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Abstract

We investigate well-accepted formulations describing charge transport in composite cath-
odes of batteries. Our upscaling of carefully selected microscopic equations shows three main
features:

(i) a novel set of six equations equipped with nine effective parameters which systemati-
cally couple the microscale to the macroscale;

(ii) the coupling of transport and flow equations allows to account for three scales: pore
scale, Darcy scale, and macroscale;

(iii) the upscaled equations take phase separation during Li-intercalation into account as
well as specific particle configurations.

The wide range of applications and interest in energy storage devices make these results a
promising tool to study the influence of the microstructure on current-voltage characteristics
and to optimize cathode designs.

Keywords: batteries, homogenization, current-voltage curves, lithium intercalation, phase
separation, Butler-Volmer reactions

1 Introduction

We look at basic and widely accepted equations describing charge transport and reactions in com-
posite cathode materials of energy storage systems such as Li-batteries. The main goal of this
article is to systematically and reliably derive effective macroscopic equations that account for
characteristic material properties such as geometric features of interfaces and material phases as
well as electric and ionic conductivities and reaction rates. In particular, the subsequent mathe-
matical modelling shall help to gain a deeper understanding into how material properties influence
experimentally measured current-voltage characteristics. With the introduction of LiFePO4 as a
promising cathode material in 1997, strong improvements in charging and discharging rates as
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well as in safety have helped to make phosphates a promising battery material [22]. A crucial role
for the charging and discharging rate plays the so-called Li-intercalation in which Li-ions enter
into crystalline phosphate particles of the composite cathode. During this process, the phosphate
material can phase separate into a Li-rich phase and a Li-poor phase for which a first modelling
seems to be [21]. Previous formulations describe the intercalation by a shrinking core using radial
diffusion [14]. Crystalline intercalation compounds show a topotactic transition, i.e., the com-
pound may change its structure due to gain or loss of material (which is Li here). Recent research
suggests that a change in structure/phase separation can be suppressed in LiFePO4 nanoparticles,
e.g. [4]. Suppression can occur in equilibrium [30], but when a current flows [28], non-idealities
are enhanced and hence the suppression seems even more likely. This leads immediately to the
important and interesting question what influence can the mircro-geometry have on the appear-
ance of phase separation in these composite cathodes and on the current-voltage characteristics.
For instance, it is possible that different parts of the composite cathode are in a different state and
hence phase separation can be expected to be a very local property over time. In order to better
understand the key properties of composite cathodes for optimizing design and safety, systematic
mathematical and thermodynamic modelling will play a crucial role towards a reliable, effective
macroscopic description of intercalation kinetics of Li+-ions into solid particles such as FePO4.

Existing porous electrode theory for batteries relies on intuitive, formal, or ad hoc averag-
ing strategies based on integrating the equations directly over a representative volume element
[4, 19, 48]. This kind of intuitive averaging seems to take dominant transport characteristics such
as porosity and surface area into account but generally neglects more subtle geometric features such
as pore shape and properties that go beyond porosity and tortuosity characterisations. Currently,
it is still an open question how to rigorously justify the volume averaging approach. Often, these
methods are refined with physically derived corrections to transport coefficients. Famous porous
media corrections to transport parameters are the so-called Bruggeman relation [7], i.e., the diffu-
sion coefficient Dp of the pore phase is obtained by multiplying the free space diffusion parameter
Df by the factor p3/2 where p is the porosity. More refined relations also take the tortuosity into
account [49], i.e., Dp= 1/τDf . The parameter τ is the tortuosity defined as the quotient τ := La

Ls
where La is the length of the actual transport path through the pore and Ls is the shortest distance
connecting entrance and exit of a reference pore. There is increasing interest in the context of ionic
transport to systematically derive upscaled/homogenized equations [2, 25, 38, 42, 43, 45]. For fuel
cell and battery systems recent upscaling results are [20, 26, 39, 46] for instance. A summary of
work closely related to the results presented in this article is given in Tab. 1. Due to increasing
interest and number of publications, we do not claim this table to be complete.

Besides a wide interest in thermodynamics and materials science, the highly heterogeneous
and multiphase character of composite cathodes requires a systematic and reliable derivation of
effective macroscopic transport equations taking physically observed principles as well as geometric
features of the microscale into account while still allowing for feasible and efficient computational
schemes. The homogenization of charge transport equations in cathodes is the main goal of this
article. The basic idea in homogenization is to account for at least one smaller length scale `�L,
the so-called microscale y = x

`
L∈Y ⊂Rd, which takes geometric features such as pore shape or

changing material properties such as electric permittivity/conductivity into account. The param-
eter L is the macroscale (e.g. length of the composite cathode) such that ε= `

L
represents the

material’s heterogeneity. The microscale is identified by a periodic reference cell (periodic ho-
mogenization). Homogenized equations can then be obtained by applying a so-called asymptotic
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Table 1: Summary of derivations of effective macroscopic equations for battery systems with
Li-intercalation. The fact that the majority of work relies on volume averaging can be in part
motivated by the fact that this intuitive method is more formal as it does not require rigorous
existence and uniqueness results in the derivation like the asymptotic two-scale expansion applied
here. Due to an increasingly growing literature on Li-battery modelling over the last decade, we
do not claim this list to be complete.

Article Volume averaging Homogenization
Doyle et al. 1993, [14] • concentrated solution

• Butler-Volmer reactions
• Bruggeman relation
• full battery model

Han et al. 2004, [21] • “phase field” intercalation
• only intercalation modelling

Garcia et al. 2005, [19] • Nernst-Planck transport
• stress due to volume change
• Butler-Volmer reactions
• model validation

Lai et al. 2011, [26] • comparing Nernst-Planck &
concentrated solution
• Bruggeman relation

Hautier et al. 2011, [22] • ab initio investigation of
phosphate cathode materials

Richardson et al. 2012, [39] • Nernst-Planck transport
• Butler-Volmer reactions
• “fast diffusion” intercalation
• no flow

Bazant 2013, [4] • “phase field” intercalation
• single particle investigations
• no flow
• Butler-Volmer/
Marcus reactions

Efendiev et al. 2013, [16] • Nernst-Planck transport
• “diffusive” intercalation
• no flow
• Butler-Volmer reactions

This article 2017 • Nernst-Planck transport
• “phase field” intercalation
• fluid flow
• Butler-Volmer reactions
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Figure 1: Left: Reference cell Y consisting of a polymer solution Yp together with the solid
intercalation compound Ys, i.e., Y =Yp∪Ys. The cell is electrically conducting due to the thin
carbon black pathways connecting Ys. Right: Reference cell YD, here for instance composed of
an elementary pore cell Y such as depicted on the left-hand side. The cell YD takes the influence
of obstacles to momentum transport into account. The union of the Yp phases in YD are then
denoted by Y p

D and similarly Y s
D represents the union of the Ys phases in YD.

multiscale expansion of the form

uε(x) =u(x,y) =u0(x,y)+εu1(x,y)+ε2u2(x,y)+ ·· · .

Then well-posedness theory allows us to identify the equations for u0 and u1 which represent the
relevant terms in the upscaled/homogenized problem. This is a well-accepted methodology by now
[10, 12, 23, 31].

We describe the composite cathode of lithium ion batteries together with available charge
transport equations in Section 2. Then, we formulate the microscopic composite cathode model
which we will subsequently upscale/homogenize and which fully resolves the different phases in
Section 2.2. Based on well accepted charge transport models, we present the homogenized/upscaled
charge transport equations for composite cathode materials in Section 3. A derivation based on
the asymptotic two-scale expansion follows then in Section 3.1.

