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REFINED UNIVERSAL LAWS FOR HULL VOLUMES AND PERIMETERS IN LARGE PLANAR MAPS

We consider ensembles of planar maps with two marked vertices at distance k from each other and look at the closed line separating these vertices and lying at distance d from the first one (d < k). This line divides the map into two components, the hull at distance d which corresponds to the part of the map lying on the same side as the first vertex and its complementary. The number of faces within the hull is called the hull volume and the length of the separating line the hull perimeter. We study the statistics of the hull volume and perimeter for arbitrary d and k in the limit of infinitely large planar quadrangulations, triangulations and Eulerian triangulations. We consider more precisely situations where both d and k become large with the ratio d/k remaining finite. For infinitely large maps, two regimes may be encountered: either the hull has a finite volume and its complementary is infinitely large, or the hull itself has an infinite volume and its complementary is of finite size. We compute the probability for the map to be in either regime as a function of d/k as well as a number of universal statistical laws for the hull perimeter and volume when maps are conditioned to be in one regime or the other.

.

2 In practice, the line may be chosen in case (ii) so as to visit only vertices at distance d, and in case (i) and (iii) so as to visit alternately vertices at distance d and d -1.

Introduction

The study of random planar maps, which are connected graphs embedded on the sphere, has been for more than fifty years the subject of some intense activity among combinatorialists and probabilists, as well as among physicists in various domains. Very recently, some special attention was paid to statistical properties of the hull in random planar maps, a problem which may be stated as follows: consider an ensemble of planar maps having two marked vertices at graph distance k from each other. For any non-negative d strictly less than k, we may find a closed line "at distance d" (i.e. made of edges connecting vertices at distance d or so) from the first vertex and separating the two marked vertices from each other. Several prescriptions may be adopted for a univocal definition of this separating line but they all eventually give rise to similar statistical properties. The separating line divides de facto the map into two connected components, each containing one of the marked vertices. The hull at distance d corresponds to the part of the map lying on the same side as the first vertex (i.e. that from which distances are measured). The geometrical characteristics of this hull for arbitrary d and k provide random variables whose statistics may be studied by various techniques. In particular, the statistics of the volume of the hull. which is its number of faces, and of the hull perimeter, which is the length of the separating line, have been the subject of several investigations [START_REF] Krikun | Uniform infinite planar triangulation and related time-reversed critical branching process[END_REF][START_REF] Krikun | Local structure of random quadrangulations[END_REF][START_REF] Curien | The hull process of the brownian plane[END_REF][START_REF] Curien | Scaling limits for the peeling process on random maps[END_REF][START_REF] Guitter | Some results on the statistics of hull perimeters in large planar triangulations and quadrangulations[END_REF][START_REF] Ménard | Volumes in the uniform infinite planar triangulation: from skeletons to generating functions[END_REF][START_REF] Guitter | Eulerian triangulations: two-point function and hull perimeter statistics[END_REF].

In a recent paper [START_REF] Guitter | Some results on the statistics of hull perimeters in large planar triangulations and quadrangulations[END_REF], we presented a number of results on the statistics of the hull perimeter at distance d for planar triangulations (maps with faces of degree three) and quadrangulations (faces of degree four) in a universal regime of infinitely large maps where both d and k are large and remain of the same order (i.e. the ratio d/k is kept fixed). As we shall see, for such a regime, although the hull perimeter remains finite (but large, of order d 2 ), the volume of the hull at distance d may very well be itself strictly infinite. We will compute below the probability for this to happen, a probability which remains non-zero for large d and k (unless d/k → 0). In particular, if we wish a non-trivial description of the hull volume statistics, we have to condition the map configurations so that their hull volume remains finite. More generally, we may reconsider the statistics of the hull perimeter by separating the contribution coming from the set of map configurations with a finite hull volume from that coming from the set of map configurations with an infinite hull volume. More simply, we may consider the hull perimeter conditional statistics obtained by limiting the configurations to either set of configurations. It is the subject of the present paper to give a precise description of this refined hull statistics where we control the finite or infinite nature of the hull volume. Most of the obtained laws crucially depend on the value of d/k but are the same for planar triangulations and planar quadrangulations, as well as for Eulerian triangulations (maps with alternating black and white triangular faces).

The paper is organized as follows: we first present in Section 2 a summary of our results and give explicit expressions for the probability to have a finite or an infinite hull volume as a function of d/k (Sect. 2.1), as well as for the conditional probability density for the hull perimeter in both situations (Sect. 2.2). We then give (Sect. 2.3) the joint law for the hull perimeter and hull volume, assuming that the latter is finite. Section 3 presents the strategy that we use for our calculations which is based on already known generating functions whose expressions are recalled in the case of quadrangulations (Sect. 3.1). We explain in details (Sect. 3.2 ) how to extract from these generating functions the desired statistical results. This strategy is implemented for quadrangulations in Section 4 where we compute the probability to have a finite or an infinite hull volume (Sect.4.1), the probability density for the hull perimeter in both regimes (Sect. 4.2) and the joint law for the hull perimeter and volume when the latter is finite (Sect. 4.3). Section 5 briefly discusses triangulations and Eulerian triangulations for which the same universal laws as those found in the previous sections for quadrangulations are recovered. We gather a few concluding remarks in Section 6 and present additional non-universal expressions at finite d and k in appendix A.

Summary of the results

The results presented in this paper have been obtained for three families of planar maps: (i) planar quadrangulations, i.e. planar maps whose all faces have degree four, (ii) planar triangulations, i.e. planar maps whose all faces have degree three and (iii) planar Eulerian triangulations, which are planar triangulations whose faces are colored in black and white with adjacent faces being of different color. For all these families, we obtain in the limit of large maps the same laws for hull volumes and perimeters, up to two non-universal normalization factors, one for the volume and one for the perimeter (called f and c respectively). The hull volumes and perimeters are defined as follows: for the three families of maps and for some integer k ≥ 1, we consider more precisely k-pointed-rooted maps, i.e. maps with a marked vertex x 0 (called the origin) and a marked oriented edge pointing from a vertex x 1 at graph distance k from the origin x 0 to a neighbor of x 1 at distance k -1 (such neighbor always exists) 1 . Given k ≥ 3 and some integer d in the range 2 ≤ d ≤ k-1, there exists a simple closed line along edges of the map, "at distance d" from the origin 2 which separates the origin x 0 from x 1 . Several prescription are possible for a univocal definition of this separating line and we will adopt here that proposed in [START_REF] Guitter | Some results on the statistics of hull perimeters in large planar triangulations and quadrangulations[END_REF] in cases (i) and (ii) and in [START_REF] Guitter | Eulerian triangulations: two-point function and hull perimeter statistics[END_REF] for case (iii). We expect that other choices should not modify our results, except possibly for the value of the perimeter normalization factor c. The hull at distance d in our k-pointed-rooted map is defined as the domain of the map lying on the same side as the origin of the separating line at distance d. Its volume V(d) is its number of faces and its perimeter L(d) the length (i.e. number of edges) of its boundary, namely the length of the separating line at distance d itself.
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An illustration of map configurations in the out-and in-regimes.

The map is represented schematically with vertices placed at a height equal to their distance from the origin x 0 . The vertices at distance d from x 0 form a number of closed curves at height d, one of which (in red) separates x 0 from x 1 and defines the separating line at distance d. The part of the map lying on the same side of this separating line as x 0 constitutes the hull at distance d (here in light blue). For maps with an infinite volume, the configuration is in the out-regime if the hull volume remains finite (configuration on the left) or it is in the in-regime if the hull volume itself becomes infinite (configuration on the right).

2.1.

The out-and in-regimes. Our results deal with the statistics of uniformly drawn k-pointed-rooted maps in the families (i), (ii) or (iii) having a fixed number of faces N , and for a fixed value of the parameter k and, more precisely, with the limit N → ∞ of this ensemble, keeping k finite. This corresponds to the so called local limit of infinitely large maps and, as in [START_REF] Guitter | Some results on the statistics of hull perimeters in large planar triangulations and quadrangulations[END_REF], we shall denote by P k ({•}) the probability of some event {•} and E k ({•}) the expectation value of some quantity {•} in this limit.

In the limit N → ∞, two situations may occur: either the volume V(d) remains finite and the number of faces N -V(d) of the complementary of the hull (namely the part of the map lying on the same side of the separating line as x 1 ) is infinite. This situation will be referred to as the "out-regime" in the following. Or the volume V(d) is itself infinite while the number N -V(d) of faces of the complementary of the hull remains finite. This situation will be referred to as the "in-regime" in the following. The case where both V(d) and N-V(d) would be infinite is expected to be suppressed when N → ∞ (i.e. the number of configurations in this regime does not grow with N as fast as that in the out-and in-regimes). Situations in the out-and in-regime are illustrated in figure 1.

The main novelty in this paper is that our laws will discriminate between situations where the map configurations are in the out-or in the in-regime. We shall use accordingly the notations

P out k,d ({•}) = P k {•} and V(d) finite , P in k,d ({•}) = P k {•} and V(d) infinite , E out k,d ({•}) = E k {•}×θ finite (V(d) , E in k,d ({•}) = E k {•}×(1 -θ finite (V(d))
p out (u)

p in (u) u 0 Figure 2.
A plot of the probability p out (u) (in red) and the complementary probability p in (u) (in blue) as a function of u = d/k, as given by ( 2).

with θ finite (V) = 1 if V is finite and 0 otherwise. Alternatively, we will consider conditional probabilities and conditioned expectation values, defined respectively as

P k ({•}|V(d) finite) = P out k,d ({•}) P k (V(d) finite) , P k ({•}|V(d) infinite) = P in k,d ({•}) P k (V(d) infinite) . E k ({•}|V(d) finite) = E out k,d ({•}) P k (V(d) finite) , E k ({•}|V(d) infinite) = E in k,d ({•}) P k (V(d) infinite)
,

where P k (V(d) finite) = E k θ finite (V(d) = 1 -P k (V(d) infinite).
Universal laws may are obtained when k and d themselves become large simultameously, i.e. upon taking the limit k → ∞, d → ∞ with d/k fixed (necessarily between 0 and 1). We set accordingly

u ≡ d k , 0 ≤ u ≤ 1 ,
and our universal results will deal with configurations having a fixed value of u.

