Forward Facing Step problem — Results for ` = 3 (bottom of each panel) and ` = 5 (top of each panel) levels of refinement
— From top to bottom: data at time t = 0.4, t = 1.2 and final time t = 4.0 — Left: density variable — Middle: bad cell MOOD marker
— Right: 3D elevation of density and mesh.

of the computational domain is computed with the unlimited 3rd order accurate scheme (blue cells in mid-
dle panel), apart from the main and strongest shock waves, where the troubled cells are mostly located (red
cells). The fact that MOOD is not decrementing most of the cells in the secondary apparently discontinuous
waves means that, at this time, the numerical scheme has already deposited enough numerical dissipation
to produce an acceptable solution even if 3rd order accurate unlimited polynomial reconstructions are em-
ployed.

Following the previous test case, we plot the number of cells of each level Nk, k = 0, . . . , 2 or 4. On
figure 25, left and middle panels, we present the histograms for each Nk as a function of the time iteration
for the case ` = 3 and ` = 5. We observe that the majority of cells are on the finest level in both cases,
and this number stagnates in time as soon as the main structures are in place, approximately after 1/5th of
the total simulation time. The number of cells in all other levels follows the same behavior. As expected
the number of time-step is approximately multiplied by a factor 4 from one simulation to the other, from
12685 to 51646 iterations due to the two extra levels of refinement when ` = 5. With red symbols one
represents the evolution of the number of bad cells detected by MOOD (red axis on the right of the figures).
The number of troubled cell seems to follow the evolution of the number of fine cells. On the right panel
we present the percent of bad cells at each time-step for both simulations which is of the order of 2% and

33

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 2000 4000 6000 8000 10000 12000
 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

N
u
m

b
e
r

o
f
c
e
ll
s
 a

t
e
a
c
h
 r

e
fi
n
e
m

e
n
t
le

v
e
l

N
u
m

b
e
r

o
f
b
a
d
 c

e
ll
s

Iteration #

N0
N1
N2

Bad cells

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 10000 20000 30000 40000 50000
 0

 100

 200

 300

 400

 500

 600

 700

N
u
m

b
e
r

o
f
c
e
ll
s
 a

t
e
a
c
h
 r

e
fi
n
e
m

e
n
t
le

v
e
l

N
u
m

b
e
r

o
f
b
a
d
 c

e
ll
s

Iteration #

N0
N1
N2
N3
N4

Bad cells

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 0.5 1 1.5 2 2.5 3 3.5 4

%
 o

f
b
a
d
 c

e
ll
s

Time

5 levels
3 levels

(N0, `) = (20, 3) (N0, `) = (20, 5)

Figure 25: Forward Facing Step problem — Results for a mesh with 3 (left) or 5 (middle) levels of refinements — Left-middle:
Colored histograms for the number of cells of each level (Nk , k = 0, · · · 2 or 4) and number of bad cells (red symbols) as a function of
time iteration — Right: percent of bad cells detected by MOOD loop at each time-step.

never exceeds 7%. As expected the percent of troubled cells (detected by MOOD and recomputed) is very
low. This was already observable on figure 24 on the middle panels.

