
HAL Id: hal-01485434
https://hal.science/hal-01485434v1

Submitted on 8 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Static and Stochastic VRP with Time Windows and
both random Customers and Reveal Times

Michael Saint-Guillain, Christine Solnon, Yves Deville

To cite this version:
Michael Saint-Guillain, Christine Solnon, Yves Deville. The Static and Stochastic VRP with Time
Windows and both random Customers and Reveal Times. 20th European Conference on Applications
of Evolutionary Computation (EvoApplications), Part II, Apr 2017, Amsterdam, Netherlands. pp.110-
127. �hal-01485434�

https://hal.science/hal-01485434v1
https://hal.archives-ouvertes.fr

The Static and Stochastic VRP with Time Windows and
both random Customers and Reveal Times

Michael Saint-Guillain1,2, Christine Solnon2, Yves Deville1

1ICTEAM, Université catholique de Louvain, Belgium
2LIRIS, Institut National des Sciences Appliquées de Lyon, France

Abstract. Static and stochastic vehicle routing problems (SS-VRP) aim at mod-
eling and solving real life problems by considering uncertainty on the data. In
particular, customer data may not be known with certainty. Before the beginning
of the day, probability distributions on customer data are used to compute a first-
stage solution that optimizes an expected cost. Customer data are revealed online,
while the solution is executed, and a recourse strategy is applied on the first-stage
solution to quickly adapt it. Existing SS-VRP variants usually make a strong as-
sumption on the time at which a stochastic customer reveals its data (e.g., when
a vehicle arrives at the corresponding location). We introduce a new SS-VRP
where customer reveal times are stochastic. We define first-stage solutions and
a recourse strategy for this new problem. A key point is to introduce waiting
locations that are used in the first stage-solution to wait for the realization of cus-
tomer stochastic data. We show how to compute the expected cost of a first-stage
solution in pseudo polynomial time, in the particular case where the vehicles are
not constrained by a maximal capacity. We also introduce a local search-based
approach for optimizing the first-stage solution, and introduce a scale parameter
to tune the precision and cost of the expected cost computation. Experimental
results on small to large instances demonstrate its efficiency and flexibility.

1 Introduction

The Vehicle Routing Problem (VRP) aims at modeling and solving a real life common
operational problem, in which a set of customers must be visited using a fleet of ve-
hicles. Each customer comes with a certain demand. In the VRP with Time Windows
(VRPTW), each customer must be visited within a given time window. A feasible solu-
tion of the VRPTW is a set of vehicle routes, such that every customer is visited exactly
once during its time window and that sum of the demands along each route does not
exceed the corresponding vehicle’s capacity. The objective is then to find an optimal
feasible solution, where optimality is usually defined in terms of travel distances.

The classical deterministic VRP(TW) assumes that customer data are known with
certainty before the computation of the solution. Contrary to standard academic for-
mulations, real world applications usually have missing part of the problem data when
computing a solution. For instance, only a subset of the customer demands may be
known before online execution. Missing demands hence arrive in a dynamic fashion,
while vehicles are on their route. In such a context, a solution should contain operational
decisions that deal with current known demands, but should also anticipate potential un-
known demands. Albeit uncertainty may be considered for various attributes of the VRP

(e.g., travel times), we focus on situations where the customer data are unknown a pri-
ori, and we assume that we have some probabilistic knowledge on missing data (e.g.,
probability distributions computed from historical data). This probabilistic knowledge
is used to compute a first-stage solution which is adapted online when random vari-
ables are realized. Two different kinds of adaptations may be considered: Dynamic and
Stochastic VRPTW (DS-VRPTW) and Static and Stochastic VRPTW (SS-VRPTW).

In the DS-VRPTW, the solution is re-optimized at each time-step, and this re-
optimization involves solving an NP-hard problem so that it is usually approximated
with meta-heuristics as proposed, for example, in [1,2,3]. Note that the DS-VRPTW
assumes a probabilistic knowledge on the potential requests. In contrary, in [4] for in-
stance no prior knowledge is provided on the potential requests, which are then assumed
to be uniformly distributed in the Euclidean plan.

In the SS-VRP(TW), no expensive reoptimization is allowed during online execu-
tion. When unknown information is revealed, the first stage solution is adapted online
by applying a predefined recourse strategy whose time complexity is polynomial. In
this case, the goal is to find a first stage solution that minimizes its total cost plus the
expected extra cost caused by the recourse strategy. For example, in [5], the first stage
solution is a set of vehicle tours which is computed offline with respect to probability
distributions of customer demands. Real customer demands are revealed online, and
two different recourse strategies are proposed: in the first one, each demand is assumed
to be known when the vehicle arrives at the customer place, and if it is larger than or
equal to the remaining capacity of the vehicle, then the first stage solution is adapted
by adding a round trip to the depot to unload the vehicle; in the second recourse strat-
egy, each demand is assumed to be known when leaving the previous customer and the
recourse strategy is refined so that customers with null demands are skipped.

In this paper, we focus on the SS-VRPTW, and introduce a new variant where no
strong assumption is made on the moment at which customer requests are revealed dur-
ing the operations (contrary to most existing work that assume that customer requests
are known either when arriving at the customer place, or when leaving the previous cus-
tomer). In this new variant, called the SS-VRPTW with random Customers and Reveal
time (SS-VRPTW-CR), the reveal times of customer requests are random variables. To
handle uncertainty on reveal times, we introduce waiting locations when computing
first-stage solutions: the routes computed offline visit waiting locations and a waiting
time is associated with each waiting location. When a customer request is revealed, it
is either accepted (if it is possible to serve it) or rejected. The recourse strategy then
adapts routes so that all accepted requests are guaranteed to eventually be served. The
goal is to compute the first-stage solution that minimizes the expected number of re-
jected requests.