As in [START_REF] Guitter | Some results on the statistics of hull perimeters in large planar triangulations and quadrangulations[END_REF], we insist on that we first let N → ∞, and only then take the limit of large k and d. In particular, this is to be contrasted with the so called scaling limit where N , k and d would tend simultaneously to infinity with k ∼ d ∼ N 1/4 . Note also that our universal laws describe a broader regime than that explored in most papers so far on the hull statistics [START_REF] Krikun | Uniform infinite planar triangulation and related time-reversed critical branching process[END_REF][START_REF] Krikun | Local structure of random quadrangulations[END_REF][START_REF] Curien | The hull process of the brownian plane[END_REF][START_REF] Curien | Scaling limits for the peeling process on random maps[END_REF][START_REF] Ménard | Volumes in the uniform infinite planar triangulation: from skeletons to generating functions[END_REF], where the hull boundary is defined as a closed line separating some origin vertex x 0 from infinity in pointed maps of infinite size. This latter, more restricted, regime may be recovered in our framework by sending first k → ∞ with d kept finite, and only then letting eventually d → ∞. As we shall discuss, the results obtained for this latter order of limits match precisely those obtained by taking the limit u → 0 of our results and they may thus be considered as particular instances of our more general laws for arbitrary u. To be precise, we observe that, for all the observables {•} d depending on d that we consider, we have the equivalence (1)

lim u→0 lim k→∞ P k ({•} k u ) = lim d→∞ lim k→∞ P k ({•} d ) , lim u→0 lim k→∞ E k ({•} k u ) = lim d→∞ lim k→∞ E k ({•} d ) .
This equivalence is not a surprise since the limit u → 0 describes precisely situations where the distance d does not scale with k. We have however no rigorous argument to state that the above identity (based on an inversion of limits) should hold in all generality for any observable {•} d3 .

Our first result is an expression, for a given u, of the probability that a randomly picked k-pointed-rooted map be in the out-or in the in-regime. We find:

(2)

p out (u) ≡ lim k→∞ P k (V(k u) finite) = 1 4 4 -7u 6 + 3u 7 , p in (u) ≡ lim k→∞ P k (V(k u) infinite) = 1 4 (7 -3u) u 6 ,
with of course p out (u) + p in (u) = 1. Note that these probabilities involve no normalization factor and are the same for the three families (i) (ii) and (iii) that we considered. They are represented in figure 2. For u → 0, we have p out (u) → 1 and p in (u) → 0 so that the map configuration is in the out-regime with probability 1. This is a first manifestation of the equivalence (1) above. Indeed, sending k → ∞ first before letting d be large ensures that the connected component containing x 1 (i.e. the complementary of the hull at distance d) has some infinite volume, hence the configuration necessarily lies in the out-regime. On the other hand, when u → 1, we see that p out (u) → 0 and p in (u) → 1. This corresponds to situations where the vertex x 1 remains at a finite distance from the separating line at distance d, with d becoming infinitely large. In such a situation, the connected part containing x 1 has a finite volume with probability 1. This result may be explained heuristically as follows: a rough estimate of the probability p out (1) is given by the ratio of the length of the line at distance d separating x 0 from infinity by the length of the boundary of the ball of radius d with origin x 0 . Indeed, the first length measures the number of ways to place x 1 "just above"4 the line separating x 0 from infinity while the second length is an equivalent measure of the number of ways of placing x 1 anywhere just above a line at distance d. Since the first length typically grows like d 2 [START_REF] Krikun | Uniform infinite planar triangulation and related time-reversed critical branching process[END_REF][START_REF] Krikun | Local structure of random quadrangulations[END_REF][START_REF] Curien | The hull process of the brownian plane[END_REF][START_REF] Curien | Scaling limits for the peeling process on random maps[END_REF][START_REF] Guitter | Some results on the statistics of hull perimeters in large planar triangulations and quadrangulations[END_REF][START_REF] Ménard | Volumes in the uniform infinite planar triangulation: from skeletons to generating functions[END_REF][START_REF] Guitter | Eulerian triangulations: two-point function and hull perimeter statistics[END_REF] while the second length grows like d 3 (recall that random maps have fractal dimension 4 [START_REF] Ambjørn | Scaling in quantum gravity[END_REF][START_REF] Chassaing | Random planar lattices and integrated superBrownian excursion[END_REF]), the ratio vanishes as 1/d when d → ∞ hence p out (1) vanishes.

2.2. Probability density for the rescaled perimeter in the out-and in-regimes.

Our second result concerns the probability density for the hull perimeter at distance d = k u in the out-and in-regimes. For large d, L(d) scales as d 2 so a finite probability density is obtained for the rescaled perimeter

L(d) ≡ L(d) d 2 .
We define more precisely the probability densities

D out (L, u) ≡ lim k→∞ 1 dL P out k,k u (L ≤ L(k u) < L + dL) , D in (L, u) ≡ lim k→∞ 1 dL P in k,k u (L ≤ L(k u) < L + dL) , u → 0 u → 1 L D out (L,u) p out (u)
Figure 3. The conditional probability density D out (L, u)/p out (u) as a function of L for increasing values of u (following the arrow) and its u → 0 and u → 1 limits, as given by ( 5).

for which we find the following explicit expressions:

(3)

D out (L, u) = (1 -u) 4 2c √ πu × e -BX -2 √ X((X -10)X -2) + e X √ πX(X(2X -5) + 6) 1 -erf √ X , D in (L, u) = u 5 2c √ π(1 -u) 2 × e -BX (BX + 2) 2 √ X(X + 1) -e X √ πX(2X + 3) 1 -erf √ X , where X ≡ X(L, u) = u 2 (1 -u) 2 L c , B ≡ B(u) = (1 -u) 2 u 2 .
Here c is a normalization factor given in cases (i), (ii) and (iii) respectively by:

(4) (i): c = 1 3 , (ii): c = 1 2 , (iii): c = 1 4 .
Note that by definition, we have the normalizations

∞ 0 D out (L, u) dL = p out (u) , ∞ 0 D in (L, u) dL = p in (u) ,
a result which may be checked directly from the explicit expressions (2) and (3). Note also that the ratio D out (L, u)/p out (u) (resp. D in (L, u)/p in (u)) denotes, at fixed u = k/d, the probability density for the rescaled perimeter L(d)/d 2 for map configurations conditioned to be in the out-regime (resp. in the in-regime), with an integral over L now normalized to 1.

Let us now analyze these latter conditional probability densities in more details. Let us first assume that the map configuration lies in the out-regime: the conditional probability density D out (L, u)/p out (u), as displayed in figure 3, varies for increasing u between its u → 0 and u → 1 limits given, from the general expression (3), by [START_REF] Curien | The hull process of the brownian plane[END_REF] 

lim u→0 D out (L, u) p out (u) = 2 √ L e -L c c 3/2 √ π , lim u→1 D out (L, u) p out (u) = 4 3 ( √ L) 3 e -L c c 5/2 √ π . u → 0 L D in (L,u) p in (u) Figure 4.
The conditional probability density D in (L, u)/p in (u) as a function of L for increasing values of u (following the arrow) and its u → 0 limit, as given by ( 6)

It is easy to verify that the u → 0 expression above reproduces precisely the result obtained by first sending k → ∞, and then d → ∞, in agreement with the announced equivalence (1). As expected, this expression therefore matches that of Krikun [START_REF] Krikun | Uniform infinite planar triangulation and related time-reversed critical branching process[END_REF][START_REF] Krikun | Local structure of random quadrangulations[END_REF] and of Curien and Le Gall [START_REF] Curien | The hull process of the brownian plane[END_REF][START_REF] Curien | Scaling limits for the peeling process on random maps[END_REF] concerning the probability density for the length of the line at distance d separating some origin x 0 from infinity in large pointed maps of the family at hand (with possibly different values of c due to inequivalent prescriptions for the definition of the separating line). Note that the requirement that the configuration be in the out-regime is actually not constraining for u → 0 since p out (0) = 1.

For u → 1, the requirement to be in the out-regime restricts the set of configurations to those where we have chosen x 1 in the vicinity (i.e. just above) the line separating x 0 from infinity (so that the domain in which x 1 lies is infinite). As just discussed, this line has a length L d 2 with density probability 2 √ L e -L c /(c 3/2 √ π) while the number of choices for x 1 is (for fixed d) proportional to L. The conditional probability density for L(d) in the in-regime is thus expected to be

L × 2 √ L e -L c c 3/2 √ π ∞ 0 L × 2 √ L e -L c c 3/2 √ π dL = 4 3 ( √ L) 3 e -L c c 5/2 √ π ,
and this is precisely the result obtained above.

