H Él Ène Bommier-Hato 
  
Miroslav Engli Š 
email: englis@math.cas.cz
  
El-Hassan Youssfi 
email: el-hassan.youssfi@univ-amu.fr
  
  
  
  
BERGMAN KERNELS, TYZ EXPANSIONS AND HANKEL OPERATORS ON THE KEPLER MANIFOLD

Keywords: 1991 Mathematics Subject Classification. Primary 32A25; Secondary 47B35, 32Q15 Kepler manifold, Bergman kernel, Hankel operator, Tian-Yau-Zelditch expansion, balanced metric

For a class of O(n + 1, R) invariant measures on the Kepler manifold possessing finite moments of all orders, we describe the reproducing kernels of the associated Bergman spaces, discuss the corresponding asymptotic expansions of Tian-Yau-Zelditch, and study the relevant Hankel operators with conjugate holomorphic symbols. Related reproducing kernels on the minimal ball are also discussed. Finally, we observe that the Kepler manifold either does not admit balanced metrics, or such metrics are not unique.

Introduction

Let n ≥ 2 and consider the Kepler manifold in C n+1 defined by

H := {z ∈ C n+1 : z • z = 0, z = 0}, where z • w := z 1 w 1 + • • • + z n+1 w n+1
. This is the orbit of the vector e = (1, i, 0, . . . , 0) under the O(n + 1, C)-action on C n+1 ; it is also well-known that H can be identified with the cotangent bundle of the unit sphere S n in R n+1 minus its zero section. The unit ball of H, M := {z ∈ H : |z| 2 = z • z < 1} as well as its boundary ∂M = {z ∈ H : |z| = 1} are invariant under O(n + 1, C) ∩U (n + 1) = O(n + 1, R), and in fact ∂M is the orbit of e under O(n + 1, R). In particular, there is a unique O(n+1, R)-invariant probability measure dµ on ∂M, coming from the Haar measure on the (compact) group O(n + 1, R). Explicitly, denoting

α := (n + 1) (-1) j-1 z j dz 1 ∧ • • • ∧ dz j ∧ • • • ∧ dz n+1 on z j = 0
(this is, up to constant factor, the unique SO(n+1, C)-invariant holomorphic n-form on H, see [START_REF] Oeljeklaus | The Bergman kernel of the minimal ball and applications[END_REF]) and defining a (2n -1)-form ω on ∂M by

ω(z)(V 1 , . . . , V 2n-1 ) := α(z) ∧ α(z)(z, V 1 , . . . , V 2n-1 ), V 1 , . . . , V 2n-1 ∈ T (∂M),
we then have dµ = ω/ω(∂M) (where, abusing notation, we denote by ω also the measure induced by ω on ∂M). It follows, in particular, that dµ is also invariant under complex rotations

z → z, ∈ T = {z ∈ C : |z| = 1}.
For a finite (nonnegative Borel) measure dρ on (0, ∞), we can therefore define a rotation-invariant measure d(ρ ⊗ µ) on H by

H f d(ρ ⊗ µ) := ∞ 0 ∂M f (tζ) dµ(ζ) dρ(t),
and the (weighted) Bergman space A 2 ρ⊗µ := {f ∈ L 2 (d(ρ ⊗ µ)) : f is holomorphic on RM}, where R := sup{t > 0 : t ∈ supp ρ} = sup{|z| : z ∈ supp ρ ⊗ µ} (with the understanding that RM = H if R = +∞). It is standard that A 2 ρ⊗µ is a reproducing kernel Hilbert space, that is, there exists a function K ρ⊗µ (x, y) ≡ K(x, y) on RM × RM for which K(•, y) ∈ A 2 ρ⊗µ for each y, K(y, x) = K(x, y), and

f (z) = RM f (w)K(z, w) d(ρ ⊗ µ)(w) ∀f ∈ A 2 ρ⊗µ .
Our goal in this paper is to give a description of these reproducing kernels, establish their asymptotics as ρ varies in a certain way (so-called Tian-Yau-Zelditch, or TYZ, expansion), and study the Hankel operators on A 2 ρ⊗µ . We also give an analogous description for the reproducing kernels on the minimal ball

B := {z ∈ C n : |z| 2 + |z • z| < 1},
which is the image of M under the 2-sheeted proper holomorphic mapping given by the projection onto the first n coordinates.

In more detail, let

q k := ∞ 0 t k dρ(t)
be the moments of the measure dρ (the values q k = +∞ being also allowed if the integral diverges). Our starting point is the following formula for the reproducing kernels (whose proof goes by arguments which are already quite standard).

Theorem 1. For z, w ∈ RM with R as above,

K ρ⊗µ (z, w) = ∞ l=0 (z • w) l d l , with (1) 
d l := q 2l N (l)
where

N (l) := l + n -1 n -1 + l + n -2 n -1 = (2l + n -1)(l + n -2)! l!(n -1)! .
Next, recall that, quite generally, for an n-dimensional complex manifold M and a holomorphic line bundle L over M equipped with a Hermitian metric, the so-called Kempf distortion functions l , l = 0, 1, 2, . . . , are defined by

l (z) := j h(s j (z), s j (z)),
where {s j } j is an orthonormal basis of the Hilbert space L 2 hol (L ⊗l , ω n ) of holomorphic sections of the l-th tensor power L ⊗l of L square-integrable with respect to the volume element ω n on M , where ω = -curv h (which is assumed to be positive); see Kempf [START_REF] Kempf | Metrics on invertible sheaves on abelian varieties[END_REF], Rawnsley [START_REF] Rawnsley | Coherent states and Kähler manifolds[END_REF], Ji [START_REF] Ji | Inequality for the distortion function of invertible sheaves on abelian varieties[END_REF] and Zhang [START_REF] Zhang | Heights and reductions of semi-stable varieties[END_REF]. These functions are of importance in the study of projective embeddings and constant scalar curvature metrics (Donaldson [8]), where a prominent role is played, in particular, by their asymptotic behaviour as l tends to infinity: namely, one has

l (z) ≈ l n ∞ j=0 a j (z)l -j
as l → +∞ in the C ∞ -sense, with some smooth coefficient functions a j (z), and a 0 (z) = 1. This has been established in various contexts by Berezin [START_REF] Berezin | Quantization[END_REF] (for bounded symmetric domains), Tian [START_REF] Tian | On a set of polarized Kähler metrics on algebraic manifolds[END_REF] and Ruan [START_REF] Ruan | Canonical coordinates and Bergman metrics[END_REF] (answering a conjecture of Yau) and Catlin [START_REF] Catlin | The Bergman kernel and a theorem of Tian, Analysis and geometry in several complex variables[END_REF] and Zelditch [START_REF] Zelditch | Szegö kernels and a theorem of Tian[END_REF] for M compact, Engliš [START_REF] Engliš | Weighted Bergman kernels and quantization[END_REF] (for M a strictly pseudoconvex domain in C n with smooth boundary and h subject to some technical hypotheses), etc.

