
HAL Id: hal-01485544
https://hal.science/hal-01485544

Submitted on 9 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Poisson-Lie T-duals of the bi-Yang-Baxter models
Ctirad Klimčík

To cite this version:
Ctirad Klimčík. Poisson-Lie T-duals of the bi-Yang-Baxter models. Physics Letters B, 2016, 760,
pp.345 - 349. �10.1016/j.physletb.2016.06.077�. �hal-01485544�

https://hal.science/hal-01485544
https://hal.archives-ouvertes.fr


ar
X

iv
:1

60
6.

03
01

6v
2 

 [
he

p-
th

] 
 1

4 
Ju

n 
20

16 Poisson-Lie T-duals of the bi-Yang-Baxter models

Ctirad Klimč́ık
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Abstract

We prove the conjecture of Sfetsos, Siampos and Thompson that suitable an-
alytic continuations of the Poisson-Lie T-duals of the bi-Yang-Baxter sigma
models coincide with the recently introduced generalized λ-models. We then
generalize this result by showing that the analytic continuation of a generic
σ-model of ”universal WZW-type” introduced by Tseytlin in 1993 is noth-
ing but the Poisson-Lie T-dual of a generic Poisson-Lie symmetric σ-model
introduced by Klimč́ık and Ševera in 1995.
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1. Introduction. Two kinds of integrable nonlinear σ-models, the so-called
η-deformation of the principal chiral model [1, 2] and the λ-deformation
of the WZW model [3], have recently attracted much attention because of
their relevance in string theory or in non-commutative geometry [4]. The
integrability of those models was proven at the level of the Lax pair in [2, 3]
and at the level of the so called r/s exchange relations in [5]. Both the
η-model and the λ-model turned out to be deformable further to give rise
to several families of multi-parametric integrable σ-models1 [6, 7, 8] living
on general semi-simple group targets (those families generalize some of the
integrable families of σ-models on low dimensional group targets obtained
previously in [10]).

In three recent papers [11], [12] and [8], there was suggested that the η-
deformation of the principal chiral model [1, 2] and the λ-deformation of the
WZW model should be related by the Poisson-Lie T-duality [13, 14] followed
by an appropriate analytic continuation of the geometry of the λ-model tar-
get. In particular, such suggestion was fully worked out for the simplest group
target SU(2) in [8] where it was shown that the Poisson-Lie T-dual of the bi-
Yang-Baxter model [7] coincides with the analytically continued generalized
λ-model [8]. Furthermore, Sfetsos, Siampos and Thompson conjectured that
the same result should hold for the bi-Yang-Baxter model living on a general
simple compact group target. We have partially proved this conjecture in [16]
in the following sense: we did work with the general simple compact group
target but we have switched off one of the two deformation parameters of the
bi-Yang-Baxter model. Said in other words, we have established in [16] for
every simple compact group target that the Poisson-Lie T-dual of the Yang-
Baxter model [1, 2] coincides with the analytically continued λ-deformation
of the WZW model [3]. The first purpose of the present letter is to switch
on also the second parameter and, hence, to prove the conjecture of Sfetsos,
Siampos and Thompson in its strongest form.

The second purpose of our work is to reveal a highly nontrivial structural
relation between two classes of σ-models introduced more than twenty years
ago: the class of ”universal WZW-type conformal σ-models” introduced by
Tseytlin in [18]; we shall refer to them as T-models; and the class of ”Poisson-
Lie T-dualizable σ-models on a compact group target” introduced by Klimč́ık
and Ševera in [14]; we shall call them KS-models. Namely, we show that the

1The strong integrability in the r/s-sense of the so-called bi-Yang-Baxter model of [7]
was further established in [9].
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T-models are nothing but the analytic continuations of the Poisson-Lie T-
duals of the KS-models.

By the way, we find truly remarkable that the T-models and the KS-
models were orbiting around for two decades without ”knowing about each
other”. The reason for this is that the authors of [14] have worked out
the target space geometries of the Poisson-Lie T-duals of the KS-models
in coordinates natural from the point of view of Poisson-geometry but not
natural for the comparison with the T-model. The parametrization of the
dual target suitable for this comparison was introduced in [16] and here we
use it to establish the announced result. We find also interesting that the
KS-models were originally invented as new objects, the reason of existence
of which was their T-dualisability of a new kind, and the authors of [14] were
not aware that those models were closely related to the T-models already
existing on the market which had their independent reason of existence.

