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BERGMAN KERNELS, TYZ EXPANSIONS AND HANKEL
OPERATORS ON THE KEPLER MANIFOLD

HELENE BOMMIER-HATO, MIROSLAV ENGLIS, AND EL-HASSAN YOUSSFI

ABSTRACT. For a class of O(n + 1,R) invariant measures on the Kepler mani-
fold possessing finite moments of all orders, we describe the reproducing kernels
of the associated Bergman spaces, discuss the corresponding asymptotic ex-
pansions of Tian-Yau-Zelditch, and study the relevant Hankel operators with
conjugate holomorphic symbols. Related reproducing kernels on the minimal
ball are also discussed. Finally, we observe that the Kepler manifold either
does not admit balanced metrics, or such metrics are not unique.

1. INTRODUCTION
Let n > 2 and consider the Kepler manifold in C**! defined by
H:={2cC"":2e2=0, 2z # 0},

where z @ w = zyw; + -+ 4+ zpy1wWpy1. This is the orbit of the vector e =
(1,4,0,...,0) under the O(n + 1,C)-action on C"*!; it is also well-known that
H can be identified with the cotangent bundle of the unit sphere S” in R**! minus
its zero section. The unit ball of H,

M:={scH:|z]°=202< 1}

as well as its boundary OM = {z € H : |z| = 1} are invariant under O(n + 1,C)
NU(n + 1) = O(n + 1,R), and in fact OM is the orbit of e under O(n + 1,R).
In particular, there is a unique O(n+ 1, R)-invariant probability measure dy on OM,
coming from the Haar measure on the (compact) group O(n + 1,R). Explicitly,
denoting

(—1)i!

a::(n+1)7)d21/\~--/\jz\j/\~-~/\dzn+1 onz; #0
Zj
(this is, up to constant factor, the unique SO(n+1, C)-invariant holomorphic n-form

on H, see [21]) and defining a (2n — 1)-form w on OM by

wZ) Vi, ..o, Vop—1) = a(z) Aa(2)(z,V1,..., Van—1), Vi,...,Vapot € T(OM),
we then have dy = w/w(OM) (where, abusing notation, we denote by w also the
measure induced by w on OM). It follows, in particular, that du is also invariant
under complex rotations

Z €z, ecT={ze€C:|z|=1}.
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For a finite (nonnegative Borel) measure dp on (0,00), we can therefore define a
rotation-invariant measure d(p ® p) on H by

/fd(p®u) = /OO f(tC) du(C) dp(t),
H 0 OM

and the (weighted) Bergman space

A,QJ@H = {f e L*d(p®u)): f is holomorphic on RM},

where R := sup{t > 0 : ¢ € suppp} = sup{|z| : z € suppp ® pu} (with the under-
standing that RM = H if R = +o00). It is standard that A%&L is a reproducing kernel
Hilbert space, that is, there exists a function K,g,(z,y) = K(z,y) on RM x RM
for which K(-,y) € A2, for each y, K(y,z) = K (z,y), and

f)=| fwK(zw)dpou)(w) Ve A,
RM
Our goal in this paper is to give a description of these reproducing kernels,
establish their asymptotics as p varies in a certain way (so-called Tian-Yau-Zelditch,
or TYZ, expansion), and study the Hankel operators on Ai@u' We also give an
analogous description for the reproducing kernels on the minimal ball

IB%::{ZE(C”:|Z|2+|zoz|<1},

which is the image of M under the 2-sheeted proper holomorphic mapping given by
the projection onto the first n coordinates.
In more detail, let

G = / * dp(t)
0

be the moments of the measure dp (the values ¢ = +00 being also allowed if the
integral diverges). Our starting point is the following formula for the reproducing
kernels (whose proof goes by arguments which are already quite standard).

Theorem 1. For z,w € RM with R as above,

00 —\
AL X1
KP@/L(Z7w) = ( d ) )
l

1=0

with
q2i

]. d =

(1) =

where

N(l) = (

Next, recall that, quite generally, for an n-dimensional complex manifold M
and a holomorphic line bundle L over M equipped with a Hermitian metric, the
so-called Kempf distortion functions ¢, [ =0,1,2,..., are defined by

i(2) = 3 hsy(2).55().

l+n-1 l+n—-2 @2l4+n—1(1+n-—2)
_|_ =
n—1 n—1 M(n—1)!

where {s;}; is an orthonormal basis of the Hilbert space L2 ;(L®!,w™) of holomor-
phic sections of the I-th tensor power L®' of L square-integrable with respect to



