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REFINED UNIVERSAL LAWS FOR HULL VOLUMES AND

PERIMETERS IN LARGE PLANAR MAPS

EMMANUEL GUITTER

Abstract. We consider ensembles of planar maps with two marked vertices at distance k

from each other and look at the closed line separating these vertices and lying at distance

d from the first one (d < k). This line divides the map into two components, the hull
at distance d which corresponds to the part of the map lying on the same side as the

first vertex and its complementary. The number of faces within the hull is called the hull

volume and the length of the separating line the hull perimeter. We study the statistics
of the hull volume and perimeter for arbitrary d and k in the limit of infinitely large

planar quadrangulations, triangulations and Eulerian triangulations. We consider more

precisely situations where both d and k become large with the ratio d/k remaining finite.
For infinitely large maps, two regimes may be encountered: either the hull has a finite

volume and its complementary is infinitely large, or the hull itself has an infinite volume

and its complementary is of finite size. We compute the probability for the map to be in
either regime as a function of d/k as well as a number of universal statistical laws for the

hull perimeter and volume when maps are conditioned to be in one regime or the other.

1. Introduction

The study of random planar maps, which are connected graphs embedded on the sphere,
has been for more than fifty years the subject of some intense activity among combinatori-
alists and probabilists, as well as among physicists in various domains. Very recently, some
special attention was paid to statistical properties of the hull in random planar maps, a
problem which may be stated as follows: consider an ensemble of planar maps having two
marked vertices at graph distance k from each other. For any non-negative d strictly less
than k, we may find a closed line “at distance d” (i.e. made of edges connecting vertices
at distance d or so) from the first vertex and separating the two marked vertices from each
other. Several prescriptions may be adopted for a univocal definition of this separating line
but they all eventually give rise to similar statistical properties. The separating line divides
de facto the map into two connected components, each containing one of the marked ver-
tices. The hull at distance d corresponds to the part of the map lying on the same side as the
first vertex (i.e. that from which distances are measured). The geometrical characteristics
of this hull for arbitrary d and k provide random variables whose statistics may be studied
by various techniques. In particular, the statistics of the volume of the hull. which is its
number of faces, and of the hull perimeter, which is the length of the separating line, have
been the subject of several investigations [11, 10, 5, 4, 9, 12, 8].

In a recent paper [9], we presented a number of results on the statistics of the hull
perimeter at distance d for planar triangulations (maps with faces of degree three) and
quadrangulations (faces of degree four) in a universal regime of infinitely large maps where
both d and k are large and remain of the same order (i.e. the ratio d/k is kept fixed). As
we shall see, for such a regime, although the hull perimeter remains finite (but large, of
order d2), the volume of the hull at distance d may very well be itself strictly infinite. We
will compute below the probability for this to happen, a probability which remains non-zero
for large d and k (unless d/k → 0). In particular, if we wish a non-trivial description of
the hull volume statistics, we have to condition the map configurations so that their hull
volume remains finite. More generally, we may reconsider the statistics of the hull perimeter
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by separating the contribution coming from the set of map configurations with a finite hull
volume from that coming from the set of map configurations with an infinite hull volume.
More simply, we may consider the hull perimeter conditional statistics obtained by limiting
the configurations to either set of configurations. It is the subject of the present paper to
give a precise description of this refined hull statistics where we control the finite or infinite
nature of the hull volume. Most of the obtained laws crucially depend on the value of d/k but
are the same for planar triangulations and planar quadrangulations, as well as for Eulerian
triangulations (maps with alternating black and white triangular faces).

The paper is organized as follows: we first present in Section 2 a summary of our results
and give explicit expressions for the probability to have a finite or an infinite hull volume as
a function of d/k (Sect. 2.1), as well as for the conditional probability density for the hull
perimeter in both situations (Sect. 2.2). We then give (Sect. 2.3) the joint law for the hull
perimeter and hull volume, assuming that the latter is finite. Section 3 presents the strategy
that we use for our calculations which is based on already known generating functions whose
expressions are recalled in the case of quadrangulations (Sect. 3.1). We explain in details
(Sect. 3.2 ) how to extract from these generating functions the desired statistical results. This
strategy is implemented for quadrangulations in Section 4 where we compute the probability
to have a finite or an infinite hull volume (Sect.4.1), the probability density for the hull
perimeter in both regimes (Sect. 4.2) and the joint law for the hull perimeter and volume
when the latter is finite (Sect. 4.3). Section 5 briefly discusses triangulations and Eulerian
triangulations for which the same universal laws as those found in the previous sections
for quadrangulations are recovered. We gather a few concluding remarks in Section 6 and
present additional non-universal expressions at finite d and k in appendix A.

2. Summary of the results

The results presented in this paper have been obtained for three families of planar maps:
(i) planar quadrangulations, i.e. planar maps whose all faces have degree four, (ii) planar
triangulations, i.e. planar maps whose all faces have degree three and (iii) planar Eulerian
triangulations, which are planar triangulations whose faces are colored in black and white
with adjacent faces being of different color. For all these families, we obtain in the limit of
large maps the same laws for hull volumes and perimeters, up to two non-universal normal-
ization factors, one for the volume and one for the perimeter (called f and c respectively).
The hull volumes and perimeters are defined as follows: for the three families of maps and
for some integer k ≥ 1, we consider more precisely k-pointed-rooted maps, i.e. maps with a
marked vertex x0 (called the origin) and a marked oriented edge pointing from a vertex x1

at graph distance k from the origin x0 to a neighbor of x1 at distance k−1 (such neighbor
always exists)1. Given k ≥ 3 and some integer d in the range 2 ≤ d ≤ k−1, there exists a sim-
ple closed line along edges of the map, “at distance d” from the origin2 which separates the
origin x0 from x1. Several prescription are possible for a univocal definition of this separating
line and we will adopt here that proposed in [9] in cases (i) and (ii) and in [8] for case (iii).
We expect that other choices should not modify our results, except possibly for the value
of the perimeter normalization factor c. The hull at distance d in our k-pointed-rooted map
is defined as the domain of the map lying on the same side as the origin of the separating
line at distance d. Its volume V(d) is its number of faces and its perimeter L(d) the length
(i.e. number of edges) of its boundary, namely the length of the separating line at distance
d itself.

1In case (iii), we use more precisely some natural “oriented graph distance” using oriented paths keeping
black faces on their left, see [8].

2In practice, the line may be chosen in case (ii) so as to visit only vertices at distance d, and in case (i)
and (iii) so as to visit alternately vertices at distance d and d− 1.
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Figure 1. An illustration of map configurations in the out- and in-regimes.
The map is represented schematically with vertices placed at a height equal
to their distance from the origin x0. The vertices at distance d from x0 form
a number of closed curves at height d, one of which (in red) separates x0 from
x1 and defines the separating line at distance d. The part of the map lying on
the same side of this separating line as x0 constitutes the hull at distance d
(here in light blue). For maps with an infinite volume, the configuration is in
the out-regime if the hull volume remains finite (configuration on the left) or
it is in the in-regime if the hull volume itself becomes infinite (configuration
on the right).

2.1. The out- and in-regimes. Our results deal with the statistics of uniformly drawn
k-pointed-rooted maps in the families (i), (ii) or (iii) having a fixed number of faces N ,
and for a fixed value of the parameter k and, more precisely, with the limit N → ∞ of this
ensemble, keeping k finite. This corresponds to the so called local limit of infinitely large
maps and, as in [9], we shall denote by Pk({·}) the probability of some event {·} and Ek({·})
the expectation value of some quantity {·} in this limit.

In the limit N → ∞, two situations may occur: either the volume V(d) remains finite
and the number of faces N −V(d) of the complementary of the hull (namely the part of
the map lying on the same side of the separating line as x1) is infinite. This situation will
be referred to as the “out-regime” in the following. Or the volume V(d) is itself infinite
while the number N−V(d) of faces of the complementary of the hull remains finite. This
situation will be referred to as the “in-regime” in the following. The case where both V(d)
and N−V(d) would be infinite is expected to be suppressed when N →∞ (i.e. the number of
configurations in this regime does not grow with N as fast as that in the out- and in-regimes).
Situations in the out- and in- regime are illustrated in figure 1.

The main novelty in this paper is that our laws will discriminate between situations
where the map configurations are in the out- or in the in-regime. We shall use accordingly
the notations

P out
k,d ({·}) = Pk

(
{·} and V(d) finite

)
, P in

k,d({·}) = Pk
(
{·} and V(d) infinite

)
,

Eout
k,d ({·}) = Ek

(
{·}×θfinite(V(d)

)
, Ein

k,d({·}) = Ek
(
{·}×(1− θfinite(V(d))

)
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pout(u)

pin(u)
u0

Figure 2. A plot of the probability pout(u) (in red) and the complementary
probability pin(u) (in blue) as a function of u = d/k, as given by (2).

with θfinite(V) = 1 if V is finite and 0 otherwise. Alternatively, we will consider conditional
probabilities and conditioned expectation values, defined respectively as

Pk({·}|V(d) finite) =
P out
k,d ({·})

Pk(V(d) finite)
, Pk({·}|V(d) infinite) =

P in
k,d({·})

Pk(V(d) infinite)
.

Ek({·}|V(d) finite) =
Eout
k,d ({·})

Pk(V(d) finite)
, Ek({·}|V(d) infinite) =

Ein
k,d({·})

Pk(V(d) infinite)
,

where Pk(V(d) finite) = Ek
(
θfinite(V(d)

)
= 1− Pk(V(d) infinite).