Let us now assume that the map configuration lies in the in-regime and discuss the corresponding conditional probability density for L(d). As displayed in figure 4, D in (L, u)/p in (u) varies for increasing u between its u → 0 limit given, from the general expression (3), by [START_REF] Guitter | The distance-dependent two-point function of quadrangulations: a new derivation by direct recursion[END_REF] lim

u→0 D in (L, u) p in (u) = 4 7 √ L (2c + L) e -L c c 5/2 √ π
and a degenerate u → 1 limit where only the rescaled length L = 0 is selected. Recall that p in (u) → 0 for u → 0 and the limiting law just above for u → 0 therefore describes a very restricted set of configurations where the connected domain containing x 1 , although k becomes arbitrary larger than d, remains of finite volume. As for the u → 1 limit, the fact that the probability density concentrates around L = 0 means that L(d) scales less rapidly than d 2 in this limit and that some new appropriate rescaling is required. As already discussed in [START_REF] Guitter | Some results on the statistics of hull perimeters in large planar triangulations and quadrangulations[END_REF], a non-trivial law is in fact obtained by switching to the variable X in (3), i.e. considering the probability density for the rescaled length

u → 1 X c B D in (c B X,u) p in (u)
X(k, d) ≡ L(d) c (k 2 -d 2 ) = u 2 c (1 -u) 2 L(d) ,
where the coefficient c is arbitrarily included in the definition of X(k, d) so as to have the same limiting law for the three map families (i), (ii) and (iii). Setting B = (1u) 2 /u 2 as in (3), so that L(d) = c B X(k, d), the probability density for X(k, k u) is given for u → 1 by

lim u→1 c B D in (c B X, u) p in (u) = 2 √ X(X + 1) -e X √ πX(2X + 3) 1 -erf √ X √ π .
This result matches that of [START_REF] Guitter | Some results on the statistics of hull perimeters in large planar triangulations and quadrangulations[END_REF] found for a statistics where the out-and in-regimes are not discriminated, as it should since, for u → 1, the requirement to be in the in-regime is not constraining (p in (1) = 1). The probability density for X(k, k u) for increasing values of u and its universal limit above when u → 1 are displayed in figure 5.

It is interesting to measure the relative contribution of the out-and in-regimes to the "total" probability density for the rescaled length L(d), i.e. the probability density obtained irrespectively of whether V(d) is finite or not, namely

D(L, u) ≡ lim k→∞ 1 dL P k (L ≤ L(k u) < L + dL) = D out (L, u) + D in (L, u) .
The reader will easily check that the expression for D(L, u) resulting from the explicit forms (3) matches precisely the expression for D(L, u) found in [START_REF] Guitter | Some results on the statistics of hull perimeters in large planar triangulations and quadrangulations[END_REF], as it should. We have represented in figure 6 the probability density D(L, u) for various values of u as well as its two components D out (L, u) and D in (L, u). As expected, D(L, u) is dominated by the contribution of the out-regime at small enough u (in practice up to u ∼ 1/2) and by starts feeling the in-regime contribution when u approaches 1. This latter contribution moreover dominates the u → 1 limit for small L. In particular, the appearance in D(L, u) of a peak around L = 0 when u is large enough, which was observed in [START_REF] Guitter | Some results on the statistics of hull perimeters in large planar triangulations and quadrangulations[END_REF] but remained quite mysterious is simply explained by the domination of the in-regime for u → 1. No such peak ever appears in the contribution D out (L, u) of the out-regime. From the laws (3), we may also compare the expectation value of L(d) in the out-and in-regime to that obtained whithout conditioning: we have respectively [START_REF] Guitter | The distance-dependent two-point function of triangulations: a new derivation from old results[END_REF] lim

k→∞ E k L(k u) V(k u) finite = lim k→∞ E out k,k u L(k u) p out (u) = 3c 4+4u-21u 6 +17u 7 -4u 8 2 (4-7u 6 +3u 7 ) , lim k→∞ E k L(k u) V(k u) infinite = lim k→∞ E in k,k u L(k u) p in (u) = 3c(9-4u)(1-u) 2(7-3u) , lim k→∞ E k (L(k u)) = p out (u) 3c 4 + 4u -21u 6 + 17u 7 -4u 8 2 (4 -7u 6 + 3u 7 ) + p in (u) 3c(9 -4u)(1 -u) 2(7 -3u) = 3 2 c 1 + u -3u 6 + u 7 ,
where the last expression matches the result of [START_REF] Guitter | Some results on the statistics of hull perimeters in large planar triangulations and quadrangulations[END_REF].

To end this section, let us discuss the probability π out (L, u) (resp. π in (L, u) to be in the out-regime (resp. in the in-regime), knowing that the rescaled length L(d) is equal to L (with as before u = d/kf ixed), namely

π out (L, u) = lim k→∞ P k V(k u) finite L(k u) = L = D out (L, u) D(L, u) = 1 -π in (L, u) .
We have plotted in figure 7 the quantities π out (L, u) and π in (L, u) as a function of L for various values of u. For u → 0, we have π out (L, 0) = 1 and π in (L, 0) = 0 irrespectively of L.

For u → 1, we have the limiting expression: 

π out (L, 1) = 28L 3 6c 3 + 3Lc 2 + 28L 3 = 1 -π in (L, 1) . u = 5 8 u = 4 8 u → 1 u = 6
π out (0, u) = (1 -u) 6 (1 -2u + 2u 2 ) (1 -4u + 5u 2 -2u 3 + u 4 ) = 1 -π in (0, u)
(note the remarkable symmetry π out (0, u) = π in (0, 1u)). For L → ∞, π out (L, u) tends to 1 and π in (L, u) to 0, irrespectively of u.

2.3.

Joint law for the rescaled perimeter and volume in the out-regime. Our third result concerns the joint law for the hull perimeter L(d) and the hull volume V(d). Of course such law is non-trivial only if the hull volume is finite, i.e. if we condition the configurations to be in the out-regime. From now on, all our results will thus be conditioned to be in the out-regime. For Large d, V(d) scale as d 4 and we therefore introduce the rescaled volume

V (d) ≡ V(d) d 4 .
Our main result is the following expectation value [START_REF] Guitter | Eulerian triangulations: two-point function and hull perimeter statistics[END_REF] lim with p out (u) as in [START_REF] Bouttier | Planar maps and continued fractions[END_REF] and where f is a normalization factor given in cases (i), (ii) and (iii) respectively by [START_REF] Guitter | Some results on the statistics of hull perimeters in large planar triangulations and quadrangulations[END_REF] (i): f = 36 , (ii): f = 192 , (iii): f = 16 .

k→∞ E k e -σ V (k u)-τ L(k u) V(k u) finite = (1 -u) 6 u 3 p out (u) × (f σ) 3/4 cosh 1 2 (f σ) 1/4 8 sinh 3 1 2 (f σ) 1/4 × M µ(σ, τ, u) , where M (µ) = 1 µ 4 3µ 2 -5µ + 6 + 4µ 5 + 16µ 4 -7µ 2 -40µ -24 4(1 + µ) 5/2 and µ(σ, τ, u) = (1 -u) 2 u 2 c τ + √ f σ 4 coth 2 1 2 (f σ) 1/4 - 2 3 -1 , L = 0.125 L → 0 L = 0.375 L = 0.
Setting τ = 0 and expanding at first order in σ, we immediately deduce that, in particular

lim k→∞ E k V (k u) V(k u) finite = f 480 20 + 12u -77u 6 + 57u 7 -12u 8 (4 -7u 6 + 3u 7 ) ,
a quantity which increases from f /96 at u = 0 to 7f /480 at u = 1.

The expectation value (8) above has a simple limit when u → 0, namely

lim u→0 lim k→∞ E k e -σ V (k u)-τ L(k u) = (f σ) 3/4 cosh 1 2 (f σ) 1/4 8 sinh 3 1 2 (f σ) 1/4 c τ + √ f σ 4 coth 2 1 2 (f σ) 1/4 -2 3 3/2
(note that the condition that V(d) is finite is automatically satisfied in the limit u → 0 since p out (0) = 1). For τ = 0, this expression simplifies into

lim u→0 lim k→∞ E k e -σ V (k u) = cosh 1 2 (f σ) 1/4 sinh 3 1 2 (f σ) 1/4 coth 2 1 2 (f σ) 1/4 -2 3 3/2
and we recover here a result by Curien and Le Gall [START_REF] Curien | Scaling limits for the peeling process on random maps[END_REF] 5 , in agreement with the equivalence principle [START_REF] Ambjørn | Scaling in quantum gravity[END_REF]. When u → 1, we get another interesting limit

lim k→∞ E k e -σ V (k)-τ L(k) V(k) finite = (f σ) 3/4 cosh 1 2 (f σ) 1/4 8 sinh 3 1 2 (f σ) 1/4 c τ + √ f σ 4 coth 2 1 2 (f σ) 1/4 -2 3 5/2 .
Performing an inverse Laplace transform on the variable τ , we may extract from ( 8) the expectation value of e -σ V (d) knowing the value L of L(d) in the out-regime. We find (see Section 4.3 for details) that ( 10)

lim k→∞ E k e -σ V (k u) V(k u) finite and L(k u) = L = 1 8 e -L c √ f σ 4 (coth 2 ( 1 2 (f σ) 1/4 )-2 3 )-1 (f σ) 3/4 cosh 1 2 (f σ) 1/4 sinh 3 1 2 (f σ) 1/4
. Note that this quantity turns out to be independent of u and is thus equal to its limit for u → 0. In agreement with the equivalence (1), our result thus reproduces, now for any u, the expression found by Ménard in Ref. [START_REF] Ménard | Volumes in the uniform infinite planar triangulation: from skeletons to generating functions[END_REF] in a limit where k → ∞ before d becomes large.