Our motivating application is an on-demand health care service for elderly or dis-
abled people. Health care services are provided directly at home by mobile medical
units. Every person who’s registered to the service can request a health care support
at any moment of the day with the guarantee to be satisfied within a given time win-
dow. From historical data, we know, for each customer region and each time unit, the
probability that a request appears. Given this stochastic knowledge, we compute a first-
stage solution. When a request appears (online), the recourse strategy is used to decide

whether the request is accepted or rejected and to adapt medical unit routes. When a re-
quest is rejected, the system must rely on an external service provider in order to satisfy
it. Therefore, the goal is to minimize the expected number of rejected requests.

Organization. In section 2, we review the existing studies on VRPs that imply
stochastic customers. Section 3 formally defines the general SS-VRPTW-CR. Section 4
describes a recourse strategy for this problem. Section 5 shows how the expected num-
ber of rejected requests can be efficiently computed from a first stage solution and for
a specific recourse strategy. Section 6 describes a local search-based approach for ap-
proximating an optimal first stage solution. Experimental results are analysed in section
7. Further research directions are finally discussed in section 8.

2 Related work

The most studied cases in SS-VRPs are stochastic customers (presence of customers
are random variables), stochastic demands (quantities required by customers are ran-
dom variables), and stochastic times (travel and/or service times are random variables).
Since the SS-VRPTW-CR belongs to the first case, we focus this review on customers
uncertainty.

The Traveling Salesman Problem (TSP) is a special case of the VRP with only one
uncapacitated vehicle. [6] introduced the TSP with stochastic Customers (SS-TSP-C),
and provided mathematical formulations and a number of properties and bounds. In
particular, he showed that an optimal solution for the deterministic problem can be ar-
bitrarily bad in case of uncertainty. [7] developed the first exact solution method for
the SS-TSP-C, using the integer L-shaped method [8] to solve instances up to 50 cus-
tomers. Heuristics for the SS-TSP-C have then been proposed (e.g. [9,10,11]) as well
as meta-heuristics such as simulated annealing [12] or ant colony optimization [13].

The first SS-VRP with stochastic Customers (SS-VRP-C) has been studied by [9]
as a generalization of the SS-TSP-C. [14] compared different heuristics. [5] considered
a VRP with stochastic Customers and Demands (SS-VRP-CD). A customer demand is
assumed to be revealed either when the vehicle leaves the previous customer or when it
arrives at the customer’s own location. Two different recourse strategies are proposed.
For both strategies, closed-form mathematical expressions are provided to compute the
expected total distance, provided a first stage solution. [15] and [16] developed the
first exact algorithm for solving the SS-VRP-CD for instances up to 70 customers, by
means of an integer L-shaped method. [17] later proposed a tabu search to efficiently
approximate the solution. Experimentations are reported on instances with up to 46
customers.[18] later developed an adaptive memory programming metaheuristic for the
SS-VRP-C and assess it on benchmarks with up to 483 customers and 38 vehicles.

Particularly close to the SS-VRPTW-CR is the SS-TSP-C with Deadlines [19]. Un-
like the SS-VRPTW-CR, the set of customers is revealed at the beginning of the opera-
tions. A recent literature review on SS-TSP-C may be found in [20].

[21] considered a variant of the SS-VRPTW-C, the Courier Delivery Problem with
Uncertainty. Unlike the SS-VRPTW-CR, authors assume that customer presences are
not revealed at some random moment during the operations, but all at once at the be-
ginning of the day (that is, after computing the first stage solution).

3 Description of the SS-VRPTW-CR

Input data. We consider a complete directed graph G = (V,A) and a discrete time
horizon H = [1, h], where interval [a, b] denotes the set of all integer values i such that
a ≤ i ≤ b. To every arc (i, j) ∈ A is associated a travel time (or distance) di,j ∈ N.
The set of vertices V = {0} ∪W ∪ C is composed of a depot 0, a set of m waiting
locations W = [1,m] and a set of n customer regions C = [m + 1,m + n]. We note
W0 =W ∪{0} and C0 = C ∪{0}. The fleet is composed of K uncapacitated vehicles.

We consider the setR = C×H of potential customer requests such that an element
(c, Γ) ∈ R represents a potential request revealed at time Γ ∈ H for customer region
c. To each potential request r = (c, Γ) ∈ R is associated a deterministic demand
qr ∈ [1, Q], a deterministic service duration sr ∈ H and deterministic time window
[er, lr] with Γ ≤ er ≤ lr ≤ h. We note pr the probability that r appears on vertex
c at time Γ , and assume independence between request probabilities. Although our
formalism imposes Γ ≥ 1 for all potential requests, in practice a request may be known
with certainty that is, with probability 1.

To simplify notations, a request r = (c, Γ) can be written in place of its own region
c. For instance, the distance dv,c can also be intuitively written dv,r. Furthermore, we
use Γr to denote the reveal time of a request r ∈ R and cr for its customer region.

First stage solution. The first-stage solution is computed offline, before the beginning
of the time horizon. It consists in a set of K vehicle routes visiting a subset of the m
waiting vertices, together with time variables denoted τ indicating how long a vehicle
should wait on each vertex. More specifically, we denote (x, τ) a first stage solution to
the SS-VRPTW-CR, where:

� x = {x1, ..., xK} defines a set of K sequences of waiting vertices of W , such that
each sequence xk starts and ends with 0 and each vertex of W occurs at most once
in x. We note W x ⊆W the set of waiting vertices visited in x.

� τ :W x → H associates a waiting time τw ≥ 1 to every waiting vertex w ∈W x;
� Each sequence 〈0, w1, ..., wm′ , 0〉 in x is such that the vehicle is back to the depot

before the end of the day.