KEPLER MANIFOLD 3

the volume element w™ on M, where w = — curv h (which is assumed to be posi-
tive); see Kempf [16], Rawnsley [24], Ji [15] and Zhang [29]. These functions are
of importance in the study of projective embeddings and constant scalar curvature
metrics (Donaldson [8]), where a prominent role is played, in particular, by their
asymptotic behaviour as [ tends to infinity: namely, one has

z) ~ " Zaj(z)l_j as | — 400

in the C*°-sense, with some smooth coefficient functions a;(z), and ag(z) = 1. This
has been established in various contexts by Berezin [5] (for bounded symmetric
domains), Tian [26] and Ruan [25] (answering a conjecture of Yau) and Catlin [7]
and Zelditch [28] for M compact, Englis [9] (for M a strictly pseudoconvex domain
in C"™ with smooth boundary and h subject to some technical hypotheses), etc.
If M is a domain in C" and the line bundle is trivial (which certainly happens if
M is simply connected; in this case one need not restrict to integer [, but may
allow it to be any positive number), one can identify (holomorphic) sections of
L with (holomorphic) functions on M, h with a positive smooth weight on M,
L}%Ol(L(g‘l’w") with Ahlw" Ai2ﬂ det[081og 1]’ and

(2) a(z) = h(z)lKhl det[9d log %](sz)a

where we (momentarily) denote by K,, the weighted Bergman kernel with respect
to a weight w on M (and similarly for A2). In the context of our Kepler manifold,
this has been studied by Gramchev and Loi [11] for L = H x C (i.e. the trivial
bundle) and h(z) = e *l (so w = £00|z|; this turns out to be the symplectic
form inherited from the isomorphism H 2 T*S" \ {zero section} mentioned in the
beginning of this paper [24]), who showed that

3) ) =1+ D Zf" F4Ri(2),
k=

with some constants by, independent of z and remainder term R;(z) = O(e~*l)
for some ¢ > 0 (i.e. exponentially small).
Our second main result is the following.

Theorem 2. Let K, = K,g,, for

(4) dp(t) = 2eme " 2mn =1 gy
where c,m are fixed positive constants and s > 0. Then as s — 400,
n—1
- 2m" b;
5 —slel? Ky(z,2) = —————s" — 1 R,(2),
(5) e (2,2) e 1)!68 jz::() T + Ry(2)

where b; are constants depending on m and n only,
(I=n)(mn—n+1)
2m

bo=1, b =

and Rs(z) = 0(6_55‘2‘%) with some § > 0.

The result of Gramchev and Loi corresponds to m = % and ¢ = %, so it is

recovered as a special case. Our method of proof is a good deal simpler than in [11],
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covers all m > 0, and is also extendible to other situations. We further note that
d(p ® p) with the p from (4) actually coincides (up to a constant factor) with w”
for w = £89(s|z|*™), in full accordance with (2) (taking h(z) = e=1#”" | and with
1 =1,2,... replaced by the continous parameter s > 0 as already remarked above).

There is also an analogous result for the Bergman-type weights on M correspond-
ing to dp(t) = xo,1(t)(1 — %)t~ 1 dt, s > —1.

As for our last topic, recall that the Hankel operator Hy, g € A%®u> is the
operator from A,QJ@M into L2(p ® p) defined by

Hgf := (I - P)(g[),
where P : L?(p ® j1) — A§®u is the orthogonal projection. This is a densely defined
operator, which is (extends to be) bounded e.g. whenever ¢ is bounded. For the
(analogously defined) Hankel operators on the unit disc D in C or the unit ball B™
of C"*, n > 2, criteria for the membership of Hy in the Schatten classes SP, p > 0,
were given in the classical papers by Arazy, Fisher and Peetre [2] [1]: it turns out
that for p < 1 there are no nonzero Hg in S on D, while for p > 1, Hg € SP
if and only if g € BP(D), the p-th order Besov space on D; while on B", n > 2,
there are no nonzero Hy in SP if p < 2n, while for p > 2n, again Hy € S”
if and only if g € BP(B™). One says that there is a cut-off at p = 1 or p = 2n,
respectively. The result remains in force also for D and B™ replaced any bounded
strictly-pseudoconvex domain in C™, n > 1, with smooth boundary (Luecking [17]).

Our third main result shows that for the Bergman space A%(M) := Ag®# for
dp(t) = X[o,1(¢)t*" " dt on M, there is also a cut-off at p = 2n.

Theorem 3. Let p > 1. Then the following are equivalent.

(i) There exists nonconstant g € A*(M) with Hg € SP.
(ii) There exists a nonzero homogeneous polynomial g of degree m > 1 such
that Hg €SP,
(i) There exists m > 1 such that Hy € SP for all homogeneous polynomials g
of degree m.
(iv) p > 2n.
(v) Hg € 8P for any polynomial g.

We remark that the proofs in [2] and [1] relied on the homogeneity of B™ un-
der biholomorphic self-maps, and thus are not directly applicable for M with its
much smaller automorphism group. The proof in [17] relied on d-techniques, which
probably could be adapted to our case of M i.e. of a smoothly bounded strictly
pseudoconvex domain not in C™ but in a complex manifold, and furthermore hav-
ing a singularity in the interior (cf. Ruppenthal [23]). Our method of proof of
Theorem 3, which is close in spirit to those of [2] and [1], is, however, much more
elementary.

The paper is organized as follows. The proof of Theorem 1, together with mis-
cellaneous necessary prerequisites and the results for the minimal ball, occupies
Section 2. Applications to the TYZ expansion appear in Section 3, and the re-
sults on Hankel operators in Section 4. The final section, Section 5, concludes by
a small observation concerning the so-called balanced metrics on H in the sense of
Donaldson [8].
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Large part of this work was done while the second named author was visiting the
other two; the hospitality of Universite Aix Marseille in this connection is gratefully
acknowledged.

