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Tierless Modules

GABRIEL RADANNE, Univ Paris Diderot, Sorbonne Paris Cité

JÉRÔME VOUILLON, Univ Paris Diderot, Sorbonne Paris Cité, BeSport, and CNRS

Tierless Web programming languages allow to combine client-side and server-side programming in a single program. This allows to
de�ne expressions with both client and server parts, and at the same time provides good static guarantees regarding client-server
communication. However, these nice properties come at a cost: most tierless languages o�er very poor support for modularity and
separate compilation.

To regain this modularity and o�er a larger-scale notion of composition, we propose to leverage a well-known tool: ML-style
modules. In this article, we show how to extend the OCaml module system with tierless annotations that specify whether some
de�nitions should be on the server, on the client, or both.

In modern ML languages, the module system is a layer separate from the expression language. Our work relies on Eliom for the
expression language. Eliom is an ML tierless Web programming language that provides type-safe communication and an e�cient
execution model. We complement that with a module language that preserves all the desirable properties of Eliom in terms of
typing and e�ciency, allows separate compilation, integrates well with the vanilla OCaml module language, and supports datatype
abstraction.
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1 INTRODUCTION

Traditional Web applications are composed of several distinct tiers: Web pages are written in HTML and styled in
CSS; these pages are produced by a server which can be written in about any language: PHP, Ruby, C++ . . . ; their
dynamic behavior is controlled through client-side languages such as JavaScript. The traditional way to compose
these languages is to write separate programs for the client and the server. Then, the programmer is expected to
respect a common interface between the two programs. This constraint is usually not checked automatically, and it is
the responsibility of the programmer to ensure that the two programs behave in a coherent manner. Of course, such
checking is often error-prone. This issue, present in the Web since its inception, has become even more relevant in
modern Web applications. Furthermore, the unit of composition here is a whole �le (or compilation unit): �les contain
either client code or server code but can not be composed of both client and server code. Such composition is very
coarse-grained and hinders the modularity of Web programming libraries.

One goal of a modern client-server Web application framework should be to make it possible to build dynamic Web
pages in a composable way. One should be able to de�ne on the server a function that creates a fragment of a page
together with its associated client-side behavior; this behavior might depend on the function parameters. The so-called
tierless languages aim to solve such modularity issues by allowing to compose tiers inside expressions, by allowing to
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2 Gabriel Radanne and Jérôme Vouillon

freely intersperse the client and server parts of the application in one language with seamless communication. For
most of these languages, the program is sliced in two: a part which runs on the server and a part which is compiled to
JavaScript and runs on the client. This allows to write libraries and widgets with both client and server behaviors. It
also provides static guarantees about client-server separation and a �ne-grained notion of composition.

However, programming of large-scale software and libraries still requires a form of larger-scale composition. Indeed,
parts of a library could be entirely on the server or on the client. Most tierless languages do not support such modular
approach to program architecture and do not handle separate compilation. To solve this problem, we propose to
leverage a well-known tool: ML-style modules. In this article, we show how to extend the ML module system with
tierless annotations. By doing so, we gain a convenient paradigm for organizing large-scale software and support for
separate compilation on top of the gains provided by tierless programming languages. Our module system is built as a
complement to Eliom, a tierless web programming language built on top of OCaml, and retains its good properties
such as static typing of client-server communications and an e�cient excution model.

1.1 Modules

In modern ML languages, the module language is separate from the expression language. While the language of
expression allows to program “in the small”, the module language allows to program “in the large”. In most languages,
modules are compilation units: a simple collection of type and value declarations in a �le. The SML module language
(MacQueen 1984) uses this notion of collection of declarations (called structure) and extends it with types (module
speci�cations, or signatures), functions (parametrized modules, or functors) and function application, forming a small
typed functional language. Such a module system can account for separate compilation (Leroy 1994) and provides
support for datatype abstraction (Crary 2017; Leroy 1995), which allows to hide the implementation of a given type
in order to enforce some invariants. In the history of ML-programming languages, ML-style modules have been
informally shown to be very expressive tools to architecture software. Functors, in particular, allow to write generic
implementations by abstracting over a complete module. The OCaml language provides such a module system, extended
with various other constructs such as package types (Russo 2000) (also known as �rst-class modules). One distinctive
feature is that modules in OCaml are runtime entities. In contrast to systems such as MLton (2014), they are not
eliminated at compile time.