If M is a domain in C n and the line bundle is trivial (which certainly happens if M is simply connected; in this case one need not restrict to integer l, but may allow it to be any positive number), one can identify (holomorphic) sections of L with (holomorphic) functions on M , h with a positive smooth weight on M ,

L 2 hol (L ⊗l , ω n ) with A 2 h l ω n = A 2 h l det[∂∂ log 1 h ]
, and ( 2)

l (z) = h(z) l K h l det[∂∂ log 1 h ] (z, z)
, where we (momentarily) denote by K w the weighted Bergman kernel with respect to a weight w on M (and similarly for A 2 w ). In the context of our Kepler manifold, this has been studied by Gramchev and Loi [START_REF] Gramchev | TYZ expansion for the Kepler manifold[END_REF] for L = H × C (i.e. the trivial bundle) and h(z) = e -|z| (so ω = i 2 ∂∂|z|; this turns out to be the symplectic form inherited from the isomorphism H ∼ = T * S n \ {zero section} mentioned in the beginning of this paper [START_REF] Rawnsley | Coherent states and Kähler manifolds[END_REF]), who showed that

(3) l (z) = l n + (n -2)(n -1) 2|z| l n-1 + n-2 k=2 b k |z| k l n-k + R l (z),
with some constants b k independent of z and remainder term R l (z) = O(e -cl|z| ) for some c > 0 (i.e. exponentially small).

Our second main result is the following.

Theorem 2. Let K s = K ρ⊗µ for (4) dρ(t) = 2cme -st 2m t 2mn-1 dt,
where c, m are fixed positive constants and s > 0. Then as s → +∞,

(5)

e -s|z| 2m K s (z, z) = 2m n (n -1)!c s n n-1 j=0 b j s j |z| 2mj + R s (z),
where b j are constants depending on m and n only,

b 0 = 1, b 1 = (1 -n)(mn -n + 1) 2m ,
and R s (z) = O(e -δs|z| 2m ) with some δ > 0.

The result of Gramchev and Loi corresponds to m = 1 2 and c = 2 1-n (n-1)! , so it is recovered as a special case. Our method of proof is a good deal simpler than in [START_REF] Gramchev | TYZ expansion for the Kepler manifold[END_REF], covers all m > 0, and is also extendible to other situations. We further note that d(ρ ⊗ µ) with the ρ from (4) actually coincides (up to a constant factor) with ω n for ω = i 2 ∂∂(s|z| 2m ), in full accordance with (2) (taking h(z) = e -|z| 2m , and with l = 1, 2, . . . replaced by the continous parameter s > 0 as already remarked above).

There is also an analogous result for the Bergman-type weights on M corresponding to

dρ(t) = χ [0,1] (t)(1 -t 2 ) s t 2n-1 dt, s > -1.
As for our last topic, recall that the Hankel operator H g , g ∈ A 2 ρ⊗µ , is the operator from A 2 ρ⊗µ into L 2 (ρ ⊗ µ) defined by

H g f := (I -P )(gf ),
where P : L 2 (ρ ⊗ µ) → A 2 ρ⊗µ is the orthogonal projection. This is a densely defined operator, which is (extends to be) bounded e.g. whenever g is bounded. For the (analogously defined) Hankel operators on the unit disc D in C or the unit ball B n of C n , n ≥ 2, criteria for the membership of H g in the Schatten classes S p , p > 0, were given in the classical papers by Arazy, Fisher and Peetre [START_REF] Arazy | Peetre: Hankel operators on weighted Bergman spaces[END_REF] [1]: it turns out that for p ≤ 1 there are no nonzero H g in S p on D, while for p > 1, H g ∈ S p if and only if g ∈ B p (D), the p-th order Besov space on D; while on B n , n ≥ 2, there are no nonzero H g in S p if p ≤ 2n, while for p > 2n, again H g ∈ S p if and only if g ∈ B p (B n ). One says that there is a cut-off at p = 1 or p = 2n, respectively. The result remains in force also for D and B n replaced any bounded strictly-pseudoconvex domain in C n , n ≥ 1, with smooth boundary (Luecking [START_REF] Li | Schatten class of Hankel and Toeplitz operators on the Bergman space of strongly pseudoconvex domains, Multivariable operator theory[END_REF]).

Our third main result shows that for the Bergman space A 2 (M) := A 2 ρ⊗µ for dρ(t) = χ [0,1] (t)t 2n-1 dt on M, there is also a cut-off at p = 2n. Theorem 3. Let p ≥ 1. Then the following are equivalent.

(i) There exists nonconstant g ∈ A 2 (M) with H g ∈ S p . (ii) There exists a nonzero homogeneous polynomial g of degree m ≥ 1 such that H g ∈ S p . (iii) There exists m ≥ 1 such that H g ∈ S p for all homogeneous polynomials g of degree m. (iv) p > 2n. (v) H g ∈ S p for any polynomial g.

We remark that the proofs in [START_REF] Arazy | Peetre: Hankel operators on weighted Bergman spaces[END_REF] and [START_REF] Arazy | Peetre: Membership of Hankel operators on the ball in unitary ideals[END_REF] relied on the homogeneity of B n under biholomorphic self-maps, and thus are not directly applicable for M with its much smaller automorphism group. The proof in [START_REF] Li | Schatten class of Hankel and Toeplitz operators on the Bergman space of strongly pseudoconvex domains, Multivariable operator theory[END_REF] relied on ∂-techniques, which probably could be adapted to our case of M i.e. of a smoothly bounded strictly pseudoconvex domain not in C n but in a complex manifold, and furthermore having a singularity in the interior (cf. Ruppenthal [START_REF] Øvrelid | L 2 properties of the ∂ and ∂-Neumann operator on spaces with isolated singularities[END_REF]). Our method of proof of Theorem 3, which is close in spirit to those of [START_REF] Arazy | Peetre: Hankel operators on weighted Bergman spaces[END_REF] and [START_REF] Arazy | Peetre: Membership of Hankel operators on the ball in unitary ideals[END_REF], is, however, much more elementary.