2 Microscopic composite cathode formulation

We consider a composite cathode which consists of solid intercalation particles Ys⊂Y := [0,1]d,
d∈N dimension of space, and a polymer solution Yp⊂Y which together define a characteristic
reference cell Y :=Yp∪Ys, see Fig. 1 (Left). Moreover, the particles Ys are connected via thin
carbon black pathways allowing for electron transport. We state the basic equations that account
for charge transport in a composite as defined in the reference cell Y . We refer the reader not
interested in an overview on available physical models directly to Section 2.2 where we formulate
the microscopic starting point of our upscaling/homogenization derivation.
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2.1 Basic physical processes and models

Before we look at the upscaling/homogenization of the composite cathode, we introduce models
available in the literature to describe charge transport.

(S) Li-Intercalation compound/particles (solid matrix):
The intercalation particles show two different transport characteristics, i.e, electron transport and
Li-intercalation into an electrochemical solid (subject to constraints such as charge and mass con-
servation, see [19] for instance.) The general atomic transport/diffusion mechanisms through solids
are either by interstitial diffusion (defects in lattice where atoms assume a normally unoccupied
site), vacancy diffusion (driven by thermal energy of atomic vibrations), or via impurities (inter-
diffusion driven by concentration gradients). Interstitial diffusion is generally faster than vacancy
diffusion due to the higher number of interstitial sites and the weaker bonding of interstitials
to neighbouring atoms. Since Li resides in interstitial sites, crystalline intercalation hosts such
as FePO4 are favourable for battery applications. We focus here on topotactic compounds, that
means, hosts/particles that may change its structure due to gain or loss of material. As a conse-
quence, the local Li concentration can serve as a field variable which differs between a Li-rich and
a Li-poor phase separated by a diffuse interface.

(i) Li-interacalation: The thermodynamics of phase separation can be systematically described
by phase field models [4, 8, 18, 21, 36] which rely on a thermodynamic free energy functional

Fr(cs) =nv

∫
Ds

fr(cs)+ λ̃(∇cs)2dx , (2.1)

where f is the homogeneous free energy of a regular solution, that is,

fr(cs) =ωcs(1−cs)+kBT (cs log cs+(1−cs)log(1−cs)) . (2.2)

The parameter ω in (2.2) is an effective interaction energy between a Li interstitial site and its
neighbouring (Li-free) sites. The parameter λ, which accounts for the strength of penalisation of
concentration gradients, is proportional to the interfacial width and assumes in the case of LiFePO4

as intercalation material the following form,

λ̃=a2ω/6 , (2.3)

where ω=59meV is the nearest neighbour interaction energy and a= 2.5Å the nearest neighbour
distance. Using also nv = 8.396×1028[/m3] then leads to λ=nvλ̃= 2.48×10−11J/m as in [21].

Taking a mass conserving gradient flow, i.e., computing the variational derivative with respect
to test functions v∈H1(Ds), we obtain up to boundary terms

∂tcs=−div
(

M̂∇
(
∇H1

cs Fr(cs)
))

, (2.4)

where the derivative ∇H1

c represents the Gâteaux derivative. That means, for all v∈H1(Ds) we
compute

δvFr(cs)

δvcs
= lim
θ→0

Fr(cs+θv)−Fr(cs)
θ

= ((f ′r(cs)−λ∆cs),v) =
(
∇L2

cs Fr(cs),v
)
, (2.5)

where the last equality identifies ∇L2

cs Fr(cs) by Riesz’s theorem. In the same way we can apply

Riesz’s theorem with respect to the semi-inner product
(

M̂∇u,∇v
)
H1

for u,v∈H1(Ds) and a
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symmetric positive definite tensor M̂ to define ∇H1

cs Fr(cs) under homogeneous Neumann boundary
conditions as follows(

∇H1

cs Fr(cs),v
)

=
(

M̂∇∇L2

cs Fr(cs),∇v
)

=
(
−div

(
M̂∇L2

cs Fr(cs)
)
,v
)
. (2.6)

Putting (2.12)–(2.6) together, leads with f ′r(cs) =ω(1−2cs)+kBT log
(

cs
1−cs

)
to the phase field

equation for intercalation compounds

∂tcs= div
(

M̂∇
(
f ′r(cs)−λ∆cs

))
, (2.7)

where the mobility tensor M̂ is often chosen as a constant Ms since generally it is difficult to trace
back the irreversible behaviour to the underlying frictional processes after coarse graining. A state
equation with concentration dependent mobility is suggested in [21], i.e., M̂ = cs(1−cs)M0 where
M0 is a constant.

(ii) Electron transport: We describe charge transport in the solid matrix by the current

is=−σs∇ψs , (2.8)

where σs is the conductivity of the solid intercalation phase Ds and ψs is the electric potential in
Ds. Equation (2.8) is widely used in the literature, e.g. [48].

(E) Electrolyte/separator:
A large part of the electrochemical literature is dedicated to transport equations for binary elec-
trolytes. These denote solutions containing a single binary salt of the form X1X2 plus a solvent
(generally polymer in Li-batteries) where X+

1 and X−2 represent a cation and an anion, respectively.
Electrolytes X1X2 that dissociate into an equal number of cations ν+ and anions ν− are called sym-
metric. Subsequently, we present four different formulations (E1)–(E4) for binary electrolytes.

(E1) Dilute solution theory: charge transport by Poisson-Nernst-Planck (PNP). There is a
wide range of different modelling approaches as well as analytical studies of charge transport
formulations such as [17, 24, 27, 29, 40, 41, 45]. Recently, the PNP system has been modified
to describe electrolytes beyond the dilute approximation in [15], see also Remark 2.1 below. The
widely used and well-accepted Nernst-Planck formulation allows us to take the densities ci of each
species i in the solution into account. Since we consider a polymer electrolyte as a solution, we
have a neutral (z0 = 0) density c0 for the polymer solvent, the cation density c+ = c1 of lithium ions
X+

1 , and the anion density c−= c2 of negative salt ion X−2 . The following classical and well-accepted
description is based on the PNP system,

(PNP)

{
∂tci+u ·∇ci= div (Di∇ci+eziciMi∇ψ) , for i= 0,1,2 ,

−div(ε∇ψ) = e
∑2

i=0zici ,
(2.9)

where Mi, Di, and zi are the diffusion, mobility, and charge number of species i, respectively. The
parameter ε is the electric permittivity of the electrolyte and e denotes the elementary charge.
The fluid velocity u is the solution of the incompressible Navier-Stokes (iNS) equations extended
by a Coulomb force term on the right-hand side [24, 40, 41], i.e.,

(iNS)

{
∂tu+u ·∇u−∆u+∇p=−e

∑2
i=0zici∇ψ,

divu= 0 .
(2.10)
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In the context of the dilute solution theory, see Remark 2.1 below for more details, one does not
use the flux of the solvent, i.e., i= 0 in (2.9), but instead the solvent is solely described by the
momentum equation (2.10). For simplicity, we will subsequently denote the cation density by c+,
the anion density by c−.

(E2) Binary electrolyte [48]. Since bulk electroneutrality is a widely confirmed characteristic
property of solutions, we make the frequent assumption of an electrically neutral solution, i.e.,∑

i

zici= 0 . (2.11)

We note that the neutrality assumption (2.11) is violated in interfacial regions (e.g. near electrodes)
where thin electrical double layers (EDL) appear. Under electroneutrality, the concentration of
the electrolyte is consistently defined by

c :=
c+

ν+

=
c−
ν−
. (2.12)

Moreover, we assume constant mobilities and diffusion coefficients. Applying the fluxes ji, i= 1,2,
from the Nernst-Planck setting (2.9) leads to{

∂tc+u ·∇c=D∆c,

(z+M+−z−M−)Fdiv(c∇ψ)+(D+−D−)∆c= 0 ,
(2.13)

where D= z+M+D−−z−M−D+

z+M+−z−M−
.