We have in particular

lim k→∞ E k V (k u) V(k u) finite and L(k u) = L = f (c + L) 240c
independently of u. The fact that the law for the rescaled volume V (d), knowing the rescaled perimeter L(d), is independent of u is not so surprising. Indeed, u measures the distance k = d/u from the origin at which the marked vertex x 1 lies. Once the perimeter L(d) is fixed, the hull, whenever finite, is insensitive to the position of the second marked vertex.

The law for its volume V(d) depends only on d and L(d), and, by simple scaling, it translates into a law for the rescaled volume V (d) depending on the rescaled perimeter L(d) only. Note that, on the other hand, fixing the hull perimeter L(d) has some influence on the possible choices for the position of x 1 as a function of its distance k = d/u from the origin x 0 . This in return explains why the law for L(d) and consequently that for V (d) in the out-regime both depend on u for fixed k, as displayed in (8).

Derivation of the results: the strategy

Let us now come to the derivation of our results and explain the strategy behind our calculations. To simplify the discussion, we will focus here on the family (i) of quadrangulations. The cases (ii) of triangulations and that (iii) of Eulerian triangulations are amenable to exactly the same type of treatment and we will briefly discuss them in Section 5 below. G(k,d,g,h,α) of planar k-pointed-rooted quadrangulations, enumerated with a weight

Generating functions. The main ingredient is the generating function

g N -V(d) h V(d) α L(d) ,
where N is the total number of faces, and L(d) and V(d) are respectively the perimeter and volume of the hull at distance d (note that V(d) ≤ N by definition and we assume k ≥ 3 and 2 ≤ d ≤ k -1). To define precisely the hull at distance d, we use the construction discussed in [START_REF] Guitter | Some results on the statistics of hull perimeters in large planar triangulations and quadrangulations[END_REF]. Then G(k, d, g, h, α) may be given an explicit expression as follows: we use for the weights g and h the parametrization [START_REF] Krikun | Uniform infinite planar triangulation and related time-reversed critical branching process[END_REF] g = x(1

+ x + x 2 ) (1 + 4x + x 2 ) 2 , h = y(1 + y + y 2 ) (1 + 4y + y 2 ) 2 ,
with x and y real between 0 and 1 (so that the generating function is well-defined for real g and h in the range 0 ≤ g, h ≤ 1/12). We also introduce the quantity

T ∞ (z) = z(1 + 4z + z 2 ) (1 + z + z 2 ) 2 ,
where z will be taken equal to x or y depending on the formula at hand. We have, from [START_REF] Guitter | Some results on the statistics of hull perimeters in large planar triangulations and quadrangulations[END_REF],

(12) G(k, d, g, h, α) = K K • • • K k-d times α 2 T d (y) -K K • • • K k-d times α 2 T d-1 (y) ,
where T d (y) is defined by

T d (y) = T ∞ (y) (1 -y d-1 )(1 -y d+4 ) (1 -y d+1 )(1 -y d+2 ) ,
and K ≡ K(x) is an operator (depending on x only), which satisfies the relation (which fully determines it):

(13) K T ∞ (x) (1 -λ x -1 )(1 -λ x 4 ) (1 -λ x)(1 -λ x 2 ) = T ∞ (x) (1 -λ)(1 -λ x 5 ) (1 -λ x 2 )(1 -λ x 3 )
for any arbitrary6 λ .

The origin of the above formula ( 12) can be found in Refs. [START_REF] Guitter | The distance-dependent two-point function of quadrangulations: a new derivation by direct recursion[END_REF] and [START_REF] Guitter | Some results on the statistics of hull perimeters in large planar triangulations and quadrangulations[END_REF]. We invite the reader to consult these references for details. Let us still briefly discuss the underlying decomposition of k-pointed-rooted quadrangulations on which the formula is based. As displayed in figure 9, a k-pointed-rooted quadrangulation may be unwrapped into what is called a k-slice by cutting it along some particular path of length k, namely the leftmost among shortest paths (along edges of the map) from x 1 to x 0 having the root edge (i.e. the edge joining x 1 to its chosen neighbor at distance k -1 from x 0 ) as first step. The resulting k-slice has a a left-and a right-boundary of respective lengths k and k-1 linking the image of the root-edge in the k-slice (the so-called slice base) to the image of x 0 (the so-called slice apex ). The passage from the k-pointed-rooted quadrangulation to the k-slice is a bijection so G(k, d, g, h, α) may also be viewed as the generating function for k-slices with appropriate weights. The hull boundary at distance d on the quadrangulation becomes a simple dividing line which links the right-and left-boundaries of the k-slice and separates it into an upper part, corresponding to the hull at distance d in the original map and a complementary lower part. The dividing line visits alternately vertices at distance d-1 and d from the apex, starting at the unique vertex along the right-boundary at distance d -1 from the apex and ending at the unique vertex along the left-boundary at distance d -1 from the apex. The upper part can be decomposed into a number of d -slices with d ≤ d by cutting it along the leftmost shortest paths to x 0 starting from all the vertices at distance d from x 0 along the dividing line. Since these vertices represent half of the vertices along the dividing line, the number of d -slices is precisely L(d)/2 (note that L(d) is necessarily even for quadrangulations). Each of these slices is enumerated by a quantity T d (y) equal to the generating function of d -slices with 2 ≤ d ≤ d and a weight h per face (see [START_REF] Guitter | The distance-dependent two-point function of quadrangulations: a new derivation by direct recursion[END_REF] for a precise definition), where h and y are related via [START_REF] Krikun | Uniform infinite planar triangulation and related time-reversed critical branching process[END_REF]. The expression for T d (y) is that given just above, as computed in [START_REF] Guitter | The distance-dependent two-point function of quadrangulations: a new derivation by direct recursion[END_REF]. The juxtaposition of the d -slices results in a total weight (T d (y)) L(d)/2 but, in order to impose that the maximum value of d for all the d -slices is actually exactly equal to d, we must eventually subtract the weight of those configurations where all d would be less than d -1, namely (T d-1 (y)) L(d)/2 . Incorporating the desired weight α L(d) , the generating function of the upper part eventually reads

x 1 k x 1 x 0 x 0 d-1 d k-1 k k-1 d-1 d-1 d
(14) α 2 T d (y) L(d)/2 -α 2 T d-1 (y) L(d)/2
for the contribution of those configurations having a fixed value L(d) of the hull perimeter at distance d. This explains why the expression of G(k, d, g, h, α) is a difference of two terms, corresponding to the action of the same operator K • (k-d) on α 2 T d (y) and α 2 T d-1 (y) respectively.

To understand the origin of this operator, which incorporates the contribution of the lower part, we proceed by recursion upon drawing the images of the successive hull boundaries at distance d+1, d+2, • • • until we reach the hull boundary at distance k which reduces to the line of length L(k) = 2 formed by the concatenation of root-edge of the k-slice and the first edge (starting from x 1 ) of the left-boundary (see figure 10 where k = d + 2). Looking at the hull boundary at distance d+1, we perform the same decomposition of the part above this boundary as we did before, by splitting it into L(d + 1)/2 slices upon cutting along the leftmost shortest paths to the apex starting from all the boundary vertices at distance d + 1 (blue lines in figure 10). This creates d -slices L i ) while the generating function for the part of the slice S i lying below the hull boundary at distance d, which depends only on the (half-)length L i /2 may be written has [T Li/2 ]K(T ) for some operator K(T ) depending on g only (or equivalently on x via [START_REF] Krikun | Uniform infinite planar triangulation and related time-reversed critical branching process[END_REF]). This operator was computed in [START_REF] Guitter | The distance-dependent two-point function of quadrangulations: a new derivation by direct recursion[END_REF] and, as explained in [START_REF] Guitter | Some results on the statistics of hull perimeters in large planar triangulations and quadrangulations[END_REF], satisfies the property (13) above. Summing over all

S i , i = 1, • • • L(d + 1)/2,
k = d+2 d T d (y) k-1 = d+1 d+1 d-1 d-1 d d + 1 d-1 α α α α α α K(α 2 T d (y)) d d-1 K(K(α 2 T d (y)))
x 0

x 1 In order to have a more tractable expression, we may now perform explicitly the kd iterations of the operator K in [START_REF] Ménard | Volumes in the uniform infinite planar triangulation: from skeletons to generating functions[END_REF]. This leads immediately to the more explicit formula

(15) G(k, d, g, h, α) = H k -d, x, α 2 T d (y) -H k -d, x, α 2 T d-1 (y)
where

H(k, x, T ) = T ∞ (x) 1 -λ(x, T ) x k-1 1 -λ(x, T ) x k+4 1 -λ(x, T ) x k+1 1 -λ(x, T ) x k+2
provided λ(x, T ) is defined through

T ∞ (x) 1 -λ(x, T ) x -1 1 -λ(x, T ) x 4 1 -λ(x, T ) x 1 -λ(x, T ) x 2 = T , namely (16) λ(x, T ) = T ∞ (x)(1+x 5 )-x 2 T (1 + x)-(T ∞ (x)(1+x 5 )-x 2 T (1+x)) 2 -4 x 5 (T ∞ (x)-T ) 2 2 x 4 (T ∞ (x)-T ) ,
These latest expressions (15) and ( 16) will be our starting point for explicit calculations.