1.2 Eliom

Eliom (Radanne et al. 2016a,b) is an extension of OCaml for tierless programming that supports composable and
typesafe client-server interactions. It provides �ne-grained modularity by allowing to manipulate on the server, as
�rst class values, fragments of code which will be executed on the client. Eliom is part of the larger Ocsigen (Balat
et al. 2009; Eliom 2017) project, which also includes the compiler js_of_ocaml (Vouillon and Balat 2014), a Web server,
and various related libraries to build client-server applications. Besides the language presented here, Eliom comes
with a complete set of modules, for server and/or client side Web programming, such as RPCs; a functional reactive
library for Web programming; a GUI toolkit (Ocsigen Toolkit 2017); a powerful session mechanism and an advanced
service identi�cation mechanism (Balat 2014). The Ocsigen project started in 2004, as a research project, with the goal
of building a complete industrial-strength framework.
Manuscript submitted to ACM



Tierless Modules 3

1.3 A module language for tierless programming languages

All of the modules and libraries in Ocsigen, and in particular in the Eliom framework, are implemented on top of a core
language described in Radanne et al. (2016a). The design of this core language is guided by four complementary goals:
easy composition of client and server code, type-safe communication between client and server, explicit communications
that are easy to reason about and e�cient execution model. We introduce additional properties that will drive the
design of our module language:

Integration with the host language. Eliom is an extension of OCaml. We should be able to leverage both the language
and the ecosystem of OCaml. OCaml libraries can be useful on the server, on the client or on both. As such, any
OCaml �le, even when compiled with the regular OCaml compiler, is a valid Eliom module. Furthermore, we can
specify if we want to use a given library on the client, on the server, or everywhere.

Abstraction. Module languages are very powerful abstraction tools. By only exposing part of a module, the program-
mer can safely hide implementation details and enforce speci�c properties. Eliom leverages module abstraction to
provide encapsulation and separation of concern for widgets and libraries. By combining module abstraction and tierless
features, library authors can provide good APIs that do not expose the minute details of client-server communication to
the users.

These properties lead us to de�ne a module language, Eliomm , that extends the tierless core language presented in
Radanne et al. (2016a). We give a quick presentation of Eliom from a programming point of view in Section 2. The
expression language is de�ned in Section 3, which reformulates the key ideas of Radanne et al. (2016a). The module
language is described in Section 4. Finally we present the target languages in Section 5 and a compilation scheme in
Section 6.

2 HOW TO: CLIENT-SERVER WEB PROGRAMMING

An Eliom application is composed of a single program which is decomposed by the compiler into two parts. The
�rst part runs on a Web server, and is able to manage several connections and sessions at the same time. The client
program, compiled statically to JavaScript, is sent to each client by the server program together with the HTML page,
in response to the initial HTTP request.

Eliom is using manual annotations to determine whether a piece of code is to be executed server or client side (Balat
2013; Balat et al. 2012). This choice of explicit annotations is motivated by the fact that we believe that the programmer
must be well aware of where the code is executed, to avoid unnecessary remote interactions. This also avoids ambiguities
in the semantics and allows for more �exibility.

In this section, we present the language extension that deals with client-server code and the corresponding commu-
nication model. Even though Eliom is based on OCaml, little knowledge of OCaml is required. We explicitly write
some type annotations for illustration purposes but they are not mandatory.

2.1 Sections

The location of code execution is speci�ed by section annotations. We can specify that a declaration is performed on the
server, or on the client:

1 let%server s = ...

2 let%client c = ...

Manuscript submitted to ACM



4 Gabriel Radanne and Jérôme Vouillon

A third kind of section, written as shared, is used for code executed on both sides. We use the following color convention:
client is in yellow, server is in blue and shared is in green.

2.2 Client fragments

A client-side expression can be included inside a server section: an expression placed inside [%client ... ] will be
computed on the client when it receives the page; but the eventual client-side value of the expression can be passed
around immediately as a black box on the server.

1 let%server x : int fragment = [% client 1 + 3 ]

The expression 1 + 3 will be evaluated on the client, but it’s possible to refer server-side to the future value of this
expression (for example, put it in a list). The value of a client fragment cannot be accessed on the server.