The paper is organized as follows. The proof of Theorem 1, together with miscellaneous necessary prerequisites and the results for the minimal ball, occupies Section 2. Applications to the TYZ expansion appear in Section 3, and the results on Hankel operators in Section 4. The final section, Section 5, concludes by a small observation concerning the so-called balanced metrics on H in the sense of Donaldson [START_REF] Donaldson | Scalar curvature and projective embeddings I[END_REF].

Large part of this work was done while the second named author was visiting the other two; the hospitality of Universite Aix Marseille in this connection is gratefully acknowledged.

Reproducing kernels

Denote by P k , k = 0, 1, 2, . . . , the space of (restrictions to H of) polynomials on C n+1 homogeneous of degree k. Clearly, P k is isomorphic to the quotient of the analogous space of k-homogeneous polynomials on all of C n by the k-homogeneous component of the ideal generated by z • z, and

dim P k = k + n -1 n -1 + k + n -2 n -1 =: N (k).
For z ∈ M and f ∈ L 2 (S n , dσ), where σ stands for the normalized surface measure on S n , set

(6) f (z) := S n f (ζ)e z,ζ dσ(ζ),
and let

H k ≡ H k (S n ) denote the subspace in L 2 (S n , dσ) consisting of spherical harmonics of degree k. It is then known [14] [27] that the functions x → (x • z) k , z ∈ H, span H k , the functions z → (z • ζ) k , ζ ∈ S n
, span P k , and the mapping f → f is an isomorphism of H k onto P k , for each k. Using the Funke-Hecke theorem [19, p. 20], it then follows that [START_REF] Oeljeklaus | The Bergman kernel of the minimal ball and applications[END_REF] [20] ( 7)

∂M (z • w) k (ξ • w) l dµ(w) = δ kl (z • ξ) k N (k)
for all z ∈ H, ξ ∈ C n+1 ; and, consequently, P k and

P l are orthogonal in L 2 (dµ) if k = l, while (8) 
∂M

f (w)(z • w) k dµ(w) = f (z) N (k)
for all z ∈ H and f ∈ P k . If f is a function holomorphic on RM (for some 0 < R ≤ ∞), then it has a unique decomposition of the form

(9) f = ∞ k=0 f k , f k ∈ P k ,
with the sum converging absolutely and uniformly on compact subsets of RM ([20, Lemma 3.1]). Let s = (s 0 , s 1 , . . . ) be an arbitrary sequence of positive numbers. We denote by A 2 s the space of all functions f holomorphic in some RM, R > 0, for which,

f 2 s := s k f k 2 L 2 (∂M,dµ) < ∞, equipped with the natural inner product f, g s := ∞ k=0 s k f k , g k L 2 (∂M,dµ) for f = k f k , g = k g k as in (9). It is immediate that A 2
s is a Hilbert space which contains each P k , and the linear span of the latter (i.e. the space of all polynomials on H) is dense in A 2 s .

Proposition 4. Assume that

R s := lim inf k→∞ N (k) s k -1/2k
> 0

(the value R s = ∞ being also allowed). Then A 2 s is a reproducing kernel Hilbert space of holomorphic functions on R s M, with reproducing kernel

(10) K s (x, y) = ∞ k=0 N (k) s k (x • y) k .
Proof. By the definition of R s , the series (10) converges pointwise and locally uniformly for x, y ∈ R s M. Moreover, for g = K s (•, y) we plainly have

g k = N (k) s k (• • y) k and by (7), g k 2 L 2 (∂M,dµ) = N (k) s 2 k (y • y) k , so g 2 s = ∞ k=0 N (k) s k (y • y) k = K s (y, y) < ∞. Thus K s (•, y) ∈ A 2 s for y ∈ R s M. Furthermore, for f ∈ A 2 s , by (8) 
k |f k (y)| ≤ k N (k) ∂M f k (w)(y • w) k dµ(w) = k s k f k , N (k) s k (• • y) k L 2 (∂M,dµ) ≤ k s k f k L 2 (∂M,dµ) N (k) s k (• • y) k L 2 (∂M,dµ) ≤ k s k f k 2 L 2 (∂M,dµ) 1/2 k N (k) s k (• • y) k 2 L 2 (∂M,dµ) 1/2 = f s K s (y, y) 1/2 ,
implying that the series k f k converges locally uniformly on R s M and that the point evaluation f → f (y) is continuous on A 2 s for all y ∈ R s M. Finally, removing absolute values in the last computation shows that f (y) = f, K s (•, y) s , proving that K s is the reproducing kernel for A 2 s .

Recall now that a sequence s = (s k ) k∈N is called a Stieltjes moment sequence if it has the form

s k = s k (ν) := ∞ 0 r k dν(r)
for some nonnegative measure ν on [0, +∞), called a representing measure for s; or, alternatively,

s k = ∞ 0 t 2k dρ(t)
for the nonnegative measure dρ(t) = dν(t 2 ). These sequences have been characterized by Stieltjes in terms of a positive definiteness conditions. It follows from the above integral representation that each Stieltjes moment sequence is either nonvanishing, that is, s k > 0 for all k, or else s k = cδ 0k for all k for some c ≥ 0. Fix a nonvanishing Stieltjes moment sequence s = (s k ). By the Cauchy-Schwarz inequality we see that the sequence s k+1 s k is nondecreasing and hence converges as k → +∞ to the radius of convergence R 2 s of the series

∞ k=0 N (k) s k z k , z ∈ C.
We can now prove our first theorem from the Introduction.