(N0, `) Neq unif. Nc(t),Nc,Nc(t = ∆t) Ratio CPU CPU unif. Ratio

(20,3) 16128 5977, 5694, 1225 2.7, 2.8, 13 2.8h 21.1h (1d) 7.5

(20,4) 64512 15208, 14895, 1465 4.2, 4.3, 44 17h(3/4d) 373h (2w) 22

(20,5) 258048 40588, 39523, 1909 6.4, 6.6, 135 130h(5d) ≈6591h(9m) 51

true factor:17.67

(20,3) 16128 5977, 5694, 1225 2.7, 2.8, 13 2.8h 21.1h (1d) 7.5

(20,4) 64512 15208, 14895, 1465 4.2, 4.3, 44 17h(3/4d) ≈169h (1w) 9.9

(20,5) 258048 40588, 39523, 1909 6.4, 6.6, 135 130h(5d) ≈1350h (1.5m) 10.4

theor.factor:8

Table 9: Forward Facing Step problem — Equivalent uniform runs; final, average and initial number of AMR cells (and ratio); CPU
times of the AMR run, expected CPU time of the equivalent uniform run (extrapolated) and ratio (h: hour, d: day, w:week, m:month).
Top part: CPU uniform time extrapolated with the true observed factor 17.67 from the first two uniform runs. Bottom part: CPU
uniform time extrapolated with the theoretical factor 8.

For this test our simulation code demands about 129h36mn (about 5 days) for ` = 5 and 40000 cells,
and about 2h49mn for ` = 3 and 6000 cells. In table 9 are reported some timing statistics about these
runs. We point out that the initial data for this test is constant in space and thus the simple gradient-based
indicator is not able to refine the mesh at time t = 0. All AMR runs therefore start with a uniform mesh of
1009 cells and the initial mesh adaption is entirely done during the first time-step. The data reported for the
initial mesh size in the table and the mesh depicted in the left panel of Figure 23 refer thus to the mesh at
the end of the first time-step. The data in this table show that the ratio of mesh sizes is of the order 3 to 6.5
and the acceleration is of the order 10 of the AMR simulations compared to uniform ones. The simulation
times with the uniform mesh should scale with a factor 8 (bottom part of the table), leading to ratio of the
order 7 to 10. However, for unclear reasons, the observed uniform mesh simulation times are larger, see the
top part of the table, and seem to scale with a factor 17.67, leading to ratio up to 50. In both cases, however,
the AMR simulations spare computer resources.

These results assess that the AMR simulation tool presented in this paper is well suited to capture
physical flow fields associating interacting shock waves as well as fine re-circulation structures. The value
of the threshold parameter could be possibly fine-tuned to obtain even better results. However, thanks to

34

Figure 26: Shock-bubble interaction problem — Zooms on the initial refined meshes when ` = 4 (left) or 5 (right) levels of refinement.

the fail-safe MOOD approach, this parameter does not play a fundamental role to ensure the robustness.
As a consequence, for this test, the AMR technology couples well with the a posteriori MOOD checking
maintaining the code both accurate where possible, and, robust otherwise.

5.6. Shock bubble interaction
The last test of this test suite is the classical shock-bubble interaction problem. One considers an initial

datum with a right-moving shock that impinges on a standing bubble of gas at low pressure, see [CT09,
SCR15]. The computational domain is set to Ω = [−0.1, 1.6]×[0.5, 0.5]. Three distinct areas are considered:
the left region (A) for x < 0, the bubble (B) of center (0.3, 0.0) and radius 0.2 and the right region (C) of all
points with x > 0 that are outside the bubble. The initial data are

ρ =
11
3
, u = 2.7136021011998722, v = 0.0, p = 10.0 if (x, y) ∈ A,

ρ = 0.1, u = v = 0.0, p = 1.0 if (x, y) ∈ B,

ρ = 1.0, u = v = 0.0, p = 1.0 if (x, y) ∈ C.

Boundary conditions are of Dirichlet type on the left, free-flow on the right, reflecting on y = ±0.5. The
symmetry in the y variable permits a half domain computation (with y > 0) considering symmetry boundary
conditions at y = 0. The final time is tfinal = 0.4.
Accordingly to the previous tests, we start with a coarse grid made with squares of characteristics length h =

1/N0 with N0 = 30. This mesh is further adapted to the initial condition with ` > 0 levels of refinements,
see figure 26 for the case ` = 4, 5. The threshold parameter is fixed to 0.03 for ` = 5 and 0.1 for ` = 4.