2.3 Injections

Values that have been computed on the server can be used on the client by pre�xing them with the symbol ~%. We call
this an injection.

1 let%server s : int = 1 + 2

2 let%client c : int = ~%s + 1

Here, the expression 1 + 2 is evaluated and bound to variable s on the server. The resulting value 3 is transferred to
the client together with the Web page. The expression ~%s + 1 is computed client-side.

An injection makes it possible to access client-side a client fragment which has been de�ned on the server:

1 let%server x : int fragment = [% client 1 + 3 ]

2 let%client c : int = 3 + ~%x

The value inside the client fragment is extracted by ~%x, whose value is 4 here.

2.4 Modules

One can de�ne client and server modules. One can also use regular OCaml modules and functors inside client and
server code. Here, we use Map.Make on the client to de�ne maps whose keys are JavaScript strings. Map.Make is a
pre-de�ned functor in the OCaml standard library that takes a module implementing the COMPARABLE signature as
argument and returns a module that implements associative maps (also called dictionaries) whose keys are of the type
t in the provided module. Since associative maps are implemented using balanced binary trees, a comparison function
has to be provided by its argument. Note here that a functor from vanilla OCaml is applied to a client module and
returns a client module.

1 module%client JStr = struct

2 type t = Js.string

3 let compare = Js.compare_string

4 end

5

6 module%client MapJStr = Map.Make(JStr)

1 module type COMPARABLE = sig

2 type t

3 val compare : t -> t -> int

4 end

5

6 module Make (Key : COMPARABLE) : sig

7 type 'a t

8 val add : Key.t -> 'a -> 'a t -> 'a t

9 (* ... *)

10 end

Manuscript submitted to ACM



Tierless Modules 5

It is also possible to de�ne mixed modules, that can contain both client and server declarations. The namespaces for
client and server declarations are distinct.

1 module%mixed M = struct

2 type%client t = int

3 type%server t = t fragment

4 let%server x : t = [% client 2]

5 end

We can also de�ned mixed functors that accept mixed modules as arguments, and produce modules that are themselves
mixed. As an example, we build on Map.Make to produce mixed tables, i.e., tables that have a meaning on both sides.
The idea is that adding an entry to a server-side table also adds the element to the client-side table. Consequently,
the server-side representation of a table needs to include a client-side one. Such mixed tables are useful, for example,
to give the client access to a cache of elements that were already produced by the server while serving the request,
thus preventing duplicated work. For brevity, we omit operations other than addition, but note that lookup is easy to
implement as lookup on the local table.

1 module%mixed MakeShared (Comparable : COMPARABLE) =

2 struct

3 module%client M = Map.Make(Comparable)

4 module%server M = Map.Make(Comparable)

5

6 type%client 'a table = 'a M.t

7 type%server 'a table = 'a M.t * 'a M.t fragment

8

9 let%client add id v tbl =

10 M.add id v tbl

11 let%server add id v (tbl_server , tbl_client) =

12 [% client M.add ~%id ~%v ~% tbl_client ];

13 M.add id v tbl_server

14

15 (* ... *)

16 end

1 module%mixed MakeShared (Comparable : COMPARABLE) :

2 sig

3 type%client 'a table

4 type%server 'a table

5

6 val%client add :

7 Comparable.t -> 'a -> 'a table -> 'a table

8 val%server add :

9 Comparable.t -> 'a -> 'a table -> 'a table

10

11 (* ... *)

12 end

Applying MakeShared produces a module containing types (like table) and values (like add) available on the side
the functor is called on. However, the functor cannot be implemented in a decomposed way, given that the server
implementation relies on the client-side version of the functor argument (Comparable).

Contrary to client and server functors, mixed functors are limited: arguments must be mixed modules and injections
inside client-side bindings can only reference elements out of the functor. Additionally, it is forbidden to nest mixed
structures and functors arbitrarily.

More complex examples of libraries built with Eliom and Ocsigen can be found in Radanne et al. (2016b).