Our technical strategy to realize the first purpose of this work will be
the following one: First we represent the bi-Yang-Baxter σ-model on the
target of the simple compact Lie group G as the so-called E-model of Ref.
[14, 15, 16] which will permit us to dualize it in the sense of the Poisson-Lie
T-duality. Then we work out explicitly the resulting dual σ-model on the
target GC/G and we then establish that its suitable analytic continuation
coincides with the generalized λ-model of Ref.[8]. We then realize the second
purpose by repeating the same procedure for the most general E-model based
on the same Drinfeld double. We finish our note with a short outlook.

2. E-models. Recall that the E-model, introduced in [14, 15, 16], is a first-
order dynamical system based on a current algebra of a quadratic2 Lie algebra
D (playing the role of the symplectic structure) and with a Hamiltonian
HE being encoded in a choice of a particular linear self-adjoint involution
E : D → D. More precisely, the phase space of the E-model is an infinite-
dimensional symplectic manifold PD with a set of distinguished D-valued
coordinates j(σ) (σ is a loop parameter) the Poisson brackets of which are
given by

{jA(σ), jB(σ′)} = FAB
Cj

C(σ)δ(σ − σ′) +DAB∂σδ(σ − σ′). (1)

Here FAB
C are the structure constants of the Lie algebra D in some basis

2Recall that the quadratic Lie algebraD is by definition equipped with a non-degenerate
ad-invariant symmetric bilinear form (., .)D.
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TA ∈ D and

DAB := (TA, TB)D, (j(σ), TA)D := jA(σ). (2)

Recall also that the ”linear self-adjoint involution” means that E : D → D
verifies

(Eu, v)D = (u, Ev)D, ∀u, v ∈ D; E2u = u, ∀u ∈ D. (3)

Finally the Hamiltonian of the E-model is given by

HE :=
1

2

∫

dσ(j(σ), Ej(σ))D. (4)

3. σ-models from the E-models. If there is a Lie subalgebra G̃ of D
of dimensionality dimG̃ = 1

2
dimD and such that (u, u)D = 0, ∀u ∈ G̃ then

for each E there exists a non-linear σ-model on the target D/G̃, the first
order dynamics of which coincides with the E-model (PD, HE). Here G̃ and
D stand for (simply connected) Lie groups corresponding to the Lie algebras
G̃ and D. The second order geometrical action of this D/G̃ model is given
by [15, 16, 17]:

SE(f) = SWZW,D(f)− k

∫

dξ+dξ−(Pf(E)f
−1∂+f, f

−1∂−f)D, (5)

where f ∈ D parametrizes the right coset D/G̃ (one can choose several local
sections covering the whole base space D/G̃ if there exists no global section of
this fibration). Most importantly, the symbol Pf(E) appearing in (5) denotes
a projection operator from D into D, unambiguously defined by the relations

ImPf (E) = G̃, KerPf (E) = (1+Adf−1EAdf )D. (6)

For completeness, the standard level k WZW action SWZW,D(f) is defined as
usual

SWZW,D(f) :=

:=
k

2

∫

dξ+dξ−(f−1∂+f, f
−1∂−f)D +

k

12

∫

d−1(dff−1, [dff−1, dff−1])D,

(7)
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and the light-cone variables ξ± and the derivatives ∂± are

ξ± :=
1

2
(τ ± σ), ∂± := ∂τ ± ∂σ. (8)

4. The E-model for the Yang-Baxter σ-model. The question which is
often of interest is in a sense inverse to that answered in 3. That is, given
a σ-model on some target, can we associate to it an E-model from which it
originates via the formula (5)? For example, let us consider the so-called
η-model (or Yang-Baxter σ-model) [1, 2] which is the σ-model on the target
of a simple compact group G with the second-order action

Sη(g) = 2kη

∫

dξ+dξ−(g−1∂+g, (1− ηR)−1g−1∂−g). (9)

Here g(ξ+, ξ−) ∈ G is a field configuration, (., .) is the Killing-Cartan form
on the Lie algebra GC of GC and R : G → G is the so called Yang-Baxter
operator defined, for example, in [2].