A last quantity of interest is the generating function of F (k, g) of planar k-pointed-rooted quadrangulations with a weight g per face. We have clearly F (k, g) = G(k, d, g, g, 1) for any d ≤ k -1 and we easily obtain from the above formulas that λ x, T d (x) = x d so that

F (k, g) = T ∞ (x) (1 -x k-1 )(1 -x k+4 ) (1 -x k+1 )(1 -x k+2 ) - (1 -x k-2 )(1 -x k+3 ) (1 -x k )(1 -x k+1
) .

3.2.

Sending N → ∞: the out-and in-regimes. Let us now explain how we can extract from the above generating functions results on the N → ∞ limit, imposing that the configurations are either in the out-or the in-regime. To simplify the notations, let us omit for a while the dependence of G(k, d, g, h, α) in α, k and d and write G(k, d, g, h, α) = G(g, h), as well as N -V(d) = n 1 and V(d) = n 2 . We also denote by G n1,n2 the coefficient [g n1 h n2 ]G(g, h).

We are then interested in the large N limit of the quantity ( 17)

n 1 ,n 2 n 1 +n 2 =N G n1,n2 ,
which we wish to extract from the knowledge of the generating function G(g, h). As mentioned earlier, we also assume that when N → ∞, the sum in (17) is dominated by two contributions, that with n 1 → ∞, n 2 staying finite, which corresponds to what we called the out-regime, and that with n 2 → ∞, n 1 staying finite, which we called the in-regime, while the contribution where both n 1 and n 2 become infinite simultaneously is algebraically suppressed for large N . To describe the out-regime, we must consider the n 1 → ∞ behavior of G n1,n2 which is encoded in the singular behavior of G(g, h) when g reaches some critical value g * (the radius of convergence of the series in g, possibly depending on h and the other parameters). Similarly, properties of the in-regime are encoded in the singular behavior of G(g, h) when h reaches some critical value h * (possibly depending on g and the other parameters). For the generating function G(k, d, g, h, α) of interest, the singularities appear when either x → 1 or y → 1, irrespectively of k, d and α, i.e., from [START_REF] Krikun | Uniform infinite planar triangulation and related time-reversed critical branching process[END_REF], for g → 1/12 or h → 1/12. We therefore have g * = 1/12 (independently of h and the other parameters) and h * = 1/12 (independently of g and the other parameters). More precisely, we have expansions of the form

G(g, h) = g 0 (h) + g 2 (h)(1 -12g) + g 3 (h)(1 -12g) 3/2 + O((1 -12g) 2 ) , G(g, h) = g0 (g) + g2 (g)(1 -12h) + g3 (g)(1 -12h) 3/2 + O((1 -12h) 2 ) .
(where all the functions implicitly depend on k, d and α). Note in particular that G(1/12, h) = g 0 (h) and G(g, 1/12) = g0 (g) are finite and that there are no square-root singularities.

Taking the term of order h n2 in the first expansion above, we deduce the singular part n1 G n1,n2 g n1 sing.

=

[h n2 ]g 3 (h) × (1 -12g) 3/2
from which we deduce the large n 1 behavior

G n1,n2 ∼ n1→∞ [h n2 ]g 3 (h) × 3 4 12 n1 √ πn 5/2 1 so that n2 G N -n2,n2 ∼ N →∞ 3 4 12 N √ πN 5/2 n2 [h n2 ]g 3 (h) × 12 -n2 = 3 4 12 N √ πN 5/2 g 3 1 12 .
This represents precisely the contribution of the out-regime to the large N limit of the sum (17). If, more generally, we wish to control the volume V(d) in the out-regime, we may consider

n2 G N -n2,n2 ρ n2 ∼ N →∞ 3 4 12 N √ πN 5/2 n2 [h n2 ]g 3 (h) × ρ 12 n2 = 3 4 12 N √ πN 5/2 g 3 ρ 12 
.

By a similar argument, the in-regime contribution to the sum (17) behaves as

n1 G n1,N -n1 ∼ N →∞ 3 4 12 N √ πN 5/2 g3 1 12 .
For F (g) ≡ F (k, g), we have an expansion of the form

F (g) = f 0 + f 2 (1 -12g) + f 3 (1 -12g) 3/2 + O((1 -12g) 2 )
which yields the large N estimate

[g N ]F (g) ∼ N →∞ 3 4 12 N √ πN 5/2 f 3 .
By taking the appropriate ratios, we eventually deduce the large N limit of the desired expectation values, namely

(18) E out k,d ρ V(d) α L(d) = g 3 ρ 12 , k, d, α f 3 (k) ,
where we re-introduced explicitly the dependence in k, d and α of g 3 (h) ≡ g 3 (h, k, d, α) and f 3 ≡ f 3 (k), and

(19) E in k,d α L(d) = g3 1 12
, k, d, α f 3 (k) (with the more explicit dependence g3 (g) ≡ g3 (g, k, d, α)). This reduces our problem to estimating the quantities g 3 (h), g3 (g) and f 3 from our explicit expressions for G(k, d, g, h, α) and F (k, g).

Derivation of the results: explicit calculations

Since the expression for G(k, d, g, h, α) is quite involved, explicit calculations may be difficult to perform in all generalities for finite k and d and some of our results will hold only in the limit of large k and d. Still, the simplest questions may be solved exactly for finite k and d: this is the case for the probability to be in the out-or the in-regime, as we discuss now.

4.1.

Results at finite k and d: the probability to be in the out-or in-regime. If we wish to compute the probability to be in the out-or in-regime, we may set α = 1 and ρ = 1 in ( 18) and (19) since we do not measure the hull perimeter nor the hull volume. More precisely, we have

P k (V(d) finite) = E out k,d (1) = g 3 1 12 , k, d, 1 f 3 (k) , P k (V(d) infinite) = E in k,d (1) = g3 1 12 , k, d, 1 f 3 (k) .
To compute f 3 (k), we set

g = 1 12 (1 -4 ) ↔ = (1 -12g) 1/4 ,
and, from the corresponding small expansion of x,

x = 1 - √ 6 + 3 2 - 5 2 3 2 3 + 3 4 - 39 16 3 2 5 + 3 6 - 157 64 3 2 7 + 3 8 -• • • ,
we immediately get the small expansion of F (k, g). As expected, we find terms of order 0 , 4 = (1 -12g) and 6 = (1 -12g) 3/2 but no term of odd order in (as a consequence of the x → 1/x symmetry of all the formulas) and, more importantly, no term of order 2 = (1 -12g) 1/2 . The coefficient of 6 in the expansion yields:

(20)

f 3 (k) = 4 k 2 + 2k -1 5k 4 + 20k 3 + 27k 2 + 14k + 4 35k(k + 1)(k + 2) .
To compute g 3 (1/12, k, d, 1), we have to consider the expansion of G(k, d, g, 1/12, 1) when g → 1/12. Note that setting h = 1/12 amounts to setting y = 1, in which case T d (y) simplifies into

T d (1) = 2 3 (d -1)(d + 4) (d + 1)(d + 2) .
We may easily compute the singularity of the function H(k, x, T ) (as defined in ( 15) and ( 16)) for → 0. Again, the leading singularity corresponds to the 6 term and we find explicitly

=

h 3 k, Y (T ) (1 -12g) 3/2 with h 3 (k, Y ) = k 840 Y ((2k + Y ) 2 -1) 2 105(k + Y ) 8 + 420 k 2 -3 (k + Y ) 6 -210 k 4 + 6k 2 + 49 (k + Y ) 4 -4 75k 6 -567k 4 -1715k 2 -2273 (k + Y ) 2 -(k -5)(k -1)(k + 1)(k + 5) 15k 4 + 138k 2 -217
and Y (T ) = 3T -50 3T -2 .

Note that we have the particularly simple expression

Y T d (1) = 2d + 3 so that, from (15),

g 3 1 12 , k, d, 1 = h 3 (k -d, 2d + 3) -h 3 (k -d, 2d + 1) 
and

P k (V(d) finite) = 1 f 3 (k) (h 3 (k -d, 2d + 3) -h 3 (k -d, 2d + 1)) = 1 f 3 (k) 1 105(2d + 3)(k + 1) 2 (k + 2) 2 × (2d + 3)(k -1)(k + 1)(k + 2)(k + 4) 15k 4 + 90k 3 + 237k 2 + 306k + 140 -(2k + 3)(d -1)(d + 1)(d + 2)(d + 4) 15d 4 + 90d 3 + 237d 2 + 306d + 140 - 1 105(2d + 1)k 2 (k + 1) 2 × (2d + 1)(k -2)k(k + 1)(k + 3) 15k 4 + 30k 3 + 57k 2 + 42k -4 -(2k + 1)(d -2)d(d + 1)(d + 3) 15d 4 + 30d 3 + 57d 2 + 42d -4 with f 3 (k) as in (20) above.
Let us now compute the probability to be in the in-regime which requires the knowledge of g3 (1/12, k, d, 1). We thus have to consider the expansion of G(k, d, 1/12, h, 1) when h → 1/12. Note that setting g = 1/12 now amounts to setting x = 1 7 , in which case we find the simple expression

(22) H(k, 1, T ) = 2 3 (2k + Y (T )) 2 -25 (2k + Y (T )) 2 -1
with Y (T ) as in (21). To compute the desired singularity, we now set

h = 1 12 (1 -η 4 ) ↔ η = (1 -12h) 1/4 , so that y = 1 - √ 6 η + 3 η 2 - 5 2 
3 2 η 3 + 3 η 4 - 39 16 3 2 η 5 + 3 η 6 - 157 64 3 2 η 7 + 3η 8 -• • • .
We have the expansion