2.5 Client-server communication

In the examples above, we showed complex patterns of interleaved client and server code, including passing client
fragments to server functions, and subsequently to client code. This would be costly if the communication between
client and server were done naively. Instead, a single communication takes place: from the server to the client, when
the Web page is sent. This is made possible by the fact that client fragments are not executed immediately when
encountered inside server code. The intuitive semantics is the following: client code is not executed right away; instead,
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6 Gabriel Radanne and Jérôme Vouillon

it is registered for later execution, once the Web page has been sent to the client. Then all the client code is executed in
the order it was encountered on the server. This intuitive semantics allows the programmer to reason about Eliom
programs, especially in the presence of side e�ects, while still being unaware of the details of the compilation scheme.

3 THE EXPRESSION LANGUAGE

We now present the expression language. This subset is based on the Eliomε language presented by Radanne et al.
(2016a). We reformulate it here with several extensions. The notations and presentation of the type system are borrowed
in part from Wright and Felleisen (1994).

Let us �rst de�ne some notations and meta-syntactic variables: e are expressions, v are variables, p are paths, x are
module variables, τ are type expressions and t are type constructors. vi , xi and ti are identi�ers (for values, modules
and types). Identi�ers (such as xi ) have a name part (x ) and a stamp part (i) that distinguish identi�ers with the same
name. α-conversion should keep the name intact and change only the stamp. We use subscripts to specify locations.
Core locations, de�ned in Figure 1, can be either server, client or base. The base side represents expressions that are
“location-less”, that is, which can be used everywhere. We use the meta-variable ` for an unspeci�ed core location.

As Eliomm is an extension of classic ML with modules, we distinguish new elements in the type system in blue. This
is purely for ease of reading and is not essential for understanding this article.

3.1 Syntax

The syntax is presented in Figure 1. The Eliomm expression language is an extension of a simple ML language with
let bindings, polymorphism and generalization. Two additional constructs are introduced for client fragments and
injections. The language is parametrized by its constants. There are three sets of constants: base, server and client. An
expression or type expression can be either client, server or base.

A client fragment {{ e }} can be used on the server to represent an expression that will be computed on the client,
but which future value can be manipulated on the server. An injection f %v can be used on the client to access values
de�ned on the server. An injection must make explicit use of a converter f that speci�es how to send the value. In
particular, this should involve a serialization step, executed on the server, followed by a deserialization step executed

Locations

` ::= s | c | b (Core)
m ::= ς | ` (Mixed)

Path

p ::= xi | p.x | p1(p2)
Expressions

e ::= c | vi | Y | (e e) | λv .e
| let v = e in e (Let)
| p.v (Path)
| {{ e }} (Fragments)
| f %v (Injections)

f ::= p.v | vi | c (Converter)
c ∈ Const` (Constants)

Environments

Γ ::= ∅
| Γ; (module x : M)m (Module)
| Γ; (v : σ )` (Value)
| Γ; (t = τ )` (Type)
| Γ; (t)` (Abstract Type)

Type Schemes

σ ::= ∀α∗`i .τ
Type Expressions

τ ::= α` | τ → τ | ti

| p.t (Path)
| {τ } (Fragments)
| τ { τ (Converters)

Fig. 1. Eliomε ’s grammar
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Tierless Modules 7

on the client. For ease of presentation, injections are only done on variables and constants. In the implementation,
this restriction is removed by adding a lifting transformation (See Section 7.2). For clarity, we sometimes distinguish
injections per se, which occur outside of fragments, and escaped values, which occur inside fragments.

The syntax of types is also extended with two constructs. A fragment type {e} is the type of a fragment. A converter

type τs { τc is the type of a converter taking a server value of type τs and returning a client value of type τc . Finally,
all type variables α` are annotated with a core location `.

3.2 Type system

We note TypeOf`(c) the type of a given constant c on the location `. The typing judgment is noted Γ .` e : τ where e is
of type τ in the environment Γ on the location `. The typing rules are de�ned in Figure 3. We note σ � τ when the
type τ is an instance of the type scheme σ . We note Close(Γ,τ ) the function that closes the type τ over the environment
Γ and produces a type scheme.

Typing environments Γ can contain four kind of bindings: variable bindings (v : τ )` , type declarations (t = τ )` ,
abstract type declarations (t)` and module bindings (module x : M)m. All bindings are annotated with a location `.
Names are namespaced by locations. The �rst three kind of bindings, corresponding to the core language, can only
appear on core locations: s , c or b. Modules can also be of mixed location ς . We use m as meta variable for locations
that can be either ς or another core location.