In other words, x defines a Tour Orienteering Problem (TOP, see [22]) to which each
visited location is assigned a waiting time by τ . Given a first stage solution (x, τ),
we define on(w) = [on(w), on(w)] for each vertex w ∈ W x such that on(w) (resp.
on(w)) is the arrival (resp. departure) time on w. In a sequence 〈0, w1, ..., wm′ , 0〉 in x,
we then have on(wi) = on(wi−1)+dwi−1,wi and on(wi) = on(wi)+τwi for i ≥ 1 and
assume both on(0) = 1 and on(0) = on(wm′) + dwm′ ,0 ≤ h. Figure 1 (left) illustrates
an example of first stage solution on a basic SS-VRPTW-CR instance.

Recourse strategy and second stage solution. A recourse strategy R states how a
second stage solution is gradually constructed as requests are dynamically revealed. In
this paragraph, we define the properties of a recourse strategy. An example of recourse
strategy is given in Section 4.

Let ξ ⊆ R be the set of requests that reveal to appear by the end of the horizon H .
The set ξ is also called a scenario. We note ξt ⊆ ξ the set of requests appearing at time

t ∈ H , i.e., ξt = {r ∈ ξ : Γr = t}. We note ξ1..t = ξ1 ∪ ... ∪ ξt the set of requests
appeared up to time t.

A second stage solution is incrementally constructed at each time unit by following
the skeleton provided by the first stage solution (x, τ). At a given time t of the horizon,
we note (xt, At) the current state of the second stage solution:

� xt defines a set of vertex sequences describing the route operations performed up to
time t. Unlike x, we define xt on a graph that also includes the customer regions.
Operations described in xt must satisfy the time window and vehicle capacity con-
straints imposed by the VRPTW.

� At ⊆ ξ1..t is the set of accepted requests up to time t. Requests of ξ1..t that do not
belong to At are said to be rejected.

We distinguish between requests that are accepted and those that are both accepted and
satisfied. Up to a time t, an accepted request is said to be satisfied if it is visited in
xt by a vehicle. Accepted requests that are no yet satisfied must be guaranteed to be
eventually satisfied according to their time window.

Figure 1(right) illustrates an example of second stage solution being partially con-
structed at some moment of the time horizon.

Fig. 1. On the left: first stage solution with K = 3 vehicles. The depot, waiting vertices and
customer regions are represented by a square, circles and crosses respectively. Arrows represent
vehicle routes and integers indicate waiting times at waiting locations. Values preceded by ‘d’
indicate travel times. Waiting vertices h, i and m are not part of the first stage solution. Here
on(D) = 1, on(a) = 3, on(a) = 9, on(b) = 12, on(b) = 16, etc.
On the right: partial second stage solution (plain arrows). Filled crosses are accepted requests.
Some accepted requests, such as r1, have been satisfied (or the vehicle is currently traveling
towards the location, e.g., r2), while some others are not yet satisfied (e.g., r3).

Before starting the operations (time 0), x0 is a set of K sequences that only contain
vertex 0, and A0 = ∅. At each time unit t ∈ H , given a first stage solution (x, τ), a pre-
vious state (xt−1, At−1) of the second stage solution and a set ξt of requests appearing
at time t, the new state (xt, At) is obtained by applying a specific recourse strategyR:

(xt, At) = R
(
(x, τ), (xt−1, At−1), ξt

)
. (1)

A necessary property of a recourse strategy is to avoid reoptimization. We consider that
R avoids reoptimization if the computation of (xt, At) is achieved in polynomial time.

We note cost(R, x, τ, ξ) = |ξ \ Ah| the final cost of a second stage solution with
respect to a scenario ξ, given a first stage solution (x, τ) and under a recourse strategy
R. This cost is the number of requests that are rejected at the end h of the time horizon.

Optimal first stage solution. An optimal first stage solution (x, τ) to the SS-VRPTW-
CR minimizes the expected cost of the second stage solution under a given strategy R,
satisfying statements (2)-(3):

(SS-VRPTW-CR) Minimize
x,τ

QR(x, τ) (2)

s.t. (x, τ) is a first stage solution. (3)

The objective functionQR(x, τ), which is nonlinear in general, determines the expected
number of rejected requests, i.e. requests that fail to be visited under recourse strategy
R and first stage solution (x, τ):

QR(x, τ) =
∑
ξ⊆R

Pr(ξ) cost(R, x, τ, ξ) (4)

where Pr(ξ) defines the probability of scenario ξ. Since we assume independence be-
tween requests, we have Pr(ξ) =

∏
r∈ξ pr ·

∏
r∈R\ξ(1− pr).

4 Description of a recourse strategy

In order to avoid reoptimization, the setR of potential requests is ordered. Furthermore,
given a first stage solution (x, τ) that visits the set W x of waiting locations, each po-
tential request r = (c, Γ) ∈ R is assigned to exactly one waiting vertex (and hence, a
vehicle) in W x.

Informally, the recourse strategy accepts a new request if it is possible for the vehicle
associated to its corresponding waiting vertex location to adapt its first stage tour to visit
the customer. The vehicle will then travel from the waiting location to the customer and
return to the waiting location. Time window constraints should be respected, and the
already accepted requests should not be perturbed. In the recourse strategy we propose
here, we assume the vehicles not to be constrained by a maximal capacity.

Request ordering. Before computing first-stage solutions, we order R by increasing
reveal time Γr first, end of time window lr second and request number r to break ties.
Let <R denote this total strict order on R. Whereas the remaining of the paper is based
on the assumption of total order on Γr, the ordering criteria may be modified without
loss of generality (e.g., replacing lr by er), as long as the total order remains strict and
primarily based on Γr, i.e. ∀r1, r2 ∈ R,Γr1 < Γr2 ⇒ r1 <R r2.