It turns out (cf. [1, 2, 16]) that the model (9) is the E-model for the
choice3 D = GC, G̃ = AN and Eη given by

Eηz = −z +
1 + iη

2iη
((1 + iη)z + (1− iη)z∗) , z ∈ GC (10)

(z∗ stands for the Hermitian conjugation). The ad-invariant non-degenerate
symmetric bilinear form (., .)D is given by the formula

(z1, z2)GC := −i(z1, z2) + i(z1, z2). (11)

5. The Poisson-Lie T-dual of the Yang-Baxter σ-model. If, given an
E-model, there are two different subalgebras G̃1 and G̃2 having the properties
described in 3. then the E-model gives rise to two σ-models living, respec-
tively, on different4 targets D/G̃1 and D/G̃2. This phenomenon is called
the Poisson-Lie T-duality and the models on D/G̃1 and D/G̃2 are referred

3AN is the subgroup of GC featuring in the Iwasawa decomposition GC = GAN [19].
For GC = SL(N,C), the subgroup AN is formed by the upper triangular complex matrices
with positive real numbers on the diagonal and unit determinant.

4However, if there exists an element a ∈ D such that AdaG̃1 = G̃2 then the target
space geometries on D/G̃1 and on D/G̃2 are the same in the sense of being related by a
diffeomorphism from D/G̃1 onto D/G̃2.
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to as being Poisson-Lie T-dual to each other. Is there a Poisson-Lie T-dual
to the Yang-Baxter σ-model (9)? Yes, there is, if we take G̃2 = G instead
of G̃1 = AN . The action of the dual σ-model on the target D/G̃2 in the
form suitable for our exposition was worked out in [16] and it is given by the
formula

S̃η(p) = −ikSWZW (p2)−ik

∫

dξ+dξ−

(

(

1 + iη

1− iη
− Adp2

)−1

∂+(p
2)p−2, p−2∂−(p

2)

)

.

(12)
Here the standard WZW action SWZW (g) (based on the ordinary Killing-
Cartan form (., .) on GC and not on (., .)D!) is given by

SWZW (g) :=
k

2

∫

dξ+dξ−(g−1∂+g, g
−1∂−g)+

k

12

∫

d−1(dgg−1, [dgg−1, dgg−1])

(13)
and p(ξ+, ξ−) is a field configuration taking values in the space5 P of positive
definite Hermitian elements of GC which naturally parametrize the space of
cosets GC/G. Note that the dual action S̃η(p) is real in spite of the occurence
of the imaginary units in front of the integrals in the expression (12).

6. The E-model for the bi-Yang-Baxter σ-model. This paragraph
6. interpolates between the review part of this letter presented so far and
the original part to follow. In fact, we expose here a result which is new,
but could have been extracted without much difficulty from the contents
of Ref. [2]. Namely, we construct the E-model corresponding to the two-
parametric bi-Yang-Baxter σ-model on the target of a simple compact group
G the second-order action of which reads

Sη,ρ(g) = 2kη

∫

dξ+dξ−(g−1∂+g, (1− ηR− ρRg)
−1g−1∂−g). (14)

Here Rg =Adg−1RAdg.
To identify the E-model from which (14) originates we take, of course,

the same double D = GC and the same subgroup G̃1 = AN as in the case of
the Yang-Baxter model (9), however, the crucial involution Eη,ρ must now be
a one-parametric deformation of the involution Eη from the paragraph 4. It

5For the group GC = SL(N,C), P coincides with the space of positive definite Hermi-
tian N ×N matrices of unit determinant.
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turns out (at this is the first new result of this letter) that the correct choice
is the following one

Eη,ρz = −z +
1 + iη + ρR

2iη
((1 + iη − ρR)z + (1− iη − ρR)z∗) , z ∈ GC

(15)
where the operator R is extended from G to GC by complex linearity:

Rz :=
1

2
R(z − z∗)−

i

2
R(iz + iz∗). (16)

We now parametrize the coset D/G̃1 = GC/AN via the Iwasawa decom-
position GC = GAN which means that the configuration f in Eq. (5) is
G-valued. We set therefore f = g and remark that the term SWZW,D(g) in
(5) vanishes because of the property of the Lie algebra G̃ of G̃ = AN that
(u, u)D = 0, ∀u ∈ G̃. In order to see that the choice (15) gives the bi-Yang-
Baxter model (21), it remains to identify the projection operator P1,g(Eη,ρ)
on G̃1. For that, it helps to know that every ζ ∈ G̃ can be uniquely written
as

ζ = (R− i)u (17)

for some u ∈ G. With this insight, we find that the following expression

P1,g(Eη,ρ)z =
1

2
(R− i)(1 + ρRg + ηR)−1 ((i + iρRg + η)z + (i + iρRg − η)z∗)

(18)
verifies the conditions (6) and, inserting (18) into (5), we recover the action
(14).