Most of the rules are straightforward adaptions of traditional ML rules. The two new rules are Fragment and
Injection. Rule Fragment is for the construction of client fragments and can only be applied on the server. If e is of
type τ on the client, the {{ e }} is of type {τ } on the server. Rule Injection is for the communication from the server to
the client and can only be applied on the client. If e is of type τs on the server and f is of type τs { τc on the server,
then f %e is of type τc on the client. Since no other typing rules involves client fragments, it is impossible to deconstruct
them.

The last di�erence with usual ML rules are the visibility of variable. As described earlier, bindings in Eliomm are
located. Since access across sides are explicit, we want to prevent the use of client variables on the server, for example.
In rule Var, to use on location ` the variable v which is bound on location `′, we check that location `′ encompass
location `, noted `′ � `. This relation is de�ned in Figure 2. Base elements b are usable everywhere. Mixed elements ς
are usable in both client and server. Type variables are also annotated with a location and follow the same rules. Using
type variables from the client on the server, for example, is disallowed.

We also de�ne two other judgments. The well-formedness judgment on types is noted Γ �` τ where τ is well formed
in the environment Γ on the location `. The well-formedness rules are de�ned in Figure 4. A well formed type is a type
with proper usage of locations: client fragments and converters should be used only on the server and reference client
types. The type equivalence judgment on types is noted Γ .` τ ≈ τ ′ where τ is equivalent to τ ′ in environment Γ on the
location `. We omit the classical rules of ML, along with rules for re�exivity, commutativity and transitivity.

3.2.1 Converters. To transmit values from the server to the client, we need a serialization format. We assume the
existence of a type serial in Constb which represents the serialization format. The actual format is irrelevant. For
instance, one could use JSON or XML.

Converters are special values that describe how to move a value from the server to the client. A converter can be
understood as a pair of functions. A converter f of type τs { τc is composed of a server-side encoding function of
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8 Gabriel Radanne and Jérôme Vouillon

type τs → serial, and a client-side decoding function of type serial→ τc. We assume the existence of two built-in
converters:

• The serial converter of type serial { serial. Both sides are the identity.
• The frag converter of type ∀αc .({αc} { αc ).

3.2.2 Type universes. It is important to note that there is no identity converter (of type ∀α .(α { α)). Indeed the
client and server type universes are distinct and we cannot translate arbitrary types from one to the other. Some types
are only available on one side: database handles, system types, JavaScript API types. Some types, while available on
both sides (because they are in base for examle), are simply not transferable. For example, functions cannot be serialized
in general. Another example is �le handlers: they are available both on the server and on the client, but moving a �le
handle from server to client seems adventurous.

Finally, some types may share a semantic meaning, but not their actual representation. This is the case where
converters are used. Advanced practical usages of converters and separated type universes to create useful libraries can
be found in Radanne et al. (2016b).

4 THE MODULE LANGUAGE

We now present the module language part of Eliomm . The module language is an extension of Leroy (1995). The
intent here is to model a simple extension of most of the OCaml module language, our eventual goal being to actually
implement this extension.

ς � s ς � c b � s b � c b � ς ∀` ∈ {s, c, ς ,b} ` � `
Fig. 2. “can be used in” relations on locations – `′ � `

Common rules

Var
(v : σ )`′ ∈ Γ `′ � ` σ � τ

Γ .` v : τ

Lam
Γ; (v : τ1)` .` e : τ2

Γ .` λv .e : τ1 → τ2

Const
TypeOfς (c) � τ

Γ .` c : τ

LetIn
Γ .` e1 : τ1 Γ; (v : Close(τ1, Γ))` .` e2 : τ2

Γ .` let v = e1 in e2 : τ2

Eqiv
Γ .` e : τ1 Γ .` τ1 ≈ τ2

Γ .` e : τ2

App
Γ .` e1 : τ1 → τ2 Γ .` e2 : τ1

Γ .` (e1 e2) : τ2

Y

Γ .` Y : ((τ1 → τ2) → τ1 → τ2) → τ1 → τ2

Server rules

Fragment
Γ .c e : τ

Γ .s {{ e }} : {τ }

Client rules

Injection
Γ .s f : τs { τc Γ .s e : τs

Γ .c f %e : τc

Close(τ , Γ) = ∀α0 . . . αn .τ with {α0, . . . ,αn } = FreeTypeVar(τ )\ FreeTypeVar(Γ)