Proof of Theorem 1. Recall that we denoted R = sup{t > 0 : t ∈ supp ρ}. If R = ∞, then for any r > 0 we have

q 2k ≥ ∞ r t 2k dρ(t) ≥ r 2k ρ((r, ∞)) with ρ((r, ∞)) > 0, so lim inf k→∞ q 1/2k 2k ≥ r; thus q 1/2k 2k → +∞. If R < ∞,
then the same argument shows that lim inf k→∞ q 1/2k 2k ≥ r for any r < R, while from

q 2k ≤ R 2k R 0 dρ = R 2k ρ([0, R]) with ρ([0, R]) < ∞ we get lim sup k→∞ q 1/2k 2k ≤ R. Setting s k = q 2k we thus get in either case R = R s . Now for any r < R and f ∈ A 2
ρ⊗µ , we have by the uniform convergence of ( 9)

rM |f | 2 d(ρ ⊗ µ) = j,k rM f j f k d(ρ ⊗ µ) = j,k r 0 ∂M t j+k f j (ζ)f k (ζ) dµ(ζ) dρ(t) = k r 0 t 2k dρ(t) f k 2 L 2 (∂M,dµ)
by the orthogonality of P k and P l for j = k. Letting r R, we thus get

f 2 ρ⊗µ = k q 2k f k 2 L 2 (∂M,dµ) = f 2 s .
Hence A 2 ρ⊗µ ⊂ A 2 s , with equal norms. Since clearly P l ∈ A 2 ρ⊗µ for each l and the span of P l is dense in A 2 s , it follows that actually A 2 ρ⊗µ = A 2 s and f ρ⊗µ = f s for any f ∈ A 2 ρ⊗µ . The claim now follows from the last proposition. As an example, let φ be a nonnegative integrable function on (0, ∞), and consider the volume element

α φ (z) := φ(|z| 2 ) α(z) ∧ α(z) (-1) n(n+1)/2 (2i) n . Let A 2
φ and K φ be the corresponding weighted Bergman space and its reproducing kernel, respectively. Theorem 5. We have

K φ (z, w) = 1 (n -1)!c M 2tF (n-1) (t) + (n -1)F (n-2) (t) t=z•w
, where

c M = (n -1) M α(z) ∧ α(z) (-1) n(n+1)/2 (2i) n and (11) F (t) = ∞ k=0 t k c k , where c k := ∞ 0 t k φ(t) dt.
Proof. It was shown in [20, Lemma 2.1] that for any measurable function f on H,

H f (z) α(z) ∧ α(z) (-1) n(n+1)/2 (2i) n = 2c M ∞ 0 ∂M f (tζ) t 2n-3 dµ(ζ) dt,
with c M as above. Thus α φ = ρ ⊗ µ for

dρ(t) = 2c M t 2n-3 φ(t 2 ) dt,
and by the last theorem, K φ is given by [START_REF] Engliš | Weighted Bergman kernels and balanced metrics[END_REF] with

s k = ∞ 0 t 2k dρ(t) = c M ∞ 0 t k+n-2 φ(t) dt = c M c k+n-2 .
Now by an elementary manipulation,

k k + n -1 n -1 t k c k+n-2 = 1 (n -1)! k d dt n-1 t k+n-1 c k+n-2 = 1 (n -1)! d dt n-1 (tF (t)) = 1 (n -1)! tF (n-1) (t) + (n -1)F (n-2) (t) ,
and similarly

k k + n -2 n -1 t k c k+n-2 = t (n -1)! k d dt n-1 t k+n-2 c k+n-2 = t (n -1)! F (n-1) (t). Thus k N (k)t k c k+n-2 = 1 (n -1)! 2tF (n-1) (t) + (n -1)F (n-2) (t)
and the assertion follows.

Example. Take φ(r) = (1 -r) m for r ∈ [0, 1] and φ(r) = 0 for r > 1, where m > -1. Then c k = k!Γ(m+1) Γ(m+k+2) and we recover the formula from [START_REF] Mengotti | The weighted Bergman projection and related theory on the minimal ball and applications[END_REF] 

K φ (z, w) = Γ(n + m) (n -1)!c M Γ(m + 1) (n -1) + (n + 1 + 2m)z • w (1 -z • w) n+m+1
for the "standard" Bergman kernels on M (with respect to α ∧ α).

Further applications of Theorem 1 will occur later in the sequel. We conclude this section by considering the unit ball B in C n with respect to the "minimal norm" given by

N * (z) = |z| 2 + |z • z|.
This norm was shown to be of interest in the study of several problems related to proper holomorphic mappings and the Bergman kernel, see [START_REF] Hahn | On a minimal complex norm that extends the real Euclidean norm[END_REF], [START_REF] Oeljeklaus | Proper holomorphic mappings and related automorphism groups[END_REF], [START_REF] Oeljeklaus | The Bergman kernel of the minimal ball and applications[END_REF], [START_REF] Mengotti | The weighted Bergman projection and related theory on the minimal ball and applications[END_REF] and [START_REF] Mengotti | The Bloch space for the minimal ball[END_REF]. Suppose that φ is as before and consider the measure dV φ on C n with density φ(N 2 * ) with respect to the Lebesgue measure. Namely,

dV φ (z) := φ(|z| 2 + |z • z|) dV (z)
where dV (z) denotes the Lebesgue measure on C n normalized so that the volume of the minimal ball is equal to one. We denote by A 2 φ (C n ) the Bergman-Fock type space on C n with respect to dV φ , consisting of all measurable functions f on C n which are holomorphic in the ball

B φ := {z ∈ C n : |z| 2 + |z • z| < R φ } and satisfy (12) f 2 φ := C n |f (z)| 2 dV φ (z) < +∞.
Here R φ is the square root of the radius of convergence of the series [START_REF] Gramchev | TYZ expansion for the Kepler manifold[END_REF]. We let L 2 φ (C n ) denote the space of all measurable functions f in C n verifying [START_REF] Gonessa | The Bergman projection in spaces entire functions[END_REF]. Finally, we define the operators ∆ j , j = 0, 1, acting on power series in z by their actions on the monomials z m as follows

(∆ 0 z m )(x, y) := 2 [ m-1 2 ] k=0 m 2k + 1 x m-1-2k y k , (∆ 1 z m )(x, y) := 2 [ m 2 ] k=0 m 2k x m-2k y k , x, y ∈ C. If f (z) = k c k z k is a power series of radius of convergence R, then the series (∆ j f )(x, y) := k c k (∆ j z k )(x, y 2 )
converges as long as |x| + |y| < R and we have

(∆ 0 f )(x, y) = f (x + y) -f (x -y) y , y = 0, (∆ 1 f )(x, y) = f (x + y) + f (x -y).
Using these notations, we then have the following.

