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Visual Servoing based on Shifted Moments
Omar Tahri, Aurélien Yeremou Tamtsia, Youcef Mezouar and Cédric Demonceaux

Abstract—In the last decade, image-moments have been ex-
ploited in several visual servoing schemes for their ability to
represent object regions, objects defined by contours or a set of
discrete points. Moments have also been useful to achieve control
decoupling properties and to choose minimal number of features
to control the whole degrees of freedom of a camera. However
the choice of moment-based features to control the rotational
motions around the x-axis and y-axis simultaneously with the
translational motions along the same axis remains a key issue.
In this paper, we introduce new visual features computed from
low order ’shifted moments invariants’. Importantly, they allow
(1) to define a unique combination of visual features to control
the whole 6 DOF of a eye-in-hand camera independently from
the object shape and (2) to significantly enlarge the convergence
domain of the closed loop system.

Index Terms—Visual servoing, shifted moments.

I. INTRODUCTION

In image-based visual servoing (IBVS), the control loop

is directly closed in the image space of the vision sensor.

Compared to position-based visual servoing [25] and hybrid

visual servoing [14], IBVS schemes get rid of 3D reconstruc-

tion steps to compute the visual features. This yields a high

robustness to disturbances and to modeling errors [4], [15].

However, IBVS has been usually considered as suitable only

for reasonable displacements because of the non-linearities in

the relationship between the image space and workspace and

the coupling between degrees of freedom (DOF) [2]. This turns

the analysis of the global asymptotic stability of IBVS as an

almost unfeasible task except for some special cases [10], [18].

An other important issue relies on complexity of the required

image processing step to extract the features used as input of

the visual servoing process.

A vision sensor provides a large spectrum of potential visual

features. In practice, the choice of visual features influences

the performance of the closed loop system and the ability to

analyze the system’s dynamics. Several global image features

have been exploited in the context of visual servoing to avoid

complex image processing steps (extraction, matching and

tracking): Fourier descriptors in [5], light intensity in [12] or

luminance signal in [19], [8], [6], [7]. However, one important

issue when exploiting global image features is the reduced

convergence domain due to strong non-linearities in the system

dynamics. The work presented in this paper exploits image

moments which also belong to the family of globlal image
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features. Several types of moments can be used: geometric

moments [11], Zernike moments [13] and Legendre moments

[23], etc. Moment-based visual servoing has led to interesting

results (refer to [3], [22], [17]). Moments have also been used

for pose estimation [21], and for task sequencing [16]. In this

paper, selection of minimal combinations of visual features

from image moments is discussed. More precisely, based on

shifted moments [26], the selection of a unique feature vector

independently of the object shape is proposed and exploited

in an image-based control scheme.

The remaining of this paper is organized as follows. Section

II discusses several state-of-the art related methods and gives

some preliminary materials. Section III formally presents

our contributions which exploit shifted moments to design a

decoupled image-based control law. Section IV evaluates the

performances of our control law.

II. MATHEMATICAL BACKGROUND

A. Moments

Let f(x, y) ≥ 0 be a real bounded function with support

on a compact region R. The (p+ q)-order moments of f are

defined as [20]:

mpq =

∫ ∫

R

xpyqf(x, y)dxdy (1)

The centered moments µpq are computed with respect to

the object centroid (xg , yg)

µpq =

∫ ∫

R

(x− xg)
p(y − yg)

qf(x, y) dxdy (2)

and

xg =
m10

m00
; yg =

m01

m00

where m00 represents the area of the object image. In the

following, objects defined by a binary region or closed contour

are considered. Therefore, we assume that f(x, y) = 1 in all

the region that defines the object. Definitions necessary to the

subsequent development are recalled in the next section.