Universal laws may are obtained when k and d themselves become large simultameously,
i.e. upon taking the limit k →∞, d→∞ with d/k fixed (necessarily between 0 and 1). We
set accordingly

u ≡ d

k
, 0 ≤ u ≤ 1 ,

and our universal results will deal with configurations having a fixed value of u.
As in [9], we insist on that we first let N → ∞, and only then take the limit of large k

and d. In particular, this is to be contrasted with the so called scaling limit where N , k and
d would tend simultaneously to infinity with k ∼ d ∼ N1/4. Note also that our universal
laws describe a broader regime than that explored in most papers so far on the hull statistics
[11, 10, 5, 4, 12], where the hull boundary is defined as a closed line separating some origin
vertex x0 from infinity in pointed maps of infinite size. This latter, more restricted, regime
may be recovered in our framework by sending first k →∞ with d kept finite, and only then
letting eventually d → ∞. As we shall discuss, the results obtained for this latter order of
limits match precisely those obtained by taking the limit u→ 0 of our results and they may
thus be considered as particular instances of our more general laws for arbitrary u. To be
precise, we observe that, for all the observables {·}d depending on d that we consider, we
have the equivalence

(1)
lim
u→0

(
lim
k→∞

Pk({·}k u)
)

= lim
d→∞

(
lim
k→∞

Pk({·}d)
)
,

lim
u→0

(
lim
k→∞

Ek({·}k u)
)

= lim
d→∞

(
lim
k→∞

Ek({·}d)
)
.

This equivalence is not a surprise since the limit u→ 0 describes precisely situations where
the distance d does not scale with k. We have however no rigorous argument to state that
the above identity (based on an inversion of limits) should hold in all generality for any
observable {·}d3 .

3If the observable depends on both d and k, the equivalence clearly cannot be true in general as seen by
taking for instance the expectation of d2/(k + d2) equal to 1 or 0 according to the order of the limits.
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Our first result is an expression, for a given u, of the probability that a randomly picked
k-pointed-rooted map be in the out- or in the in-regime. We find:

(2)
pout(u) ≡ lim

k→∞
Pk(V(k u) finite) =

1

4

(
4− 7u6 + 3u7

)
,

pin(u) ≡ lim
k→∞

Pk(V(k u) infinite) =
1

4
(7− 3u)u6 ,

with of course pout(u) + pin(u) = 1. Note that these probabilities involve no normalization
factor and are the same for the three families (i) (ii) and (iii) that we considered. They are
represented in figure 2. For u → 0, we have pout(u) → 1 and pin(u) → 0 so that the map
configuration is in the out-regime with probability 1. This is a first manifestation of the
equivalence (1) above. Indeed, sending k →∞ first before letting d be large ensures that the
connected component containing x1 (i.e. the complementary of the hull at distance d) has
some infinite volume, hence the configuration necessarily lies in the out-regime. On the other
hand, when u→ 1, we see that pout(u)→ 0 and pin(u)→ 1. This corresponds to situations
where the vertex x1 remains at a finite distance from the separating line at distance d, with
d becoming infinitely large. In such a situation, the connected part containing x1 has a finite
volume with probability 1. This result may be explained heuristically as follows: a rough
estimate of the probability pout(1) is given by the ratio of the length of the line at distance d
separating x0 from infinity by the length of the boundary of the ball of radius d with origin
x0. Indeed, the first length measures the number of ways to place x1 “just above”4 the line
separating x0 from infinity while the second length is an equivalent measure of the number
of ways of placing x1 anywhere just above a line at distance d. Since the first length typically
grows like d2 [11, 10, 5, 4, 9, 12, 8] while the second length grows like d3 (recall that random
maps have fractal dimension 4 [1, 3]), the ratio vanishes as 1/d when d → ∞ hence pout(1)
vanishes.

2.2. Probability density for the rescaled perimeter in the out- and in-regimes.
Our second result concerns the probability density for the hull perimeter at distance d = k u
in the out- and in-regimes. For large d, L(d) scales as d2 so a finite probability density is
obtained for the rescaled perimeter

L(d) ≡ L(d)

d2
.

We define more precisely the probability densities

Dout(L, u) ≡ lim
k→∞

1

dL
P out
k,k u (L ≤ L(k u) < L+ dL) ,

Din(L, u) ≡ lim
k→∞

1

dL
P in
k,k u (L ≤ L(k u) < L+ dL) ,

4By “just above”, we mean at a distance from the origin larger than that of the line by a quantity
remaining bounded when d becomes large.
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u → 0

u → 1

L

Dout(L,u)
pout(u)

Figure 3. The conditional probability densityDout(L, u)/pout(u) as a func-
tion of L for increasing values of u (following the arrow) and its u→ 0 and
u→ 1 limits, as given by (5).

for which we find the following explicit expressions:

(3)

Dout(L, u) =
(1− u)4

2c
√
πu

× e−BX
(
−2
√
X((X − 10)X − 2) + eX

√
πX(X(2X − 5) + 6)

(
1− erf

(√
X
)))

,

Din(L, u) =
u5

2c
√
π(1− u)2

× e−BX(BX + 2)
(

2
√
X(X + 1)− eX√πX(2X + 3)

(
1− erf

(√
X
)))

,

where X ≡ X(L, u) =
u2

(1− u)2

L

c
, B ≡ B(u) =

(1− u)2

u2
.

Here c is a normalization factor given in cases (i), (ii) and (iii) respectively by:

(4) (i): c =
1

3
, (ii): c =

1

2
, (iii): c =

1

4
.

Note that by definition, we have the normalizations
∫ ∞

0

Dout(L, u) dL = pout(u) ,

∫ ∞

0

Din(L, u) dL = pin(u) ,

a result which may be checked directly from the explicit expressions (2) and (3). Note also
that the ratio Dout(L, u)/pout(u) (resp. Din(L, u)/pin(u)) denotes, at fixed u = k/d, the
probability density for the rescaled perimeter L(d)/d2 for map configurations conditioned to
be in the out-regime (resp. in the in-regime), with an integral over L now normalized to 1.

Let us now analyze these latter conditional probability densities in more details. Let us
first assume that the map configuration lies in the out-regime: the conditional probability
density Dout(L, u)/pout(u), as displayed in figure 3, varies for increasing u between its u→ 0
and u→ 1 limits given, from the general expression (3), by

(5)

lim
u→0

Dout(L, u)

pout(u)
= 2
√
L

e−
L
c

c3/2
√
π
,

lim
u→1

Dout(L, u)

pout(u)
=

4

3
(
√
L)3 e−

L
c

c5/2
√
π
.
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u → 0

L

Din(L,u)
pin(u)

Figure 4. The conditional probability density Din(L, u)/pin(u) as a func-
tion of L for increasing values of u (following the arrow) and its u→ 0 limit,
as given by (6)

It is easy to verify that the u→ 0 expression above reproduces precisely the result obtained by
first sending k →∞, and then d→∞, in agreement with the announced equivalence (1). As
expected, this expression therefore matches that of Krikun [11, 10] and of Curien and Le Gall
[5, 4] concerning the probability density for the length of the line at distance d separating
some origin x0 from infinity in large pointed maps of the family at hand (with possibly
different values of c due to inequivalent prescriptions for the definition of the separating
line). Note that the requirement that the configuration be in the out-regime is actually not
constraining for u→ 0 since pout(0) = 1.

For u → 1, the requirement to be in the out-regime restricts the set of configurations to
those where we have chosen x1 in the vicinity (i.e. just above) the line separating x0 from
infinity (so that the domain in which x1 lies is infinite). As just discussed, this line has

a length Ld2 with density probability 2
√
Le−

L
c /(c3/2

√
π) while the number of choices for

x1 is (for fixed d) proportional to L. The conditional probability density for L(d) in the
in-regime is thus expected to be

L× 2
√
L e−

L
c

c3/2
√
π

∫∞
0
L× 2

√
L e−

L
c

c3/2
√
π
dL

=
4

3
(
√
L)3 e−

L
c

c5/2
√
π
,

and this is precisely the result obtained above.
Let us now assume that the map configuration lies in the in-regime and discuss the corre-

sponding conditional probability density for L(d). As displayed in figure 4, Din(L, u)/pin(u)
varies for increasing u between its u→ 0 limit given, from the general expression (3), by

(6) lim
u→0

Din(L, u)

pin(u)
=

4

7

√
L (2c+ L)

e−
L
c

c5/2
√
π

and a degenerate u → 1 limit where only the rescaled length L = 0 is selected. Recall
that pin(u) → 0 for u → 0 and the limiting law just above for u → 0 therefore describes
a very restricted set of configurations where the connected domain containing x1, although
k becomes arbitrary larger than d, remains of finite volume. As for the u → 1 limit, the
fact that the probability density concentrates around L = 0 means that L(d) scales less
rapidly than d2 in this limit and that some new appropriate rescaling is required. As already
discussed in [9], a non-trivial law is in fact obtained by switching to the variable X in (3),
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u → 1

X

cB Din(cB X,u)
pin(u)

4
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Figure 5. The conditional probability density in the in-regime for the vari-
able X = L/(cB), at u = 1/8, 2/8, 3/8, · · · and in the limit u→ 1.

i.e. considering the probability density for the rescaled length

X(k, d) ≡ L(d)

c (k2 − d2)
=

u2

c (1− u)2
L(d) ,

where the coefficient c is arbitrarily included in the definition of X(k, d) so as to have the
same limiting law for the three map families (i), (ii) and (iii). Setting B = (1− u)2/u2 as in
(3), so that L(d) = c B X(k, d), the probability density for X(k, k u) is given for u→ 1 by

lim
u→1

cB
Din(cB X, u)

pin(u)
=

2
√
X(X + 1)− eX√πX(2X + 3)

(
1− erf

(√
X
))

√
π

.