We display in figure 27 the results for the case ` = 5 at three times t = 0.2, 0.3 and final time 0.4 from
top to bottom. Left panels present the density in color, the norm of velocity gradient (reflected to y = 0 on
gray scale) and the bad cells detected by MOOD (in red color, other gray cells are valid ones). On right
panels are plotted the cell refinement levels (top in colors) and the adapted mesh (bottom). Note that in
the right panel the same type of information is displayed but in different formats. For these figures we can
observe that the deformation of the bubble agrees well with already published results. Moreover the numer-
ical solution accuracy competes with already obtained solution in [SCR15] for instance. The refinement
follows the different wave structures (shocks, vortexes, interacting waves, etc) as can be seen on the gradi-
ent of the velocity. The results show that the numerical method is able to capture unstable vortex structures
and diffracting shock waves. Still the AMR technology is able to keep derefined some of the internal zones
between those waves (green and light blue cells in the cell level plot). Moreover, we can observe that the
MOOD procedure, which is dedicated to maintain the non-oscillatory behavior of the numerical solution,
marks cells along the main up-front discontinuous shock wave. Apart from the main shock region, that is in

35

the zone after the shock, the MOOD procedure does not require much limiting. Nonetheless, the procedure
mostly marks cells along secondary waves. Consequently, most of the cells in the computational domain
are effectively calculated with the unlimited third-order scheme, therefore without any extra-cost brought
by the limiting apart from the MOOD detection. The refinement and detection strategies seem to perform
well and the sharpness of small scale structures can be captured, maintained and released if they were to
disappear. The final number of cells reaches about 125000 cells (starting at 12000) for ` = 5.
For comparison purposes we propose in figure 28 the same results but with one less level of refinement:
` = 4. The same general conclusions as for the ` = 5 case apply. However it is clear that the sharpness
of the fluid structures is less pronounced. The final number of cells reaches about 33000 cells (starting at
7000) for ` = 4.
The two final solutions are plotted side-by-side on figure 29 where ` = 4 (left) and ` = 5 (right) results are

plotted as: 3D elevation colored density seen from above (top part of the panels) and the mesh colored by
the density (bottom part). This figure clearly enhances the differences between the two simulations in terms
of the number of small scale structures captured when adding one level of refinement.
Next on figure 30 we plot the statistics on the number of cells for each refinement level (left for ` = 4 and

right for ` = 5) and the number of bad cells during the simulation (right panel). First of all, the number of
iteration is respectively 4500 and 9000. Consistently with the previous tests, the number of cells for the two
finer levels increases. The finest level represents the majority of cells. The number of bad cells after the
initial hundreds of iterations is about 350 and 1100 respectively. The ratio between the number of bad cells
and the total number of cells is of the order of 3% after t = 0.025, and about 10% before. In other words,
on average, only 4% − 5% of the cells demand to be recomputed through the MOOD loop, leading to an
efficient way to limit and stabilize numerical schemes.
As expected, the final accuracy is linked to the number of refinement levels ` for fixed initial uniform mesh

(driven by N0) before refinement. In summary the h = 1/N0 parameter drives the coarsest cell length, while
h = 1/(N02`) is the finest one. The threshold parameter value controls the spreading of the refined zones.

In table 10 we gather the CPU time needed to perform the simulations. Note that, for these cases, the

(N0, `) Neq unif. Nc(t),Nc,Nc(t = 0) Ratio CPU CPU unif. Ratio

(30,4) 408×240' 98000 33414, 20000, 7080 2.9, 4.9, 13.8 6.5h ≈29.4h (1d) 4.5

(30,5) 816×480' 392000 124776, 80000, 11859 3.1, 4.9, 33.1 56h(2.5d) ≈290h (12d) 5.2

Table 10: Shock-bubble interaction problem — Equivalent uniform runs; final, average and initial number of AMR cells (and ratio);
CPU times of the AMR run, expected CPU time of the equivalent uniform run (extrapolated) and ratio (h: hour, d: day, w:week,
m:month).