Remark 2.1 (Validity) The dilute solution theory is recommended as a general formulation since
it is widely used in the electrochemical literature and at the same time it accounts for the essential
physical processes involved without very complicated/less accessible ingredients [48, p.274]. But one
should be aware that the fluxes defined in (2.9)1 break down because electro-migration and diffusion
are not consistently defined with respect to an average velocity u of the fluid. A way out of this is
a so-called dilute solution where one does not apply (2.9) to the solvent, i.e., i= 0, but solely to
the ionic species and where one attributes the fluid velocity u to the velocity of the solvent.

Recently, the authors of [15] have carefully specified the fluid velocity u in order to overcome
the above noted difficulty. �

(E3) Concentrated solution. We state a charge transport model for a polymer electrolyte as
proposed in [14] for composite cathodes. This transport formulation relies on experimentally mea-
surable quantities such as the transference number. We still assume that the polymer electrolyte
is a solution of a binary salt and a solvent. For a Li-polymer insertion cell the solution is for
instance a binary salt LiX and the solvent a polymer. Taking the polymer as a reference species,
the following material balance on the lithium salt electrolyte c= ci/νi,

∂tc= div

(
D(c)

(
1− d(lnc0)

d(lnc)

)
∇c
)
−

ip ·∇t0+(c)

z+ν+F
, (2.14)

where tj =
z2jMjcj∑
i z

2
iMici

is the experimentally obtained transference number which accounts for the

current associated with species j. In [14], the following fit to experimental data is employed

t0+ = 0.0107907+1.48837×10−4c. (2.15)
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Following again the concentrated solution theory [48] applied to lithium-polymer insertion cells in
[14], the current ip in the polymer phase admits the following representation

ip :=−κ(c)∇ψp−
κ(c)RT

F

(
1+

∂ ln f±
∂ ln c

)(
s+

nν+

+
t0+(c)

z+ν+

)
∇ ln c, (2.16)

where the electric potential ψp in the polymer phase is measured with a reference electrode, κ=
F
∑

iz
2
iMici is the conductivity of the solution not accounting for concentration gradients. The

variable f± is the activity coefficient of the salt and is only accounted for if data are available [14].

(E4) Onsager-type equations away from equilibrium. The subsequent charge transport formu-
lation has been introduced in [16]. The concentration of lithium c+ in the electrolyte phase is
governed by the following system

∂tc
+ = div

(
k+

11(c+)∇c+ +k+
12∇ψ

)
= 0 ,

0 = div
(
k+

21(c+)∇c+ +k+
22∇ψ

)
,

(2.17)

where the coefficients are defined for the ion conductivity κ+ and ion diffusion coefficient D+ by

k+
11(c+) =D+ +

RT

F 2

(t+)2κ+

c+
, k+

12 =κ+ t+
F
,

k+
21(c+) =

RT

F

κ+t+
c+

, k+
22 =κ+ .

(2.18)

Remark 2.2 (Comments to formulations (E1)–(E4)) The formulations (E1)-(E2) are widely
used in theory and computational modelling whereas (E3) is generally used in experimental sci-
ence in view of particular parameters that represent directly measurable quantities. The transport
equations (E4) are interesting as they resemble in their stationary form the classical Onsager
relations [34, 35]. �

(I) Solid-electrolyte interphase:
The interfacial transition of Li from the polymer solution into the solid insertion compound is
governed by the Butler-Volmer kinetics [3, 5]. Following Doyle et al. [14], the following reaction

Li+−Θp+Θs+e− 
 Li−Θs+Θp , (2.19)

governs the Li insertion into the solid matrix. The variables Θp and Θs stand for the available sites
in the polymer and the solid matrix (interstitial). For an overpotential η :=ψs−ψ between the
solid (ψs) and the bulk electrolyte (ψ) and the voltage U =U θ

2 −U θ
ref +RT/F (βcs+ζ), the insertion

process (2.19) induces the current

i=Fkfb(cpm−c)αccαa
[
csexp

(
αaF

RT
(η−U)

)
−(csm−cs)exp

(
−αcF
RT

(η−U)

)]
, (2.20)

where csm and cpm are the maximal densities in the solid and the polymer phase, respectively.
The variable ζ is a constant expressing corrections to activity. We will set these parameters
according to [14], i.e., csm = 29000mol/m3, cpm = 3920mol/m3. Additionally, the transfer coefficients
are αa=αc0.5, and the reaction rate at the particle-electrolyte interface is kfb = 10−10m4/(mol· s).



M. Schmuck Homogenized composite cathode equations 9

Figure 2: Left: A 2D periodic composite cathode D=Dε
p∪Dε

s of characteristic length L with solid
intercalation particles Dε

s surrounded by a polymer electrolyte solution. This black lines are electric
conducting pathways in the form carbon black. This cell motivates a layer by layer assembly. We
note that this figure can serve as a reference cell that represents a characteristic configuration of
intercalation particles electrically connected in various ways via carbon black, and surrounded by
polymer electrolyte. Right: A 3D sample reference cell of a possible cathode composed of FePO4

particles connected via carbon black particles (thin lines). Obviously, more complex cells can be
used.

Hence, the intercalation current density (2.20) governs how the the Li+-flux jp= M̂p∇(c+z+c∇ψp)
from the polymer solution is related to the Li-flux js= M̂s∇(f ′(cs)−λ∆cs) in the solid intercalation
compound. Based on the interfacial reaction (2.19), we have the following boundary conditions on
the interface,

(Interfacial kinetics)


i=− si

nF
jp ·n on ∂Dp ,

i=−js ·n on ∂Ds ,

i=−σs∇φs on ∂Ds ,

(2.21)

where n is the outward normal of the corresponding domains and the number of electrons is one,
that is, n= 1 = si, where si is the stochiometric parameter.

2.2 Microscopic equations for composite cathodes

Based on the previous Section 2.1, we can now state the microscopic system of equations describing
charge transport in a periodically extended composite cathode, see Fig. 2. We distinguish two
different microscales, that is, a reference pore scale of characteristic length lp and a so-called
Darcy scale of characteristic length lD. Herewith, mass transport is governed by the heterogeneity
εp= lp

L
of pores where lp is the characteristic size of a reference particle configuration and L is

the macroscopic length of the composite cathode. The microscopic formulation fully resolves the
highly heterogeneous geometry of the composite cathode in which we have to account for three
essential transport mechanisms: (1) Diffusive and electro-migrational transport in the polymer
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solution
Dεp
p :=

⋃
z∈Zd

εp (Yp+z)∩D ;

(2) Interstitial diffusion inside a solid intercalation compound

Dεp
s :=

⋃
z∈Zd

εp (Ys+z)∩D

(described by a mean field phase field equation); and (3) Reaction kinetics on the interface
Iεp :=∂D

εp
p ∩∂Dεp

s given by the Butler-Volmer equations (2.20) which are imposed as boundary
conditions.

The following equations fully describe the microscopic kinetic processes in the composite cath-
ode and hence are indexed by the pore heterogeneity εp. Moreover, we allow for a further length
scale lD>lp, called Darcy scale, see Fig. 1 Right. This then leads to a so-called Darcy’s het-
erogeneity εD := lD

L
. We note that the subsequent results are valid for scenarios where the pore

scale εp differs from the Darcy scale εD, i.e., where εp<εD. Hence, the scaling εp<εD enables
us to account for a third scale via the momentum equation. Hence, fluid flow is considered on a
perforated domain

DεD
p :=

⋃
z∈Zd

εD (Y p
D+z)∩D

which is defined by a slightly larger representative volume element Y p
D accounting for the Darcy

scale lD. As the boundary conditions on ∂D do not have a direct influence in the upscaling inside
the composite cathode D, we do not state here how D interacts with external forces and systems
as this can still be made precise at a later stage.