2. REPRODUCING KERNELS

Denote by Py, k =0,1,2,..., the space of (restrictions to H of) polynomials on
C™*! homogeneous of degree k. Clearly, P, is isomorphic to the quotient of the
analogous space of k-homogeneous polynomials on all of C™ by the k-homogeneous
component of the ideal generated by z e z, and

dim Py — (k+n—1)+ (k+n—2) — N (k).

n—1 n—1

For z € M and f € L?(S",do), where o stands for the normalized surface measure
on S™, set

(6) @)= | 1(Q)et do(0),

and let H* = H*(S™) denote the subspace in L?(S",do) consisting of spherical
harmonics of degree k. It is then known [14] [27] that the functions z + (z  2)¥,
z € H, span H*, the functions z + (2 @ {)*, ¢ € S", span P4, and the mapping
f— f is an isomorphism of H* onto Py, for each k. Using the Funke-Hecke theorem
[19, p. 20], it then follows that [21] [20]

ze k
@ | Geuteom! duw) =S

for all z € H, £ € C**!; and, consequently, Pj and P; are orthogonal in L?(du) if
k # [, while
_ f(z)
8 w)(z e W)* du(w) =
®) [ )z o) duur) = 375
for all z € H and f € Px.

If f is a function holomorphic on RM (for some 0 < R < o0), then it has a
unique decomposition of the form

(9) F=>"fe  fu€Ps
k=0

with the sum converging absolutely and uniformly on compact subsets of RM ([20,
Lemma 3.1]). Let s = (sg, s1,...) be an arbitrary sequence of positive numbers.
We denote by A2 the space of all functions f holomorphic in some RM, R > 0,
for which,

If1I3 == Z Sk”fk”ZL?(aM,du) < 09,

equipped with the natural inner product

(£,9)s =Y sk{frr 98) L2 (or.ap)
k=0
for f =3, fr, 9 = > 4 gr asin (9). It is immediate that A2 is a Hilbert space which
contains each Py, and the linear span of the latter (i.e. the space of all polynomials
on H) is dense in A2.
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Proposition 4. Assume that

~1/2k
R, := liminf N(’“)‘ >0

k— o0 Sk

(the value Rs = oo being also allowed). Then AZ is a reproducing kernel Hilbert
space of holomorphic functions on RsM, with reproducing kernel

(10) Z xoy

Proof. By the definition of Rs, the series (10) converges pointwise and locally uni-

formly for z,y € RsM. Moreover, for g = K ( y) we plainly have g = ( )( o7)"

k
and by (7), lgel32on.ap) = "oz W oD, s
= N(k _
lglls = %(y o7)" = Ks(y,y) < 0
k=0

Thus Ks(-,y) € A2 for y € RsM. Furthermore, for f € A2, by (8)

S 1A < NG [ utw)y o) dito)
k k
- Zsk’<fk‘7 N(k)
k

<> S}c”kaL?(aM,dy)H%kk)(' '?)k‘
k

ok
(e7) >L2(6M,du)‘

L2(0M,du)

< (Ssilileman) ([ 2 ep
k k

= ||f||SKS(y7 y)l/Q,

implying that the series ), fi converges locally uniformly on R<M and that the
point evaluation f + f(y) is continuous on A2 for all y € RsM. Finally, removing
absolute values in the last computation shows that f(y) = (f, Ks(-,y))s, proving
that K is the reproducing kernel for A2. O

2 1/2
L2(6M,du))

Recall now that a sequence s = (sg)ken is called a Stieltjes moment sequence if
it has the form

5 = su(v) = / ok du(r)

for some nonnegative measure v on [0, +00), called a representing measure for s;

or, alternatively,
o0
Sk :/ 2% dp(t)
0

for the nonnegative measure dp(t) = dv(t?). These sequences have been character-
ized by Stieltjes in terms of a positive definiteness conditions. It follows from the
above integral representation that each Stieltjes moment sequence is either non-
vanishing, that is, s > 0 for all k, or else s = cdoi for all k for some ¢ > 0.
Fix a nonvanishing Stieltjes moment sequence s = (s;). By the Cauchy-Schwarz
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is nondecreasing and hence converges as

inequality we see that the sequence %

k — oo to the radius of convergence R?2 of the series

iMzk z e C.

Sk
k=0
We can now prove our first theorem from the Introduction.
Proof of Theorem 1. Recall that we denoted R = sup{t > 0: ¢ € suppp}. If R = o0,
then for any r > 0 we have ga, > [ t2* dp(t) > r?*p((r, 00)) with p((r,0)) > 0,
1/2k 1/2k
> r; thus gy,

shows that liminfy_, q2,é > r for any r < R, while from

so liminfy o g5y, — +o00. If R < oo, then the same argument

R
4ok < R2* /O dp = R p([0, R))

1/2k

with p([0, R]) < oo we get limsup,_, ¢5;,° < R. Setting s; = g we thus get in

either case

R = Rs.

Now for any 7 < R and f € A2_ , we have by the uniform convergence of (9)

PROW?