equivalent meshes would be made of (1.7×N0×2`−1)× (N0×2`−1) cells, which is 97920 cells for ` = 4 and
391680 cells for ` = 5 and N0 = 30. In order to compare the execution times of AMR and uniform runs, we
measured the execution times of the (30, 1), (60, 1) and (120, 1) runs and extrapolated the data to the Neq

grids. The ratio is about 4 − 5 for both runs, indicating that AMR simulations run 4 to 5 times faster than
the equivalent uniform simulation. The efficiency of the AMR scheme is linked to its ability to perform the
computation with 5 times less cells on average. Note also that the number of cells in the AMR simulations
is very variable, since the AMR code employs as few as 1/14th (resp. 1/30th) of cells at initial time, when
the waves are very localized.

From this test we have observed that the numerical method is robust, can nonetheless maintain a high
accuracy, capture small-scale flow structures using the AMR technology. The a posteriori stabilization
technology which allows for an almost optimal use of the 3rd order accurate scheme away from steep
gradients works fine within the AMR framework as the number of bad cells remains of the order of few
percents, and can preserve non-oscillatory numerical solutions.

36

Figure 27: Shock-bubble interaction problem — Mesh with ` = 5 refinement levels — Top-bottom: time t = 0.2, 0.3 and final 0.4
— Left panels: Density (top with colors), norm of velocity gradients (bottom with gray) and bad cells detected by MOOD (bottom in
red) — Right panels: Cell levels (top with colors), adapted mesh (bottom)

37

Figure 28: Shock-bubble interaction problem — Mesh with ` = 4 refinement levels — Top-bottom: time t = 0.2, 0.3 and final 0.4
— Left panels: Density (top with colors), norm of velocity gradients (bottom with gray) and bad cells detected by MOOD (bottom in
red) — Right panels: Cell levels (top with colors), adapted mesh (bottom)

38

Figure 29: Shock-bubble interaction problem at final time — Comparison ` = 4 (left) and ` = 5 (right). 3D elevation colored density
seen from above (top part of the panels) and the mesh colored by the density (bottom part).

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500
 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

N
u
m

b
e
r

o
f
c
e
ll
s
 a

t
e
a
c
h
 r

e
fi
n
e
m

e
n
t
le

v
e
l

N
u
m

b
e
r

o
f
b
a
d
 c

e
ll
s

Iteration #

N0
N1
N2
N3

Bad cells

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000
 0

 500

 1000

 1500

 2000

 2500

 3000

N
u
m

b
e
r

o
f
c
e
ll
s
 a

t
e
a
c
h
 r

e
fi
n
e
m

e
n
t
le

v
e
l

N
u
m

b
e
r

o
f
b
a
d
 c

e
ll
s

Iteration #

N0
N1
N2
N3
N4

Bad cells

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

%
 o

f
b
a
d
 c

e
ll
s

Time

4 levels
5 levels

(N0, `) = (30, 4) (N0, `) = (30, 5)

Figure 30: Shock-bubble interaction problem — Results for a mesh with 4 (left) or 5 (middle) levels of refinements — Left-middle:
Colored histograms for the number of cells of each level (Nk , k = 0, · · · 2 or 4) and number of bad cells (red symbols) as a function of
time iteration — Right: percent of bad cells detected by MOOD loop.