Due to confined material structure, one can expect a fast relaxation time for the flow as well
as a small characteristic flow field. Therefore, the flow is governed by a small Reynolds number
Re=

ρUrefL

µ
(where ρ is the density of the fluid, Uref is a reference velocity, µ the dynamic viscosity,

and L a characteristic length of the system) and hence instead of using the full time-dependent
Navier-Stokes equations to define uεD , we can apply a quasi-stationary formulation based on Stokes
equations, i.e., {

−ε2Dµ∆uεD +∇pεD = f εp :=−e(z+c
εp
+ −z−c

εp
− )∇ψεpp in DεD

p ,

divuεD = 0 in DεD
p ,

(2.22)

where −e(z+c
εp
+ −z−c

εp
− )∇ψεpp is a Coulomb driving force [24, 40, 41]. In the polymer electrolyte

(binder), we have
∂tc

εp
+ +uεp ·∇cεp+ = div

(
kBTM+

(
∇cεp+ +ez+c

εp
+∇ψ

εp
p

))
in D

εp
p ,

∂tc
εp
− +uεp ·∇cεp− = div

(
kBTM−

(
∇cεp− −ez−c

εp
−∇ψ

εp
p

))
in D

εp
p ,

−div
(
εp∇ψεpp

)
= e(z+c

εp
+ −z−c

εp
− ) in D

εp
p ,

(2.23)

where the parameter εp denotes the electric permittivity of the polymer and hence differs from
the pore heterogeneity εp. The variable c= c+ denotes the density of Li+-ions. The mean field
equations describing interstitial and electron transport inside a solid crystal read in the pore scale
as follows {

∂tc
εp
s = div

(
Ms∇

(
f ′r(c

εp
s )−λ∆c

εp
s

))
in D

εp
s ,

−div
(
σs∇φεps

)
= 0 in D

εp
s ,

(2.24)
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where the electric conductivity of the solid intercalation compound is σs. We note that the Poisson
equations (2.33)3 and (2.24)2 can be written as a single equation for the electric potential φεp by

−div(ε(x/εp)∇ψεp) = e(z+c
εp +z−c

εp
− )χDεpp in D, (2.25)

valid on the whole domain D for the combined permeability and conductivity parameter

ε(x/ε) := εpχYp(x/εp)+σsχYs(x/εp) , (2.26)

and with the characteristic function χDεpp (x) = 1 if x∈Dεp
p . In (2.26), we employ the microscopic

variable y∈Y defined on the reference cell Y , see Fig. 1 for a sample polymer-particle configuration
of a composite cathode.

In order to complete the microscopic formulation, we still need to state the interfacial processes
taking place on the polymer/binder-solid interface Iεp , i.e.,

εpR
εp(c

εp
+ ,c

εp
s ,ηεp ,U εp) = RT

F

(
M+

(
∇cεp+ +ez+c

εp
+∇ψεp

)
−uεDc

εp
+

)
·nps on Iεp ,

0 = RT
F

(
M−

(
∇cεp− −ez−c

εp
−∇ψεp

)
−uεDc

εp
−
)
·nps on Iεp ,

εpR
ε(c

εp
+ ,c

εp
s ,ηεp ,U εp) =−Ms∇

(
f ′r(c

εp
s )−λ∆c

εp
s

)
·nsp on Iεp ,

εpR
εp(cεp ,c

εp
s ,ηεp ,U εp) =σs∇ψεs ·nsp on Iεp ,

σs∇ψεpp ·nsp= εp∇ψεps ·nsp on Iεp ,

uεD =0 on Iεp ,

(2.27)

where nsp=−nps are normals pointing outward from the solid into the polymer or from the polymer
into the solid phase, respectively. The current Rεp =Rεp(cεp ,c

εp
s ,ηεp ,U εp) is defined by the Butler-

Volmer kinetics (2.20) extended here towards the highly heterogeneous composite cathode setting
indicated by the pore heterogeneity εp, that is,

Rεp = ips

[
c
εp
s

c
εp
sm

exp

(
αsm

αaF

RT
(ηεp−U εp)

)
− (c

εp
sm−cεps )

c
εp
sm

exp

(
−αsm

αcF

RT
(ηεp−U εp)

)]
, (2.28)

where ips=Fkfb(c
εp
pm−cεp)αc(cεp)αa plays the role of an exchange current density and c

εp
sm= exp(αsm)

brings the term in the angled brackets into dimensionless form. For the limits limx→Iεps and
limx→Iεpp , which denote passing from the solid phase and the polymer phase to the interface Iεp ,

respectively, we can identify the overpotential in (2.28) by

ηεp = lim
x→Iεps

ψεp− lim
x→Iεpp

ψεp . (2.29)

Equation (2.28) additionally depends on the maximum capacity of ions in the polymer phase
c
εp
pm = 3920mol/m3 as well as in the solid crystal c

εp
sm = 29000mol/m3. We also recall from equation

(2.20) that a fitting to experimental data [14, 50] provides

U εp = 2.17+
RT

F

(
−0.000558cεps

∣∣
Iεp

+8.1
)
. (2.30)

Finally, we bring the equations (2.22), (2.24), (2.25), and (2.27) into dimensionless form by
using the following variables and parameters

ũεD =
uεD

Uref

, c̃
εp
± =

c
εp
±

cref

, ψ̃=
Fψ

RT
, t̃=

t

τ
,

x̃=
x

L
, η=

2crefRTL

Urefµ
, Pe =

LUref

D
,

(2.31)
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where τ is either the diffusion time τD := L2

D
, the interfacial transport time τs := L2

Ms
, or the con-

vection time τu= L
Uref

. Uref is a reference velocity and cref a reference salt concentration. We also

use the identity kBT
e

= RT
F

and the electric potential ψ stands for the electric potentials of the solid

phase ψs and of the liquid phase ψp. The parameter λD :=
(
εpkBT

2e2cref

)1/2

denotes the dimensionless

Debye length and σ := σs
σref

the dimensionless electric conductivity. We set the reference conductiv-

ity to the bulk conductivity in the electrolyte phase, i.e., σref = εpD

λ2
. For notational convenience,

we assume M =M+ =M−, and hence D=D+ =D−, and we will subsequently drop the tilde from
dimensionless variables. With Einstein’s relation we then have D=kBTM . Moreover, we note
that the convection-diffusion-electromigration equation reads with the above scalings as follows

L2

τD

∂c̃
εp
±

∂t̃
+PeũεD∇̃c̃εp± = d̃iv

(
z±c̃

εp
± ∇̃ψ̃

)
.

As noted earlier in this section, in the composite cathode one expects a small Re= Pe/Pr but
a large Prandtl number Pr := ν

D
, e.g. in solute transport in groundwater flow D= 10−5cm2/s,

ν= 10−2cm2/s, and hence Pr = 103, where ν= µ
ρ

is the the kinematic viscosity and ρ the density.

Therefore, we allow for Pe =O(1) [31].
Herewith and after choosing τ = τu , and setting τs

τu
= 1 for simplicity, we obtain the following

dimensionless microscopic formulation

(micro (SE))

{
−ε2D∆uεD +∇pεD = f εp :=−η(z+c

εp
+ −z−c

εp
− )∇ψεp in DεD

p ,

divuεD = 0 in DεD
p .