/ |f|2d(p®u):Z/ oo s )
rM 7 M
- sz/o AMtj+kfj(C)T@)du(§) dp(t)

_Z(/O t2F dp(t) )”ka%?(aM,du)

by the orthogonality of Py and P, for j # k. Letting r * R, we thus get
112s, = 3 el Fll3ony = 112
k

Hence A,%@W C A2, with equal norms. Since clearly P; € A/2>®u for each [ and the
span of Py is dense in A2, it follows that actually A2, = A2 and || f]l,0. = IIflls
for any f € Ap® - The claim now follows from the last proposition. O

As an example, let ¢ be a nonnegative integrable function on (0, 00), and consider
the volume element

a(2) A a()
06(2) = 9(1=P) crraygam

Let Ai and Ky be the corresponding weighted Bergman space and its reproducing
kernel, respectively.

Theorem 5. We have
1

Kol w) = ooy

[2tF<"*1>(t) +(n— l)F(”’Q)(t)}

_
t=zew

where
a(z) Na(z)
ev = (n—1) /M (_1)n(n+l)/2(2i)’n
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and
oo

t *
(11) F(t) = —, where ¢, := / tho(t) dt.
= Ck 0

Proof. Tt was shown in [20, Lemma 2.1] that for any measurable function f on H,

a(z) A a(z) /°° o3
=2 tO)t“" 7 d, dt
|16 S =2 [ [ g6 du@an
with ey as above. Thus oy = p ® p for
dp(t) = 2ept>™ 3 p(t?) dt,
and by the last theorem, K is given by (10) with
Sk = / t2* dp(t) = cM/ R 20 (t) dt = cppCropn—o.
0 0

Now by an elementary manipulation,

n— k n_1 th+n—1
Z(k:_11> : :(n—ll)!zk:<jt) t

A Ck+n—2 Ck+n—2

o - 0! (%)nil(w(”)

- ! 5 [tFOD(0) + (= DEOD ()],

and similarly

k+n—2\ ¢t t d \n-1htn=2
;( n—1 > :(nl)!;(dt)

Chtn—2 Ck+n—2
t
= Fr=(t),
(n—1)! ®)
Thus .
N(k)t 1 { _ _
= 2#FV () 4 (n— 1)F" 2>t]
> s~ G (H) + (n — F=2 (1)
and the assertion follows. O

Example. Take ¢(r) = (1 —r)™ for r € [0,1] and ¢(r) = 0 for » > 1, where

m > —1. Then ¢}, = % and we recover the formula from [20]
Kol w) = L(n+m) (n—1)4+n+1+4+2m)zew
ST = DlewD(m + 1) (1= zew)ntmtl

for the “standard” Bergman kernels on M (with respect to o A @).

Further applications of Theorem 1 will occur later in the sequel.
We conclude this section by considering the unit ball B in C™ with respect to
the “minimal norm” given by

N.(z) = VER ¥z el.

This norm was shown to be of interest in the study of several problems related to
proper holomorphic mappings and the Bergman kernel, see [13], [22], [21], [20] and
[18].
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Suppose that ¢ is as before and consider the measure dV, on C" with density
#(N2) with respect to the Lebesgue measure. Namely,

AV (2) == p(|2* + |z @ 2]) AV (2)
where dV(z) denotes the Lebesgue measure on C" normalized so that the volume
of the minimal ball is equal to one. We denote by Ai(@”) the Bergman-Fock type

space on C™ with respect to dVy, consisting of all measurable functions f on C"
which are holomorphic in the ball

By :={z€C":/|z]2+ |z 02| < Ry}

and satisfy
(12) 1913 = [ 15GIPaviz) < +oc.
(C‘VL

Here Ry is the square root of the radius of convergence of the series (11). We let
Li(@”) denote the space of all measurable functions f in C" verifying (12). Finally,
we define the operators A;, 7 = 0,1, acting on power series in z by their actions on
the monomials z™ as follows

[m,1

m : m m—1—
o)) =2 3 (4,1 o

o =
R

(%]
@) =23 (5 )em0r mpec
k=0
If f(z) =3, ckz" is a power series of radius of convergence R, then the series
(A1) (@ y) ==Y er(B;25)(,9°)
k

converges as long as |z| + |y| < R and we have

(Aof)(fmy):f(Hy);f(x_y), Y0,

(Arf)(z,y) = f(z+y) + flx —y).

Using these notations, we then have the following.

Theorem 6. The space A?p((C") coincides with the closure of the holomorphic poly-
nomaals in Lé((C") and its reproducing kernel is given by

(n+1)°
(n—1)ley

+ A (F (20w, 202 - Tew)

Kyon(z,w) = 2(z e W)A(F" V) (20w, 202 - Wew)

+(n=1)A(F" ) (20w, z 02 - wWew)|,

with F as in (11).