39

6. Conclusion and Perspectives

This paper has presented a third-order finite volume (FV) numerical scheme dedicated to solve the Euler
system of conservation laws in two dimensions under and Adaptive Mesh Refinement (AMR) framework
for unstructured quadrangular grids. The numerical method is composed of a Runge-Kutta discretization in
time coupled with a high resolution finite volume scheme using polynomial reconstructions of conservative
variables. The AMR technology employs the numerical entropy production criterion to determine when to
refine or coarsen the mesh. Previous to this work, this scheme was implemented within a 2D AMR frame-
work which employed CWENO type of reconstruction procedure.
Contrarily, in this work the novel a posteriori Multi-dimensional Optimal Order Detection (MOOD) ap-
proach is applied to damp the spurious numerical oscillations that may occur. MOOD is an a posteriori
solution to the problem of limiting spurious numerical oscillations that inexorably occur with high resolu-
tion schemes. In our case high accuracy is obtained through Runge-Kutta discretization in time and high
order accurate polynomial reconstructions in space. Each candidate solution at tn+1 is computed using third
order accurate polynomial reconstructions without any limiting. Next, this candidate solution at tn+1 is
checked against user-specified detection criteria which determine whether a numerical cell centered datum
is admissible or not. If a cell (from the candidate solution) is detected as problematic, it is re-computed
starting again at tn, decrementing the polynomial degree of the reconstructions in this cell and, possibly in
the neighbors. The reconstructions are either P2 or P0. Note that other reconstructions in-between P2 and
P0 could be tried, but in this work, we focused on the simplest possible choice.
This iterative procedure (MOOD loop) stops either if all cells have an admissible discrete numerical solu-
tion, or, if the polynomial degree has reached zero. Zero corresponds to updating the cell with a first-order
accurate Godunov scheme, which is considered as the more robust scheme in our context, the solution of
which is always considered as acceptable.
Appropriate detection criteria are derived from the underlying physics (positivity of density and pressure),
and, from desired numerical properties (Discrete Maximum Principe relaxed by the so-called u2 criteria
to allow the development of smooth extrema, check of invalid computer datum (NaN, Inf), etc.). The es-
sentially non oscillatory behavior of the solution is observed when these numerical admissible detection
criteria are employed for all the tests presented in this work.
A large list of test cases have been simulated. We have systematically observed that the AMR technology
couples well with this a posteriori limiting. In fact the optimal accuracy is reached when the solution is
smooth, and an essentially non-oscillatory behavior is observed in presence of shock waves and steep gra-
dients. The refinement and coarsening occur where and when expected in each test, and few falsely refined
regions are generated. Obviously the CPU time of AMR simulations is genuinely smaller than the cost of
equivalent uniform mesh simulations, the acceleration is between 4 to 20 for an equivalent accuracy. This
allows us to simulate refined mesh simulations even on serial computer in a rather acceptable duration.
Accurate results are observed on these complex flows, and, as reported in this paper, only few percents of
troubled cells demand to be recomputed. As a consequence the extra-cost brought by the MOOD loop is, if
not negligible, truly minor.
In the future we plan to investigate the massively parallel version (under MPI) of this numerical method and
its extension to 3D. In theory there is no limitation in the MOOD approach to deal with higher-order poly-
nomial reconstructions, larger than 3rd order accurate. Therefore we plan to extend our scheme to higher
resolution capabilities by improving the Runge-Kutta time discretization and allowing a larger stencil to
reconstruct polynomials with higher degrees.
At last the AMR technology based on numerical entropy production threshold has been designed as an a
posteriori technology in [PS11, SCR15], therefore, its association with an a posteriori limiting procedure
seems fairly natural and proved effective.

40

Acknowledgments

The material of this research has been partly built during the blue SHARK FV workshops which took
place on May 2015, 2016 in Ofir, Portugal http://www.math.univ-toulouse.fr/SHARK-FV/. The
authors would like to thank M. Dumbser, S. Clain for fruitful discussions, and W. Boscheri for providing
the reference solution of the radial shock tube. This work was supported by “National Group for Scientific
Computation (GNCS-INDAM)”. We also thank the partial support of the exchange program Partenariat Hu-
bert Curien (PHC) Franco-Italian “Galileo” (project G14-19 #32272UL) under the supervision of Giacomo
Dimarco (University of Ferrara, Italy), and Jacek Narksi (University of Toulouse, France).

References

[ADKN16] Martin Alkmper, Andreas Dedner, Robert Klfkorn, and Martin Nolte, The DUNE-ALUGrid module., Arch. Numer.
Software 4 (2016), no. 1, 1–28.