(23) Y T d (y) = (2d + 3) - (d -1)(d + 1)(d + 2)(d + 4) 9d 2 + 27d + 10 30(2d + 3) η 4 + (d -1)(d + 1)(d + 2)(d + 4) 15d 4 + 90d 3 + 237d 2 + 306d + 140 210(2d + 3) η 6 + • • • which yields eventually H k, 1, T d (y) sing. = h3 (k, d)(1 -12h) 3/2 with h3 (k, d) = (d -1)(d + 1)(d + 2)(d + 4) 15d 4 + 90d 3 + 237d 2 + 306d + 140 (2d + 2k + 3) 105(2d + 3)(d + k + 1) 2 (d + k + 2) 2 .
We end up with

P k (V(d) infinite) = 1 f 3 (k) h3 (k -d, d) -h3 (k -d, d -1) = 1 f 3 (k) (2k + 3)(d -1)(d + 1)(d + 2)(d + 4) 15d 4 + 90d 3 + 237d 2 + 306d + 140 105(2d + 3)(k + 1) 2 (k + 2) 2 - (2k + 1)(d -2)d(d + 1)(d + 3) 15d 4 + 30d 3 + 57d 2 + 42d -4 105(2d + 1)k 2 (k + 1) 2 .
It is easily verified from their explicit expressions that

P k (V(d) finite) + P k (V(d) infinite) = 1
for any fixed k and d, as expected. This corroborates the absence of some regime other than the out-and in-regimes and justifies a posteriori our statement that the contribution of configurations where both the hull and its complementary would have infinite volumes is negligible at large N . For k → ∞ and d → ∞ with u = d/k fixed, we immediately obtain

lim k→∞ P k (V(k u) finite) = 1 4 4 -7u 6 + 3u 7 , lim k→∞ P k (V(k u) infinite) = 1 4 (7 -3u) u 6 ,
which is precisely the announced result (2). Figure 11 shows a comparison between the limiting expressions p out (u) and p in (u) vs u (as given by ( 2 Another quantity which may be easily computed for finite k and d is the expectation value of the perimeter in the out-regime, E k L(d) V(d) finite , as well as that in the in-regime,

E k L(d) V(d) infinite . Details of the computation are discussed in Appendix A.
4.2. Law for the perimeter at large k and d in the out-and in-regimes. To describe the statistics of the perimeter in the out-regime, we have to look at G(k, d, g, h, α) for arbitrary α and for h = 1/12 (i.e. y = 1). We consider here the large k and d limit by setting d = k u (with 0 ≤ u ≤ 1) and letting k → ∞. In this limit, L(d) growths like d 2 = (k u) 

(k u) 2 T k u (1) = 2 3 3 + τ k u + 3 3 3 + τ 3/2 + O 1 k , Y e -2 τ (k u) 2 T k u-1 (1) = 2 3 3 + τ k u + 3 3 + τ 3/2 + O 1 k .
Using the expansion

f 3 = 4 7 k 3 + O k 2 ,
we obtain8 

(24)

lim k→∞ E out k,k u e -τ L(k u) = lim k→∞ h 3 k-k u, 2 3 3+τ k u+3 3 3+τ 3/2 -h 3 k-k u, 2 3 3+τ k u+ 3 3+τ 3/2 4 7 k 3 = (1 -u) 6 u 3 M µ(τ, u) with M (µ) = 1 µ 4 3µ 2 -5µ + 6 + 4µ 5 + 16µ 4 -7µ 2 -40µ -24 4(1 + µ) 5/2 and µ(τ, u) = (1 -u) 2 u 2 1 + τ 3 -1 .
and µ(τ, u) and B(u) as in (25). Introducing the inverse Laplace transform Q(X, B) of Q(µ, B), easily computed to be

Q(X, B) = e -X 2 √ π (BX + 2) 2 √ X(X + 1) -e X √ πX(2X + 3) 1 -erf √ X ,
we immediately deduce, that

D in (L, u) = u 3 3 B(u) e (1-B(u))X(u) Q(X(u), B(u)) with X(u) = 3L B(u) .
This is precisely the expression (3) for c = 1/3.

4.3.

Joint law for the volume and perimeter at large k and d in the out-regime.

We now wish to control, in addition to the perimeter, the volume of the hull. Of course, this is non-trivial only if we condition the map configurations to be in the out-regime where this volume is finite. We are now interested in G(k, d, g, h, α) for arbitrary α and arbitrary h = ρ/12 (with 0 ≤ ρ ≤ 1). We consider again only the large k and d limit with fixed u = d/k, a limit where L(d) growths like d 2 = (k u) 2 while V(d) growths like d 4 = (k u) 4 . We therefore set

α = e -τ (k u) 2 , ρ = e -σ u) 4
with ρ and σ remaining finite. From the relation [START_REF] Krikun | Uniform infinite planar triangulation and related time-reversed critical branching process[END_REF] between h and y, taking the form of ρ above amounts to setting

y = e - √ 6 σ 1/4 k u +O 1 (k u) 3 .
We then have the expansions

Y α 2 T k u (y) = 2 1 -u √ 1 + µ k + 9 √ 6 (1 -u) 3 u 3 (1 + µ) 3/2 (1 + W )(2 + W )σ 3/4 W 3 + O 1 k Y α 2 T k u-1 (y) = 2 1 -u √ 1 + µ k + 3 √ 6 (1 -u) 3 u 3 (1 + µ) 3/2 (1 + W )(2 + W )σ 3/4 W 3 + O 1 k with µ ≡ µ(σ, τ, u) = (1 -u) 2 u 2 τ 3 + 3 √ σ 2 coth 2 3 2 σ 1/4 - 2 3 -1 and W ≡ W (σ) = e √ 6 σ 1/4 -1 so that, eventually, (27) 
lim k→∞ E out k,k u e -τ L(k u)-σ V (k u) = lim k→∞ 1 4 7 k 3 h 3 k-k u, 2 1 -u √ 1 + µ k + 9 √ 6 (1 -u) 3 u 3 (1 + µ) 3/2 (1 + W )(2 + W )σ 3/4 W 3 -h 3 k-k u, 2 1 -u √ 1 + µ k + 3 √ 6 (1 -u) 3 u 3 (1 + µ) 3/2 (1 + W )(2 + W )σ 3/4 W 3 = 3 √ 6 (u -1) 6 u 3 (W + 1)(W + 2) W 3 σ 3/4 M (µ) = 3 2 3/2 (u -1) 6 u 3 cosh 3 2 σ 1/4 sinh 3 3 2 σ 1/4 σ 3/4 M (µ)
with µ = µ(σ, τ, u) and W = W (σ) as above, and where the function M (µ) has the same expression as in (24). Normalizing by p out (u), this yields precisely the announced expression [START_REF] Guitter | Eulerian triangulations: two-point function and hull perimeter statistics[END_REF] with c = 1/3 and f = 36.

From the linear relation between µ and τ µ(σ, τ, u) = B(u)

τ 3 + A(σ)B(u) -1 , with B(u) = (1 -u) 2 u 2 and A(σ) = 3 √ σ 2 coth 2 3 2 σ 1/4 - 2 3 ,
we immediately deduce, taking the inverse Laplace transform of ( 27), that

lim k→∞ E k e -σ V (k u) V(k u) finite and L(k u) = L = 1 D out (L, u) 3 2 3/2 (u -1) 6 u 3 cosh 3 2 σ 1/4 sinh 3 3 2 σ 1/4 σ 3/4 × 3 B(u) e (1-A(σ) B(u))X(u) M (X(u)) with X(u) = 3L B(u) = 3 2 3/2 cosh 3 2 σ 1/4 sinh 3 3 2 σ 1/4 σ 3/4 e (1-A(σ)) B(u)X(u) = 3 2 3/2 cosh 3 2 σ 1/4 sinh 3 3 2 σ 1/4 σ 3/4 e -3 L (A(σ)-1) .
This is precisely the announced result [START_REF] Krikun | Local structure of random quadrangulations[END_REF] for c = 1/3 and f = 36. Remarkably, all the u dependences dropped out upon normalizing by D out (L, u) and the above conditional probability is thus independent of u.

Other families of maps

The strategy presented in this paper may be applied to other families of maps provided that a coding by slices exists and that the decomposition of the corresponding slices along dividing lines at a fixed distance from their apex is fully understood. This is the case for planar triangulations, as explained in [START_REF] Guitter | The distance-dependent two-point function of triangulations: a new derivation from old results[END_REF], and for planar Eulerian triangulations, as explained in [START_REF] Guitter | Eulerian triangulations: two-point function and hull perimeter statistics[END_REF]. We have reproduced and adapted the computations above to deal with these two other families of maps. We do not display here our calculations since they are quite tedious and give no really new information. Indeed, we find that, in the limit of large k and d with fixed u = d/k, all the laws that we obtained for quadrangulations have exactly the same expressions for triangulations and Eulerian triangulations, up to a global normalization for the rescaled length L(d) = L(d)/d 2 and a global normalization for the rescaled volume V (d) = V(d)/d 4 . If we adopt the definitions of [START_REF] Guitter | The distance-dependent two-point function of triangulations: a new derivation from old results[END_REF] and [START_REF] Guitter | Eulerian triangulations: two-point function and hull perimeter statistics[END_REF] for the hull at distance d in triangulation and Eulerian triangulations respectively, these normalizations amount to change in our various laws of Section 2 the values c = 1/3 and f = 36 found in Section 4 for quadrangulations to the values displayed in (4) and [START_REF] Guitter | Some results on the statistics of hull perimeters in large planar triangulations and quadrangulations[END_REF].