(2.32)

(micro (E1))

{
Pe
(
∂tc

εp
+ +uεp ·∇cεp+

)
= div

(
∇cεp+ +z+c

εp
+∇ψεp

)
in D

εp
p ,

Pe
(
∂tc

εp
− +uεp ·∇cεp−

)
= div

(
∇cεp− −z−c

εp
−∇ψεp

)
in D

εp
p ,

(2.33)

(micro (S))
{

∂tc
εp
s = div

(
∇
(
f ′r(c

εp
s )−λ∆c

εp
s

))
in D

εp
s , (2.34)

(micro (P))

{
−div

(
λD∇ψεpp

)
= (z+c

εp
+ +z−c

εp
− ) in D

εp
p ,

−div
(
σ∇ψεps

)
= 0 in D

εp
s ,

(2.35)

(micro (I))



εpβ+R
εp(c

εp
+ ,c

εp
s ,ηεp ,U εp) =

((
∇cεp+ +z+c

εp
+∇ψεp

)
−uεDc

εp
+

)
·nps on Iεp ,

0 =
((
∇cεp− −z−c

εp
−∇ψεp

)
−uεDc

εp
−
)
·nps on Iεp ,

εpβsR
ε(c

εp
+ ,c

εp
s ,ηεp ,U εp) =−∇

(
f ′r(c

εp
s )−λ∆c

εp
s

)
·nsp on Iεp ,

εpβψR
εp(c

εp
+ ,c

εp
s ,ηεp ,U εp) =σ∇ψεs ·nsp on Iεp ,

σs
σref
∇ψεpp ·nsp= εp

εs
∇ψεps ·nsp on Iεp ,

uεD =0 on Iεp .

(2.36)

where the parameters coupling the Butler-Volmer reactions to the different charge transport equa-
tions are defined by β+ = ipsL

eD
, βs= ipsL

eM
, and βψ = F

RT

ipsL

σref
for σref = εpD

λ2D
.

A summary of physical and dimensionless parameters are given in Tab. 2.
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3 Main results: Effective macroscopic equations

Our main result is the reliable and systematic derivation of a novel set of effective macroscopic
composite cathode equations that take the crucial chemical and transport processes described in
Section 2.2 into account: (a) ionic transport; (b) interfacial reactions; (c) intercalation dynamics
under a possible phase transformation; (d) electron transport.

The subsequent upscaling result relies on the following property.

Definition 3.1 (Local Thermodynamic Equilibrium (LTE)) The chemical potentials µ±(C±,Ψ) =

logC±±Ψ and µs(Cs) =f ′r(Cs)− λ
q
div
(
M̂∇Cs

)
are said to be in local thermodynamic equilibrium

if for every k∈N, 1≤k≤d,

∂µι(C
ι,Ψ)

∂xk
=

{
0 if it appears in the cell problem in Y ×D,
∂µι(Cι,Ψ)

∂xk
if it appears on the macroscale D,

(3.37)

and similarly

∂µs(C
s)

∂xk
=

{
0 if it appears in the cell problem in Y ×D,
∂µs(Cs)
∂xk

if it appears on the macroscale D,
(3.38)

for ι= +,−, where C±, Ψ, and Cs are the upscaled/slow variables solving (3.39) below and do not
depend on the fast microscale Y .

With the help of the asymptotic two-scale expansion method, we derive the following

Main result: (Upscaled composite cathode equations) The microscopic composite cathode
formulation based on the equations (2.32), (2.33), (2.34), and (2.36) admits under local thermo-
dynamic equilibrium (Definition 3.1) the following upscaled/homogenized equations

V(x,t) =− κ̂
µ

(f0−∇P ) in D,

divV = 0 , in D,

p∂tC
+ +PeV ·∇C+ = div

(
D̂∇C+ +z+C

+M̂∇Ψp

)
−β+R(C+,Cs,η0,U0) in D,

p∂tC
−+PeV ·∇C−= div

(
D̂∇C−−z−C−M̂∇Ψp

)
in D,

−div(ε̂∇Ψp) =p(z+C
+ +z−C

−) in D,

−div
(

Σ̂∇Ψs

)
=βψR(C+,Cs,η0,U0) in D,

q∂tCs= div
(
M̂s

(
∇f ′r(Cs)+ λ

q
div
(
M̂s∇Cs

)))
+βsR(C+,Cs,η

0,U0) in D,

(3.39)

where p= |Y1|
|Y | , q= 1−p, f0 =−η (C+−C−)M̂∇Ψp, β+ = i0L|Λ|

eD
, βψ = F

RT

ipsL|Λ|
σref

, βs= i0L|Λ|
eMs

, η0 = Ψs−
Ψp, U

0 = 2.17+ RT
F

(
−0.000558Cs

∣∣
Iεp

+8.1
)
, and the material’s correction tensors κ̂={κij}di,j=1,

M̂={mij}di,j=1, D̂=
{
dij
}d
i,j=1

, ε̂={εij}di,j=1, Σ̂ ={σij}di,j=1, and M̂s=
{
ms
ij

}d
i,j=1

are defined by

κij :=− 1

µ|YD|

∫
Y pD

wji (y)dy , εik =
1

|Y |

∫
Yp

λD

(
δik−δij

∂ξkψ(y)

∂yj

)
dy ,

mik :=
1

|Y |

∫
Yp

δij(y)

(
δik−δij

∂ξkψ(y)

∂yj

)
dy , ms

ik =
1

|Y |

∫
Ys

δij(y)

(
δik−δij

∂ξkφ(y)

∂yj

)
dy ,

dik :=
1

|Y |

∫
Yp

dij(y)

(
δik−δij

∂ξk±(y)

∂yj

)
dy , σik =

1

|Y |

∫
Ys

σ

(
δik−δij

∂ξkψ(y)

∂yj

)
dy .

(3.40)
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The correctors wji , ξ
k
ψ, ξkφ, and ξk solve the reference cell problems (3.48), (3.63)2, (3.72), and

(3.63)1, respectively.

Before we derive these effective macroscopic formulation, we provide values for the parameters
used in general Li batteries, see Tab. 2.

Table 2: Summary of available material parameters to model composite cathodes.

Parameter Value range(a) Name

L ≈100−1000µm thickness of cathode

` ≈1µm radius of cathode particles/size
of reference cell

λD <1nm (d) Debye length

D=D± ≈1.5−4.5×10−10m2/s (b) diffusion coeff. in D
εp
p

Ds=kBTMs ≈5.0×10−13 diffusion coeff. in D
εp
s

σ ≈1.0×104S/m conductivity in D
εp
s

αa, αc 0.5 transfer coefficients

csm ≈29000mol/m3 max. concentration in D
εp
s

cpm ≈3920mol/m3 max. concentration in D
εp
p

kfb ≈10−10m4/(mol ·s) reaction rate at Iεp

ips ≈12.6A/m2 exchange current density

|Λ| ≈5−15×103m2/kg (c) specific interfacial/surface area
(BET)

(a) Doyle et al. [14] & Garcia et al. [19], (b) Capiglia et al. [9], (c) Choy et al. [11],
(d) Rademaker et al. [37]

3.1 Derivation of the upscaled cathode equations (3.39).

As the upscaling involves several equations, we will start with the Stokes equations driven by a
Coulomb force f εp . Then we consider the PNP system, and finally we look at the phase field
equation describing the Li-intercalation process.