[BBD+08] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, M. Ohlberger, and O. Sander, A Generic Grid Interface for
Parallel and Adaptive Scientific Computing. Part I: Abstract Framework, Computing 82 (2008), no. 2–3, 103–119.

[BC89] M.J. Berger and P. Colella, Local adaptive mesh refinement for shock hydrodynamics, Journal of Computational Physics
82 (1989), no. 1, 64 – 84.

[BF90] T.J. Barth and P.O. Frederickson, Higher order solution of the euler equations on unstructured grids using quadratic
reconstruction., 28th Aerospace Sciences Meeting (January 1990), AIAA paper no. 90–0013.

[BLD15] Walter Boscheri, Raphal Loubère, and Michael Dumbser, Direct Arbitrary-Lagrangian-Eulerian ADER-MOOD finite
volume schemes for multidimensional hyperbolic conservation laws, Journal of Computational Physics 292 (2015), 56 –
87.

[BO84] M. J. Berger and J. Oliger, Adaptive mesh refinement for hyperbolic partial differ- ential equations., J. Comput. Phys. 53
(1984), 484–512.

[CDL11a] S. Clain, S. Diot, and R. Loubère, A high-order finite volume method for systems of conservation lawsmulti-dimensional
optimal order detection (MOOD), Journal of Computational Physics 230 (2011), no. 10, 4028 – 4050.

[CDL11b] S. Clain, S. Diot, and R. Loubère, Multi-dimensional optimal order detection (mood) a very high-order finite volume
scheme for conservation laws on unstructured meshes, FVCA 6, International Symposium, Prague, June 6-10 (Fort Fürst
Halama Herbin Hubert (Eds.), ed.), Series: Springer Proceedings in Mathematics, vol. 4, 2011, 1st Edition. XVII, 1065
p. 106 illus. in color.

[CM14] S. Clain and G. Machado, A very high-order finite volume method for the one-dimensional time-dependent convection-
diffusion problem, Computers and Mathematics with Applications 68 (2014), no. 10, 1292–1311.

[CMNP13] Stéphane Clain, Gaspar J Machado, JM Nóbrega, and RMS Pereira, A sixth-order finite volume method for multidomain
convection–diffusion problem with discontinuous coefficients, Computer Methods in Applied Mechanics and Engineering
267 (2013), 43–64.

[CS15] I. Cravero and M. Semplice, On the accuracy of weno and cweno reconstructions of third order on nonuniform meshes,
Journal of Scientific Computing (2015), 1–28.

[CT09] M. Cada and M. Torrilhon, Compact third-order limiter functions for finite volume methods, J. Comput. Phys. 228 (2009),
no. 11, 4118–4145.

[DCL12] S. Diot, S. Clain, and R. Loubère, Improved detection criteria for the multi-dimensional optimal order detection (MOOD)
on unstructured meshes with very high-order polynomials, Computers and Fluids 64 (2012), 43 – 63.

[DK07] M. Dumbser and M. Käser, Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear
hyperbolic systems, Journal of Computational Physics 221 (2007), 693–723.

[DKTT07a] M. Dumbser, M. Käser, V.A Titarev, and E.F. Toro, Quadrature-free non-oscillatory finite volume schemes on unstruc-
tured meshes for nonlinear hyperbolic systems, Journal of Computational Physics 226 (2007), 204–243.

[DKTT07b] M. Dumbser, M. Käser, V.A. Titarev, and E.F. Toro, Quadrature-free non-oscillatory finite volume schemes on unstruc-
tured meshes for nonlinear hyperbolic systems, Journal of Computational Physics 226 (2007), 204 – 243.

[DLC13] S. Diot, R. Loubère, and S. Clain, The MOOD method in the three-dimensional case: Very-high-order finite volume
method for hyperbolic systems, International Journal of Numerical Methods in Fluids 73 (2013), 362–392.

[GS98] S. Gottlieb and C.W. Shu, Total variation diminishing Runge-Kutta schemes, Mathematics of Computation 67 (1998),
73–85.