Proof. We will use the technique developed in [20]. Let Pr : C"*! — C" be the
projection onto the first n coordinates

Pr(z1,..,2n, 2n+1) = (21, -+, Zn)
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and ¢ := Pr|g. Then ¢ : H — C™\ {0} is a proper holomorphic mapping of degree 2.
The branching locus of ¢ consists of points with z,,1; = 0, and its image under ¢
consists of all z € C™ \ {0} with Z?:l x? = 0. The local inverses ® and W of ¢ are
given for z € C™ \ {0} by

D(z) = (z,i/z 0 2),

U(z) = (2, —iv/z 0 2).

In view of Lemma 3.1 of [21], we see that

N 1+n n
®*(as) = z’\/m‘b(Z)m(—l) dzy A+ Adzy,
1
U (ay) = o H(2)2(=1)"dzy A - A dzy,.

—i\/z ez
If f: C" — Cis a measurable function and z € H, we consider the operator U = U,

by setting

=L (Fou)(a).
UN)(z) = \/§(n+1)(f )(2)

Using the same arguments as in the proof of Lemma 4.1 in [20], it can be shown
that U is an isometry from Li(@") into L?ﬁ(H) More precisely, we have

[ 0P = [ 1R avie)

In addition, the arguments used in the proof of part (2) of the latter lemma show
that the image £,(H) of Ai(@") under U is a closed proper subspace of Ai(H),
and U is unitary from Ai(@") onto E4(H). From the technique used in the proof
of Lemma 2.4 in [20], we the get the following lemma.

Lemma 7. If ® and VU are as before, then
Ko(z 2w) | Ko(z, ¥(w))

Zni1 Ky on(tz,w) = (n+1)?
’ D1 (w) Vg1 (w)

)

forall z e H, w € C™.

The rest of the proof of the theorem now follows from the last lemma and the
identities used in the proof of Theorem A in [20]. O
Example. Let ¢(r) = e, ¢ > 0. Then s, = k!/c**!, F(t) = ce®* and we obtain
2(n +1)2cn2

(n—1)ley

e [2¢*(n — 1+ zoW)S(*z 0 2w e W) + cC(Pz 0 zwow)],

Ky cn(z,w) =

where we wrote for brevity S(t) = %, C(t) = cosh v/t.

3. TYZ EXPANSIONS

Proof of Theorem 2. For the measure (4), we have by the change of variable z =
StQWL7

00 %) 2k+2mn g F( k+mn)
_g2m _ C i 2m _
Qo = 2cm/ §2he=at™" y2mn—1 gy _ 7/ (7) e dy = c—m 2.
0 s Jo S S

m
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Applying Theorem 1, we get

mn+k

Ks(x,y)sz:S mcr((x;;?f)]\[(k)
ol e ()

by a similar computation as in the proof of Theorem 5. Here F 1
Leffler function

is the Mittag-

n

0 k

z
E,5(z) = _—, a, B> 0.
5(2) ;Or(aker B
Recall now that as z — oo, F, g has the asymptotics
1 N 1-8 _z; 1 uge
o [IELvPE o), <
| (1), |arg(—2)| <7 — 7,

where N is the integer satisfying N < ¢ < N + 1 and z; = |z|//@e(argz+2mij)/a
with —7 < argz < w. See e.g. [4, §18.1, formulas (21)—(22)] (additional handy
references are given in Section 7 of [6]). Furthermore, this asymptotic expansion
can be differentiated termwise any number of times (see again Section 7 in [6] for
details on this). In particular, for ¢ > 0 the term j = 0 dominates all the others,
and we therefore obtain

R

1 « o
(14) E,5(t) = — (=B et O(e(lfé)tl/ ) as t — 400
!

with some § > 0. (One can take any 0 < § < %(1 —cos 2Z) for a > 4, and any

0<d< % for 0 < a < 4.) Moreover, (14) remains in force when a derivative of any

order is applied to the left-hand side and to the first term on the right-hand side.
Now by a simple induction argument,

ANF .
(15) (%) rmet™ = prm=ket™p (gmy,

where py are polynomials of degree k defined recursively by

(16) po=1, pp(z)=(ym—k+1+mz)pp_1(x) + map)_,(z).
A short computation reveals that

(17) pr(z) = mFa® 4 [kmPy + @(m —DmFYzk=t 4

Taking o = %, B8 =n,y=1—mn, an application of the Leibniz rule shows that

G5 () e

= (”]‘ 1>Eg)’"(t) (e (<j - f));tﬂ}

(18)
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S0
m d\n—1 d\n—1
—t Bl n—1 Bl n—2 .
¢ [(dt) t th(dt) t }Eﬁv"(t)
n—1
n—1> (=1 (n=2)17 4_, s
:Z , i + mt" "M (") + Ofe )
j0< J [ 7! (J—l)!}
n—1
(19) =Y T 0
k=0

as t — 400, where by are some constants depending only on m,n, with (after a
small computation)

(n—1)(mn—n+1)
2m

b0:17 blz_

by (17). Setting t = s'/™|z|? and substituting (19) into (13), we are done. O

As remarked in the Introduction, in the context of the TYZ expansions Theo-
rem 2 corresponds to the situation of the trivial bundle H x C over H, with Her-
mitian metric on the fiber given by h(z) = e=s17"™ | The associated Kihler form
w = £00log + = £00|z|*™ can be computed similarly as in [24] for 299|z|. Even
without that, however, one can see what is the corresponding volume element w™:
namely, since differentiation lowers the degree of homogeneity by 1, the density of
w"™ with respect to the Euclidean surface measure on H must have homogeneity
n - (2m — 2) = 2mn — 2n; and as the surface measure equals, up to a constant
factor, to t2"~1dt ® du, we see that w™ = d(p ® pu) for dp(t) = ct>™~1dt, with
some constant c¢. Thus

e_s‘z‘mKs(z7 z) = €5(2)

is indeed precisely the Kempf distortion function for the above line bundle, and (5)
is its asymptotic, or TYZ, expansion.