This result matches that of [9] found for a statistics where the out- and in-regimes are not
discriminated, as it should since, for u → 1, the requirement to be in the in-regime is not
constraining (pin(1) = 1). The probability density for X(k, k u) for increasing values of u
and its universal limit above when u→ 1 are displayed in figure 5.

It is interesting to measure the relative contribution of the out- and in-regimes to the
“total” probability density for the rescaled length L(d), i.e. the probability density obtained
irrespectively of whether V(d) is finite or not, namely

D(L, u) ≡ lim
k→∞

1

dL
Pk (L ≤ L(k u) < L+ dL) = Dout(L, u) +Din(L, u) .

The reader will easily check that the expression for D(L, u) resulting from the explicit
forms (3) matches precisely the expression for D(L, u) found in [9], as it should. We have
represented in figure 6 the probability density D(L, u) for various values of u as well as
its two components Dout(L, u) and Din(L, u). As expected, D(L, u) is dominated by the
contribution of the out-regime at small enough u (in practice up to u ∼ 1/2) and by starts
feeling the in-regime contribution when u approaches 1. This latter contribution moreover
dominates the u → 1 limit for small L. In particular, the appearance in D(L, u) of a
peak around L = 0 when u is large enough, which was observed in [9] but remained quite
mysterious is simply explained by the domination of the in-regime for u→ 1. No such peak
ever appears in the contribution Dout(L, u) of the out-regime.
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Figure 6. The relative contribution of the probability densities Dout(L, u)
(in red) and Din(L, u) (in blue) to the total probability density D(L, u) =
Dout(L, u) + Din(L, u) (in black) as a function of L for the indicated four
values of u.

From the laws (3), we may also compare the expectation value of L(d) in the out- and
in-regime to that obtained whithout conditioning: we have respectively

(7)

lim
k→∞

Ek

(
L(k u)

∣∣∣V(k u) finite
)

=
lim
k→∞

Eout
k,k u

(
L(k u)

)

pout(u)
=

3c
(
4+4u−21u6+17u7−4u8

)

2 (4−7u6+3u7)
,

lim
k→∞

Ek

(
L(k u)

∣∣∣V(k u) infinite
)

=
lim
k→∞

Ein
k,k u

(
L(k u)

)

pin(u)
=

3c(9−4u)(1−u)

2(7−3u)
,

lim
k→∞

Ek (L(k u)) = pout(u)
3c
(
4 + 4u− 21u6 + 17u7 − 4u8

)

2 (4− 7u6 + 3u7)
+ pin(u)

3c(9− 4u)(1− u)

2(7− 3u)

=
3

2
c
(
1 + u− 3u6 + u7

)
,

where the last expression matches the result of [9].
To end this section, let us discuss the probability πout(L, u) (resp. πin(L, u) to be in the

out-regime (resp. in the in-regime), knowing that the rescaled length L(d) is equal to L (with
as before u = d/kfixed), namely

πout(L, u) = lim
k→∞

Pk

(
V(k u) finite

∣∣∣L(k u) = L
)

=
Dout(L, u)

D(L, u)
= 1− πin(L, u) .

We have plotted in figure 7 the quantities πout(L, u) and πin(L, u) as a function of L for
various values of u. For u→ 0, we have πout(L, 0) = 1 and πin(L, 0) = 0 irrespectively of L.
For u→ 1, we have the limiting expression:

πout(L, 1) =
28L3

6c3 + 3Lc2 + 28L3
= 1− πin(L, 1) .
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u = 5
8u = 4

8

u → 1u = 6
8

out

in

L

L

L

L

L

Figure 7. The probabilities πout(L, u) (in red) and πin(L, u) (in blue) to
be in the out- or in the in-regime, knowing the value L of the rescaled
perimeter L(k u) for fixed u and in the limit k →∞. This probabilities are
represented as a function of L for the indicated values of u.

Figure 8 displays the same probabilities πout(L, u) and πin(L, u), now as a function of u for
various values of L. For L→ 0, we have the limiting expression

πout(0, u) =
(1− u)6

(1− 2u+ 2u2) (1− 4u+ 5u2 − 2u3 + u4)
= 1− πin(0, u)

(note the remarkable symmetry πout(0, u) = πin(0, 1− u)). For L→∞, πout(L, u) tends to
1 and πin(L, u) to 0, irrespectively of u.

2.3. Joint law for the rescaled perimeter and volume in the out-regime. Our third
result concerns the joint law for the hull perimeter L(d) and the hull volume V(d). Of course
such law is non-trivial only if the hull volume is finite, i.e. if we condition the configurations
to be in the out-regime. From now on, all our results will thus be conditioned to be in the
out-regime. For Large d, V(d) scale as d4 and we therefore introduce the rescaled volume

V (d) ≡ V(d)

d4
.

Our main result is the following expectation value

(8)

lim
k→∞

Ek

(
e−σ V (k u)−τ L(k u)

∣∣∣V(k u) finite
)

=
(1− u)6

u3 pout(u)
× (fσ)3/4 cosh

(
1
2 (fσ)1/4

)

8 sinh3
(

1
2 (fσ)1/4

)

×M
(
µ(σ, τ, u)

)
,

where M(µ) =
1

µ4

(
3µ2 − 5µ+ 6 +

4µ5 + 16µ4 − 7µ2 − 40µ− 24

4(1 + µ)5/2

)

and µ(σ, τ, u) =
(1− u)2

u2

(
c τ +

√
fσ

4

(
coth2

(
1

2
(fσ)1/4

)
− 2

3

))
− 1 ,



REFINED HULL LAWS 11

L = 0.125
L → 0

L = 0.375L = 0.250

out

in

u

u

u

u

L

out

Figure 8. The probabilities πout(L, u) (in red) and πin(L, u) (in blue) to
be in the out- or in the in-regime, knowing the value L of the rescaled
perimeter L(k u) for fixed u and in the limit k →∞. This probabilities are
represented as a function of u for the indicated values of L.

with pout(u) as in (2) and where f is a normalization factor given in cases (i), (ii) and (iii)
respectively by

(9) (i): f = 36 , (ii): f = 192 , (iii): f = 16 .

Setting τ = 0 and expanding at first order in σ, we immediately deduce that, in particular

lim
k→∞

Ek

(
V (k u)

∣∣∣V(k u) finite
)

=
f

480

(
20 + 12u− 77u6 + 57u7 − 12u8

)

(4− 7u6 + 3u7)
,

a quantity which increases from f/96 at u = 0 to 7f/480 at u = 1.

The expectation value (8) above has a simple limit when u→ 0, namely

lim
u→0

(
lim
k→∞

Ek

(
e−σ V (k u)−τ L(k u)

))

=
(fσ)3/4 cosh

(
1
2 (fσ)1/4

)

8 sinh3
(

1
2 (fσ)1/4

) (
c τ +

√
fσ
4

(
coth2

(
1
2 (fσ)1/4

)
− 2

3

))3/2

(note that the condition that V(d) is finite is automatically satisfied in the limit u→ 0 since
pout(0) = 1). For τ = 0, this expression simplifies into

lim
u→0

(
lim
k→∞

Ek

(
e−σ V (k u)

))
=

cosh
(

1
2 (fσ)1/4

)

sinh3
(

1
2 (fσ)1/4

) (
coth2

(
1
2 (fσ)1/4

)
− 2

3

)3/2
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and we recover here a result by Curien and Le Gall [4]5, in agreement with the equivalence
principle (1). When u→ 1, we get another interesting limit

lim
k→∞

Ek

(
e−σ V (k)−τ L(k)

∣∣∣V(k) finite
)

=
(fσ)3/4 cosh

(
1
2 (fσ)1/4

)

8 sinh3
(

1
2 (fσ)1/4

) (
c τ +

√
fσ
4

(
coth2

(
1
2 (fσ)1/4

)
− 2

3

))5/2
.

Performing an inverse Laplace transform on the variable τ , we may extract from (8) the
expectation value of e−σ V (d) knowing the value L of L(d) in the out-regime. We find (see
Section 4.3 for details) that

(10)

lim
k→∞

Ek

(
e−σ V (k u)

∣∣∣V(k u) finite and L(k u) = L
)

=
1

8
e
−Lc

(√
fσ
4 (coth2( 1

2 (fσ)1/4)− 2
3 )−1

)
(fσ)3/4 cosh

(
1
2 (fσ)1/4

)

sinh3
(

1
2 (fσ)1/4

) .

Note that this quantity turns out to be independent of u and is thus equal to its limit for
u → 0. In agreement with the equivalence (1), our result thus reproduces, now for any u,
the expression found by Ménard in Ref. [12] in a limit where k →∞ before d becomes large.

We have in particular

lim
k→∞

Ek

(
V (k u)

∣∣∣V(k u) finite and L(k u) = L
)

=
f(c+ L)

240c

independently of u. The fact that the law for the rescaled volume V (d), knowing the rescaled
perimeter L(d), is independent of u is not so surprising. Indeed, u measures the distance
k = d/u from the origin at which the marked vertex x1 lies. Once the perimeter L(d) is
fixed, the hull, whenever finite, is insensitive to the position of the second marked vertex.
The law for its volume V(d) depends only on d and L(d), and, by simple scaling, it translates
into a law for the rescaled volume V (d) depending on the rescaled perimeter L(d) only. Note
that, on the other hand, fixing the hull perimeter L(d) has some influence on the possible
choices for the position of x1 as a function of its distance k = d/u from the origin x0. This
in return explains why the law for L(d) and consequently that for V (d) in the out-regime
both depend on u for fixed k, as displayed in (8).