Request assignment according to a first stage solution. Given a first-stage solution
(x, τ), we assign each request ofR to a waiting vertex visited in (x, τ). This assignment
is computed for each first stage solution (x, τ) before the application of the recourse
strategy. As an optimally fair distribution of the potential requests might be excessively
expensive to compute, we propose the following heuristic.

Let tmin
r,w = max{on(w), Γr, er − dw,r} be the minimum time for leaving waiting

location w to satisfy request r. Indeed, a vehicle cannot handle r before (1) the vehicle
is on w, (2) r is revealed, and (3) the beginning er of the time window minus the time
dw,r needed to go from w to r.

Let tmax
r,w = min{lr − dw,r, on(w)− dw,r − sr − dr,w} be the latest time at which

a vehicle can handle r (which also involves a service time sr) from waiting location w
and still leave it in time t ≤ on(w).

Given a first stage solution (x, τ), we assign each request r ∈ R either to a waiting
vertex of W x or to ⊥ (to denote that r is not assigned). We note w(r) this assignment
which is computed as follows:

� Let W x
r = {w ∈W x : tmin

r,w ≤ tmax
r,w} be the set of feasible waiting locations for r

� If W x
r = ∅ then set w(r) to ⊥ (r is always rejected)

� Else set w(r) to the feasible vertex of W x
r that has the least number of requests

already assigned to it (break further ties w.r.t. vertex number)

Once finished, the request assignment ends up with a partition {π⊥, π1, ..., πK} of R,
where πk is the set of requests assigned to the waiting vertices visited by vehicle k and
π⊥ is the set of unassigned requests (such that w(r) = ⊥). We note πwk ⊆ πk the set
of requests assigned to w ∈ W x in route k. We note fst(πwk) the first request of πwk
according to order <R, and for each request r ∈ πwk such that r 6= fst(πwk) we note
prv(r) the request of πwk that immediately precedes r according to order <R.

Using the recourse strategy to adapt a first stage solution at a current time t. At
each time step t, the recourse strategy is applied to compute the second stage solution
(xt, At), given the first stage solution (x, τ), the second stage solution (xt−1, At−1) at
the end of time t− 1, and the incoming requests ξt.

At is the set of accepted requests. It is initialized with At−1. Then, each incoming
request of ξt is considered (taken by increasing order of<R) and either accepted (added
to At) or rejected (not added to At) by applying the following decision rule:

� Let k be the vehicle associated with r (i.e., r ∈ πk)
� Let y : R → H be the function returning the time at which k finishes to satisfy

all accepted requests that precede r (according to <R) and reaches waiting vertex
w(r). Namely, y(r) is the time at which k is available for r and is defined by:
? If r = fst(πwk), then y(r) = on(w)
? else if prv(r) /∈ At then y(r) = y(prv(r))
? else y(r) = max(y(prv(r)) + dw,prv(r), eprv(r)) + sprv(r) + dprv(r),w
If y(r) allows k to reach r during its time window and to arrive in time to its next
waiting location (i.e., y(r) ≤ tmax

r,w(r)) then r is accepted and added to At; otherwise
it is rejected.

Once At has been computed, vehicle operations for time unit t must be decided. Ve-
hicles operate independently of each other. If vehicle k is traveling between a waiting
location and a customer region, or if it is serving a request, then its operation remains
unchanged; Otherwise, let w be the current waiting location (or the depot) of vehicle k:

� If t = on(w), the operation for k is "travel from w to the next waiting vertex (or the
depot), as defined in the first stage solution"

� Otherwise, let P = {r ∈ πwk |cr /∈ xt ∧ (r ∈ At ∨ t < Γr)} be the set of requests of
πwk that are not yet satisfied and that are either accepted or with unknown revelation
? If P = ∅, then the operation for k is "travel back to the depot"
? Otherwise, let rnext be the smallest element of P according to <R
→ If t < tmin

rnext,w, then the operation for k is "wait until t+ 1"
→ Otherwise, the operation is "travel to rnext, serve it and come back to w"

Figure 2 shows an example of second stage solution at a current time t = 17, from an
operational point of view.

Fig. 2. Example of second stage solution at time t = 17, under strategy R1. A filled cross
represents a request that appeared, an empty one a request that is either still unknown (e.g., r8)
or revealed as being absent (that is didn’t appear, e.g., r5). Here πk = 〈ra, r1, . . . , r9〉 is the
sequence of requests assigned to the vehicle, according to (x, τ). We assume qr = sr = 0,∀r ∈
R. sat(r) represents, for a request r, the time at which r gets satisfied.

5 Expected cost of second stage solutions

Provided a recourse strategy R and a first stage solution (x, τ) to the SS-VRPTW-CR,
a naive approach for computing QR(x, τ) would be to literally follow equation (4),
therefore using the strategy described byR in order to confront (x, τ) to each and every
possible scenario ξ ⊆ R. Because there is an exponential number of scenarios with
respect to |R|, this naive approach is not affordable in practice. In this section, we show
how the expected number of rejected requests QR(x, τ) under the recourse strategy
described in Section 4 may be computed in O(nh2) using closed form expressions, in
the special case where vehicles are of infinite capacity.

We assume that the potential request probabilities are independent from each other
such that, for any couple of requests r, r′ ∈ R, the probability pr∩r′ that both requests
appear is given by pr∩r′ = pr · pr′ .

Expected cost. QR(x, τ) is equal to the expected number of rejected requests, which
in turn is equal to the expected number of requests that reveal to appear minus the

expected number of accepted requests. The expected number of revealed requests is
given by the sum of all request probabilities, whereas the expected number of accepted
requests is equal to the sum, for every request r, of the probability that it belongs toAh:

QR(x, τ) =
∑
r∈R

pr −
∑
r∈R

Pr{r ∈ Ah} =
∑
r∈R

(
pr − Pr{r ∈ Ah}

)
(5)

where the right-hand side of the equation comes from the independence hypothesis.