B. Moment invariants

Moment invariants are important shape descriptors in com-

puter vision. They are special functions of image moments

that are insensitive to particular transformations [9]. They

were first introduced to the pattern recognition community in

1962 [11]. Several types of transformations can be considered:

translation, rotation, scaling, affine, projective, and elastic. The

simplest transformations in the two dimensional space are

Translation, Rotation and Scaling (TRS):

x
′ = c

[
cos(α) −sin(α)
sin(α) cos(α)

]
x+

[
tx
ty

]
(3)
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where c is a scale factor change, α is a rotation angle and

(tx, ty) are translation parameters. The centered moments

defined from (2) are known to be invariant to 2D translational

motions. The first rotation invariants computed from moments

have been proposed by Hu in 1962 [11]. Invariants to both

translation and rotation can be obtained using centered mo-

ments, for instance using the following polynomials:

i0 = µ20 + µ02 (4)

i1 = µ20µ02 − µ11µ11 (5)

i2 = −µ30µ12 + µ21µ21 − µ03µ21 + µ12µ12 (6)

i3 = 3µ30µ12 + µ30µ30 + 3µ03µ21 + µ03µ03 (7)

Invariants to translation and scaling can be computed as

follows [11]:

is =
µpq

m
(p+q+2)/2
00

(8)

Besides, invariants to TRS can be obtained from (5), (6) and

(7):

in1 =
i2

i
8/10
1

, in2 =
i3

i
8/10
1

, in3 =
i3
i2
,

in4 =
i3
m5

00

, in5 =
i2
m5

00

, in6 =
i1
m4

00

(9)

A more general transformation than TRS is the affine

transformation:

x
′ =

[
a b
c d

]
x+

[
tx
ty

]
(10)

Invariants to affine transformation can also be obtained

(refer to [9]). For instance the ratio:

ia =
µ20µ02 − µ11µ11

m4
00

(11)

is an invariant to (10). Other invariants to affine transforma-

tions computed from moments of higher order can be found

in [9]. In the next paragraph, we recall some previous results

and explain how invariants are useful for visual servoing.

C. Moments invariant for visual servoing

1) Visual servoing: Let s be a set of N visual features

used as input of the control scheme. The time variation ṡ of

the visual features s can be linearly expressed with respect to

the relative camera-object kinematics screw:

ṡ = Lsτ , (12)

where Ls is the interaction matrix (N × 6 matrix if 6 DOF

are considered) related to s. Usually, the control scheme

is designed to reach an exponential decoupled decrease of

the current visual features s to their goal value s
∗. If we

consider an eye-in-hand system observing a static object, the

corresponding control law is:

τc = −λL̂s

+
(s− s

∗), (13)

where L̂s is a model or an approximation of Ls, L̂s

+
the

pseudo-inverse of L̂s, λ a positive gain tuning the time to

convergence, and τc = (υc,ωc) the camera velocity sent to

the low-level robot controller.

Invariants built from combinations of moments are useful

(1) to select the minimal number m of visual features to

control m DOF of a camera and (2) to select features providing

a sparse interaction matrix (refer to [22]). The following

paragraph presents how moments can be used to select good

image features.

2) Features selection: In order to control the six DOF

of a camera, a vector of six visual features s =
[xn, yn, an, s4, s5, θ] was proposed in [22], where:

• an = Z∗
√

m∗

00

m00

with m∗
00 is the desired area in the image,

and Z∗ the desired depth between the camera and the

object.

• xn = anxg, yn = anyg, (xg, yg) are the object center

coordinates in the image.

• θ is the orientation of the principal axes in the image.

• s4 and s5 are two different invariants to TRS transfor-

mations (as those given by (9)). They are used to control

the rotation velocities wx and wy around x − axis and

y − axis.

When the object is parallel to the image plane, the interac-
tion matrix related to s is [22]:




L
‖
xn

L
‖
yn

L
‖
an

L
‖
s4

L
‖
s5

L
‖
θ



=




−1 0 0 anε11 −an (1 + ε12) yn
0 −1 0 an(1 + ε21) −anε11 −xn

0 0 −1 −3yn/2 3xn/2 0
0 0 0 s4wx s4wy 0
0 0 0 s5wx s5wy 0
0 0 0 θwx θwy −1




(14)

where ε11 = n11 − xgyg/2, ε12 = n20 − x2
g/2 , ε21 =

n02−y2g/2ε11 = n11−xgyg/2, ε12 = n20−x2
g/2, ε21 =

n02−y2g/2 and nij =
µij

m00

. The analytical forms of s4wx, s4wy,

s5wx and s5wy depend on the chosen invariants, and θwx
, θwy

can be found in [22].