7. The Poisson-Lie T-dual of the bi-Yang-Baxter σ-model. This is
the central paragraph of this note since here we work out our principal result
which is the explicit form of the Poisson-Lie-T-dual of the bi-Yang-Baxter σ-
model. Of course, the action of the dual σ-model is derived from the E-model
based on D = GC and Eη,ρ via the basic formula (5), the thing which changes
with respect to 6. is the choice of the Lie subgroup G̃2 = G. Identifying the
coset D/G with the space P of all positive definite Hermitian elements of
the group GC as in [16], we set in (5) f = p ∈ P and find the corresponding
dual projection operator P2,p(Eη,ρ) on G̃2 = G :

P2,p(Eη,ρ)z =
1

2
(z−z∗)+

1

2
(m+(1+ρR)−m−η)(m−(1+ρR)+m+η)

−1i(z+z∗),

(19)
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where the operators m± : G → G are defined by

m+ :=
1

2
(Adp +Adp−1), m− :=

i

2
(Adp − Adp−1). (20)

Inserting (19) in (5) and realizing that p is Hermitian (therefore it holds
(p−1∂+p, p

−1∂−p)D = 0) we find after some work the action of the Poisson-
Lie T-dual of the bi-Yang-Baxter σ-model:

S̃η,ρ(p) =

= −iSWZW (p2)−ik

∫

dξ+dξ−

(

(

1 + iη + ρR

1− iη + ρR
−Adp2

)−1

∂+(p
2)p−2, p−2∂−(p

2)

)

.

(21)
8. Generalized λ-model and the analytic continuation. Recently,
Sfetsos, Siampos and Thomson introduced in [8] an interesting two-parameter
integrable deformation of the WZW model on the simple compact group G
which they called the generalized λ-model. The action of this theory is given
by the formula

Sα,ρ(g) = SWZW (g)+k

∫

dξ+dξ−

(

(

1 + α+ ρR

1− α + ρR
−Adg

)−1

∂+gg
−1, g−1∂−g

)

,

(22)
where α,ρ are real parameters related to the real parameters t̃, η̃ originally
used in [8] by the formulae

ρ = −
2kt̃η̃

2kt̃+ 1
, α =

1

2kt̃+ 1
. (23)

We remark also that the terminology λ-model refers to the notation used in
[8] where the operator 1+α+ρR

1−α+ρR
was denoted as Λ−1.

It is now evident that the action (22) can be transformed into that (21)
by performing three operations :

1) replacing theG-valued configuration g(ξ+, ξ−) by the P -valued p2(ξ+, ξ−),
2) replacing the real parameter α by the purely imaginary one iη,
3) multiplying the action (21) by −i.
The two last operations can be clearly interpreted as appropriate analytic

continuations and the first one too, if we parametrize g and p2 in the Cartan
way: g as g = kδk−1 and p2 as p2 = kak−1 with k ∈ G, δ is unitary diagonal

7



and a is real positive diagonal. Replacing δ by a can be now interpreted as
a simple analytic continuation of the coordinates parametrizing the complex
Cartan torus of GC. In the case of the target SU(2), the operations 1), 2)
and 3) coincide with those carried out in [8] therefore our result generalizes
to any G the SU(2) result of Sfetsos, Siampos and Thompson stating that
the generalized λ-model is related by an appropriate analytic continuation
to the Poisson-Lie T-dual of the bi-Yang-Baxter σ-model.