If we consider a request r ∈ πk, the probability Pr{r ∈ Ah} only depends on the
time at which vehicle k is available for r, which itself depends on previous operations.
Recall the y : R → H function described in section 4: y(r) is that time. Whereas
y(r) is deterministic for a specific scenario, it is not anymore in the context of the
computation of Pr{r ∈ Ah} and we are thus interested in its probability distribution.
More specifically, we compute the probability that, at a time t ∈ H , a request r already
appeared and the vehicle leaves w(r) to satisfy it. Let’s call this probability g1(r, t):

g1(r, t) ≡ Pr{request r appeared at time t′ ≤ t and departureTime(r) = t}
where departureTime(r) is the time at which the vehicle leaves vertex w(r) in order
to serve r, if r has been accepted. According to the recourse strategy, for a specific
scenario we see that departureTime(r) = max(y(r), tmin

r,w(r)).

The probability Pr{r ∈ Ah} that a request r gets satisfied is the probability that
both r appears and that departureTime(r) ≤ tmax

r,w , that is:

Pr{r ∈ Ah} =
tmax
r,w∑
t=1

g1(r, t) =

tmax
r,w∑

t=tmin
r,w

g1(r, t). (6)

The calculus of g1(r, t) is less obvious. Since departureTime(r) depends on previ-
ous operations on the same waiting locationw = w(r), we calculate g1(r, t) recursively
starting from the first request r1 = fst(πwk) assigned to the waiting location, up to the
current request r. The second stage solution strictly respects the first stage schedule
when visiting the waiting vertices, that is, these are guaranteed to be visited according
to their arrival (on) and departure (on) times. The base case is then:

g1(r1, t) =

{
pr1 , if t = max(on(w), tmin

r1,w)

0 otherwise.
(7)

Indeed, if r1 appeared then the vehicle leaves w at time tmin
r1,w, unless it has not yet

reached w at that time. The general case of a request r >R r1, r ∈ πwk , depends on
the time at which the vehicle gets rid of the preceding request prv(r). Let f(r, t) be
the probability that, at time t, the vehicle either reaches back w after having served
r, or discard r because it is not satisfiable or because it has revealed not to appear. It
represents the time at which the vehicle becomes available for the next request after
r in πwk , if any (computation of f is detailed below). We define g1(r, t) based on f -

probabilities of the previous request prv(r):

g1(r, t) =

pr · f(prv(r), t) if t > tmin

r,w

pr ·
∑tmin

r,w

t′=on(w) f(prv(r), t
′) if t = tmin

r,w

0 otherwise.

(8)

Indeed, if t > tmin
r,w the vehicle leaves w to serve r as soon as it gets rid of the previous

one prv(r). In such case, g1(r, t) is the probability that both r has already appeared and
the vehicle is available for it at time t, that is, finished with request prv(r) at time t. At
any time below tmin

r,w, the probability that the vehicle leaves w must obviously be zero,
since tmin

r,w is the minimum time for serving r from location w = w(r). At time t = tmin
r,w,

we must consider the possibility that the vehicle was waiting for being able to serve r,
but from an earlier time t′ < tmin

r . The overall probability that the vehicle leaves w for
request r at time t = tmin

r,w is then pr times all the f -probabilities that the vehicle was
actually available from a time on(w) ≤ t′ ≤ tmin

r,w.
The f -probabilities of a request r depend on what exactly happened to r. Namely,

from a time t there are two cases: either r consumed operational time, or it didn’t at all:

f(r, t) = g1(r, t− Sr) · δw(r, t− Sr) + g1(r, t) ·
(
1− δw(r, t)

)
+ g2(r, t). (9)

where Sr = dw,r+sr+dr,w and the function δw(r, t) returns 1 iff request r is satisfiable
from time t and vertex w, i.e., δw(r, t) = 1 if t ≤ tmax

r,w , and δw(r, t) = 0 otherwise.
The first term in the summation of the right hand side of equation (9) gives the prob-

ability that request r actually appeared and got satisfied. In such a case, departureTime(r)
must be the current time t, minus delay Sr needed for serving r.

The second and third terms of equation (9) add the probability that the vehicle was
available time t, but that request r did not consume any operational time. There are only
two possible reasons for that: either r actually appeared but was not satisfiable (second
term), or r did not appear at all (third term), where g2(r, t) is the probability that r did
not appear and is discarded at time t, and is computed as follows. For the base case of
first potential request r1 = fst(πwk), we have:

g2(r1, t) =

{
1− pr1 if t = max(on(w), Γr1)

0 otherwise
(10)

The general case for r ≥ r1, r ∈ πwk , is quite similar to the one of function g1. We just
consider the probability 1− pr that r doesn’t reveal and replace tmin

r,w by Γr:

g2(r, t) =

(1− pr) · f(prv(r), t) if t > max(on(w), Γr)

(1− pr) ·
∑max(on(w),Γr)
t′=on(w) f(prv(r), t′) if t = max(on(w), Γr)

0 otherwise.
(11)

A note on implementation. Since we are interested in computing Pr{r ∈ Ah} for each
request r separately, by following the definition of g1, we only require the f -probability
associated to prv(r) to be already computed. This suggests a dynamic programming

Algorithm 1: Local search to compute a first stage solution of SS-VRPTW-CR
1 Let (x, τ) be an initial feasible first stage solution.
2 Initialize the neighborhood operator op to 1
3 while some stopping criterion is not met do
4 Select a solution (x′, τ ′) at random in Nop(x, τ)
5 if some acceptance criterion is met on (x′, τ ′) then set (x, τ) to (x′, τ ′) and op to 1 ;
6 else change the neighborhood operator op to op% nop + 1 ;

7 return the best first stage solution computed during the search

approach. Computing all the f -probabilities can then be incrementally achieved while
filling up a 2-dimensional matrix containing all the f -probabilities.