Note first that the translational part of the interaction ma-

trices related to xn, yn and an form a block diagonal matrix.

Moreover, thanks to the invariance to TRS, the features used

to control rotations s4, s5 and θ are invariant to translational

motions when the object and the camera plane are parallel.

These three features are used to control the rotational DOF.

The resulting interaction matrix for the features vector s is

sparse which simplifies the singularities analysis of L
‖
s . Let

us now define L
‖
s4,5 as the matrix that links the variation s4

and s5 to rotational velocities around the x−axis and y−axis:

L
‖
s4,5 =

[
s4wx s4wy

s5wx s5wx

]

If L
‖
s4,5 is non singular, then the interaction matrix L

‖
s related

to the features s =
[
xn yn an s4 s5 θ

]
will be non-

singular as well. This can be easily checked since we have

det(L
‖
s) = (−1)4det(L‖

s4,5 ). Unfortunately, the combination

(s4, s5), as presented in a previous work [22], depends on the

shape of the object and it is computed from moments with
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orders ranging from 3 to 5 [22]. Therefore, despite the sparse

form of the resulting interaction matrix, since the choice of

the combination (s4, s5) depends of the object, the analysis

of the closed loop system can not be carried out analytically.

Additionally, since the sensitivity to data noise increases with

the moment orders [24], we should use moments of orders as

low as possible for selecting (s4, s5). In the next section, we

introduce a new class of moments called ’shifted moments’

from which it is possible to define a unique couple (s4, s5)
whatever is the shape of the target object.

III. SHIFTED MOMENTS FOR VISUAL SERVOING

A. Shifted moments

Let us first define a shifted point as P
sh =

[xg − xsh, yg − ysh] where (xg, yg) is the object center and

xsh and ysh are shift parameters. Shifted moments can then

be defined as follow:

µsh
pq =

∫ ∫

R

(x− xg + xsh)
p(y − yg + ysh)

q dxdy (15)

Note that for xsh = ysh = 0, the shifted moments are nothing

but equal to the classical centered ones. Furthermore, as it

will be shown in the following, for suitable choices of xsh

and ysh, the invariance properties obtained using centered

moments can still hold for shifted ones. The results proposed

in this paper can then be seen as generalization of those

previously obtained using classical centered moments with the

improvements exhibited below.

To underline the advantage of shifted moments with respect

to centered moments, let us consider a symmetric object.

In this case, invariants computed from odd orders centered

moments are zero and invariants to TRS (as for instance in3
given by (9)) become useless because their denominators are

zero. This is an important issue when dealing with moment-

based visual servoing. Shifted moments naturally overcome

this problem. This can be intuitively explained by the fact that

the object symmetry is broken if its shape is parametrized

with respect to a well chosen shifted point. In addition and

as it will be shown in the results section, computing moments

with respect to a shifted point has also beneficial effect on

interaction matrix values.

In order to preserve the invariance to TRS, the shifted

points have to be carefully chosen. A first option consists in

selecting the shifted points from points of the object projection

in the image. A second option consists in computing the

shifted points from the object moments as we will show in

the following.