9. Poisson-Lie T-duals of the general KS-models. Consider now the
most general E-model based on the Drinfeld double D = GC. It is defined
by the choice of a linear operator E : G → G, which can be written unam-
biguously as E = S + A, where (Sx, y)G = (x, Sy)G, (Ax, y)G = −(x,Ay)G ,
and we require also that the symmetric part S is invertible. We choose the
corresponding self adjoint involution Eη,E as

Eη,Ez = −z + (E + iη)
S−1

2iη

(

(E† + iη)z + (E† − iη)z∗
)

, z ∈ GC, (24)

where E† ≡ S − A. Note that for S equal to the identity and A = ρR we
recover the bi-Yang-Baxter involution Eη,ρ.

It is not difficult to work out the crucial projection operators. Setting
Eg := Adg−1EAdg, we find

P1,g(Eη,E)z =
i

2
(R− i)(Eg + ηR)−1 ((Eg − iη)z + (Eg + iη)z∗) , (25)

P2,p(Eη,E)z =
1

2
(z − z∗) +

1

2
(m+E −m−η)(m−E +m+η)

−1i(z + z∗) (26)

which, plugged in the fundamental formula (5), yield respectively the generic
KS-model

Sη,E(g) = 2kη

∫

dξ+dξ−(g−1∂+g, (E
†
g − ηR)−1g−1∂−g). (27)

and its Poisson-Lie T-dual
S̃η,E(p) =

= −iSWZW (p2)−ik

∫

dξ+dξ−

(

(

E + iη

E − iη
−Adp2

)−1

∂+(p
2)p−2, p−2∂−(p

2)

)

.

(28)
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10. T-models and the analytic continuation. Replacing in (28) the
P -valued p2(ξ+, ξ−) by the G-valued configuration g(ξ+, ξ−), replacing the
imaginary parameter iη by the real parameter α and multiplying the action
(28) by i, we obtain

Sα,E(g) = SWZW (g) + k

∫

dξ+dξ−

(

(

E + α

E − α
−Adg

)−1

∂+gg
−1, g−1∂−g

)

.

(29)
The action (28) is to be compared with the general action of the T-model on
the compact group target G:

SΛ(g) = SWZW (g) + k

∫

dξ+dξ−
(

(

Λ−1 − Adg

)−1
∂+gg

−1, g−1∂−g
)

, (30)

where Λ : G → G is an arbitrary invertible operator. The obvious identifica-
tion

Λ−1 =
E + α

E − α
(31)

can be generically inverted

E = −α
Λ + 1

Λ− 1
, (32)

which confirms our claim that the analytical continuations of the Poisson-Lie
T-duals of the KS-models are the T-models.

11. Outlook. In order to relate the η and the λ deformations of the
σ-models living on the cosets of G via the Poisson-Lie T-duality and the an-
alytic continuation, it looks promising to use the framework of the dressing
cosets generalization of the E-models [20]. We plan to deal with this problem
in a near future. Another interesting question to study would be the behavior
of the Poisson-Lie symmetries of the models (28) under the analytic contin-
uation yielding the T-models (30). The recent results of Ref. [21] could be
of use in tackling this problem.

Acknowledgement: I thank K. Siampos for discussions and also for having
urged me to work out the Poisson-Lie T-duals of the generic KS-model in
the dual target space parametrization introduced in [16].
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[2] C. Klimč́ık, On integrability of the Yang-Baxter σ-model, J.Math.Phys.
50 (2009) 043508, arXiv:0802.3518 [hep-th];

[3] K. Sfetsos, Integrable interpolations: From exact CFTs to non-Abelian
T-duals, Nucl. Phys. B880 (2014) 225, arXiv:1312.4560 [hep-th];