[HAC74] C.W. Hirt, A.A. Amsden, and J.L. Cook, An arbitrary Lagrangian-Eulerian computing method for all flow speeds, J.
Comput. Phys. 14 (1974), no. 3, 227–253, doi:10.1016/0021-9991(74)90051-5.

[HS99] C. Hu and C.W. Shu, Weighted essentially non-oscillatory schemes on triangular meshes, Journal of Computational
Physics 150 (1999), 97–127.

[HST10] Thomas J. R. Hughes, Guglielmo Scovazzi, and Tayfun E. Tezduyar, Stabilized methods for compressible flows, Journal
of Scientific Computing 43 (2010), no. 3, 343–368.

[JS96] G.-S. Jiang and C.W. Shu, Efficient implementation of weighted ENO schemes, Journal of Computational Physics 126
(1996), 202–228.

41

[KI05] M. Käser and A. Iske, ADER schemes on adaptive triangular meshes for scalar conservation laws, Journal of Computa-
tional Physics 205 (2005), 486–508.

[Kol10] V. P. Kolgan, Application of the principle of minimizing the derivative to the construction of finite-difference schemes for
computing discontinuous solution of gas dynamics, J. Comput. Phys. (2010), doi: 10.1016/j.jcp.2010.12.033.

[LDD14] R. Loubère, M. Dumbser, and S. Diot, A new family of high order unstructured mood and ader finite volume schemes
for multidimensional systems of hyperbolic conservation laws, Communication in Computational Physics 16 (2014),
718–763.

[LMS+10] Raphaël Loubère, Pierre-Henri Maire, Mikhail Yu. Shashkov, Jérôme Breil, and Stéphane Galera, Reale: A reconnection-
based arbitrary-lagrangian-eulerian method, J. Comput. Physics 229 (2010), no. 12, 4724–4761.

[Lou13] R. Loubère, Contribution to lagrangian and arbitrary-lagrangian-eulerian numerical schemes, Ph.D. thesis, University
of Toulouse, France, 2013, Habilitation à diriger des recherches.

[LW60] P.D. Lax and B. Wendroff, Systems of conservation laws, Communications in Pure and Applied Mathematics 13 (1960),
217–237.

[LW64] P. Lax and B. Wendroff, Difference schemes for hyperbolic equations with high order of accuracy, Comm. Pure Appl.
Math. XVII (1964), 381–398.

[Mai09] P.-H. Maire, A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured
mesh, J. Comput. Phys. 228 (2009), no. 7, 2391–2425.

[MB05] S. M. Murman M. Berger, M. J. Aftosmis, Analysis of slope limiters on irregular grids, Tech. Report NAS-05-007, NAS
Technical Report, 2005.

[NR50] J. Von Neumann and R. D. Richtmyer, A method for the numerical calculation of hydrodynamic shocks, Journal of
Applied Physics 21 (1950), 232–237.

[NRCL16] Xesùs Nogueira, Luis Ramı́rez, Stéphane Clain, and Raphaël Loubère, High accurate sph method with multidimensional
optimal order detection, Computer Methods in Applied Mechanics and Engineering 310 (2016), 134–155.

[OGA02] C. Olliver-Gooch and M. Van Altena, A high-order–accurate unstructured mesh finite–volume scheme for the advection–
diffusion equation., Journal of Computational Physics 181 (2002), 729 – 752.

[Pin11] Stéphane Del Pino, Metric-based mesh adaptation for 2D Lagrangian compressible flows, J. Comput. Phys. 230 (2011),
no. 5, 1793–1821.

[PS11] G. Puppo and M. Semplice, Numerical entropy and adaptivity for finite volume schemes, Commun. Comput. Phys. 10
(2011), no. 5, 1132–1160.

[Pup04] G. Puppo, Numerical entropy production for central schemes, SIAM J. Sci. Comput. 25 (2003/04), no. 4, 1382–1415
(electronic).