3. Derivation of the results: the strategy

Let us now come to the derivation of our results and explain the strategy behind our
calculations. To simplify the discussion, we will focus here on the family (i) of quadrangula-
tions. The cases (ii) of triangulations and that (iii) of Eulerian triangulations are amenable
to exactly the same type of treatment and we will briefly discuss them in Section 5 below.

3.1. Generating functions. The main ingredient is the generating function G(k, d, g, h, α)
of planar k-pointed-rooted quadrangulations, enumerated with a weight

gN−V(d) hV(d) αL(d) ,

where N is the total number of faces, and L(d) and V(d) are respectively the perimeter and
volume of the hull at distance d (note that V(d) ≤ N by definition and we assume k ≥ 3 and
2 ≤ d ≤ k − 1). To define precisely the hull at distance d, we use the construction discussed

5The expression 33/2 cosh
(

(2σ)1/4 s/
√

8/3
)(

cosh2
(

(2σ)1/4 s/
√

8/3
)

+ 2
)−3/2

of [4] is indeed fully

equivalent under the correspondence s = (2f)1/4/
√

3.
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in [9]. Then G(k, d, g, h, α) may be given an explicit expression as follows: we use for the
weights g and h the parametrization

(11) g =
x(1 + x+ x2)

(1 + 4x+ x2)2
, h =

y(1 + y + y2)

(1 + 4y + y2)2
,

with x and y real between 0 and 1 (so that the generating function is well-defined for real g
and h in the range 0 ≤ g, h ≤ 1/12). We also introduce the quantity

T∞(z) =
z(1 + 4z + z2)

(1 + z + z2)2
,

where z will be taken equal to x or y depending on the formula at hand. We have, from [9],

(12) G(k, d, g, h, α) = K
(
K
(
· · ·
(
K
(

︸ ︷︷ ︸
k−d times

α2 Td(y)
))))

−K
(
K
(
· · ·
(
K
(

︸ ︷︷ ︸
k−d times

α2 Td−1(y)
))))

,

where Td(y) is defined by

Td(y) = T∞(y)
(1− yd−1)(1− yd+4)

(1− yd+1)(1− yd+2)
,

and K ≡ K(x) is an operator (depending on x only), which satisfies the relation (which fully
determines it):

(13) K
(
T∞(x)

(1− λx−1)(1− λx4)

(1− λx)(1− λx2)

)
= T∞(x)

(1− λ)(1− λx5)

(1− λx2)(1− λx3)

for any arbitrary6 λ .
The origin of the above formula (12) can be found in Refs. [6] and [9]. We invite the

reader to consult these references for details. Let us still briefly discuss the underlying
decomposition of k-pointed-rooted quadrangulations on which the formula is based. As
displayed in figure 9, a k-pointed-rooted quadrangulation may be unwrapped into what is
called a k-slice by cutting it along some particular path of length k, namely the leftmost
among shortest paths (along edges of the map) from x1 to x0 having the root edge (i.e.
the edge joining x1 to its chosen neighbor at distance k−1 from x0) as first step. The
resulting k-slice has a a left- and a right-boundary of respective lengths k and k−1 linking
the image of the root-edge in the k-slice (the so-called slice base) to the image of x0 (the
so-called slice apex ). The passage from the k-pointed-rooted quadrangulation to the k-slice
is a bijection so G(k, d, g, h, α) may also be viewed as the generating function for k-slices
with appropriate weights. The hull boundary at distance d on the quadrangulation becomes
a simple dividing line which links the right-and left-boundaries of the k-slice and separates
it into an upper part, corresponding to the hull at distance d in the original map and a
complementary lower part. The dividing line visits alternately vertices at distance d−1 and
d from the apex, starting at the unique vertex along the right-boundary at distance d−1
from the apex and ending at the unique vertex along the left-boundary at distance d−1
from the apex. The upper part can be decomposed into a number of d′-slices with d′ ≤ d by
cutting it along the leftmost shortest paths to x0 starting from all the vertices at distance
d from x0 along the dividing line. Since these vertices represent half of the vertices along
the dividing line, the number of d′-slices is precisely L(d)/2 (note that L(d) is necessarily
even for quadrangulations). Each of these slices is enumerated by a quantity Td(y) equal to
the generating function of d′-slices with 2 ≤ d′ ≤ d and a weight h per face (see [6] for a
precise definition), where h and y are related via (11). The expression for Td(y) is that given
just above, as computed in [6]. The juxtaposition of the d′-slices results in a total weight
(Td(y))L(d)/2 but, in order to impose that the maximum value of d′ for all the d′-slices is
actually exactly equal to d, we must eventually subtract the weight of those configurations

6In practice, as explained in [9], λ must be small enough and this condition precisely dictates the branch
of solution chosen in (16) below.
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x1

k

x1

x0

x0

d−1
d

k−1 k

k−1

d−1d−1d

Figure 9. A schematic picture of the bijection between a k-pointed-rooted
planar quadrangulation (left) and a k-slice (right), as obtained by cutting
the quadrangulation along the leftmost shortest path from x1 to x0 (taking
the root-edge of the map as first step). The light blue and light gray domains
are supposedly filled with faces of degree four. Left: the separating line at
distance d (i.e. visiting alternately vertices at distance d and d− 1 from x0)
delimits the hull at distance d (top part in light blue). Right: the image of
this line connects the right- and left-boundaries of the k-slice and delimits
an upper part containing x0 (in light blue), which is the image of the hull,
from a lower part containing x1.

where all d′ would be less than d−1, namely (Td−1(y))L(d)/2. Incorporating the desired
weight αL(d), the generating function of the upper part eventually reads

(14)
(
α2 Td(y)

)L(d)/2 −
(
α2Td−1(y)

)L(d)/2

for the contribution of those configurations having a fixed value L(d) of the hull perimeter
at distance d. This explains why the expression of G(k, d, g, h, α) is a difference of two

terms, corresponding to the action of the same operator K◦(k−d) on α2 Td(y) and α2 Td−1(y)
respectively.

To understand the origin of this operator, which incorporates the contribution of the lower
part, we proceed by recursion upon drawing the images of the successive hull boundaries at
distance d+1, d+2, · · · until we reach the hull boundary at distance k which reduces to the
line of length L(k) = 2 formed by the concatenation of root-edge of the k-slice and the first
edge (starting from x1) of the left-boundary (see figure 10 where k = d + 2). Looking at
the hull boundary at distance d+1, we perform the same decomposition of the part above
this boundary as we did before, by splitting it into L(d + 1)/2 slices upon cutting along
the leftmost shortest paths to the apex starting from all the boundary vertices at distance
d + 1 (blue lines in figure 10). This creates d′′-slices Si, i = 1, · · · L(d + 1)/2, each of them
satisfying d′′ ≤ d+ 1 and encompassing a number Li of the previous d′-slices. These Li d′-
slices contribute a weight

(
α2 Td(y)

)Li/2
to the first term in (14) (with L(d) =

∑L(d+1)/2
i=1 Li)

while the generating function for the part of the slice Si lying below the hull boundary at
distance d, which depends only on the (half-)length Li/2 may be written has [TLi/2]K(T ) for
some operator K(T ) depending on g only (or equivalently on x via (11)). This operator was
computed in [6] and, as explained in [9], satisfies the property (13) above. Summing over all
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k=d+2

d

Td(y)

k−1 = d+1

d+1

d−1

d−1
d

d+ 1

d−1α

ααααα

K(α2Td(y))

d

d−1

K(K(α2Td(y)))

x0

x1

Figure 10. A schematic picture of the successive decompositions of a k-
slice obtained by cutting along (k − d) successive separating lines at re-
spective distance d, d + 1, · · · , k − 1 from x0 and, for the m-th such line
(1 ≤ m ≤ k − d), by cutting along the leftmost shortest paths to x0 from
the L(d + m − 1)/2 vertices on this line lying at distance d + m − 1 from
x0 (see text). Here k = d+ 2 and for the level m = 1, we represented only
the leftmost shortest paths (in brown) lying within one particular sub-slice
delimited by the leftmost shortest paths (in blue) at level 2.

values of L(d), hence on all values of Li, each of the d′′-slices contributes a weight

K
(
α2 Td(y)

)

to the sum over L(d) of the first term in (14). Taking into account the L(d+ 1)/2 d′′-slices,
we end up with a contribution

(
K
(
α2 Td(y)

))L(d+1)/2 −
(
K
(
α2Td−1(y)

))L(d+1)/2

for the part above the hull-boundary at distance d + 1 of those configurations with a fixed
value L(d+ 1) of the hull perimeter at distance d+ 1. Repeating the argument k − d times
immediately yields the desired expression (12) since L(k) = 2 by construction.