Homogenizing the generalized Stokes equations (2.32)1:
Our derivation gives an extension of the classical formal homogenization result [23] towards

Coulomb driving forces [24, 40, 41, 42].
Step 1: (Asymptotic expansion) We make the ansatz

uεD(x) =U(x,yD)+εDu1(x,yD)+εD
2u2(x,yD)+ ·· · ,

pεD(x) =P (x,yD)+εDp
1(x,yD)+εD

2p2(x,yD)+ ·· · .
(3.41)

The microscale yD =x/εD ∈YD is YD-periodic as in Section 2.2 where we introduced the microscopic
formulation of the composite cathode based on a reference FePO4-particle configuration Y and a
reference flow/filtration cell YD.
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We insert (3.41) into (2.32). This leads to the following problem where we only state the leading
order terms,

−εD−1∇yP (x,yD)

+εD
0
{
µ∆yDU(x,yD)−

(
∇yDp

1(x,yD)+∇xP (x,yD)
)}

+εD
1 (. . .)+h.o.t. = f εp =−e

(
z+c

εp
+ −z−c

εp
−
)
∇φεpp , in Y p

D ,

(3.42)

εD
−1divyD U(x,yD)

+εD
0
(
divyD u1(x,yD)+divxU(x,yD)

)
+εD

1 (. . .)+h.o.t. = 0 , in Y p
D ,

(3.43)

εD
0U(x,yD)

+εDu1(x,yD)+h.o.t. =0 on I0 .
(3.44)

The variable I0 :=∂Y p
D∩∂Y

p
D denotes the solid-pore interface on the level of the referenc cell YD.

Higher order terms are referred to by h.o.t..
Step 2: (Comparing terms of equal order) The lowest order problem in Step 1 is obtained

by comparing coefficients of the terms of order εD
−1, i.e., we obtain the equations

∇yDP (x,yD) =0 , in Y p
D ,

divyD U(x,yD) = 0 , in Y p
D .

(3.45)

This allows us to conclude that the leading order pressure component P is independent of the
microscale yD but not for leading order fluid velocity U.

At the next order O(εD
0), we obtain

−µ∆yDU(x,yD)+
(
∇yDp

1(x,yD)+∇xP (x,yD)
)

= f εp =−e
(
z+c

εp
+ −z−c

εp
−
)
∇φεpp , in Y p

D ,

divyD u1(x,yD)+divxU(x,yD) = 0 , in Y p
D .

(3.46)

Step 3: (Ansatz for first order terms) This step is not entirely standard and requires
physical intuition. Making the usual ansatz for the pressure p1 in the asymptotic expansion and
treating the the fluid velocity U instead of u1 in the same way, which is motivated by its dependence
on the microscale yD, i.e.,

p1(x,yD) =
d∑
j=1

(
f
εp
j −

∂P (x)

∂xj

)
πj(yD) ,

U(x,yD) =
1

µ

d∑
j=1

(
f
εp
j −

∂P (x)

∂xj

)
wj(yD) ,

(3.47)

then problem (3.46)1 turns into the following

(Cell Problem)


−∆yDwj(yD)+∇yDπ

j(yD) =ej , in Y p
D ,

divyD wj(yD) = 0 , in Y p
D ,

wj(yD) = 0 , on I0 ,

(3.48)



M. Schmuck Homogenized composite cathode equations 16

via ansatz (3.47)2 as well as into Darcy’s law after integrating (3.47)2 over the pore space Y p
D, i.e.,

V(x,t) =
|Y p
D|
|YD|

MY pD
(U(x,yD)) =− 1

µ
κ̂(f εp−∇xP (x)) , (3.49)

where the hydraulic conductivity/permeability tensor κ̂ :={κij}di,j=1 is defined by the volume
average

κij =− 1

µ

1

|YD|

∫
Y pD

wji (yD)dyD . (3.50)

It leaves to show that the effective Darcy velocity V is divergence free, that means, that it
satisfies (2.32)2. To this end, we can make use of equation (3.46)2, which leads after integration
over the pore space Y p

D and with the help of Gauss’ theorem to

divxV(x) =

∫
∂YD

n ·u1(x,yD)do(yD)−
∫
I0

n ·u1(x,yD)do(yD) = 0 , (3.51)

where we used the YD-periodicity and the homogeneous boundary condition (3.44) at order O(εD).
Finally, we note that once we have the upscaling result for the transport equations (2.33), which

are formulated with respect to the pore scale lp, then we can also determine the upscaled form of
the Coulomb force term f εp by f0, i.e., by formally passing εp→0. 2

Homogenizing the PNP system:
The following derivation relies on homogenization results for the PNP system obtained in the

context of microfluidics and soil mechanics such as [42, 43, 45]. The subsequent statements extend
the derviation in [43] to include fluid flow.

Step 1: (Asymptotic expansion) We consider the asymptotic two-scale expansions

c±εp(t,x) =C±(t,x,y)+εpc
±
1 (t,x,y)+ε2pc

±
2 (t,x,y)+h.o.t. ,

ψεp(t,x) = Ψ(t,x,y)+εpψ1(t,x,y)+ε2pψ2(t,x,y)+h.o.t. .
(3.52)

For notational convenience, we introduce for smooth enough functions vεp the following operators,

Asvεp(x) :=−
N∑

i,j=1

∂

∂xi

(
ε(x/εp)δij

∂vεp
∂xj

)
=
[(
εp
−2A0 +εp

−1A1 +A2

)
vεp
]
(x,x/εp) ,

B±s vεp(x) :=−
N∑

i,j=1

∂

∂xi

(
δij
∂vεp
∂xj

)
=
[(
εp
−2B±0 +εp

−1B±1 +B±2
)
vεp
]
(x,x/εp) ,

B3
svεp(x) :=−

N∑
i,j=1

∂

∂xi

(
vεpδij

∂vεp
∂xj

)
=
[(
εp
−2B3

0 +εp
−1B3

1 +B3
2

)
vεp
]
(x,x/εp) ,

(3.53)
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where Ai are related to the Poisson equation and are defined by,

A0 :=−
d∑

i,j=1

∂

∂yi

(
ε(y)δij

∂

∂yj

)
,

A1 :=−
d∑

i,j=1

∂

∂xi

(
ε(y)δij

∂

∂yj

)
−

d∑
i,j=1

∂

∂yi

(
ε(y)δij

∂

∂xj

)
,

A2 :=−
d∑

i,j=1

∂

∂xi

(
ε(y)δij

∂

∂xj

)
,

(3.54)

The operators B±i and B3
i related to the Nernst-Planck equations are defined for c± by,

B±0 :=−
d∑

i,j=1

∂

∂yi

(
δij

∂

∂yj

)
,

B±1 :=−
d∑

i,j=1

∂

∂xi

(
δij

∂

∂yj

)
−

d∑
i,j=1

∂

∂yi

(
δij

∂

∂xj

)
,

B±2 :=−
d∑

i,j=1

∂

∂xi

(
δij

∂

∂xj

)
,

B3
0 :=−z±

d∑
i,j=1

∂

∂yi

(
δij
∂Ψ

∂yj

)
,

B3
1 :=−z±

d∑
i,j=1

∂

∂xi

(
δij
∂Ψ

∂yj

)
−z±

d∑
i,j=1

∂

∂yi

(
δij
∂Ψ

∂xj

)
−z±

d∑
i,j=1

∂

∂yi

(
δij
∂ψ1

∂yj

)
,

B3
2 :=−

d∑
i,j=1

∂

∂xi

(
δij
∂Ψ

∂xj

)
−z±

d∑
i,j=1

∂

∂xi

(
δij
∂ψ1

∂yj

)

−z±
d∑

i,j=1

∂

∂yi

(
δij
∂ψ1

∂xj

)
−z±

d∑
i,j=1

∂

∂yi

(
δij
∂ψ2

∂yj

)
.