Theorem 6. The space A 2 φ (C n ) coincides with the closure of the holomorphic polynomials in L 2 φ (C n ) and its reproducing kernel is given by

K φ,C n (z, w) = (n + 1) 2 (n -1)!c M 2(z • w)∆ 0 (F (n-1) )(z • w, z • z • w • w) + ∆ 1 (F (n-1) )(z • w, z • z • w • w) + (n -1)∆ 0 (F (n-2) )(z • w, z • z • w • w) ,
with F as in [START_REF] Gramchev | TYZ expansion for the Kepler manifold[END_REF].

Proof. We will use the technique developed in [START_REF] Mengotti | The weighted Bergman projection and related theory on the minimal ball and applications[END_REF]. Let Pr : C n+1 → C n be the projection onto the first n coordinates Pr(z 1 , . . . , z n , z n+1 ) = (z 1 , . . . , z n ) and ι := Pr | H . Then ι : H → C n \ {0} is a proper holomorphic mapping of degree 2.

The branching locus of ι consists of points with z n+1 = 0, and its image under ι consists of all x ∈ C n \ {0} with n j=1 x 2 j = 0. The local inverses Φ and Ψ of ι are given for z ∈ C n \ {0} by

Φ(z) = (z, i √ z • z), Ψ(z) = (z, -i √ z • z).
In view of Lemma 3.1 of [START_REF] Oeljeklaus | The Bergman kernel of the minimal ball and applications[END_REF], we see that

Φ * (α φ ) = 1 + n i √ z • z φ(z) 1/2 (-1) n dz 1 ∧ • • • ∧ dz n , Ψ * (α φ ) = 1 + n -i √ z • z φ(z) 1/2 (-1) n dz 1 ∧ • • • ∧ dz n . If f : C n → C is a measurable function and z ∈ H, we consider the operator U = U φ by setting (U f )(z) := z n+1 √ 2(n + 1) (f • ι)(z).
Using the same arguments as in the proof of Lemma 4.1 in [START_REF] Mengotti | The weighted Bergman projection and related theory on the minimal ball and applications[END_REF], it can be shown that U is an isometry from L 2 φ (C n ) into L 2 φ (H). More precisely, we have

H |U f (z)| 2 α φ (z) = C n |f (z)| 2 dV φ (z).
In addition, the arguments used in the proof of part (2) of the latter lemma show that the image

E φ (H) of A 2 φ (C n ) under U is a closed proper subspace of A 2 φ (H), and U is unitary from A 2 φ (C n ) onto E φ (H).
From the technique used in the proof of Lemma 2.4 in [START_REF] Mengotti | The weighted Bergman projection and related theory on the minimal ball and applications[END_REF], we the get the following lemma. Lemma 7. If Φ and Ψ are as before, then

z n+1 K φ,C n (ιz, w) = (n + 1) 2 K φ (z, Φ(w)) Φ n+1 (w) + K φ (z, Ψ(w)) Ψ n+1 (w) , for all z ∈ H, w ∈ C n .
The rest of the proof of the theorem now follows from the last lemma and the identities used in the proof of Theorem A in [START_REF] Mengotti | The weighted Bergman projection and related theory on the minimal ball and applications[END_REF].

Example. Let φ(r) = e -cr , c > 0. Then s k = k!/c k+1 , F (t) = ce ct and we obtain

K φ,C n (z, w) = 2(n + 1) 2 c n-2 (n -1)!c M × e cz•w 2c 2 (n -1 + z • w)S(c 2 z • zw • w) + cC(c 2 z • zw • w) ,
where we wrote for brevity

S(t) = sinh √ t √ t , C(t) = cosh √ t.

TYZ expansions

Proof of Theorem 2. For the measure (4), we have by the change of variable x = st 2m ,

q 2k = 2cm ∞ 0 t 2k e -st 2m t 2mn-1 dt = c s ∞ 0 x s 2k+2mn 2m -1 e -x dx = c Γ( k+mn m ) s k+mn m
.

Applying Theorem 1, we get

K s (x, y) = k s mn+k m (x • y) k N (k) cΓ( k+mn m ) = s n (n -1)!c d dt n-1 t n-1 + t d dt n-1 t n-2 E 1 m ,n (t) t=s 1/m x•y , (13) 
by a similar computation as in the proof of Theorem 5. Here E 1 m ,n is the Mittag-Leffler function

E α,β (z) := ∞ k=0 z k Γ(αk + β) , α, β > 0.
Recall now that as z → ∞, E α,β has the asymptotics

E α,β (z) =    1 α N j=-N z 1-β j e zj + O 1 z , | arg z| ≤ πα 2 , O 1 z , | arg(-z)| < π -πα 2 ,
where N is the integer satisfying N < α 2 ≤ N + 1 and z j = |z| 1/α e (arg z+2πij)/α with -π < arg z ≤ π. See e.g. [4, §18.1, formulas ( 21)-( 22)] (additional handy references are given in Section 7 of [START_REF] Bommier-Hato | Bergman-type projections on generalized Fock spaces[END_REF]). Furthermore, this asymptotic expansion can be differentiated termwise any number of times (see again Section 7 in [START_REF] Bommier-Hato | Bergman-type projections on generalized Fock spaces[END_REF] for details on this). In particular, for t > 0 the term j = 0 dominates all the others, and we therefore obtain