Computational complexity. Complexity of computing the expected cost is equivalent
to the one of filling up a |πwk | × h matrix for each visited waiting location w ∈ W x, in
order to store all the f(r, t) probabilities. By processing incrementally on each waiting
location separately, each matrix cell can be computed in constant time using equation
(9). In particular, once the probabilities in cells (prv(r), 1 · · · t) are known, the cell
(r, t) such that r 6= fst(πwk) can be computed inO(1) according to equations (8) - (11).
Given n customer regions and a time horizon of length h, we have at most |R| = nh ≥∑
w∈Wx |πwk | potential requests. It then requires at most O(|R|h) = O(nh2) constant

time operations to compute QR(x, τ).

6 Local Search for the SS-VRPTW-CR

Algorithm 1 describes a Simulated Annealing [23] local search approach for approxi-
mating the optimal first stage solution (x, τ), minimizing QR(x, τ). The computation
of QR(x, τ) is performed according to equations of section 5 and is considered from
now as a black box. Starting from an initial feasible first stage solution (x, τ), Algo-
rithm 1 iteratively modifies it by using a set of nop = 9 neighborhood operators. At
each iteration, it randomly chooses a solution (x′, τ ′) in the current neighborhood (line
4), and either accepts it and resets the neighborhood operator op to the first one (line 5),
or rejects it and changes the neighborhood operator op to the next one (line 6). At the
end, the algorithm simply returns the best solution (x∗, τ∗) encountered so far.

Initial solution and stopping criterion. The initial first stage solution is constructed
by randomly adding each waiting vertex in a route k ∈ [1,K]. All waiting vertices are
thus initially part of the solution. The stopping criterion depends on the computational
time dedicated to the algorithm.

Neighborhood operators. We consider 4 wellknown operators for the VRP: relo-
cate, swap, inverted 2-opt, and cross-exchange (see [24,25] for detailed description).
In addition, 5 new operators are dedicated to waiting vertices: 2 for either inserting or
removing fromW x a waiting vertex w picked at random, 2 for increasing or decreasing
the waiting time τw at random vertex w ∈ W x, and 1 that transfers a random amount
of waiting time units from one waiting vertex to another.

Acceptance criterion. We use a Simulated Annealing acceptance criterion. Improving
solutions are always accepted, while degrading solutions are accepted with a probability
that depends on the degradation and on a temperature parameter, i.e., the probability of

accepting (x′, τ ′) is e−
1−QR(x,τ)/QR(x′,τ′)

T . The temperature T is updated by a cooling
factor 0 < α < 1 at each iteration of Algorithm 1: T ← α · T . During the search
process, T gradually evolves from an initial temperature Tinit to nearly zero. A restart
strategy is implemented by resetting the temperature to T ← Tinit each time T decreases
below a fixed limit Tmin.

7 Experimentations

Test instances. We have randomly generated instances for the SS-VRPTW-CR. Each
test instance is drawn in a square of [100, 100] distance units, and is characterized by:

� The number |C| ∈ {30, 50, 80} of customer regions, randomly distributed in the
square. Each customer c ∈ C region hosts nTS potential requests.

� The number |W | ∈ {20, 30, 50} of waiting vertices, randomly distributed in the
square.

� The size h = 480 of the horizon (corresponding to the number of minutes in an 8
hour day).

� The number nTS = 24 of time slots. Time slots are introduced because it is not
realistic to detail request probabilities for each time unit of the horizon (i.e., every
minute). We set nTS to 24 so that the probability that a request appears at a customer
region is specified for 20 minute time slots.

� The number K ∈ {1, 3, 5, 10} of available vehicles.

Travel times between vertices correspond to Euclidean distances, divided by a velocity
parameter specified in the instance. Figure 3 shows an example of test instance. As a
convention, the first time slot is associated to time unit 1 whereas time slot i is associated
to time unit 1+(i−1) · bh/nTSc. In our instance a.1, a potential request r associated to
time slot 2 has a reveal time Γr = 21 and no potential request is associated to time units
[2, 20], [22, 40], etc. All the test instances are available at http://becool.info.
ucl.ac.be/resources/benchmarks-ss-vrptw-cr.

Fig. 3. Map representation of instance a.1. The depot (square)
is located at the center. The instance counts 30 customer re-
gions (stars) and 20 waiting vertices (circles).Although it is not
visible here, the instance has a time horizon of 480 units and
counts 24 time slots. If the operational day lasts 8 hours, a time
unit represents a 1 minute in real time and each time slot lasts
20 minutes.

http://becool.info.ucl.ac.be/resources/benchmarks-ss-vrptw-cr
http://becool.info.ucl.ac.be/resources/benchmarks-ss-vrptw-cr

Potential requests. Each potential request r, associated with a customer region and a
time slot, comes with a deterministic service time sr = 10. The time window [er, lr] is
such that er is chosen uniformly in [Γr,min(Γr +

h
nTS

], h), and lr is chosen uniformly
in [max(el, d0,r),max(el + 10, d0,r)].

Scale parameter. A scale parameter is introduced in order to optimize expectations
on coarser data, and therefore to speed-up computations. When equal to 1, expectations
are computed while considering the original horizon. When scale > 1, expectations are
computed from a coarse version of the initial horizon, scaled down by the factor scale.
If scale =10 for instance, then the horizon is scaled to h′ = 48. All the time data, such
as travel and service times, but also time windows and reveal times, are then scaled as
well (rounding up to nearest integer). When working on a scaled horizon (i.e. scale >
1), Algorithm 1 deals with an approximate but easier objective function QR(x, τ), in
O(n(h

scale)
2), and a reduced search space due to a coarse time horizon.