In order to have a more tractable expression, we may now perform explicitly the k−d
iterations of the operator K in (12). This leads immediately to the more explicit formula

(15)

G(k, d, g, h, α) = H
(
k − d, x, α2Td(y)

)
−H

(
k − d, x, α2Td−1(y)

)

where H(k, x, T ) = T∞(x)

(
1− λ(x, T )xk−1

)(
1− λ(x, T )xk+4

)
(
1− λ(x, T )xk+1

)(
1− λ(x, T )xk+2

)

provided λ(x, T ) is defined through

T∞(x)

(
1− λ(x, T )x−1

)(
1− λ(x, T )x4

)
(
1− λ(x, T )x

)(
1− λ(x, T )x2

) = T ,

namely



16 EMMANUEL GUITTER

(16)

λ(x, T ) =
T∞(x)(1+x5)− x2T (1 + x)−

√
(T∞(x)(1+x5)−x2T (1+x))

2−4x5(T∞(x)−T )2

2x4 (T∞(x)−T )
,

These latest expressions (15) and (16) will be our starting point for explicit calculations.

A last quantity of interest is the generating function of F (k, g) of planar k-pointed-rooted
quadrangulations with a weight g per face. We have clearly F (k, g) = G(k, d, g, g, 1) for any
d ≤ k − 1 and we easily obtain from the above formulas that λ

(
x, Td(x)

)
= xd so that

F (k, g) = T∞(x)

(
(1− xk−1)(1− xk+4)

(1− xk+1)(1− xk+2)
− (1− xk−2)(1− xk+3)

(1− xk)(1− xk+1)

)
.

3.2. Sending N →∞: the out- and in-regimes. Let us now explain how we can extract
from the above generating functions results on theN →∞ limit, imposing that the configura-
tions are either in the out- or the in-regime. To simplify the notations, let us omit for a while
the dependence of G(k, d, g, h, α) in α, k and d and write G(k, d, g, h, α) = G(g, h), as well
as N − V(d) = n1 and V(d) = n2. We also denote by Gn1,n2

the coefficient [gn1hn2 ]G(g, h).
We are then interested in the large N limit of the quantity

(17)
∑
n1,n2

n1+n2=N

Gn1,n2
,

which we wish to extract from the knowledge of the generating function G(g, h). As men-
tioned earlier, we also assume that when N → ∞, the sum in (17) is dominated by two
contributions, that with n1 → ∞, n2 staying finite, which corresponds to what we called
the out-regime, and that with n2 → ∞, n1 staying finite, which we called the in-regime,
while the contribution where both n1 and n2 become infinite simultaneously is algebraically
suppressed for large N . To describe the out-regime, we must consider the n1 →∞ behavior
of Gn1,n2

which is encoded in the singular behavior of G(g, h) when g reaches some critical
value g∗ (the radius of convergence of the series in g, possibly depending on h and the other
parameters). Similarly, properties of the in-regime are encoded in the singular behavior of
G(g, h) when h reaches some critical value h∗ (possibly depending on g and the other param-
eters). For the generating function G(k, d, g, h, α) of interest, the singularities appear when
either x→ 1 or y → 1, irrespectively of k, d and α, i.e., from (11), for g → 1/12 or h→ 1/12.
We therefore have g∗ = 1/12 (independently of h and the other parameters) and h∗ = 1/12
(independently of g and the other parameters). More precisely, we have expansions of the
form

G(g, h) = g0(h) + g2(h)(1− 12g) + g3(h)(1− 12g)3/2 +O((1− 12g)2) ,

G(g, h) = g̃0(g) + g̃2(g)(1− 12h) + g̃3(g)(1− 12h)3/2 +O((1− 12h)2) .

(where all the functions implicitly depend on k, d and α). Note in particular thatG(1/12, h) =
g0(h) and G(g, 1/12) = g̃0(g) are finite and that there are no square-root singularities.

Taking the term of order hn2 in the first expansion above, we deduce the singular part
(∑

n1

Gn1,n2
gn1

)∣∣∣
sing.

= [hn2 ]g3(h)× (1− 12g)3/2

from which we deduce the large n1 behavior

Gn1,n2 ∼
n1→∞

[hn2 ]g3(h)× 3

4

12n1

√
πn

5/2
1
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so that
∑

n2

GN−n2,n2 ∼
N→∞

3

4

12N√
πN5/2

∑

n2

[hn2 ]g3(h)× 12−n2 =
3

4

12N√
πN5/2

g3

(
1

12

)
.

This represents precisely the contribution of the out-regime to the large N limit of the sum
(17). If, more generally, we wish to control the volume V(d) in the out-regime, we may
consider

∑

n2

GN−n2,n2
ρn2 ∼

N→∞

3

4

12N√
πN5/2

∑

n2

[hn2 ]g3(h)×
( ρ

12

)n2

=
3

4

12N√
πN5/2

g3

( ρ
12

)
.

By a similar argument, the in-regime contribution to the sum (17) behaves as

∑

n1

Gn1,N−n1
∼

N→∞

3

4

12N√
πN5/2

g̃3

(
1

12

)
.

For F (g) ≡ F (k, g), we have an expansion of the form

F (g) = f0 + f2(1− 12g) + f3(1− 12g)3/2 +O((1− 12g)2)

which yields the large N estimate

[gN ]F (g) ∼
N→∞

3

4

12N√
πN5/2

f3 .

By taking the appropriate ratios, we eventually deduce the large N limit of the desired
expectation values, namely

(18) Eout
k,d

(
ρV(d) αL(d)

)
=

g3

(
ρ
12 , k, d, α

)

f3(k)
,

where we re-introduced explicitly the dependence in k, d and α of g3(h) ≡ g3(h, k, d, α) and
f3 ≡ f3(k), and

(19) Ein
k,d

(
αL(d)

)
=

g̃3

(
1
12 , k, d, α

)

f3(k)

(with the more explicit dependence g̃3(g) ≡ g̃3(g, k, d, α)). This reduces our problem to
estimating the quantities g3(h), g̃3(g) and f3 from our explicit expressions for G(k, d, g, h, α)
and F (k, g).

4. Derivation of the results: explicit calculations

Since the expression for G(k, d, g, h, α) is quite involved, explicit calculations may be
difficult to perform in all generalities for finite k and d and some of our results will hold only
in the limit of large k and d. Still, the simplest questions may be solved exactly for finite k
and d: this is the case for the probability to be in the out- or the in-regime, as we discuss
now.

4.1. Results at finite k and d: the probability to be in the out- or in-regime. If
we wish to compute the probability to be in the out- or in-regime, we may set α = 1 and
ρ = 1 in (18) and (19) since we do not measure the hull perimeter nor the hull volume. More
precisely, we have

Pk(V(d) finite) = Eout
k,d (1) =

g3

(
1
12 , k, d, 1

)

f3(k)
,

Pk(V(d) infinite) = Ein
k,d(1) =

g̃3

(
1
12 , k, d, 1

)

f3(k)
.

To compute f3(k), we set

g =
1

12
(1− ε4)↔ ε = (1− 12g)1/4 ,
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and, from the corresponding small ε expansion of x,

x = 1−
√

6 ε+ 3 ε2 − 5

2

√
3

2
ε3 + 3 ε4 − 39

16

√
3

2
ε5 + 3 ε6 − 157

64

√
3

2
ε7 + 3ε8 − · · · ,

we immediately get the small ε expansion of F (k, g). As expected, we find terms of order
ε0, ε4 = (1 − 12g) and ε6 = (1 − 12g)3/2 but no term of odd order in ε (as a consequence
of the x → 1/x symmetry of all the formulas) and, more importantly, no term of order
ε2 = (1− 12g)1/2. The coefficient of ε6 in the expansion yields:

(20) f3(k) =
4
(
k2 + 2k − 1

) (
5k4 + 20k3 + 27k2 + 14k + 4

)

35k(k + 1)(k + 2)
.

To compute g3 (1/12, k, d, 1), we have to consider the expansion of G(k, d, g, 1/12, 1) when
g → 1/12. Note that setting h = 1/12 amounts to setting y = 1, in which case Td(y)
simplifies into

Td(1) =
2

3

(d− 1)(d+ 4)

(d+ 1)(d+ 2)
.

We may easily compute the singularity of the function H(k, x, T ) (as defined in (15) and
(16)) for ε → 0. Again, the leading singularity corresponds to the ε6 term and we find
explicitly

(21)

H(k, x, T )
∣∣∣
sing.

= h3

(
k, Y (T )

)
(1− 12g)3/2

with h3(k, Y ) =
k

840Y ((2k + Y )2 − 1)
2

(
105(k + Y )8 + 420

(
k2 − 3

)
(k + Y )6

− 210
(
k4 + 6k2 + 49

)
(k + Y )4 − 4

(
75k6 − 567k4 − 1715k2 − 2273

)
(k + Y )2

− (k − 5)(k − 1)(k + 1)(k + 5)
(
15k4 + 138k2 − 217

) )

and Y (T ) =

√
3T − 50

3T − 2
.