B. Physical points as shifted points

Let us consider Psh = [xo yo]
⊤ the coordinates of a point

which is rigidly attached to the object. The moments computed

with respect to xo can be expressed as:

µsh
pq =

∫ ∫

R

(x− xo)
p(y − yo)

q dxdy (16)

As for the classical centered moments [3], [22], the time

variation of the shifted moments can be obtained by:

µ̇sh
pq =

∫ ∫

R

p(x− xo)
p−1(y − yo)

q(ẋ− ẋo)dxdy

+

∫ ∫

R

q(x− xo)
p(y − yo)

q−1(ẏ − ẏo)dxdy

+

∫ ∫

R

(x− xo)
p(y − yo)

q(
∂ẋ

∂x
+

∂ẏ

∂y
)dxdy

(17)

where ẋ0 and ẏ0 are linked to the camera screw through the

interaction matrix related to the shifted point. They can be

obtained by using the formula of the interaction matrix related

to a point in the image: using the equation defining the object

plane to compute the point depth (since the point belongs to

the object) and the coordinates of the point in the image. If the

current value of the interaction matrix is used in the control

law, then to compute ẋ0 and ẏ0, the parameters of the object

plane will be needed. Otherwise, if only the desired value

of the interaction matrix is used, then only the object plane

parameters for the desired position are needed.

For any point on a planar object, we have:

1

Z
= Ax+By + C

where Z is the depth of the observed point and A, B, C
are the plane parameters. Using similar calculation to those

presented in [22], [3] for centered moments, the interaction

matrix related to µsh
pq can be written as:

Lµsh
pq

=
[
µsh
vx µsh

vy µsh
vz µsh

wx
µsh
wy

µsh
wz

]
(18)

Where:




µsh
vx

= − (p + 1)Aµsh
pq − pBµsh

p−1,p+1

µsh
vy

= −qAµsh
p+1,q−1 − (q + 1)Bµsh

pq

µsh
vz

= −Aµsh
wy

+ Bµsh
wx

+ (p+ q + 2)Cµsh
pq

µsh
wx

= (p+ q + 3)µsh
p,q+1 + (p + 2q + 3)yoµ

sh
p,q + p xoµ

sh
p−1,q+1

µsh
wy

= − (p+ q + 3)µsh
p+1,q − (2p + q + 3)xoµ

sh
p,q − q yoµ

sh
p+1,q−1

µsh
wz

= pµsh
p−1,q+1 − qµsh

p+1,q−1

Note that if A = B = 0, we have µsh
vx = µsh

vy = 0 which

confirms the invariance to the corresponding translational

motions. In addition, µsh
wz

and µsh
vz have the same formulas than

the one obtained with centered moments [22],[3]. Therefore

using points from the object allows preserving the invariance

to TRS obtained with functions of centered moments.

C. Shifted point computed from the object moments

Shifted points that preserve the invariance to TRS can be

obtained from the object moments as follows:

P
sh = [xg, yg] + a [cos(θ +∆), sin(θ +∆)] (19)

where:

• a is an invariant to rotation and changes linearly with the

object scale,

• θ is the object orientation in the image,

• ∆ is a constant.
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Let us show that any shifted point that holds the conditions

mentioned above undergoes the same TRS transformation as

the object. First, let us consider a translational motion in

the image. In this case, since the object orientation θ and

the parameter a are invariant to translation, then the value

of a [cos(θ +∆), sin(θ +∆)] does not change. Therefore,

the point P
sh and the object center undergoes the same

translational motion.

In the case where a rotation is considered in the im-

age then the object center undergoes this rotation, a keeps

the same value since it is an invariant to rotation, and

the value of the angle θ changes by the angle β. This

implies that a [cos(θ +∆), sin(θ +∆)] undergoes the ro-

tation defined by β. Since the object center [xg, yg] and

a [cos(θ +∆), sin(θ +∆)] rotates as the object, Psh will do

the same.

Finally, if we consider a scale change in the image then

the angle θ keeps the same value since it is independent from

the scale. Furthermore, since the parameter a is assumed to

change linearly with respect to the scale, this implies that

a [cos(θ +∆), sin(θ +∆)] and the object undergoes the same

scale change. This means that the point Psh follows the same

scale change.