Algorithm 1 is then modified by simply adapting line 7 to return the best solution
encountered so far, according to the initial horizon. Each time a new best solution is
found during the search, its true expected cost is computed after scaling it up back to
the original horizon, multiplying arrival, departure and waiting times by a factor scale.

Experimental plan. All experiments are done under a cluster composed of 32 64-
bits AMD Opteron 1.4GHz cores. The code is developed in C++11 and compiled with
LLDB using -O3 optimization flag. The Simulated Annealing parameters are set to
Tinit = 5, Tmin = 10−6 and α = 0.995.

30 seconds 3 minutes 30 minutes

scale: 1 2 5 10 1 2 5 10 1 2 5 10

a.1 19.7 18.2 15.0 16.2 16.7 16.4 14.9 16.2 16.1 15.3 14.9 16.5

a.2 22.2 20.1 16.4 17.5 17.7 16.8 16.2 17.4 16.7 16.3 16.2 17.5

a.3 20.3 20.0 14.4 16.1 16.1 15.9 14.0 16.0 15.6 15.2 14.0 16.2

b.1 21.1 16.9 11.1 11.0 8.2 6.3 7.1 9.9 5.6 5.7 6.9 9.6

b.2 22.1 17.5 9.6 11.4 5.6 7.7 6.8 9.9 5.1 7.4 6.4 9.3

b.3 22.2 17.0 10.8 11.9 8.7 7.2 7.8 11.1 6.2 8.3 7.2 10.8

c.1 42.1 38.7 23.6 25.9 15.3 13.9 12.2 19.3 8.3 9.3 11.0 16.7

c.2 43.9 37.2 25.8 27.8 14.0 14.9 13.5 19.8 9.9 10.4 11.6 17.9

c.3 42.4 39.2 24.3 24.8 17.5 14.9 11.7 17.5 15.2 8.8 10.3 15.8

d.1 71.6 67.9 54.8 54.3 46.5 30.4 26.1 39.6 11.8 13.0 19.2 32.7

d.2 72.2 67.9 52.8 56.2 40.9 34.7 25.7 40.1 12.6 19.0 20.3 31.4

d.3 73.0 67.4 53.8 51.5 40.8 37.2 23.0 35.9 17.4 11.9 18.4 28.4

Table 1. Experimental results while varying horizon scale and computational time.

Results. Table 1 shows average experimental results over 10 runs on 12 instances:
Instances a.x (resp. b.x, c.x and d.x) are such that |C| = 30 (resp. 30, 50 and 80),
|W | = 5 (resp. 20, 30 and 50), and K = 1 (resp. 3, 5 and 10). Results are reported with
scale ∈ {1, 2, 5, 10} and with a CPU time limit ∈ {30, 180, 1800} seconds.

Provided a limited computational time of 30 seconds, using a scaled horizon leads
to better results. This is easily explained by the limited number of local search iterations
performed when scale=1. As the computational time increases to 3 minutes, working
on the original horizon size tends to provide better results. This trend is confirmed by
moving to 30 minutes. As the available computational time increases, the accuracy in
the objective function eventually overtakes the computational efficiency provided by
scaled horizons, especially for large instances such as c.x and d.x.

With their unique vehicle and because requests are uniformly distributed, instances
a.x may suffer from an evaluation function being roughly uniform. Sending the ve-
hicle at some location to wait there is, most of the time, more or less equivalent to
another location. Consequently, local optima are numerous and little diversified, the
more promising ones being hard to detect when using scale 1 for only 30 minutes. In
the contrary, using more vehicles (e.g. instances b.x) leads to a less uniform evaluation
function. For example, concentrating all the vehicles in the same region would surely
leads to poor results. On instances a.x, the diversification brought by scaled horizons
then still prevails after 30 minutes. Given larger computation times (5 hours), results on
scales 5 and 10 do not show a significant improvement:

a.1 a.2 a.3

scale ∈ {1, 2, 5, 10}: 15.3 15.1 14.9 16.5 16.2 15.8 16.1 17.3 14.8 14.6 14.0 16.1

Scales 1 and 2 in contrary tend to take promising benefits of a larger computation time.

Figure 4 shows how, for instance c.1, the real objective function (i.e. according to the
original horizon) evolves in average (over 10 runs) during an execution of Algorithm 1.
By reducing both the granularity of the search space and the complexity of the objective
function, the parameter scale can therefore be used as a tradeoff between responsiveness
and good quality solutions on the long term. Figure 4 also shows that the parameter
scale can dynamically be reduced during the search.

Fig. 4. Average evolution of the best real ob-
jective value in Algorithm 1, during 3600 sec-
onds on instance c.1. During the first second,
objective values rapidly decrease when opti-
mizing on scaled horizon. Thereafter, depend-
ing on the available computation time, some
scale factors reveal to be more efficient than
others. For less than 1 minute, scale=5 leads
to better results. With at least 10 minutes, us-
ing the original horizon is definitely better.

8 Conclusions and research directions

We introduced a new stochastic VRP, the SS-VRPTW-CR. Unlike existing SS-VRPs
with random customers, we don’t make any assumption on the moment at which a
customer reveals its presence or absence. Instead, this is treated as a random variable
as well. We proposed a recourse strategy for a special case of the SS-VRPTW-CR,
when there is no maximal vehicle capacities. We showed how the exact expected cost
can be computed in pseudo-polynomial time under this recourse strategy, and how to
integrate in an efficient meta-heuristic method. Experiments are driven on generated test
instances of various sizes. The average results show how a scale parameter, controlling
the granularity of the time horizon, can be used to tune the optimization process in the
case of limited computational times.