The origin of the scaling factor f is easily found in the relation between the weight h per face in the hull and the variable y which is "conjugated" to the distance d in the slice generating function T d (y) (by this, we mean that d appears in T d (y) via the combination y d only). We have for the three families (i), (ii) and (iii) of maps (see for instance [START_REF] Guitter | The distance-dependent two-point function of triangulations: a new derivation from old results[END_REF][START_REF] Guitter | The distance-dependent two-point function of quadrangulations: a new derivation by direct recursion[END_REF][START_REF] Guitter | Eulerian triangulations: two-point function and hull perimeter statistics[END_REF])

(i): h(y) = y 1 + y + y 2 (1 + 4y + y 2 ) 2 , (ii): h(y) = y(1 + y) (1 + 10y + y 2 ) 3/4 , (iii): h(y) = y 1 + y 2 (1 + y) 4 .
The desired singularities are obtained for h(y) = h(1)ρ where ρ = e -σ/d 4 if we wish to capture the large d behavior of the rescaled volume. Setting h(y) = h(1)e -σ/d 4 amounts, at large d to setting y = e -(f σ) 1/4 /d with, from the above relations f = 36 in case (i), f = 192 in case (ii) and f = 16 in case (iii). All the universal laws involving y d e -(f σ) 1/4 , the quantity σ always appears via the combination (f σ) 1/4 in our various laws. This explains the origin of f .

To understand the origin of the normalization factor c, the simplest quantity to compute is probably the limiting expectation value

lim k→∞ E out k,d α L(d) .
In the case of quadrangulations, we have from (21) the large k expansion

h 3 (k, T ) = 1 7 k 4 + 2 Y 7 k 3 + O(k 2 )
so that (after normalization by In agreement with the equivalence principle (1), these law reproduce the general form (5) for the limit u → 0 of D out (L, u)/p out (u) (recall that p out (u) → 1 for u → 0) via the identification c = 1/3 in case (i), c = 1/2 in case (ii) and c = 1/4 in case (iii). We end this section by giving for bookkeeping the (non-universal) expression for the probability P k (V(d) infinite) at finite k and d for the families (ii) and (iii). We find

f 3 (k) ∼ (4/7)k 3 ) lim k→∞ E out k,d α L(d) = 1 2 Y α 2 T d (1) -Y α 2 T d-1 (1) = 1 2 6α 2 + (d + 1)(d + 2) (25 -α 2 ) 6α 2 + (d + 1)(d + 2) (1 -α 2 ) - 6α 2 + d(d + 1) (25 -α 2 ) 6α 2 + d(d + 1) (1 -α 2 ) . Using (for C > 0) C 2 -β 1 -β = C + 2 p≥1 β p A p (C) with A p (C) = 1 C 2p-1 p-1 q=0 p -1 q 2q + 1 q C 2 -1 4 
(ii): P k (V(d) infinite) = k 2 (k + 1) 2 2(2k + 1) (5k 6 + 15k 5 + 14k 4 + 3k 3 -k 2 -1) × d(d + 1)(d + 2)(d + 3) 10d 4 + 60d 3 + 146d 2 + 168d + 71 (2d + 3)(k + 1) 3 - (d -1)d(d + 1)(d + 2) 10d 4 + 20d 3 + 26d 2 + 16d -1 (2d + 1)k 3 , (iii): P k (V(d) infinite) = k(k + 1)(k + 2)(k + 3) 2(2k + 3) (10k 6 + 90k 5 + 283k 4 + 348k 3 + 103k 2 -42k -36) × (d -1)(d + 1)(d + 3)(d + 5) 10d 4 + 80d 3 + 256d 2 + 384d + 189 (k + 2) (d + 2)(k + 1) 2 (k + 3) 2 - (d -2)d(d + 2)(d + 4) 10d 4 + 40d 3 + 76d 2 + 72d -9 (k + 1) (d + 1)k 2 (k + 2) 2 .
When k, d → ∞ and d/k = u, both expressions tend to p in (u) = (7 -3u)u 6 /4.

Conclusion

In this paper, we explored the statistics of hull perimeters for three families of infinitely large planar maps: quadrangulations, triangulations and Eulerian triangulations, with a particular emphasis on the influence on this statistics of the constraint that the map configurations either yield a finite hull volume or not. In the case where the hull volume is finite, we also discussed the statistics of this volume itself, as well as its coupling to the hull perimeter statistics. Our study, based on an accurate coding of k-pointed-rooted planar maps by k-slices, makes a crucial use of a particular recursive decomposition of these slices obtained by cutting them along lines which precisely follow hull boundaries for increasing distances d (see figure 10 for an illustration) for d < k. This decomposition, initiated in [START_REF] Guitter | The distance-dependent two-point function of triangulations: a new derivation from old results[END_REF] for triangulations, and then extended in [START_REF] Guitter | The distance-dependent two-point function of quadrangulations: a new derivation by direct recursion[END_REF][START_REF] Guitter | Eulerian triangulations: two-point function and hull perimeter statistics[END_REF] for the two other families of maps, may be used to address many other questions of the type discussed here, either for the same geometry, i.e. within pointed-rooted maps, or for other more involved geometries.

Among other quantities which may be computed within the above geometry of k-pointedrooted maps are the statistics of the volume W(d) ≡ N -V(d) of the complementary of the hull at distance d, i.e. the component containing the marked vertex x 1 . In the in-regime, W(d) is finite and we may compute its limiting universal expectation value for large k and d. We find

lim k→∞ E k W(k u) k 4 V(k u) infinite = f (1 -u) 14 + 16 u + 16 u 2 + 16 u 3 -39 u 4 + 12 u 5 480(7 -3u) .
This quantity is plotted in figure 12 for f = 36 (quadrangulations).

Concerning other tractable geometries, we recall that pointed maps with a boundary (i.e. maps with a distinguished external face of arbitrary degree) may be decomposed into sequences of slices and our recursive decomposition of slices gives a direct access to the statistics of a generalized hull at distance d whose boundary would separate the pointed vertex from the external face (assuming that all vertices of the boundary are at a distance strictly larger that d from the pointed vertex).

To conclude, many other families of maps (for instance maps with prescribed face degrees) may be coded by slices and, even if a recursion relation of the type of Ref. [START_REF] Guitter | The distance-dependent two-point function of triangulations: a new derivation from old results[END_REF][START_REF] Guitter | The distance-dependent two-point function of quadrangulations: a new derivation by direct recursion[END_REF][START_REF] Guitter | Eulerian triangulations: two-point function and hull perimeter statistics[END_REF] is not known in general for these slices 10 , the actual form of the associated slice generating functions is known in many cases [START_REF] Bouttier | Planar maps and continued fractions[END_REF]. This might be enough to address the hull statistics for these maps since, as the reader noticed, the actual expression for the operator K describing the action of one step of the recursion is not really needed. What is needed is an equation of the form (13) which displays the result of this operator on properly parametrized generating functions. This equation itself is moreover directly read off the explicit expression of the slice generating functions themselves (here for quadrangulations). Slices associated with maps with arbitrary face degrees have generating functions whose expressions are of the same general form (although more involved in general) as that for quadrangulations (see [START_REF] Bouttier | Planar maps and continued fractions[END_REF]). The actual knowledge of these expressions might thus be sufficient to infer the hull statistics for the corresponding maps. In the out-regime, we need to estimate the singularity of this latter quantity when g → 1/12 (x → 1). We find Figure 13 (respectively figure 14) shows a comparison between the limiting expression given in the first (respectively the second) line of [START_REF] Guitter | The distance-dependent two-point function of triangulations: a new derivation from old results[END_REF] In blue: the corresponding limiting law for large k and d, as given by the second line of [START_REF] Guitter | The distance-dependent two-point function of triangulations: a new derivation from old results[END_REF].

Figure 5 .

 5 Figure 5. The conditional probability density in the in-regime for the variable X = L/(cB), at u = 1/8, 2/8, 3/8, • • • and in the limit u → 1.

Figure 6 .

 6 Figure 6. The relative contribution of the probability densities D out (L, u) (in red) and D in (L, u) (in blue) to the total probability density D(L, u) = D out (L, u) + D in (L, u) (in black) as a function of L for the indicated four values of u.

Figure 7 .

 7 Figure 7. The probabilities π out (L, u) (in red) and π in (L, u) (in blue) to be in the out-or in the in-regime, knowing the value L of the rescaled perimeter L(k u) for fixed u and in the limit k → ∞. This probabilities are represented as a function of L for the indicated values of u.

Figure 8

 8 Figure 8 displays the same probabilities π out (L, u) and π in (L, u), now as a function of u for various values of L. For L → 0, we have the limiting expression

Figure 8 .

 8 Figure 8. The probabilities π out (L, u) (in red) and π in (L, u) (in blue) to be in the out-or in the in-regime, knowing the value L of the rescaled perimeter L(k u) for fixed u and in the limit k → ∞. This probabilities are represented as a function of u for the indicated values of L.

Figure 9 .

 9 Figure 9. A schematic picture of the bijection between a k-pointed-rooted planar quadrangulation (left) and a k-slice (right), as obtained by cutting the quadrangulation along the leftmost shortest path from x 1 to x 0 (taking the root-edge of the map as first step). The light blue and light gray domains are supposedly filled with faces of degree four. Left: the separating line at distance d (i.e. visiting alternately vertices at distance d and d -1 from x 0 ) delimits the hull at distance d (top part in light blue). Right: the image of this line connects the right-and left-boundaries of the k-slice and delimits an upper part containing x 0 (in light blue), which is the image of the hull, from a lower part containing x 1 .

  each of them satisfying d ≤ d + 1 and encompassing a number L i of the previous d -slices. These L i dslices contribute a weight α 2 T d (y) Li/2 to the first term in (14) (with L(d) = L(d+1)/2 i=1

Figure 10 .