(14) E α,β (t) = 1 α t (1-β)/α e t 1/α + O(e (1-δ)t 1/α ) as t → +∞
with some δ > 0. (One can take any 0 < δ < 1 √ 2 (1 -cos 2π α ) for α > 4, and any 0 < δ < 1 √ 2 for 0 < α < 4.) Moreover, [START_REF] Ii | On Bargmann-type transform and a Hilbert space of holomorphic functions[END_REF] remains in force when a derivative of any order is applied to the left-hand side and to the first term on the right-hand side. Now by a simple induction argument, (15)

d dt k t γm e t m = t γm-k e t m p k (t m ),
where p k are polynomials of degree k defined recursively by ( 16)

p 0 = 1, p k (x) = (γm -k + 1 + mx)p k-1 (x) + mxp k-1 (x).
A short computation reveals that (17)

p k (x) = m k x k + [km k γ + k(k-1) 2 (m -1)m k-1 ]x k-1 + . . . . Taking α = 1 m , β = n, γ = 1 -n, an application of the Leibniz rule shows that d dt n-1 t n-1 + t d dt n-1 t n-2 E 1 m ,n (t) = n-1 j=0 n -1 j E (j) 1 m ,n (t) (n -1)! j! t j + (n -2)! (j -1)! t j = n-1 j=0 n -1 j (n -1)! j! + (n -2)! (j -1)! mt (1-n)m e t m p j (t m ) + O(e (1-δ)t m ), (18) 
so

e -t m d dt n-1 t n-1 + t d dt n-1 t n-2 E 1 m ,n (t) = n-1 j=0 n -1 j (n -1)! j! + (n -2)! (j -1)! mt (1-n)m p j (t m ) + O(e -δt m ) = n-1 k=0 2m n b k t km + O(e -δt m ) ( 19 
)
as t → +∞, where b k are some constants depending only on m, n, with (after a small computation)

b 0 = 1, b 1 = - (n -1)(mn -n + 1) 2m 
by [START_REF] Li | Schatten class of Hankel and Toeplitz operators on the Bergman space of strongly pseudoconvex domains, Multivariable operator theory[END_REF]. Setting t = s 1/m |z| 2 and substituting ( 19) into ( 13), we are done.

As remarked in the Introduction, in the context of the TYZ expansions Theorem 2 corresponds to the situation of the trivial bundle H × C over H, with Hermitian metric on the fiber given by h(z) = e -s|z| 2m . The associated Kähler form ω = i 2 ∂∂ log 1 h = is 2 ∂∂|z| 2m can be computed similarly as in [START_REF] Rawnsley | Coherent states and Kähler manifolds[END_REF] for i 2 ∂∂|z|. Even without that, however, one can see what is the corresponding volume element ω n : namely, since differentiation lowers the degree of homogeneity by 1, the density of ω n with respect to the Euclidean surface measure on H must have homogeneity n • (2m -2) = 2mn -2n; and as the surface measure equals, up to a constant factor, to t 2n-1 dt ⊗ dµ, we see that ω n = d(ρ ⊗ µ) for dρ(t) = ct 2mn-1 dt, with some constant c. Thus

e -s|z| 2m K s (z, z) ≡ s (z)
is indeed precisely the Kempf distortion function for the above line bundle, and ( 5) is its asymptotic, or TYZ, expansion. The bundles studied by Gramchev and Loi in [START_REF] Gramchev | TYZ expansion for the Kepler manifold[END_REF] with ω = i 2 ∂∂|z| correspond to m = 1 2 . Note that in that case, in agreement with [START_REF] Gramchev | TYZ expansion for the Kepler manifold[END_REF], the lowest-order term in (5) actually vanishes, i.e. b n-1 = 0. In fact, the constant term in p k equals, by [START_REF] Kempf | Metrics on invertible sheaves on abelian varieties[END_REF],

p k (0) = (γm -k + 1)(γm -k + 2) . . . (γm) = (-1) k (-γm) k
(where (ν) k := ν(ν + 1) . . . (ν + k -1) is the usual Pochhammer symbol); thus for the lowest order term in the sum in [START_REF] Müller | Spherical harmonics[END_REF] we get from (18)

2m n b n-1 = m n-1 j=0 n -1 j (n -1)! j! + (n -2)! (j -1)! (-1) j (-γm) j = (n -1)m(1 -2m) n-2 j=1 (j -(n -1)m)
after some computation (using the Chu-Vandermonde identity), which vanishes for m = 1 2 . This explains why the summations stops at k = n -2 in (3). We remark that in a completely analogous manner, one could also derive the asymptotics as s → +∞ of the reproducing kernels for the same weights e -s|z| 2m but with respect to the density α(z)∧α(z) (-1) n(n+1)/2 (2i) n instead of ( i 2 ∂∂|z| 2m ) n . By Theorem 5 the corresponding kernels are given by [START_REF] Mengotti | The weighted Bergman projection and related theory on the minimal ball and applications[END_REF] 

K s (z, w) = ms n-1 m (n -1)!c M 2t d dt n-1 + (n -1) d dt n-2 E 1 m , 1 m (t) t=s 1 m z•w
and the needed asymptotics of derivatives of E 1 m , 1 m are worked out e.g. in Section 7 of [START_REF] Bommier-Hato | Bergman-type projections on generalized Fock spaces[END_REF] (or can be obtained from the formulas above in this section). We leave the details to the interested reader. For m = 1, (20) recovers the formula from Gonessa and Youssfi [START_REF] Gonessa | The Bergman projection in spaces entire functions[END_REF].

Finally, one can establish analogous "TYZ" asymptotics also for Bergman-type kernels on the unit ball M of H; we limit ourselves to the following variant of Theorem 3.2 from [START_REF] Mengotti | The weighted Bergman projection and related theory on the minimal ball and applications[END_REF].

Theorem 8. For the weights corresponding to

dρ(t) = (1 -t 2 ) s t 2n-1 dt, s > -1
(i.e. having the density (1 -|z| 2 ) s with respect to the Euclidean surface measure) on M, the corresponding reproducing kernels K s of A 2 ρ⊗µ are given by

K s (z, w) = Γ(n + s + 1) (n -1)!Γ(s + 1) × 1 (1 -t) n+s+1 + n + s + 1 t n-1 n-1 j=0 n -1 j (-1) j (1 -t) j-n-s-1 -1 n + s + 1 -j t=z•w . Proof. Since q 2l = 1 0 t 2l (1 -t 2 ) s t 2n-1 dt = Γ(s + 1)Γ(l + n) Γ(l + n + s + 1) ,
we get from Theorem 1

K s (z, w) = ∞ l=0 N (l)t l Γ(l + n + s + 1) (l + n -1)!Γ(s + 1)
where we have set for brevity t = z • w.