[4] C. Ahn, Exact world-sheet S-matrices for AdS/CFT, J. Korean Phys.
Soc. 68 (2016) no.7, 842;
G. Arutyunov, R. Borsato and S. Frolov, S-matrix for strings on η-
deformed AdS5 × S5, JHEP 1404 (2014) 002, arXiv:1312.3542 [hep-th];
G. Arutyunov, M. de Leeuw and S. van Tongeren, The exact spectrum
and mirror duality of the (AdS5 × S5)η superstring, Theor.Math.Phys.
182 (2015) 1, 23, arXiv:1403.6104 [hep-th];
G. Arutyunov, S. Frolov, B. Hoare, R. Roiban and A. A. Tseytlin, Scale
invariance of the η-deformed AdS5×S5 superstring, T-duality and mod-
ified type II equations, Nucl. Phys. B903 (2016) 262, arXiv:1511.05795
[hep-th];
G. Arutyunov and D. Medina-Rincon, Deformed Neumann model
from spinning strings on (AdS5 × S5)η , JHEP 1410 (2014) 50,
arXiv:1406:2536 [hep-th];
A. Banerjee, S. Bhattacharya and K. Panigrahi, Spiky strings in χ-
deformed AdS, JHEP 1506 (2015) 057, arXiv:1503.07447 [hep-th];
A. Borowiec, J. Lukierski and V. N. Tolstoy, Quantum deformations of D
= 4 Euclidean, Lorentz, Kleinian and quaternionic O∗(4) symmetries in
unified O(4;C) setting, Phys. Lett. B754 (2016) 176, arXiv:1511.03653
[hep-th];
A. Borowiec, H. Kyono, J. Lukierski, J. i. Sakamoto and K. Yoshida,
Yang-Baxter sigma models and Lax pairs arising from κ-Poincar r-
matrices, JHEP 1604 (2016) 079, arXiv:1510.03083 [hep-th];
R. Borsato, A. A. Tseytlin and L. Wulff, Supergravity background of λ-
deformed model for AdS2× S2 supercoset, Nucl. Phys. B905 (2016) 264,
arXiv:1601.08192 [hep-th];
Y. Chervonyi and O. Lunin, Supergravity background of the λ-deformed
AdS3 × S3 supercoset, arXiv:1606.00394 [hep-th];

10

http://arxiv.org/abs/hep-th/0210095
http://arxiv.org/abs/0802.3518
http://arxiv.org/abs/1312.4560
http://arxiv.org/abs/1312.3542
http://arxiv.org/abs/1403.6104
http://arxiv.org/abs/1511.05795
http://arxiv.org/abs/1503.07447
http://arxiv.org/abs/1511.03653
http://arxiv.org/abs/1510.03083
http://arxiv.org/abs/1601.08192
http://arxiv.org/abs/1606.00394


P.M. Crichigno, T. Matsumoto and K. Yoshida, Deformations of T 1,1

as Yang-Baxter sigma models, JHEP 1412 (2014) 085, arXiv:1406.2249
[hep-th];
F. Delduc, M. Magro and B. Vicedo, An integrable deformation of the
AdS5 × S5 superstring action, arXiv:1309.5850 [hep-th]; Derivation of
the action and symmetries of the q-deformed AdS5 × S5 superstring,
JHEP 1410 (2014) 132, arXiv:1406.6286 [hep-th];
S. Demulder, D. Dorigoni and D. C. Thompson, Resurgence in η-
deformed Principal Chiral Models, arXiv:1604.07851 [hep-th];
H. Dlamini and K. Zoubos, Integrable Hopf twists, marginal deforma-
tions and generalised geometry, arXiv:1602.08061 [hep-th];
O.T. Engelung and R. Roiban, On the asymptotic states and the quan-
tum S matrix of the η-deformed AdS5 × S5 superstring, JHEP 1503

(2015) 168, arXiv:1412.5256 [hep-th];
T.J.Hollowood, J.L. Miramontes and D. Schmidtt, An integrable defor-
mation of the AdS5 × S5 superstring, J. Phys. A47 (2014) 49, 495402,
arXiv:1409.1538 [hep-th];
B. Hoare, Towards a two-parameter q-deformation of AdS3 × S3 ×M4

superstrings, Nucl. Phys. B891 (2015) 259-295, arXiv:1411.1266 [hep-
th];
B. Hoare, R. Roiban and A. A. Tseytlin, On deformations of AdSn×Sn

supercosets, JHEP 1406 (2014) 002, arXiv:1403.5517 [hep-th];
B. Hoare and S. J. van Tongeren, Non-split and split deformations of
AdS5, arXiv:1605.03552 [hep-th]; On jordanian deformations of AdS5

and supergravity, arXiv:1605.03554 [hep-th];
G. Itsios, K. Sfetsos, K. Siampos and A. Torrielli,The classical Yang-
Baxter equation and the associated Yangian symmetry of gauged WZW-
type theories, Nucl. Phys. B889 (2014) 64, arXiv:1409.0554 [hep-th];
S. Jun-ichi, Yang-Baxter deformations of Minkowski spacetime, J. Phys.
Conf. Ser. 670 (2016) no.1, 012043;
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