In practice, there exist at least as many choices for P
sh

using the formula given by (19) as there are for the parameter

a. In [26], we have proposed a = (µ20 + µ02)
1

4 to compute

the points P
sh. Other choices can be made using for instance

moments of order 4 by setting a = (µ40 +2µ22 +µ04)
1

6 . The

power 1
4 and 1

6 are used to make the parameter a changes

linearly with respect to scale. The adequate power is obtained

using the fact that a scale change in the image by a scalar equal

to γ induces a change defined by a scalar γp+q+2 on a moment

µpq . For instance, the polynomial µ40+2µ22+µ04 is multiplied

by γ6 after a scale change defined by a a scalar γ. For this

reason, the chosen power is 1
6 in a = (µ40 +2µ22 +µ04)

1

6 to

obtain a linear change with respect to scale. In this paper, for

more robustness to noise, we use a =
√
m00/2 since m00 is

the lowest order moment. All these choices of shifted points

preserve the invariance obtained with functions of centered

moments. One can also show this based on interaction matrix

formula of the shifted moments. Indeed, when the object is

parallel to the image plane, the form of the interaction matrix

related to P
sh is identical to the one related to the center of

gravity of the object.

D. Visual features selection

The features vector s = [xn, yn, an, s4, s5, θ] is used

to control the movements of the camera. The four features

(xn, yn, an, θ) are defined as described in section II-C2.

These features ensure nice decoupling and linearizing prop-

erties as shown by (14). The features s4 and s5 are obtained

using an invariant to TRS (as one of those given by (9))

computed with respect to two different shifted points. The

shifted points are chosen as previously detailed: a rigidly

attached point to the object or from the moments.

IV. RESULTS

In this section, we evaluate our control scheme. We consider

that for the desired pose, the image and object planes are

parallel. Remind that the non parallel case can be transformed

to the parallel one as explained in [22].

A. Results using shifted points computed from moments

Three different object shapes a ’whale’, an ’octopus’ and

a rectangle (refer to Fig. 1.a, Fig. 3.a and Fig. 5.a) are

considered. A motion composed of a translation defined by the

vector T = (−0.1, −0.2, 0.8) meter and a rotation defined

by an angle equal to 30 degrees around the unitary vector

u = (−1, −1, 0.5)/
√
2.25 has been considered between the

desired and the initial camera poses. The couple of features

(s4, s5) is obtained by computing the invariant to TRS (refer

to equations (6), (7) and (9)):

ishn3 =
3µsh

30µ
sh
12 + µsh

30µ
sh
30 + 3µsh

03µ
sh
21 + µsh

03µ
sh
03

−µsh
30µ

sh
12 + µsh

21µ
sh
21 − µsh

03µ
sh
21 + µsh

12µ
sh
12

with respect to two shifted points:

P1 = [xg + a cos(θ), yg + a sin(θ)] (20)

and

P2 =
[
xg + a cos(θ +

π

2
), yg + a sin(θ +

π

2
)
]

(21)

The positions of these points in the image for the three

objects are shown in Figs 1.a, 3.a and 5.a. The desired values

of the interaction matrix obtained for the rectangle, the ’whale’

and the ’octopus’ are given respectively by (22), (23) and (24).

From these values, it can be seen that in addition of making

the invariant ishn3 computed from odd moment exploitable for

symmetric object as a rectangle, using shifted moments also

allowed to obtain well conditioned interaction matrices in the

three cases. Indeed, changing the position of the shifted point

allows to vary the value of the interaction matrix. Recent works

have studied optimal choice of the two shifted points to be

used in order to enlarge the convergence performance when

using photometric moments [1].

Ls =




−1. 0 0 −0. −1.04 0
0 −1. 0 1.08 0. 0
0 0 −1. 0 0 0
0 0 0. −2.21 −0 0.
0 0 0. 0. −0.14 −0.
0 0 0 0. −0. −1.




(22)

Ls =




−1. 0 0 0.01 −1.10 0.08
0 −1. 0 1.03 −0.01 0
0 0 −1. −0.13 −0. 0
0 0 0. −0.36 5.71 0.
0 0 0. 0.48 2.04 −0.
0 0 0 −0.07 −0.14 −1.