Hence (n -1)!Γ(s + 1) Γ(n + s + 1) K s (z, w) = ∞ l=0 t l (n + s + 1) l l! + (n + s + 1) l (l -1)!(l + n -1) = 1 (1 -t) n+s+1 + ∞ k=0 (n + s + 1) k+1 t k+1 k!(n + k) = 1 (1 -t) n+s+1 + (n + s + 1)t ∞ k=0 (n + s + 2) k t k k!(n + k) .
The last sum can be written as

∞ k=0 (n + s + 2) k t k k!(n + k) = 1 t n t 0 ∞ k=0 (n + s + 2) k k! x k+n-1 dx = 1 t n t 0 x n-1 (1 -x) n+s+2 dx = 1 t n t 0 n-1 j=0 n -1 j (x -1) j (1 -x) n+s+2 dx = 1 t n n-1 j=0 n -1 j (-1) j (1 -t) j-n-s-1 -1 s + n + 1 -j ,
proving the theorem.

Corollary 9. In the setup from the last theorem,

(1 -|z| 2 ) s+n+1 K s (z, z) ≈ s n ∞ k=0 a k (|z| 2 ) s k as s → +∞, (21) 
where a k (|z| 2 ) are some functions, with a 0 = 2.

Proof. With t = |z| 2 , Theorem 8 shows that the left-hand side equals

(s + 1) n (n -1)! 1 + n + s + 1 t n-1 n-1 j=0 n -1 j (-1) j (1 -t) j -(1 -t) s+n+1 n + s + 1 -j .
The term (1 -t) n+s+1 is exponentially small compared to the rest, and thus can be neglected. Noticing that (s + 1) n is a polynomial in s of degree n while

n + s + 1 n + s + 1 -j = 1 + j s(1 + n+1-j s ) = 1 + ∞ k=0 (j -n -1) k j s k+1 ,
the expansion (21) follows, as does the formula for a 0 upon a small computation.

Hankel operators

Proof of Theorem 3. (i) =⇒ (ii) Let g = k g k be the homogeneous expansion (9) of g. For ∈ T, consider the rotation operator

U f (z) := f ( z), z ∈ M.
Clearly U is unitary on A 2 (M) as well as on L 2 (M), and

U H g U * = H U g .
Thus also H U g ∈ S p for all ∈ T. Furthermore, the action → U is continuous in the strong operator topology, i.e. → U f is norm continuous for each f ∈ L 2 (M). Now it was shown in Lemma on p. 997 in [START_REF] Arazy | Peetre: Hankel operators on weighted Bergman spaces[END_REF] that this implies that the map → H U g is even continuous from T into S p . Consequently, the Bochner integral (ii) =⇒ (iii) Assume that H g ∈ S p for some 0 = g ∈ P m . For any transform κ ∈ O(n + 1, R), the corresponding composition

U κ f (z) := f (κz), z ∈ M,
again acts unitarily on A 2 (M) as well as on L 2 (M), and

U κ H g U * κ = H Uκg ,
so that also H Uκg ∈ S p for all κ ∈ O(n + 1, R). Likewise, the composition V κ : f → f • κ sends the space H m of spherical harmonics into itself, and the isomorphism (6) satisfies V κ f = U κ f . Now it is known [START_REF] Müller | Spherical harmonics[END_REF] that the representation κ → V -1 κ of O(n + 1, R) on H m is irreducible, that is, for any nonzero f ∈ H m the span of the translates V κ f , κ ∈ O(n + 1, R), is dense in H m . Consequently, for any nonzero g ∈ P m , the span of the translates U κ g, κ ∈ O(n + 1, R), of g by κ is dense in P m . As P m has finite dimension N (m), this actually means that P m consists just of all linear combinations of U κj g for some tuple κ 1 , . . . , κ N (m) in O(n + 1, R). Since H Uκ j g ∈ S p for each j, it follows by linearity that H h ∈ S p for all h ∈ P m , showing that (iii) holds (for the same m as in (ii)).

(iii) =⇒ (iv) By hypothesis, we have in particular H z ν ∈ S p for all multiindices ν with |ν| = m; thus the operator [START_REF] Oeljeklaus | Proper holomorphic mappings and related automorphism groups[END_REF] H :=

|α|=m m α H * z α H z α belongs to S p • S p = S p/2 .
Recall that the Toeplitz operator T φ , φ ∈ L ∞ (M), is the operator on A 2 (M) defined by

T φ f = P (φf ) (P being, as before, the orthogonal projection in L 2 onto A 2 ). One thus has ( 23)

H φ f 2 = φf 2 -T φ f 2 ,
and, by the reproducing property of the Bergman kernels,

T φ f (x) = M f (y)φ(y)K(x, y) dy,
where we started to write for brevity (for the duration of this proof) just dy instead of d(ρ ⊗ µ)(y). With the notation from Theorem 1, we thus have, for any ξ ∈ M,

T z α (z • ξ) l (x) = M (y • ξ) l y α k (x • y) k d k dy = k M (y • ξ) l ∂ α x k! (k + |α|)! (x • y) k+|α| d k dy = k k! (k + |α|)!d k ∂ α x M (y • ξ) l (x • y) k+|α| dy = k k! (k + |α|)!d k ∂ α x 1 0 t l+k+|α| dρ(t) ∂M (y • ξ) l (x • y) k+|α| dµ(y) = k k! (k + |α|)!d k ∂ α x δ l,k+|α| d l (x • ξ) l
by ( 7) and ( 1). This vanishes for l < |α|, while for l ≥ |α| it equals

(l -|α|)! l! d l d l-|α| ∂ α x (x • ξ) l = d l d l-|α| ξ α (x • ξ) l-|α| .
Declaring d l to be ∞ for negative l, we thus obtain for all l

T z α (z • ξ) l = d l d l-|α| ξ α (z • ξ) l-|α| . as k → +∞, while q 2k+2m q 2k = k + n k + n + m = 1 - m k + O 1 k 2 . Thus q 2k+2m q 2k - d k d k-m ∼ (n -1)
m k and the sum ( 24) is finite if and only if (recall that n ≥ 2 and m > 0)

+∞ > k k -p/2 N (k) ∼ k k n-1-p/2
i.e. if and only if p > 2n. Thus we have proved (iv).

(iv) =⇒ (v) We have seen in the last computation that for p > 2n, the operator (22) belongs to S p/2 for any m ≥ 1. Since all the summands H * z α H z α in ( 22) are nonnegative operators, it follows that even H * z α H z α ∈ S p/2 for all α, i.e. H z α ∈ S p for all α. By linearity, H g ∈ S p for any polynomial g, proving (v).