Note that we have the particularly simple expression

Y
(
Td(1)

)
= 2d+ 3

so that, from (15),

g3

(
1

12
, k, d, 1

)
= h3(k − d, 2d+ 3)− h3(k − d, 2d+ 1)

and

Pk(V(d) finite) =
1

f3(k)
(h3(k − d, 2d+ 3)− h3(k − d, 2d+ 1))

=
1

f3(k)

(
1

105(2d+ 3)(k + 1)2(k + 2)2
×

(
(2d+ 3)(k − 1)(k + 1)(k + 2)(k + 4)

(
15k4 + 90k3 + 237k2 + 306k + 140

)

− (2k + 3)(d− 1)(d+ 1)(d+ 2)(d+ 4)
(
15d4 + 90d3 + 237d2 + 306d+ 140

) )

− 1

105(2d+ 1)k2(k + 1)2
×

(
(2d+ 1)(k − 2)k(k + 1)(k + 3)

(
15k4 + 30k3 + 57k2 + 42k − 4

)

− (2k + 1)(d− 2)d(d+ 1)(d+ 3)
(
15d4 + 30d3 + 57d2 + 42d− 4

) )
)
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with f3(k) as in (20) above.
Let us now compute the probability to be in the in-regime which requires the knowledge

of g̃3 (1/12, k, d, 1). We thus have to consider the expansion of G(k, d, 1/12, h, 1) when h→
1/12. Note that setting g = 1/12 now amounts to setting x = 17, in which case we find the
simple expression

(22) H(k, 1, T ) =
2

3

(2k + Y (T ))
2 − 25

(2k + Y (T ))
2 − 1

with Y (T ) as in (21). To compute the desired singularity, we now set

h =
1

12
(1− η4)↔ η = (1− 12h)1/4 ,

so that

y = 1−
√

6 η + 3 η2 − 5

2

√
3

2
η3 + 3 η4 − 39

16

√
3

2
η5 + 3 η6 − 157

64

√
3

2
η7 + 3η8 − · · · .

We have the expansion

(23)

Y
(
Td(y)

)
= (2d+ 3)− (d− 1)(d+ 1)(d+ 2)(d+ 4)

(
9d2 + 27d+ 10

)

30(2d+ 3)
η4

+
(d− 1)(d+ 1)(d+ 2)(d+ 4)

(
15d4 + 90d3 + 237d2 + 306d+ 140

)

210(2d+ 3)
η6 + · · ·

which yields eventually

H
(
k, 1, Td(y)

)∣∣∣
sing.

= h̃3(k, d)(1− 12h)3/2

with h̃3(k, d) =
(d− 1)(d+ 1)(d+ 2)(d+ 4)

(
15d4 + 90d3 + 237d2 + 306d+ 140

)
(2d+ 2k + 3)

105(2d+ 3)(d+ k + 1)2(d+ k + 2)2
.

We end up with

Pk(V(d) infinite) =
1

f3(k)

(
h̃3(k − d, d)− h̃3(k − d, d− 1)

)

=
1

f3(k)

(
(2k + 3)(d− 1)(d+ 1)(d+ 2)(d+ 4)

(
15d4 + 90d3 + 237d2 + 306d+ 140

)

105(2d+ 3)(k + 1)2(k + 2)2

)

− (2k + 1)(d− 2)d(d+ 1)(d+ 3)
(
15d4 + 30d3 + 57d2 + 42d− 4

)

105(2d+ 1)k2(k + 1)2

)
.

It is easily verified from their explicit expressions that

Pk(V(d) finite) + Pk(V(d) infinite) = 1

for any fixed k and d, as expected. This corroborates the absence of some regime other
than the out- and in-regimes and justifies a posteriori our statement that the contribution
of configurations where both the hull and its complementary would have infinite volumes is
negligible at large N . For k →∞ and d→∞ with u = d/k fixed, we immediately obtain

lim
k→∞

Pk(V(k u) finite) =
1

4

(
4− 7u6 + 3u7

)
,

lim
k→∞

Pk(V(k u) infinite) =
1

4
(7− 3u)u6 ,

which is precisely the announced result (2). Figure 11 shows a comparison between the
limiting expressions pout(u) and pin(u) vs u (as given by (2)) and the corresponding finite k
and d expressions (as given above) Pk(V(d) finite) and Pk(V(d) infinite) vs d/k for k = 50
and 2 ≤ d ≤ 49.

7More precisely, we must take the limit x→ 1−.
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pout(u)

pin(u)
u=d/k0

Figure 11. A comparison between the probability Pk(V(d) finite) (respec-
tively Pk(V(d) infinite)) vs d/k for k = 50 and 2 ≤ d ≤ 49 and its limiting
expression pout(u) (respectively pin(u)) vs u, as given by (2).

Another quantity which may be easily computed for finite k and d is the expectation value

of the perimeter in the out-regime, Ek

(
L(d)

∣∣∣V(d) finite
)

, as well as that in the in-regime,

Ek

(
L(d)

∣∣∣V(d) infinite
)

. Details of the computation are discussed in Appendix A.

4.2. Law for the perimeter at large k and d in the out- and in-regimes. To de-
scribe the statistics of the perimeter in the out-regime, we have to look at G(k, d, g, h, α) for
arbitrary α and for h = 1/12 (i.e. y = 1). We consider here the large k and d limit by setting
d = k u (with 0 ≤ u ≤ 1) and letting k → ∞. In this limit, L(d) growths like d2 = (k u)2

and the large k statistics of the perimeter is captured by setting

α = e
− τ

(k u)2

with τ finite. From (15) and (21), we need the large k behavior of h3(k, Y (T )) for T = α2Td(1)
and T = α2Td−1(1) which involves the associated expansions of Y (T ), namely

Y
(
e
−2 τ

(k u)2 Tk u(1)
)

= 2

√
3

3 + τ
k u+ 3

(
3

3 + τ

)3/2

+O

(
1

k

)
,

Y
(
e
−2 τ

(k u)2 Tk u−1(1)
)

= 2

√
3

3 + τ
k u+

(
3

3 + τ

)3/2

+O

(
1

k

)
.

Using the expansion

f3 =
4

7
k3 +O

(
k2
)
,

we obtain8

(24)

lim
k→∞

Eout
k,k u

(
e−τ L(k u)

)

= lim
k→∞

h3

(
k−k u, 2

√
3

3+τ k u+3
(

3
3+τ

)3/2
)
−h3

(
k−k u, 2

√
3

3+τ k u+
(

3
3+τ

)3/2
)

4
7k

3

=
(1− u)6

u3
M
(
µ(τ, u)

)

with M(µ) =
1

µ4

(
3µ2 − 5µ+ 6 +

4µ5 + 16µ4 − 7µ2 − 40µ− 24

4(1 + µ)5/2

)

and µ(τ, u) =
(1− u)2

u2

(
1 +

τ

3

)
− 1 .

8Note that, for τ = 0,
(1−u)6

u3 M
(
µ(0, u)

)
= 1

4

(
4− 7u6 + 3u7

)
= pout(u) as it should.
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Introducing the inverse Laplace transform of M(µ), i.e. the quantity M̌(X) such that∫ ∞

0

e−µXM̌(X) = M(µ), this quantity is easily computed and reads

M̌(X) =
e−X

2
√
π

(
−2
√
X((X − 10)X − 2) + eX

√
πX(X(2X − 5) + 6)

(
1− erf

(√
X
)))

.

From the linear relation

(25) µ(τ, u) =
B(u)

3
τ +

(
B(u)− 1

)
, B(u) =

(1− u)2

u2
,

we immediately deduce, taking the inverse Laplace transform of (24), that

Dout(L, u) =
(1− u)6

u3

3

B(u)
e(1−B(u))X(u)M̌(X(u)) with X(u) =

3L

B(u)
.

This is precisely the expression (3) for c = 1/3.

To compute its counterpart Din(L, u) in the in-regime, we use the explicit expression (22)
of H(k, 1, T ) to derive the identity

H(k − k u, 1, T (y))
∣∣∣
sing.

=
32 (α0 + 2k(1− u))α3

(4k2(1− u)2 + 4α0 k(1− u) + α2
0 − 1)

2 (1− 12h)3/2

whenever Y
(
T (y)

)
= α0 + α2η

4 + α3η
6 + · · · ,

where, as before, η = (1− 12h)1/4. It implies that

(26)

lim
k→∞

Ein
k,k u

(
e−τ L(k u)

)

= lim
k→∞

1
4
7k

3

(
32(α0(τ, k u) + 2k(1− u))α3(τ, k u)

(4k2(1− u)2 + 4α0(τ, k u) k(1− u) + (α0(τ, k u))2 − 1)
2

− 32(α̃0(τ, k u) + 2k(1− u))α̃3(τ, k u)

(4k2(1− u)2 + 4α̃0(τ, k u) k(1− u) + (α̃0(τ, k u))2 − 1)
2

)

whenever Y
(
e
−2 τ

(k u)2 Tk u(y)
)

= α0(τ, k u) + α2(τ, k u)η4 + α3(τ, k u)η6 + · · · ,

and Y
(
e
−2 τ

(k u)2 Tk u−1(y)
)

= α̃0(τ, k u) + α̃2(τ, k u)η4 + α̃3(τ, k u)η6 + · · · .
Using the easily computed large k expansions

α0(τ, k u) = 2

√
3

3 + τ
(k u) + 3

(
3

3 + τ

)3/2

+O

(
1

k u

)
,

α̃0(τ, k u) = 2

√
3

3 + τ
(k u) +

(
3

3 + τ

)3/2

+O

(
1

k

)
,

α3(τ, k u) =

(
3

3 + τ

)3/2
(k u)7

28
+ 3 (21 + 4τ)

(
3

3 + τ

)5/2
(k u)6

168
+O

(
(k u)5

)
,

α̃3(τ, k u) =

(
3

3 + τ

)3/2
(k u)7

28
+ (21 + 4τ)

(
3

3 + τ

)5/2
(k u)6

168
+O

(
(k u)5

)
,

we deduce9

lim
k→∞

Ein
k,k u

(
e−τ L(k u)

)
= u3Q(µ(τ, u), B(u))

with Q(µ,B) =
1

µ4

(
−3µ2−3Bµ−4µ−6B+

4µ3+3Bµ2+20µ2+24Bµ+16µ+24B

4
√

1 + µ

)

9Note that, for τ = 0, u3Q(µ(0, u), B(u)) = 1
4

(7− 3u)u6 = pin(u) as it should.
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and µ(τ, u) and B(u) as in (25). Introducing the inverse Laplace transform Q̌(X,B) of
Q(µ,B), easily computed to be

Q̌(X,B) =
e−X

2
√
π

(BX + 2)
(

2
√
X(X + 1)− eX√πX(2X + 3)

(
1− erf

(√
X
)))

,

we immediately deduce, that

Din(L, u) = u3 3

B(u)
e(1−B(u))X(u)Q̌(X(u), B(u)) with X(u) =

3L

B(u)
.