The bundles studied by Gramchev and Loi in [11] with w = £88|z| correspond
tom = % Note that in that case, in agreement with [11], the lowest-order term in
(5) actually vanishes, i.e. b,_1 = 0. In fact, the constant term in py equals, by (16),

pe(0) = (ym — k+1)(ym — k +2) ... (ym) = (=1)* (—ym)x

(where (V)i :=v(v+1)...(v+ k — 1) is the usual Pochhammer symbol); thus for
the lowest order term in the sum in (19) we get from (18)

2m" by _y = mnil <n B 1) [(n L (n: f)):} (—1)7 (—=ym);

=\ J! (4
=@n—=1m(1=2m) || (G- (n—-1)m)

~
Il
-

after some computation (using the Chu-Vandermonde identity), which vanishes for
m= % This explains why the summations stops at k =n — 2 in (3).

We remark that in a completely analogous manner, one could also derive the
asymptotics as s — 400 of the reproducing kernels for the same weights e~ but
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with respect to the density % instead of (%85|Z‘2m)n' By Theorem 5
the corresponding kernels are given by

@) Kot = g () 0 () e

and the needed asymptotics of derivatives of 1 1 are worked out e.g. in Section 7

of [6] (or can be obtained from the formulas above in this section). We leave the
details to the interested reader. For m = 1, (20) recovers the formula from Gonessa
and Youssfi [12].

Finally, one can establish analogous “TYZ” asymptotics also for Bergman-type
kernels on the unit ball M of H; we limit ourselves to the following variant of
Theorem 3.2 from [20].

Theorem 8. For the weights corresponding to
dp(t) = (1 —t3)*t>" 1 4t s> -1

(i.e. having the density (1 — |z|?)® with respect to the Euclidean surface measure)
on M, the corresponding reproducing kernels Kg of A%@u are given by

F'n+s+1) "
(n—1IT(s+1)

n—1 ;
1 nts+1 n—1 (1 —t)ynst g
R ] .
{(1 — t)ntstl - tn—1 ; ( J )( ) n+s+1—j li=zew

Ky (z,w) =

Proof. Since

I'(s+ 1I'(l 4+ n)

1
_ 2521 1— t2 st2n71 dt = ;
w2 /0 ( ) F'l+n+s+1)

we get from Theorem 1

iN Fl+n+s+1)
= (l+n-DIT(s+1)

where we have set for brevity ¢t = z e w. Hence

(n—l)!F(s+1)Ks(z w):itl[(n+s+1)l (n+s+1) }

I'n+s+1) — il (-Dl+n-1)

oo n+3+ k+ltk+1
( — t)nts+l1 + Z )
k=0
o~ (14 5+ 2)5tF

1
)
1
] +(n+s+1)t R k)

n+s+1
S =
The last sum can be written as

o~ (0 + 5+ 2) 5tk / n+s+2k kA1
S A n—1 g
2 kl(n + k) OZ v

k=0 ’ =

1 t xn—l
_ / L A—
{n 0 (1 _ :E)n+s+2
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—1 .
1 t"z:(n—1> (z— 1) J
= — . :1:
o =\ 0 ) i

132 n—1 (1—t)insl g
= (") B
=\ stn+l-j

proving the theorem. O

Corollary 9. In the setup from the last theorem,

e 2
(21) (1= [2[2)+ " (2, 2) m ™ Y “’C“,’f‘ ) 4555 too,
S
k=0

where ax(|z|?) are some functions, with ay = 2.

Proof. With t = |2|?, Theorem 8 shows that the left-hand side equals

S n n+s iy n— ;1= J_ (1 _ $)\stn+l
((”tll))! ! j”?IZ( jl)(_l) . fz)+s(i1f)j J

=0

The term (1 — ¢)" T+ is exponentially small compared to the rest, and thus can
be neglected. Noticing that (s + 1),, is a polynomial in s of degree n while

n+s+1 j — (j—n—1)kj
_— = 7:1 B T——
n+s+1l—j +s(1+7"+;_3) +1§) skl

the expansion (21) follows, as does the formula for ag upon a small computation. O

4. HANKEL OPERATORS

Proof of Theorem 3. (i) = (ii) Let g = >, gx be the homogeneous expansion (9)
of g. For € € T, consider the rotation operator

Ucf(2) := flez), z € ML
Clearly U, is unitary on A?(M) as well as on L?(M), and

Thus also Hy € SP for all € € T. Furthermore, the action € — U, is continuous in

the strong operator topology, i.e. € — U f is norm continuous for each f € L?(M).
Now it was shown in Lemma on p. 997 in [2] that this implies that the map e — Hy—
is even continuous from T into SP. Consequently, the Bochner integral