(3.55)

The definitions (3.53), (3.54), and (3.55) allow to immediately obtain the following sequence of
problems by equating terms of equal power in εp, i.e.,

O(εp
−2) :


B±0 C±+B3

0C
±= 0 in Yp ,

C± is Yp-periodic ,

A0Ψ = 0 in Y ,

Ψ is Y -periodic ,

(3.56)

O(εp
−1) :


(
B±0 +B3

0

)
c±1 +Pedivy (uεDC±) =−

(
B±1 +B3

1

)
C± in Yp ,

c±1 is Yp-periodic ,

A0ψ1 =−A1Ψ in Y ,

ψ1 is Y -periodic ,

(3.57)
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O(1) :



(
B±0 +B3

0

)
c±2 +Pedivy

(
uεDc±1

)
=−

(
B±1 +B3

1

)
c±1 −

(
B±2 +B3

2

)
C±

−∂tC±−Pedivx (uεDC±) in Yp ,

c±2 is Yp-periodic ,

A0ψ
3
2 = (C+−C−)−A1ψ1−A2Ψ in Y ,

ψ2 is Y -periodic .

(3.58)

Using (3.54) and (3.55) we can rewrite (3.56) in the more intuitive form,
−∆yC

+−divy (C+∇yΨ) = 0 in Yp ,

−∆yC
−−divy (C−∇yΨ) = 0 in Yp ,

−divy (ε(y)∇yΨ) = 0 in Y .

(3.59)

Equation (3.59)3 is classical in elliptic homogenization theory [6, 10, 12, 23]. Hence, we immediately
can conclude that Ψ(t,x) is independent of the microscale y∈Y . Entering with this result into
(3.59)1 and (3.59)2 further implies that also C±(t,x) and Ψ(t,x) are independent of the microscale
y∈Yp.

The next problem in the sequence, i.e., (3.57), has the following explicit form,
−∆yc

±
1 −divy (z±C

±∇yψ1)+Pedivy (uεDC±) = divy

(
z±c

±
1∇yΨ

)
+divx∇yC

±

+divx (z±C
±∇yΨ)+divy∇xC

±+divy (z±C
±∇xΨ) in Yp ,

−divy (ε(y)∇yψ1) = divx (ε(y)∇yΨ)+divy (ε(y)∇xΨ) in Y ,

(3.60)

where the convective terms Pedivy (uεDC±) disappear since C± and uεD are both independent of
y. The independence of C± and Ψ from y together with the linearity of (3.60) motivates to make
the following ansatz,

c±1 (t,x,y) =−
d∑
j=1

ξj±(y)
∂C±(t,x)

∂xj
, and ψ1(t,x,y) =−

d∑
j=1

ξjψ(y)
∂Ψ(t,x)

∂xj
, . (3.61)

With the local thermodynamic equilibrium property, i.e.,

0 =
∂

∂xj
logC±±z±

∂

∂xj
Ψ , (3.62)

we can simplify (3.60) to,
−
∑N

i,j=1
∂
∂yi

(
δij

∂
∂yj

(
ξj±(y)−yi

))
=−

∑N
i,j=1

∂
∂yi

(
δij

∂
∂yj

(
ξjψ(y)−yi

))
in Yp ,

ξj±(y) is Yp-periodic and MYp(ξ
j
±) = 0 ,

−
∑N

i,j=1
∂
∂yi

(
ε(y)δij

∂
∂yj

(
ξjψ(y)−yi

))
= 0 in Y ,

ξjψ(y) is Y -periodic and MY (ξjψ) = 0 .

(3.63)

System (3.63) defines the reference cell problems for the upscaled Poisson-Nernst-Planck equations
describing binary symmetric electrolytes in porous media. Thanks to the simplification of (3.60)
via (3.62), the well-posedness of (3.63) follows by Lax-Milgram’s theorem.
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The last problem (3.58) is again well-posed by Lax-Milgram’s theorem or the Fredholm alter-
native. A necessary and sufficient condition for the existence and uniqueness of solutions to (3.63)
is the requirement that corresponding right-hand sides are zero after integrating over Yp. Hence,
we immediately obtain,

porous media PNP:


|Yp|∂tC±+Pe |Yp|divx (uεDC±)−

∑d
i,j,k=1

(
∂
∂xi

(
δik−δij

∂ξk±
∂yj

)
∂C±

∂xk
,1
)
Yp

−
∑d

i,j,k=1

(
∂
∂xi

(
z±C

±
{
δik−δij

∂ξkψ
∂yj

}
∂Ψ
∂xk

)
,1
)
Yp

= 0 ,

−
∑d

i,j,k=1

(
∂
∂xi

(
ε(y)

{
δik−δij

∂ξkψ
∂yj

}
∂Ψ
∂xk

)
,1
)
Y

= |Yp|(C+−C−) .

(3.64)

We note that uεD is not upscaled/homogenized here since this allows us to account for multiple
scales such as the pore scale lp, the Darcy scale lD, and the macroscale L. For details regarding
the verifaction of the cell problems with Lax-Milgram’s theorem or the Fredholm alternative [12],
we refer the interested reader also to [44] where these tools are applied in a related problem by a
modified asymptotic expansion.

It leaves to homogenize the right-hand side of the Stokes equations (2.32), which is scaled with
respect to the pore scale lp. With the corrector ξkψ we immediately obtain at the level O(ε0p) that

the effective Coulomb force term is f 0 =−η (C+−C−)M̂∇Ψp since at O(ε0p) we have with (3.61)

−η (C+−C−)(∇xΨp+∇yψ1) =−η (C+−C−)

(
d∑

i,j,k=1

(
δik−δij

∂ξkψ
∂yj

)
∂Ψp

∂xk

)
.

2

Homogenizing the phase field intercalation equation
Step 1: (Asymptotic expansion) The derivation of the phase field equations follows the essen-
tial steps presented in [47] and which we repeat here for the reader’s convenience. The heterogeneity
parameter ε= εp is the pore scale as for the ionic transport in the polymer solution.

In the context of asymptotic two-scale expansions, the Laplace operator ∆ can be written as
follows,

A0 =−
∑d

i,j=1
∂
∂yi

(
δij

∂
∂yj

)
, A1 =−

∑d
i,j=1

[
∂
∂xi

(
δij

∂
∂yj

)
+ ∂

∂yi

(
δij

∂
∂xj

)]
,

A2 =−
∑d

i,j=1
∂
∂xj

(
δij

∂
∂xj

)
,

(3.65)

such that we can identify Aε := ε−2A0 +ε−1A1 +A2 = ∆. We account for the multiscale nature of
strongly heterogeneous environments [43, 23, 31] by the following ansatz

ηε≈η0(x,y,t)+εη1(x,y,t)+ε2η2(x,y,t)+ . . . , for η∈{w,φ} . (3.66)

Before we can insert (3.66) into the microscopic formulation (2.34), we approximate the derivative
of the nonlinear homogeneous free energy density fr by a Taylor expansion around the homogenized
order parameter φ0, that means,

fr(φ
ε)≈fr(φ0)+f ′r(φ0)(φε−φ0)+

1

2
f ′′r (φ0)(φε−φ0)2 +O

(
(φε−φ0)3

)
, (3.67)
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where φ0 denotes the leading-order term in (3.66). Substituting (3.66) and (3.67) into (2.34),
which we split into two second order problems as suggested in [46], and using (3.65) provides the
following sequence of problems

O(ε−2) :


A0 [λw0 +fr(φ0)] = 0 in Ys ,

under no flux b.c. and with w0 is Ys-periodic ,

A0φ0 = 0 in Ys ,

with nsp ·∇φ0 = 0 on ∂Y w
s :=∂Ys∩∂Yp and φ0 Ys-periodic ,

(3.68)

O(ε−1) :


A0 [λw1 +f ′r(φ0)φ1] =−A1 [λw0 +fr(φ0)] in Ys ,

under no flux b.c. and w1 Ys-periodic ,

A0φ1 =−A1φ0 in Ys ,

with nsp ·∇φ1 = 0 on ∂Ys∩∂Yp and φ1 Ys-periodic ,

(3.69)

O(ε0) :



A0

[
λw2 +

(
1
2
f ′′r (φ0)φ2

1 +f ′r(φ0)φ2

)]
=−(A2 [λw0 +fr(φ0)]+A1 [λw1−f ′r(φ0)φ1])

−∂tA−1
2 w0 in Ys ,

under no flux b.c. and with w2 Ys-periodic ,

A0φ2 =−A2φ0−A1φ1 +w0 in Ys ,

with nsp ·∇φ2 =gε on ∂Ys∩∂Yp and φ2 Ys-periodic .