This is precisely the expression (3) for c = 1/3.

4.3. Joint law for the volume and perimeter at large k and d in the out-regime.
We now wish to control, in addition to the perimeter, the volume of the hull. Of course,
this is non-trivial only if we condition the map configurations to be in the out-regime where
this volume is finite. We are now interested in G(k, d, g, h, α) for arbitrary α and arbitrary
h = ρ/12 (with 0 ≤ ρ ≤ 1). We consider again only the large k and d limit with fixed
u = d/k, a limit where L(d) growths like d2 = (k u)2 while V(d) growths like d4 = (k u)4.
We therefore set

α = e
− τ

(k u)2 , ρ = e
− σ

(k u)4

with ρ and σ remaining finite. From the relation (11) between h and y, taking the form of
ρ above amounts to setting

y = e
−
√

6σ
1/4

k u +O
(

1
(k u)3

)
.

We then have the expansions

Y
(
α2Tk u(y)

)
= 2

1− u√
1 + µ

k + 9
√

6
(1− u)3

u3 (1 + µ)3/2

(1 +W )(2 +W )σ3/4

W 3
+O

(
1

k

)

Y
(
α2Tk u−1(y)

)
= 2

1− u√
1 + µ

k + 3
√

6
(1− u)3

u3 (1 + µ)3/2

(1 +W )(2 +W )σ3/4

W 3
+O

(
1

k

)

with µ ≡ µ(σ, τ, u) =
(1− u)2

u2

(
τ

3
+

3
√
σ

2

(
coth2

(√
3

2
σ1/4

)
− 2

3

))
− 1

and W ≡W (σ) = e
√

6σ1/4 − 1

so that, eventually,

(27)

lim
k→∞

Eout
k,k u

(
e−τ L(k u)−σ V (k u)

)

= lim
k→∞

1
4
7k

3

(
h3

(
k−k u, 2 1− u√

1 + µ
k + 9

√
6

(1− u)3

u3 (1 + µ)3/2

(1 +W )(2 +W )σ3/4

W 3

)

−h3

(
k−k u, 2 1− u√

1 + µ
k + 3

√
6

(1− u)3

u3 (1 + µ)3/2

(1 +W )(2 +W )σ3/4

W 3

))

= 3
√

6
(u− 1)6

u3

(W + 1)(W + 2)

W 3
σ3/4M(µ)

=

(
3

2

)3/2
(u− 1)6

u3

cosh
(√

3
2 σ

1/4
)

sinh3
(√

3
2 σ

1/4
) σ3/4M(µ)

with µ = µ(σ, τ, u) and W = W (σ) as above, and where the function M(µ) has the same
expression as in (24). Normalizing by pout(u), this yields precisely the announced expression
(8) with c = 1/3 and f = 36.
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From the linear relation between µ and τ

µ(σ, τ, u) = B(u)
τ

3
+
(
A(σ)B(u)− 1

)
,

with B(u) =
(1− u)2

u2
and A(σ) =

3
√
σ

2

(
coth2

(√
3

2
σ1/4

)
− 2

3

)
,

we immediately deduce, taking the inverse Laplace transform of (27), that

lim
k→∞

Ek

(
e−σ V (k u)

∣∣∣V(k u) finite and L(k u) = L
)

=
1

Dout(L, u)

(
3

2

)3/2
(u− 1)6

u3

cosh
(√

3
2 σ

1/4
)

sinh3
(√

3
2 σ

1/4
) σ3/4

× 3

B(u)
e(1−A(σ)B(u))X(u)M̌(X(u)) with X(u) =

3L

B(u)

=

(
3

2

)3/2 cosh
(√

3
2 σ

1/4
)

sinh3
(√

3
2 σ

1/4
) σ3/4 e(1−A(σ))B(u)X(u)

=

(
3

2

)3/2 cosh
(√

3
2 σ

1/4
)

sinh3
(√

3
2 σ

1/4
) σ3/4 e−3L (A(σ)−1) .

This is precisely the announced result (10) for c = 1/3 and f = 36. Remarkably, all
the u dependences dropped out upon normalizing by Dout(L, u) and the above conditional
probability is thus independent of u.

5. Other families of maps

The strategy presented in this paper may be applied to other families of maps provided
that a coding by slices exists and that the decomposition of the corresponding slices along
dividing lines at a fixed distance from their apex is fully understood. This is the case
for planar triangulations, as explained in [7], and for planar Eulerian triangulations, as
explained in [8]. We have reproduced and adapted the computations above to deal with
these two other families of maps. We do not display here our calculations since they are
quite tedious and give no really new information. Indeed, we find that, in the limit of
large k and d with fixed u = d/k, all the laws that we obtained for quadrangulations have
exactly the same expressions for triangulations and Eulerian triangulations, up to a global
normalization for the rescaled length L(d) = L(d)/d2 and a global normalization for the
rescaled volume V (d) = V(d)/d4. If we adopt the definitions of [7] and [8] for the hull at
distance d in triangulation and Eulerian triangulations respectively, these normalizations
amount to change in our various laws of Section 2 the values c = 1/3 and f = 36 found in
Section 4 for quadrangulations to the values displayed in (4) and (9).

The origin of the scaling factor f is easily found in the relation between the weight h
per face in the hull and the variable y which is “conjugated” to the distance d in the slice
generating function Td(y) (by this, we mean that d appears in Td(y) via the combination yd

only). We have for the three families (i), (ii) and (iii) of maps (see for instance [7, 6, 8])

(i): h(y) =
y
(
1 + y + y2

)

(1 + 4y + y2)
2 , (ii): h(y) =

√
y(1 + y)

(1 + 10y + y2)
3/4

, (iii): h(y) =
y
(
1 + y2

)

(1 + y)4
.

The desired singularities are obtained for h(y) = h(1)ρ where ρ = e−σ/d
4

if we wish to

capture the large d behavior of the rescaled volume. Setting h(y) = h(1)e−σ/d
4

amounts, at

large d to setting y = e−(f σ)1/4/d with, from the above relations f = 36 in case (i), f = 192
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in case (ii) and f = 16 in case (iii). All the universal laws involving yd ' e−(fσ)1/4 , the
quantity σ always appears via the combination (f σ)1/4 in our various laws. This explains
the origin of f .

To understand the origin of the normalization factor c, the simplest quantity to compute
is probably the limiting expectation value

lim
k→∞

Eout
k,d

(
αL(d)

)
.

In the case of quadrangulations, we have from (21) the large k expansion

h3(k, T ) =
1

7
k4 +

2Y

7
k3 +O(k2)

so that (after normalization by f3(k) ∼ (4/7)k3)

lim
k→∞

Eout
k,d

(
αL(d)

)
=

1

2

(
Y
(
α2 Td(1)

)
− Y

(
α2 Td−1(1)

))

=
1

2

(√
6α2 + (d+ 1)(d+ 2) (25− α2)

6α2 + (d+ 1)(d+ 2) (1− α2)
−
√

6α2 + d(d+ 1) (25− α2)

6α2 + d(d+ 1) (1− α2)

)
.

Using (for C > 0)

√
C2 − β
1− β = C + 2

∑

p≥1

βpAp(C) with Ap(C) =
1

C2p−1

p−1∑

q=0

(
p− 1

q

)(
2q + 1

q

)(
C2 − 1

4

)q+1

here with C2 = 25, we deduce that

(i): lim
k→∞

P out
k,d (L(d) = 2p) = Ap(5)

((
(d− 1)(d+ 4)

d+ 1)(d+ 2)

)p
−
(

(d− 2)(d+ 3)

d(d+ 1)

)p)
,

where the subscript “out” is irrelevant since for finite d and infinite k, map configurations
are necessarily in the out-regime. A similar calculation for the families (ii) and (iii) yields

(ii): lim
k→∞

P out
k,d (L(d) = p) = Ap(3)

((
d(d+ 3)

d+ 1)(d+ 2)

)p
−
(

(d− 1)(d+ 2)

d(d+ 1)

)p)
,

(iii): lim
k→∞

P out
k,d (L(d) = 2p) = 2Ap(3)

((
(d− 1)(d+ 5)

d+ 1)(d+ 3)

)p
−
(

(d− 2)(d+ 4)

d(d+ 2)

)p)

(note that L(d) is necessarily even in case (iii) but has arbitrary parity in case (ii)). From

the large p behavior Ap(C) ∼
√
C2 − 1/(2

√
π p), we immediately deduce, taking d and p

large with p/d2 = L/2 (case (i) and (iii)) or p/d2 = L (case (ii)) the following probability
densities for the three families of maps:

(i): lim
d→∞

(
lim
k→∞

1

dL
P out
k,d (L ≤ L(d) < L+ dL)

)
= 6
√

3

√
L

π
e−3L ,

(ii): lim
d→∞

(
lim
k→∞

1

dL
P out
k,d (L ≤ L(d) < L+ dL)

)
= 4
√

2

√
L

π
e−2L ,

(iiI): lim
d→∞

(
lim
k→∞

1

dL
P out
k,d (L ≤ L(d) < L+ dL)

)
= 16

√
L

π
e−4L .