2w
- de
0
/0 e"” Uez‘eHg ;ie % = Iq'gim
also belongs to SP, for each m. As g is nonconstant, there exists m > 1 for which
gm # 0, and (ii) follows.
(ii) = (iii) Assume that Hy € SP for some 0 # g € P,,. For any transform

k € O(n+ 1,R), the corresponding composition

Uef(2) := f(kz),  zeM,
again acts unitarily on A%2(M) as well as on L?(M), and

UKHgU: = Hm,
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so that also Hﬁ_g € 8P for all k € O(n+ 1,R). Likewise, the composition Vj : f —
f o k sends the space H" of spherical harmonics into itself, and the isomorphism
(6) satisfies Vi.f = U.f. Now it is known [19] that the representation x — V=1 of
O(n+ 1,R) on H™ is irreducible, that is, for any nonzero f € H™ the span of the
translates Vi f, k € O(n + 1,R), is dense in H™. Consequently, for any nonzero
g € P, the span of the translates Uxg, x € O(n + 1,R), of g by k is dense in P,,.
As Py, has finite dimension N(m), this actually means that P, consists just of
all linear combinations of Uy, g for some tuple k1,. .., Kn(m) in O(n +1,R). Since
Hm € 8P for each j, it follows by linearity that Hy € SP for all h € Py, showing
that (iii) holds (for the same m as in (ii)).

(iii) = (iv) By hypothesis, we have in particular H3» € SP for all multiindices
v with |v| = m; thus the operator

(22) H = g_:m (TS) H Her

belongs to SP - S? = SP/2.
Recall that the Toeplitz operator Ty, ¢ € L>(M), is the operator on A?(M)
defined by

Tyf = P(of)
(P being, as before, the orthogonal projection in L? onto A?). One thus has

(23) IHs 11 = o fII* = I T f11%,
and, by the reproducing property of the Bergman kernels,
Tyf(x / fly (z,y) dy,

where we started to write for brevity (for the duration of this proof) just dy instead
of d(p ® p)(y). With the notation from Theorem 1, we thus have, for any £ € M,

rey)F
Tolz0 @) = (o7 5y

k

k4]

_ 0 )Y k! (zo7)
_Zk:/M(y €)'os Gl d dy
=X G [ 0e ' ey
_ kila 1lk || N Zx.fk o
: Zk: (k+ |O‘|>!dkar/o Erld(t) /aM(y &) (x o) 1 du(y)

k!
= Z Wa & k+|a\dl (zo 5)

by (7) and (1). ThlS vanishes for [ < |a|, while for | > |« it equals

(I—fa))! di ; dy -
~ " 9%z e = — &%z e lal,
l' dlf‘od (I)( 5) dlf‘odf ( g)
Declaring d; to be oo for negative I, we thus obtain for all [
T(z08) = £ (zeg)7lo

dl lal
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For any £, n € M, we then get by (23)

(H &), (on)) = / = (R)ereesiEenta:

M

( ) 75z 0 €)™ (Z 7)™ dz

2

m Zem d —m (= o =\k—m
:/M\ZF <z-§>l<z-n>kdzfd2 con [ oo em s

M aj=m

1
— / 2k (1) / (z06)(z o) du(2)

0 oM

d;l (Com)™ /tHk_dep(t)/ (20 &)™ (Z 0 )™ dpu(2)

0 OM

2 ° m
= by 22 (Com) — dg (§ M) Oriqa— Qm(g(ln_))

N()

by (7) and (1) again. Comparing this with
e &) (. emk) — o 20 &) (Z e dulz
(o Con) = [ apte) [ (oe)z e duce

=Sy (€ o) = dud¢om),

we thus see that, for all [,
d
(- e 1 . q2i+2m _ 1
(H(o )l (omt) = (02 - o2
Since (- ® £)!, € € M, span P, it follows that

m d;
(Hf1,98) = (qm%;*dl m)(fhé]k)

for any f; € P; and g € Pi. In other words, the operator H is diagonalized by the
orthogonal decomposition A%(M) = €D, Pj, and

q21+2m d;
H= ( — ) Ilp,.
EB dim |7

q2i

o €)' (om)).

Recalling that dim P, = N(k), this means that

d p/2
24 HesP? e Piiam O N(l) < oo.
(24) Z ( q21 dl—m) 0
Now for our measure dp(t) = x|0,1] (t)t>" =1 dt, one has qo), = m, SO
g = 92k _ (n—1)k!
PTNEG)  20k+n)(2k+n—1)(k+n—2)!
n— n—1)(n—2
_ (n=1)! 1_n+%+% +o(i)}
4kn k k2

and

d;jfm =1- %JFO(/?E)
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as k — 400, while

=1-2+0(5

Qkiom  k+mn m (1)
Q2K k+n+m k

Thus

<q2k+2m _dy ) _(n=1)m
Q2k di—m k
and the sum (24) is finite if and only if (recall that n > 2 and m > 0)

+o0 > > kTPAN(k) ~ Y kTR
k k
i.e. if and only if p > 2n. Thus we have proved (iv).