[SC14] M. Semplice and A. Coco, dune-fv software, 2014, http://www.dipmatematica.unito.it/do/docenti.pl/
Alias?matteo.semplice#ricerca.

[SCR15] M. Semplice, A. Coco, and G. Russo, Adaptive mesh refinement for hyperbolic systems based on third-order compact
weno reconstruction, Journal of Scientific Computing 66 (2015), no. 2, 692–724.

[Shu97] C.W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic Conservation
Laws, NASA/CR-97-206253 ICASE Report No.97-65 (1997).

[S.K59] S.K.Godunov, A finite difference method for the computation of discontinuous solutions of the equations of fluid dynam-
ics, Mat. Sbornik 47 (1959), 357–393.

[Tor99] E.F. Toro, Riemann solvers and numerical methods for fluid dynamics, second ed., Springer, 1999.
[TT03] H.-Z. Tang and T. Tang, Adaptive mesh methods for one- and two-dimensional hyperbolic conservation laws, SIAM J.

Numer. Anal. 41 (2003), 487–515.
[van74] B. van Leer, Towards the ultimate conservative difference scheme II: Monotonicity and conservation combined in a

second order scheme, Journal of Computational Physics 14 (1974), 361–370.
[van79] , Towards the ultimate conservative difference scheme V: A second order sequel to Godunov’s method, Journal

of Computational Physics 32 (1979), 101–136.
[VC13] V.Desveaux and C.Berthon, An entropic mood scheme for the euler equations, International Journal of Finite Volumes

(2013).
[V.D13] V.Desveaux, Contribution à l’approximation numérique des systèmes hyperboliques, Ph.D. thesis, Université de Nantes,

2013.
[Ven95] V. Venkatakrishnan, Convergence to steady state solutions of the Euler equations on unstructured grids with limiters, J.

Comput. Phys. 118 (1995), no. 1, 120 – 130.
[WC84] P. Woodward and P. Colella, The numerical simulation of two-dimensional fluid flow with strong shocks, Journal of

Computational Physics 54 (1984), 115–173.
[ZDLS14] O. Zanotti, M. Dumbser, R. Loubère, and S.Diot, A posteriori subcell limiting for discontinuous galerkin finite element

method for hyperbolic system of conservation laws, J. Comput. Phys. 278 (2014), 47–75.
[ZFDH15a] Olindo Zanotti, Francesco Fambri, Michael Dumbser, and Arturo Hidalgo, Space-time adaptive ADER discontinuous

Galerkin finite element schemes with a posteriori sub-cell finite volume limiting, Computer and Fluids 118 (2015), 204–
224.

[ZFDH15b] , Space-time adaptive ADER discontinuous galerkin finite element schemes with a posteriori sub-cell finite vol-
ume limiting, Computers and Fluids 118 (2015), 204 – 224.

42

http://www.dipmatematica.unito.it/do/docenti.pl/Alias?matteo.semplice#ricerca
http://www.dipmatematica.unito.it/do/docenti.pl/Alias?matteo.semplice#ricerca

	Introduction
	Hydrodynamics system of conservation laws
	High accurate finite volume scheme for the Euler system of PDEs
	Polynomial reconstruction operator
	Finite volume spatial discretization
	Time discretization
	Formal accuracy and robustness
	Adaptive Mesh Refinement (AMR)
	Summary

	a posteriori limited Finite Volume scheme
	MOOD paradigm as an a posteriori stabilization technique
	Physical Admissible Detection criteria (PAD)
	Numerical Admissible Detection criteria (NAD)
	Decrementing
	Iterative MOOD loop

	Numerical experiments
	Initialization
	Isentropic vortex in motion
	Fixed grids
	AMR grids

	Radial Sod shock tube
	Uniform grids
	AMR grids

	Double Mach reflection problem
	Forward facing step
	Shock bubble interaction

	Conclusion and Perspectives