In agreement with the equivalence principle (1), these law reproduce the general form (5)
for the limit u → 0 of Dout(L, u)/pout(u) (recall that pout(u) → 1 for u → 0) via the
identification c = 1/3 in case (i), c = 1/2 in case (ii) and c = 1/4 in case (iii).
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limk→∞Ek

(W(k u)
k4

|V(k u) infinite
)

u

Figure 12. A plot of the expectation value of the (properly normalized)
volumeW(d) ≡ N −V(d) in the in-regime as a function of u = k/d for large
k and d (here with f = 36).

We end this section by giving for bookkeeping the (non-universal) expression for the
probability Pk(V(d) infinite) at finite k and d for the families (ii) and (iii). We find

(ii): Pk(V(d) infinite) =
k2(k + 1)2

2(2k + 1) (5k6 + 15k5 + 14k4 + 3k3 − k2 − 1)

×
(
d(d+ 1)(d+ 2)(d+ 3)

(
10d4 + 60d3 + 146d2 + 168d+ 71

)

(2d+ 3)(k + 1)3

− (d− 1)d(d+ 1)(d+ 2)
(
10d4 + 20d3 + 26d2 + 16d− 1

)

(2d+ 1)k3

)
,

(iii): Pk(V(d) infinite) =
k(k + 1)(k + 2)(k + 3)

2(2k + 3) (10k6 + 90k5 + 283k4 + 348k3 + 103k2 − 42k − 36)

×
(

(d− 1)(d+ 1)(d+ 3)(d+ 5)
(
10d4 + 80d3 + 256d2 + 384d+ 189

)
(k + 2)

(d+ 2)(k + 1)2(k + 3)2

− (d− 2)d(d+ 2)(d+ 4)
(
10d4 + 40d3 + 76d2 + 72d− 9

)
(k + 1)

(d+ 1)k2(k + 2)2

)
.

When k, d→∞ and d/k = u, both expressions tend to pin(u) = (7− 3u)u6/4.

6. Conclusion

In this paper, we explored the statistics of hull perimeters for three families of infinitely
large planar maps: quadrangulations, triangulations and Eulerian triangulations, with a
particular emphasis on the influence on this statistics of the constraint that the map con-
figurations either yield a finite hull volume or not. In the case where the hull volume is
finite, we also discussed the statistics of this volume itself, as well as its coupling to the
hull perimeter statistics. Our study, based on an accurate coding of k-pointed-rooted planar
maps by k-slices, makes a crucial use of a particular recursive decomposition of these slices
obtained by cutting them along lines which precisely follow hull boundaries for increasing
distances d (see figure 10 for an illustration) for d < k. This decomposition, initiated in [7]
for triangulations, and then extended in [6, 8] for the two other families of maps, may be used
to address many other questions of the type discussed here, either for the same geometry,
i.e. within pointed-rooted maps, or for other more involved geometries.
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Among other quantities which may be computed within the above geometry of k-pointed-
rooted maps are the statistics of the volume W(d) ≡ N −V(d) of the complementary of the
hull at distance d, i.e. the component containing the marked vertex x1. In the in-regime,
W(d) is finite and we may compute its limiting universal expectation value for large k and
d. We find

lim
k→∞

Ek

(W(k u)

k4

∣∣∣V(k u) infinite

)
= f

(1− u)
(
14 + 16u+ 16u2 + 16u3 − 39u4 + 12u5

)

480(7− 3u)
.

This quantity is plotted in figure 12 for f = 36 (quadrangulations).
Concerning other tractable geometries, we recall that pointed maps with a boundary (i.e.

maps with a distinguished external face of arbitrary degree) may be decomposed into se-
quences of slices and our recursive decomposition of slices gives a direct access to the statistics
of a generalized hull at distance d whose boundary would separate the pointed vertex from
the external face (assuming that all vertices of the boundary are at a distance strictly larger
that d from the pointed vertex).

To conclude, many other families of maps (for instance maps with prescribed face degrees)
may be coded by slices and, even if a recursion relation of the type of Ref. [7, 6, 8] is not
known in general for these slices10, the actual form of the associated slice generating functions
is known in many cases [2]. This might be enough to address the hull statistics for these
maps since, as the reader noticed, the actual expression for the operator K describing the
action of one step of the recursion is not really needed. What is needed is an equation of
the form (13) which displays the result of this operator on properly parametrized generating
functions. This equation itself is moreover directly read off the explicit expression of the
slice generating functions themselves (here for quadrangulations). Slices associated with
maps with arbitrary face degrees have generating functions whose expressions are of the
same general form (although more involved in general) as that for quadrangulations (see
[2]). The actual knowledge of these expressions might thus be sufficient to infer the hull
statistics for the corresponding maps.

Appendix A. Expectation value of the perimeter at finite k and d in the out-
and in-regimes

Computing the expectation value of the perimeter simply involves computing the quantity

∂αG(k, d, g, h, α)
∣∣∣
α=1

, which itself, from (15), simply requires an expression for the quantity

2T ∂TH(k, x, T ) .

In the out-regime, we need to estimate the singularity of this latter quantity when g → 1/12
(x→ 1). We find

2T ∂TH(k, x, T )
∣∣∣
sing.

= 2T ∂T h3

(
k, Y (T )

)
(1− 12g)3/2

= dh3

(
k, Y (T )

)
(1− 12g)3/2

with dh3(k, Y ) =
(25− Y 2)(1− Y 2)

24Y
∂Y h3(k, Y )

=
k(25− Y 2)(1− Y 2)

20160Y 3(2k + Y − 1)3(2k + Y + 1)3

(
315Y 10 + 3780kY 9 + 19740k2Y 8 − 1995Y 8

+ 60480k3Y 7 − 20160kY 7 + 120960k4Y 6 − 82320k2Y 6 + 16590Y 6 + 161280k5Y 5

− 174720k3Y 5 + 71400kY 5 + 138240k6Y 4 − 209664k4Y 4 + 101640k2Y 4 + 3594Y 4

+ 69120k7Y 3 − 139776k5Y 3 + 60480k3Y 3 − 26784kY 3 + 15360k8Y 2 − 39936k6Y 2

+ 24192k4Y 2 − 54224k2Y 2 − 36217Y 2 − 65100kY − 21700k2 + 5425
)
.

10Other recursions are known however.
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Setting h = 1/12 (y = 1) and α = 1 so that the values of interest are Y (Td(1)) = 2d+ 3 and
Y (Td−1(1)) = 2d+ 1, we immediately deduce, upon normalization, that

Ek

(
L(d)

∣∣∣V(d) finite
)

=
dh3(k − d, 2d+ 3)− dh3(k − d, 2d+ 1)

h3(k − d, 2d+ 3)− h3(k − d, 2d+ 1)
.

This immediately yields an explicit expression (which we do not reproduce here) for the
expectation value of the perimeter at finite k and d in the out-regime. It is then easily
verified that at large k and d, L(d) scales as d2 and that, for k, d → ∞ and d/k = u fixed,
the expression for the expectation value of L(d) = L(d)/d2 simplifies into the formula given
in the first line of (7), with here c = 1/3.

In the in-regime, we now set g = 1/12 (x = 1). Using, from (22),

2T ∂TH(k, 1, T ) =

(
25− Y (T )2

)(
1− Y (T )2

)

24Y (T )

32(2k + Y (T ))

(2k + Y (T )− 1)2(2k + Y (T ) + 1)2

and plugging the expansion (23) for Y (Td(y)) when y → 1 (η → 0), we deduce

2T ∂TH
(
k, 1, Td(y)

)∣∣∣
sing.

= δ̃h3(k, d)(1− 12h)3/2

with δ̃h3(k, d) =
2(d− 1)(d+ 1)(d+ 2)(d+ 4)

315(2d+ 3)3(d+ k + 1)3(d+ k + 2)3

(
15d4 + 90d3 + 237d2 + 306d+ 140

)

×
(
6kd6 + 12k2d5 + 54kd5 + 24d5 + 6k3d4 + 90k2d4 + 240kd4 + 180d4 + 36k3d3

+ 270k2d3 + 630kd3 + 534d3 + 68k3d2 + 405k2d2 + 937kd2 + 783d2 + 42k3d

+ 285k2d+ 705kd+ 567d− 2k3 + 63k2 + 203k + 162
)
.

We immediately deduce, upon normalization, that

Ek

(
L(d)

∣∣∣V(d) infinite
)

=
d̃h3(k − d, d)− d̃h3(k − d, d− 1)

h̃3(k − d, d)− h̃3(k − d, d− 1)

which again yields an explicit expression (not reproduced here) for the expectation value of
the perimeter at finite k and d in the in-regime. It is again easily verified that, for k, d→∞
and d/k = u fixed, the expression for the expectation value of L(d) = L(d)/d2 simplifies into
the formula given in the second line of (7), with here c = 1/3.

Figure 13 (respectively figure 14) shows a comparison between the limiting expression
given in the first (respectively the second) line of (7) with c = 1/3 vs u and the finite k

and d expression for Ek

(
L(d)

∣∣∣V(d) finite
)

(respectively Ek

(
L(d)

∣∣∣V(d) infinite
)

) vs d/k for

k = 50, 100, 500, and 2000 and 2 ≤ d ≤ k − 1.
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