The last implication (v) =⇒ (i) is trivial, and thus the proof of Theorem 3 is complete.

Note that the only place where dρ entered was in the computation in the part (iii) =⇒ (iv). Thus Theorem 3 remains in force also for any measure dρ for which

q 2k = ak r [1 + b k + O(k -2
)] as k → +∞ for some a = 0 and b, r ∈ R; because one then has

q 2k+2m q 2k = 1 + mr k + O(k -2 ), d k d k-m = 1 + (r-n+1)m k + O(k -2 ) and again ( q 2k+2m q 2k -d k d k-m ) ∼ (n-1)m k .
In particular, Theorem 3 thus also holds for the "standard" weighted Bergman spaces on M corresponding to dρ

(t) = χ [0,1] (t)(1 -t 2 ) α t 2n-1 dt, α > -1.

Balanced metrics

Returning to the formalism reviewed in connection with the TYZ expansions, recall that a Kähler form ω = i 2 ∂∂ log 1 h on a domain in C n (or the Hermitian metric associated to ω) is called balanced if the corresponding weighted Bergman kernel satisfies [START_REF] Ruan | Canonical coordinates and Bergman metrics[END_REF] h(z)K h det[∂∂ log 1 h ] (z, z) ≡ const. ( = 0); that is, if and only if the corresponding Kempf distortion function 1 is a nonzero constant. More generally, for α > n one calls ω α-balanced if it is balanced and h is commensurable to dist(•, ∂Ω) α at the boundary. (For α ≤ n, the corresponding Bergman space degenerates just to the zero function, thus K h det[∂∂ log 1 h ] ≡ 0 and the left-hand side in ( 25) is constant zero.) This definition turns out to indeed depend only on ω = i 2 ∂∂ log 1 h and not on the particular choice of h for a given ω, and also can be extended from domains to manifolds with line bundles as before; see Donaldson [START_REF] Donaldson | Scalar curvature and projective embeddings I[END_REF], Arezzo and Loi [START_REF] Arezzo | Moment maps, scalar curvature and quantization of Kähler manifolds[END_REF] and [START_REF] Engliš | Weighted Bergman kernels and balanced metrics[END_REF] for further details.

The simplest example of α-balanced metric is h

(z) = (1 -|z| 2 ) α , α > 1, on the unit disc D in C; one then gets det[∂∂ log 1 h ] = α (1-|z| 2 ) 2 and K h det[∂∂ log 1 h ] (z, z) = α-1 πα (1 -|z| 2 ) -α
, so that (25) holds with the constant α-1 πα . Similarly for h(z) = (1 -|z| 2 ) α , α > n, on the unit ball B n of C n , where the constant turns out to be Γ(α) Γ(α-n)α n π n . The only known examples of bounded domains with balanced metrics are invariant metrics on bounded homogeneous domains (in particular, on bounded symmetric domains). In the unbounded setting, every dilation of the Euclidean metric on C n is balanced (with h(z) = e -α|z| 2 , α > 0, so that A 2 (C n , h det[∂∂ log 1 h ]) is just the familiar Fock space). Balanced metrics are known to exist in abundance on compact manifolds [START_REF] Donaldson | Scalar curvature and projective embeddings I[END_REF]; the existence of balanced metrics e.g. on bounded strictly pseudoconvex domains with smooth boundary is still an open problem, and their uniqueness for a given α is an open problem even on the unit disc.

We conclude this paper by the following simple observation concerning balanced metrics on our Kepler manifold H. Note that for n ≥ 3, H is known to be simply connected.

Theorem 10. Let n = dim C H ≥ 3 and α > n. Then either there does not exist any α-balanced metric on H, or it is not unique.

Proof. Suppose there exists a unique α-balanced Kähler form ω = i 2 ∂∂ log 1 h on H. It was shown in [START_REF] Engliš | Weighted Bergman kernels and balanced metrics[END_REF] that the image of an α-balanced metric on a simply connected domain under a biholomorphic map is again α-balanced (with the same α). (Simple connectivity is needed for some powers of Jacobians to be single-valued when α n+1 is not an integer.) Consequently, the Kähler form ω, or, equivalently, the associated Hermitian metric g jk , at the point e = (1, i, 0, . . . , 0) ∈ H has to be invariant under any biholomorphic self-map of H fixing e, in particular, under all elements of the isotropy subgroup L := {κ ∈ O(n + 1, C) : κe = e} of e in O(n + 1, C). The unit sphere with respect to g jk in the tangent space T e H of H at e thus has to be invariant under L. Now g jk being a Riemannian metric, the unit sphere is diffeomorphic to ∂B n ∼ = S 2n-1 , in particular, it is a compact manifold. However, L is easily seen to have orbits that extend to infinity. For instance, the matrix

A z :=     1 + z 2 2 iz 2 2 iz iz 2 2 1 -z 2 2 -z -iz z 1 0 0 I    
is easily checked to belong to L for any z ∈ C, while the orbit of e = (1, -i, 0, . . . , 0) ∈ T e H under A z , A z e = (z 2 + 1, i(z 2 -1), -2iz) evidently does not stay in any compact subset as z → ∞. We have reached a contradiction.

The same argument applies, in principle, to any manifold whose isotropy subgroup L of biholomorphic self-maps that stabilize some basepoint e contains a complex one-parameter subgroup (such as the A z , z ∈ C, above): by Liouville's theorem, the orbit of any tangent vector under L cannot stay bounded without being constant, and it follows that each element of L acts trivially (i.e. reduces to the identity) on the tangent space at e. Consequently, if there exists κ ∈ L with dκ e = I, then for each α, the manifold either does not admit any α-balanced metric, or such metric is not unique.

2π 0 e

 0 miθ U e iθ H g U * e iθ dθ 2π= H gm also belongs to S p , for each m. As g is nonconstant, there exists m ≥ 1 for which g m = 0, and (ii) follows.
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For any ξ, η ∈ M, we then get by ( 23)

by ( 7) and ( 1) again. Comparing this with

we thus see that, for all l,

f l , g k for any f l ∈ P l and g k ∈ P k . In other words, the operator H is diagonalized by the orthogonal decomposition A 2 (M) = k P k , and

Recalling that dim P k = N (k), this means that