(iv) = (v) We have seen in the last computation that for p > 2n, the operator
(22) belongs to S/ for any m > 1. Since all the summands HX Hzx in (22) are
nonnegative operators, it follows that even H2-Hzw € S§P/2 for all a, i.e. Hze 8P
for all a. By linearity, Hg € SP for any polynomial g, proving (v).

The last implication (v) = (i) is trivial, and thus the proof of Theorem 3 is
complete. O

Note that the only place where dp entered was in the computation in the part
(iii) = (iv). Thus Theorem 3 remains in force also for any measure dp for which
Qo = ak"[1+ 2+ O0(k™?)] ask — 400
for some a # 0 and b, € R; because one then has 11222% =1+2 4+ 0(k™?),
e — 14 w +O(k™2) and again (222 — _de ) (0=Dm 1y particular,

di—m q2k dk—m k

Theorem 3 thus also holds for the “standard” weighted Bergman spaces on M
corresponding to dp(t) = x[o11(t)(1 — t2)*t*" 1 dt, a > —1.

5. BALANCED METRICS

Returning to the formalism reviewed in connection with the TYZ expansions,
recall that a Kéhler form w = £00log + on a domain in C™ (or the Hermitian
metric associated to w) is called balanced if the corresponding weighted Bergman
kernel satisfies

(25) h(z)Khdet[aélog %](z, z) = const.  (# 0);

that is, if and only if the corresponding Kempf distortion function €; is a nonzero
constant. More generally, for & > n one calls w a-balanced if it is balanced and h
is commensurable to dist(-, 9Q)* at the boundary. (For a < n, the corresponding
Bergman space degenerates just to the zero function, thus K j.i9510¢ 1] = 0 and
the left-hand side in (25) is constant zero.) This definition turns out to indeed
depend only on w = %85 log% and not on the particular choice of h for a given w,
and also can be extended from domains to manifolds with line bundles as before;
see Donaldson [8], Arezzo and Loi [3] and [10] for further details.

The simplest example of a-balanced metric is h(z) = (1 — |2|?)%, a > 1, on the
unit disc D in C; one then gets det[901og ;] = =z and K, quopiog 1)(2:2) =
2=1(1 — |2|*)~®, so that (25) holds with the constant 2=1. Similarly for h(z) =
(1 —|2/*)%, @ > n, on the unit ball B" of C", where the constant turns out to be
are invariant metrics on bounded homogeneous domains (in particular, on bounded

The only known examples of bounded domains with balanced metrics
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symmetric domains). In the unbounded setting, every dilation of the Euclidean
metric on C" is balanced (with h(z) = e=*** o > 0, so that A2(C", h det[0dlog )
is just the familiar Fock space). Balanced metrics are known to exist in abundance
on compact manifolds [8]; the existence of balanced metrics e.g. on bounded strictly
pseudoconvex domains with smooth boundary is still an open problem, and their
uniqueness for a given « is an open problem even on the unit disc.

We conclude this paper by the following simple observation concerning balanced
metrics on our Kepler manifold H. Note that for n > 3, H is known to be simply
connected.

Theorem 10. Let n = dimcH > 3 and o > n. Then either there does not exist
any a-balanced metric on H, or it s not unique.

Proof. Suppose there exists a unique a-balanced Kéhler form w = £99log + on H.
It was shown in [10] that the image of an a-balanced metric on a simply connected
domain under a biholomorphic map is again a-balanced (with the same «). (Simple
connectivity is needed for some powers of Jacobians to be single-valued when -2~ is

n+1
not an integer.) Consequently, the Kahler form w, or, equivalently, the associated
Hermitian metric 95> at the point e = (1,4,0,...,0) € H has to be invariant

under any biholomorphic self-map of H fixing e, in particular, under all elements
of the isotropy subgroup L := {k € O(n + 1,C) : ke = e} of e in O(n + 1,C).
The unit sphere with respect to g% in the tangent space T.H of H at e thus has
to be invariant under L. Now 9% being a Riemannian metric, the unit sphere is
diffeomorphic to OB™ = §?"~1  in particular, it is a compact manifold. However,
L is easily seen to have orbits that extend to infinity. For instance, the matrix

2 . 2 .
1+3 & i
22 2
iz~ _ oz 0
A, = 2 -5 <
—1z z 1

\ 0 |1/
is easily checked to belong to L for any z € C, while the orbit of € = (1, —4,0,...,0) €
T.H under A,
Ae= (22 +1,i(z* — 1), —2iz)
evidently does not stay in any compact subset as z — oco. We have reached a
contradiction. Il

The same argument applies, in principle, to any manifold whose isotropy sub-
group L of biholomorphic self-maps that stabilize some basepoint e contains a
complex one-parameter subgroup (such as the A, z € C, above): by Liouville’s
theorem, the orbit of any tangent vector under L cannot stay bounded without
being constant, and it follows that each element of L acts trivially (i.e. reduces to
the identity) on the tangent space at e. Consequently, if there exists k € L with
dke # I, then for each «, the manifold either does not admit any a-balanced metric,
or such metric is not unique.
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