 10 Figure 10. A schematic picture of the successive decompositions of a kslice obtained by cutting along (kd) successive separating lines at respective distance d, d + 1, • • • , k -1 from x 0 and, for the m-th such line (1 ≤ m ≤ kd), by cutting along the leftmost shortest paths to x 0 from the L(d + m -1)/2 vertices on this line lying at distance d + m -1 from x 0 (see text). Here k = d + 2 and for the level m = 1, we represented only the leftmost shortest paths (in brown) lying within one particular sub-slice delimited by the leftmost shortest paths (in blue) at level 2.

  )) and the corresponding finite k and d expressions (as given above) P k (V(d) finite) and P k (V(d) infinite) vs d/k for k = 50 and 2 ≤ d ≤ 49.

pFigure 11 .

 11 Figure 11. A comparison between the probability P k (V(d) finite) (respectively P k (V(d) infinite)) vs d/k for k = 50 and 2 ≤ d ≤ 49 and its limiting expression p out (u) (respectively p in (u)) vs u, as given by (2).

2

 2 and the large k statistics of the perimeter is captured by setting α = e -τ (k u) 2 with τ finite. From (15) and (21), we need the large k behavior of h 3 (k, Y (T )) for T = α 2 T d (1) and T = α 2 T d-1 (1) which involves the associated expansions of Y (T ), namely Y e -2 τ

q+1 here with C 2 ,

 2 = 25, we deduce that (i): lim k→∞ P out k,d (L(d) = 2p) = A p (5) (d -1)(d + 4) d + 1)(d + 2)where the subscript "out" is irrelevant since for finite d and infinite k, map configurations are necessarily in the out-regime. A similar calculation for the families (ii) and (iii) yields(ii): lim k→∞ P out k,d (L(d) = p) = A p (3) d(d + 3) d + 1)(d + 2) p -(d -1)(d + 2) d(d + 1) p ,(iii): lim k→∞ P out k,d (L(d) = 2p) = 2A p (3) (d -1)(d + 5) d + 1)(d + 3) p -(d -2)(d + 4) d(d + 2) p (note that L(d) is necessarily even in case (iii) but has arbitrary parity in case (ii)). From the large p behavior A p (C) ∼ √ C 2 -1/(2 √ π p), we immediately deduce, taking d and p large with p/d 2 = L/2 (case (i) and (iii)) or p/d 2 = L (case (ii)) the following probability densities for the three families of maps: (L ≤ L(d) < L + dL) (L ≤ L(d) < L + dL) = 16 L π e -4 L .

4 Figure 12 .

 412 Figure 12. A plot of the expectation value of the (properly normalized) volume W(d) ≡ N -V(d) in the in-regime as a function of u = k/d for large k and d (here with f = 36).

Appendix A .

 . Expectation value of the perimeter at finite k and d in the outand in-regimes Computing the expectation value of the perimeter simply involves computing the quantity ∂ α G(k, d, g, h, α) α=1 , which itself, from (15), simply requires an expression for the quantity 2T ∂ T H(k, x, T ) .

2 = 8 + 60480k 3 Y 7 - 5 - 4 + 69120k 7 Y 3 -

 28375473 2T ∂ T H(k, x, T ) sing. = 2T ∂ T h 3 k, Y (T ) (1 -12g) 3/dh 3 k, Y (T ) (1 -12g) 3/2 with dh 3 (k, Y ) = (25 -Y 2 )(1 -Y 2 ) 24Y ∂ Y h 3 (k, Y ) = k(25 -Y 2 )(1 -Y 2 ) 20160Y 3 (2k + Y -1) 3 (2k + Y + 1) 3 315Y 10 + 3780kY 9 + 19740k 2 Y 8 -1995Y 20160kY 7 + 120960k 4 Y 6 -82320k 2 Y 6 + 16590Y 6 + 161280k 5 Y 174720k 3 Y 5 + 71400kY 5 + 138240k 6 Y 4 -209664k 4 Y 4 + 101640k 2 Y 4 + 3594Y 139776k 5 Y 3 + 60480k 3 Y 3 -26784kY 3 + 15360k 8 Y 2 -39936k 6 Y 2 + 24192k 4 Y 2 -54224k 2 Y 2 -36217Y 2 -65100kY -21700k 2 + 5425 .10 Other recursions are known however.Setting h = 1/12 (y = 1) and α = 1 so that the values of interest are Y (T d (1)) = 2d + 3 and Y (T d-1 (1)) = 2d + 1, we immediately deduce, upon normalization, thatE k L(d) V(d) finite = dh 3 (kd, 2d + 3)dh 3 (kd, 2d + 1) h 3 (kd, 2d + 3)h 3 (kd, 2d + 1) .This immediately yields an explicit expression (which we do not reproduce here) for the expectation value of the perimeter at finite k and d in the out-regime. It is then easily verified that at large k and d, L(d) scales as d 2 and that, for k, d → ∞ and d/k = u fixed, the expression for the expectation value of L(d) = L(d)/d 2 simplifies into the formula given in the first line of[START_REF] Guitter | The distance-dependent two-point function of triangulations: a new derivation from old results[END_REF], with here c = 1/3. In the in-regime, we now set g = 1/12 (x = 1). Using, from (22),2T ∂ T H(k, 1, T ) = 25 -Y (T ) 2 1 -Y (T ) 2 24Y (T ) 32(2k + Y (T )) (2k + Y (T ) -1) 2 (2k + Y (T ) + 1) 2and plugging the expansion (23) for Y (T d (y)) when y → 1 (η → 0), we deduce2T ∂ T H k, 1, T d (y) sing. = δh 3 (k, d)(1 -12h) 3/2 with δh 3 (k, d) = 2(d -1)(d + 1)(d + 2)(d + 4) 315(2d + 3) 3 (d + k + 1) 3 (d + k + 2) 3 15d 4 + 90d 3 + 237d 2 + 306d + 140 × 6kd 6 + 12k 2 d 5 + 54kd 5 + 24d 5 + 6k 3 d 4 + 90k 2 d 4 + 240kd 4 + 180d 4 + 36k 3 d 3 + 270k 2 d 3 + 630kd 3 + 534d 3 + 68k 3 d 2 + 405k 2 d 2 + 937kd 2 + 783d 2 + 42k 3 d + 285k 2 d + 705kd + 567d -2k 3 + 63k 2 + 203k + 162 .We immediately deduce, upon normalization, thatE k L(d) V(d) infinite = dh 3 (kd, d)dh 3 (kd, d -1) h3 (kd, d) -h3 (kd, d-1)which again yields an explicit expression (not reproduced here) for the expectation value of the perimeter at finite k and d in the in-regime. It is again easily verified that, for k, d → ∞ and d/k = u fixed, the expression for the expectation value of L(d) = L(d)/d 2 simplifies into the formula given in the second line of[START_REF] Guitter | The distance-dependent two-point function of triangulations: a new derivation from old results[END_REF], with here c = 1/3.

Figure 13 .

 13 Figure 13. Plots of the expectation value of the rescaled hull perimeter L(d) in the out-regime as a function of d/k for k = 50, 100, 500, and 2000.In red: the corresponding limiting law for large k and d, as given by the first line of[START_REF] Guitter | The distance-dependent two-point function of triangulations: a new derivation from old results[END_REF].

Figure 14 .

 14 Figure 14. Plots of the expectation value of the rescaled hull perimeter L(d) in the in-regime as a function of d/k for k = 50, 100, 500, and 2000.In blue: the corresponding limiting law for large k and d, as given by the second line of[START_REF] Guitter | The distance-dependent two-point function of triangulations: a new derivation from old results[END_REF].

If the observable depends on both d and k, the equivalence clearly cannot be true in general as seen by taking for instance the expectation of d 2 /(k + d 2 ) equal to 1 or 0 according to the order of the limits.

By "just above", we mean at a distance from the origin larger than that of the line by a quantity remaining bounded when d becomes large.

The expression 3 3/2 cosh (2σ) 1/4 s/ 8/3 cosh 2 (2σ) 1/4 s/ 8/3 + 2-3/2of[START_REF] Curien | Scaling limits for the peeling process on random maps[END_REF] is indeed fully equivalent under the correspondence s = (2f ) 1/4 / √ 3.

In practice, as explained in[START_REF] Guitter | Some results on the statistics of hull perimeters in large planar triangulations and quadrangulations[END_REF], λ must be small enough and this condition precisely dictates the branch of solution chosen in (16) below.

More precisely, we must take the limit x → 1 -.

Note that, for τ = 0,(1-u) 6 u 3 M µ(0, u) = 1
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Introducing the inverse Laplace transform of M (µ), i.e. the quantity M (X) such that ∞ 0 e -µ X M (X) = M (µ), this quantity is easily computed and reads

From the linear relation

we immediately deduce, taking the inverse Laplace transform of (24), that

This is precisely the expression (3) for c = 1/3.

To compute its counterpart D in (L, u) in the in-regime, we use the explicit expression (22) of H(k, 1, T ) to derive the identity

and Y e

Using the easily computed large k expansions

with Q(µ, B) = 1 µ 4 -3µ 2 -3Bµ-4µ-6B + 4µ 3 +3Bµ 2 +20µ 2 +24Bµ+16µ+24B 4 √ 1 + µ 9 Note that, for τ = 0, u 3 Q(µ(0, u), B(u)) = 1 4 (7 -3u) u 6 = p in (u) as it should.