Maximal vehicle capacity constraints. The recourse strategy and equations we give
can be extended to take care of vehicle capacities. We are currently working on a gen-
eralized version of these equations.

Contribution to online optimization. Another potential application of the SS-VRPTW-
CR goes to online optimization problems such as the DS-VRPTW. Because of the huge
complexity of reoptimization, heuristic methods are often preferred, including the so
called Sample Average Approximation (SAA, see [26]). SAA relies on Monte Carlo
sampling, making decisions based on a subset of the scenarios. Thanks to recourse
strategies, the SS-VRPTW-CR provides an upper bound on the expected cost of a first
stage solution under optimal reoptimization. The SS-VRPTW-CR could therefore be
used as a subroutine in order to heuristically solve the DS-VRTPW, whilst considering
the whole set of scenarios instead of only a subset of sampled ones. In such a context,
the scale parameter we introduce in the experiments can be of great contribution.

Acknowledgments Christine Solnon is supported by the LABEX IMU (ANR-10-
LABX-0088) of Université de Lyon, within the program "Investissements d’Avenir"
(ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).

References

1. Bent, R.W., Van Hentenryck, P.: Waiting and Relocation Strategies in Online Stochastic
Vehicle Routing. IJCAI (2007) 1816–1821

2. Ichoua, S., Gendreau, M., Potvin, J.Y.: Exploiting knowledge about future demands for
real-time vehicle dispatching. Transportation Science 40(2) (may 2006) 211–225

3. Saint-Guillain, M., Deville, Y., Solnon, C.: A Multistage Stochastic Programming Approach
to the Dynamic and Stochastic VRPTW. In: International Conference on AI and OR Tech-
niques in Constriant Programming for Combinatorial Optimization Problems. (2015) 357–
374

4. Branke, J., Middendorf, M., Noeth, G., Dessouky, M.: Waiting Strategies for Dynamic Ve-
hicle Routing. Transportation Science 39(3) (aug 2005) 298–312

5. Bertsimas, D.J.: A vehicle routing problem with stochastic demand. Operations Research
(1992)

6. Jaillet, P.: Probabilistic traveling salesman problems. PhD thesis, Massachusetts Institute of
Technology (1985)

7. Laporte, G., Louveaux, F.V., Mercure, H.: A priori optimization of the probabilistic traveling
salesman problem. Operations Research 42(3) (1994) 543–549

8. Laporte, G., Louveaux, F.V.: The integer L-shaped method for stochastic integer programs
with complete recourse. Oper. Res. Lett. 13(3) (1993) 133–142

9. Jezequel, A.: Probabilistic vehicle routing problems. PhD thesis, Massachusetts Institute of
Technology (1985)

10. Bertsimas, D.J., Chervi, P., Peterson, M.: Computational approaches to stochastic vehicle
routing problems. Transportation science (1995) 1–34

11. Bianchi, L., Campbell, A.M.: Extension of the 2-p-opt and 1-shift algorithms to the heteroge-
neous probabilistic traveling salesman problem. European Journal of Operational Research
176(1) (jan 2007) 131–144

12. Bowler, N.E., Fink, T.M., Ball, R.C.: Characterisation of the probabilistic travelling salesman
problem. Physical Review E 68(3) (nov 2003)

13. Bianchi, L., Gambardella, L.M., Dorigo, M.: An ant colony optimization approach to the
probabilistic traveling salesman problem. Parallel Problem Solving from Nature (2002) 883–
892

14. Waters, C.D.J.: Vehicle-scheduling problems with uncertainty and omitted customers. Jour-
nal of the Operational Research Society (1989) 1099–1108

15. Gendreau, M., Laporte, G., Séguin, R.: An exact algorithm for the vehicle routing problem
with stochastic demands and customers. Transportation Science 29(2) (1995) 143–155

16. Séguin, R.: Problemes stochastiques de tournees de vehicules. Centre de Recherche sur les
Transports Publication 979 (1994)

17. Gendreau, M., Laporte, G., Séguin, R.: A Tabu Search Heuristic for the Vehicle Routing
Problem with Stochastic Demands and Customers. Operations Research 44(3) (1996) 469–
477

18. Gounaris, C.E., Repoussis, P.P., Tarantilis, C.D., Wiesemann, W., Floudas, C.A.: An adap-
tive memory programming framework for the robust capacitated vehicle routing problem.
Transportation Science (2014)

19. Campbell, A.M., Thomas, B.W.: Probabilistic traveling salesman problem with deadlines.
Transportation Science 42(1) (2008) 1–27

20. Henchiri, A., Bellalouna, M., Khaznaji, W.: A probabilistic traveling salesman problem: a
survey. In: FedCSIS Position Papers. Volume 3. (sep 2014) 55–60

21. Sungur, I., Ren, Y.: A model and algorithm for the courier delivery problem with uncertainty.
Transportation science 44(2) (2010) 193–205

22. Chao, I.M., Golden, B.L., Wasil, E.A.: The team orienteering problem. European Journal of
Operational Research 88(3) (1996) 464–474

23. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science
220(4598) (1983) 671–680

24. Kindervater, G.A.P., Savelsbergh, M.W.P.: Vehicle routing: handling edge exchanges. Local
search in combinatorial optimization (1997) 337–360

25. Taillard, É., Badeau, P., Gendreau, M., Guertin, F., Potvin, J.Y.: A tabu search heuristic for
the vehicle routing problem with soft time windows. Transportation science 31(2) (1997)
170–186

26. Ahmed, S., Shapiro, A.: The sample average approximation method for stochastic programs
with integer recourse. Submitted for publication (2002)

	The Static and Stochastic VRP with Time Windows and both random Customers and Reveal Times