(23)

Ls =




−1. 0 0. −0.03 −1.02 −0.10
0 −1. 0 1.10 0. 0
0 0 −1. 0.15 0.03 0
0 0 −0. 18.05 3.11 −0.
0 0 −0. 3.45 1.24 0.
0 0 0 −0.09 0.04 −1.




(24)
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The results obtained are depicted in Fig. 1, Fig. 3 and in

Fig. 5. The servoing achieved using only the desired value

of the interaction matrix shows convergence of the features

errors (Figs 1.b, 3.b and 5.b) and velocities (Figs 1.c, 3.c

and 5.c) for the three cases. The same simulations have been

considered with a white noise (standard deviation equal to 1

pixel) on the coordinates of contour points. The behavior in

the image for the three simulations with and without noise is

shown in the video attached to this paper. The results show

nice performances in presence of measurement noise.

B. Results using an affine invariant and two tracked points

In this part, the same objects are considered (’whale’,

’octopus’ and rectangle). The couple of features (s4, s5) is

obtained by computing the affine invariant (11):

ia =
µsh
20µ

sh
02 − µsh

11µ
sh
11

m4
00

with respect to two points from the object contour (as shown

for each object in Figs 2.a, 4.a and 6.a). The two points have

been chosen from the object contour and are tracked during

the servoing. Other types of shifted points can be chosen from

the object image as Harris or SIFT points for instance as long

as they can be tracked.

The motion to be achieved is composed by a translation

defined by the vector T = (−0.5, 0.8, 1.3) (meter) and a

rotation defined by an angle equal to 80 degrees around the

unitary vector u = (
√
1/2,

√
1/2, 0). Note the huge and

unusual rotational motion considered around the axes x and

y of the camera. The results obtained for the three objects

are depicted in Fig. 2, Fig. 4 and in Fig. 6. These results are

obtained using only the desired value of the interaction matrix.

They show convergence of the features errors (Figs 2.b, 4.b

and 6.b) and velocities (Figs 2.c, 4.c and 6.c) despite the huge

motion to be achieved. As for the previous simulations, a white

noise (standard deviation equal to 1 pixel) has been added to

the coordinates of contour points to evaluate the effect of noisy

data. The behavior in the image for the three simulations with

and without noise is also shown in the video attached to this

paper. Once again, the obtained results show that noisy data

do not disturb the behavior of the servoing.

V. CONCLUSION

In this paper, a class of invariants computed from shifted

centered moments have been exploited to select two fea-

tures to control efficiently the rotational motion around the

x − axis and y − axis. Two cases of shifted moments have

been considered. The first case considers shifted parameters

computed from object moments in the image and the sec-

ond case considers shifted points from object contour. The

second option uses affine invariants and requires extracting

and tracking two points, but ensure higher performances since

it allows convergence for huge motion (exceptional for an

IBVS scheme). First, differently from invariants to TRS, affine

invariants provide invariance to translations along the x-axis

and y-axis whatever is the orientation of the object with respect

to the camera plane. Second, the affine invariants introduced in
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Fig. 1. Results obtained using a
’whale’ contour: a) initial (red) and
the desired (green) images, b) errors
on features, c) velocities
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Fig. 2. Results obtained using a
’whale’ contour: : a) initial (red)
and the desired (green) images, b)
errors on features, c) velocities
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Fig. 3. Results obtained using a
’octopus’ contour: a) initial (red)
and the desired (green) images, b)
errors on features, c) velocities
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Fig. 4. Results obtained using a
’Octopus’ contour: : a) initial (red)
and the desired (green) images, b)
errors on features, c) velocities
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Fig. 5. Results obtained using a
rectangle: a) initial (red) and the
desired (green) images, b) errors on
features, c) velocities
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Fig. 6. Results obtained using a
rectangle: a) initial (red) and the
desired (green) images, b) errors on
features, c) velocities

this paper are computed from moments of order 2 only. This

leads to weaker non-linearities and more robustness to noise.

Importantly, in both cases (shifted parameters from moments

or shifted points from the object contour), we have obtained

unique combinations of features for any object. However, the

optimum choices for shifted points still remain an issue.
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