(3.70)

Step 2: (Analysis of the sequence of problems) The first problem (3.68) immediately implies
that the leading-orders φ0 and w0 are independent of the microscale y [43, 31]. This suggests the
following ansatz for w1 and φ1, i.e.,

w1(x,y,t) =−
d∑

k=1

ξkw(y)
∂w0

∂xk
(x,t) , φ1(x,y,t) =−

d∑
k=1

ξkφ(y)
∂φ0

∂xk
(x,t) =φ1(x,y,t) . (3.71)

Inserting (3.71) into (3.69)2 provides an equation for the correctors ξkw and ξkφ. The resulting

equation for ξkφ can be immediately written for 1≤k≤d as,

ξkφ :
{
−
∑d

i,j=1
∂
∂yi

(
δik−δij

∂ξkφ
∂yj

)
=−div

(
ek−∇yξ

k
φ

)
= 0 in Ys , (3.72)

for ξkφ(y) Y -periodic with MYs(ξ
k
φ) = 0 and associated boundary condition n ·

(
∇ξkφ+ek

)
= 0 on ∂Y w

s :=
∂Ys∩∂Yp.

To study (3.69)1, we first rewrite B0 [f ′r(φ0)φ1] and B1fr(φ0) as follows

A0 [f ′r(φ0)φ1] =−
d∑

k,i,j=1

∂

∂yi

(
δij
∂ξkφ
∂yj

∂fr(φ0)

∂xk

)
, A1fr(φ0) =

d∑
i,j=1

∂

∂yi

(
δij
∂fr(φ0)

∂xj

)
. (3.73)

Doing the same for w1 and w0 and using (3.71) leads then to

−λ
d∑

k,i,j=1

∂

∂yi

(
δij

(
∂xk
∂xj
− ∂ξ

k
w

∂yj

)
∂w0

∂xk

)
=

d∑
k,i,j=1

∂

∂yi

(
δij

(
∂xk
∂xj
−
∂ξkφ
∂yj

)
∂fr(φ0)

∂xk

)
, (3.74)
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in Ys. Since the chemical potential µ(φ) = δE(φ)
δφ

is locally in thermodynamic equilibrium, we finally

obtain the reference cell problem for ξkw, 1≤k≤d, for given ξkφ−
∑d

i,j=1
∂
∂yi

(
δik−δij ∂ξ

k
w

∂yj

)
=−

∑d
i,j=1

∂
∂yi

(
δik−δij

∂ξkφ
∂yj

)
in Ys ,

(3.75)

where ξkw(y) is Y -periodic with boundary condition
∑d

i,j=1 ni

((
δij

∂ξkw
∂yj
−δik

)
+
(
δik−δij

∂ξkφ
∂yj

))
= 0

on ∂Y w
s =∂Ys∩∂Yp and MYs(ξ

k
w) = 0.

Step 3: (Second order problem: upscaled equation) The last problem (3.70) then gives
the upscaled equations by a solvability constraint, i.e., the Fredholm alternative. Hence, the
solvability of (3.70)2 is achieved by setting

−
d∑

i,k=1

[
d∑
j=1

∫
Ys

(
δik−δij

∂ξkφ
∂yj

)
dy

]
∂2φ0

∂xi∂xk
= |Ys|w0 + g̃0 . (3.76)

where g̃0 :=− γ
Ch

∫
∂Y ws

(
a1χ∂Y w1

s
+a2χ∂Y w2

s

)
do(y) and ∂Y w

s =∂Y w1
s ∪∂Y w2

s . (3.76) can be written

compactly as −∆M̂s
φ0 :=−div

(
M̂s∇φ0

)
= qw0 + g̃0 by (3.40)4. Applying the same ideas to equa-

tion (3.70)1 leads to∫
Ys

{
−λ(A2w0 +A1w1)− 1

λ
A1 [f ′r(φ0)φ1]− 1

λ
A2fr(φ0)−∂tA−1

2 w0

}
dy = 0 , (3.77)

where the first two terms can be rewritten with (3.75) by
∫
Ys
−(A2w0 +A1w1) dy = div

(
M̂s∇w0

)
.The

third integrand in (3.77) becomes −A1 [f ′r(φ0)φ1] =−
∑d

i,j=1δij
∑d

k=1

∂ξkφ
∂yj

∂2fr(φ0)
∂xk∂xi

, where we applied

the chain rule ∂2fr(φ0)
∂xk∂xj

=f ′′r (φ0)∂φ0
∂xk

∂φ0
∂xj

+f ′r(φ0) ∂2φ0
∂xk∂xj

and integration by parts. Adding now the term

−A2f(φ0) and using (3.72) finally gives −A1 [f ′r(φ0)φ1]−A2fr(φ0) = div
(
M̂s∇fr(φ0)

)
.

These considerations finally lead to the following effective equation for φ0, i.e.,

q
∂φ0

∂t
= div

(
M̂s∇fr(φ0)

)
+
λ

q
div

(
M̂s∇

(
div
(
M̂s∇φ0

)
− 1

λ
g̃0

))
. (3.78)

In the case where the homogeneous free energy Fr is the classical double-well potential Fr(φ) =
1/4(φ2−1)2, one can verify the solvability of (3.78) along with the arguments in [33]. 2

4 Discussion and conclusions

We have given a short summary of widely used charge transport formulations in Li-ion battery
systems. Based on well-accepted microscopic composite cathode equations which take into account
ionic transport in the polymer electrolyte, electron transport as well as Li-intercalation undergoing
a possible phase transformation in the solid phase, and Butler-Volmer reactions across the solid-
electrolyte interface, we derived a novel upscaled/homogenized formulation. To the best of our
knowledge, this seems to be the first two-scale asymptotic homogenization of composite cathodes
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for Li-batteries that also accounts for thermodynamically relevant phase transformations of crys-
talline host materials such as FePO4. For a literature overview on recent results available, we refer
the interested reader to Tab. 1.

The promising feature of being able to account for three different scales, i.e., pore scale lp,
Darcy’s scale lD, and macroscale L, with the two-scale asymptotic expansion method by exploiting
coupling of different physical processes, provides novel modelling opportunities not only in the
context of batteries, but also in fuel cell systems, transport in porous media, and oil recovery for
instance. We expect that the derived equations serve as a convenient computational model that
allows to apply well-known numerical strategies available for homogeneous domains without ending
up with high-dimensional discrete equations. Since the homogenization method is, compared to
volume averaging, still less popular in applied sciences and engineering, we believe that the pre-
sented upscaling ideas and mathematical tools will become increasingly interesting in applications
due to its reliable and systematic basis relying on rigorous convergence methods such as two-scale
convergence [1, 32] or Gamma convergence, e.g. [13].
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