Fig. 3. Typing rules for the expression language – Γ .` e : τ
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Tierless Modules 9

DatatypeVal
(t = τ )`′ ∈ Γ `′ � `

Γ �` t

VarVal
`i � `

Γ �` α`i

ArrowVal
Γ �` τ1 Γ �` τ2

Γ �` τ1 → τ2

FragmentVal
Γ �c τ

Γ �s {τ }

ConvVal
Γ �s τ1 Γ �c τ2

Γ �s τ1 { τ2
Fig. 4. Validity rules for types – Γ �` τ

FragmentEq
Γ .c τ ≈ τ ′

Γ .s {τ } ≈ {τ ′}

ConvEq
Γ .s τs ≈ τ ′s Γ .c τc ≈ τ ′c
Γ .s τs { τc ≈ τ ′s { τ ′c

DatatypeEq
(t : τ )`′ ∈ Γ `′ � `

Γ .` t ≈ τ
The classical rules for ML languages are omitted for brevity.

Fig. 5. Type equivalence – Γ .` τ ≈ τ ′

4.1 Syntax

Module Expressions

m ::= xi | p.x |m1(m2) | (m : M)
| struct s end
| functor(xi : M)m
| functorς (xi : M)m

Structure body

s ::= ε | d ; s
Structure components

d ::= let` vi = e`

| type` ti = τ`
| modulem xi =m

Programs

P ::= prog s end

Module types

M ::= sig S end

| functor(xi : M1)M2

| functorς (xi : M1)M2

Signature body

S ::= ε | D; S
Signature components

D ::= val` vi : τ`
| type` ti = τ`
| type` ti
| modulem xi : M

Fig. 6. Eliomm ’s grammar for modules

The syntax of the module language is given in Figure 6. It is mostly composed of the usual module constructs:
functors, module constraints, functor application and structures. A structure is composed of a list of components.
Similarly, module types are composed of functors and signatures which are a list of signature components. Components
can be declaration of values, types or modules. A type in a signature can be declared abstract or not. The main change
in Eliomm is that structure and signature components are annotated with locations. Value and type declarations can be
annotated with a core location ` which is either b, s or c . Module declarations can also have one additional possible
location: the mixed location ς . We note m a location that can be any of ς , b, s or c . Only modules on location ς can have
sub�elds on di�erent locations. A program is a list of declarations including a client value declaration res which is the
result of the program.
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10 Gabriel Radanne and Jérôme Vouillon

4.2 Base location and specialization

In Section 2.4, we presented an example where a base functor Map.Make, is applied to a client module to obtain a new
client module. As Map.Make is a module provided by the standard library of OCaml, it is de�ned on location b. In
particular, its input signature has components on location b, thus it would seem a module whose components are on
the client or the server should not be accepted. We would nevertheless like to create maps of elements that are only
available on the client. To do so, we introduce a specialization operation, de�ned in Figure 11, that allows to use a base
module in a client or server scope by replacing instances of the base location with the current location.

The situation is quite similar to the application of a function of type ∀α .α → α to an argument of type int : we need
to instantiate the functor before being able to use it. The specialization operation simply rewrites a module signature
by substituting all instances of the location b or ς by the speci�ed c or s location. Note that before being specialized, a
module should be accessible according to the “can be used” relation de�ned Figure 2. This means that we never have to
specialize a server module on the client (or conversely). Specialization towards location b has no e�ect since only base
modules are accessible on location base. Specialization towards the location ς has no e�ect either: since all locations
are allowed inside the mixed location, no specialization is needed. Mixed functors are handled in a speci�c way, as we
see in Section 4.3.

4.3 Mixed Functors

Mixed functors are functors declared in a mixed scope. We note functorς (xi : M)m the mixed functor that takes
an argument xi of type M and return a module m. They can contain both client and server declarations (or mixed
submodules). Mixed functors and regular functors have di�erent types that are not compatible. Mixed functors have
several restrictions compared to regular functors.

4.3.1 Specialization. Specialization on mixed functors only specialize the return type, not the argument. Let us see
on an example why this restriction is needed. In Example 1, the functor F takes as argument a module containing a
base declaration and use it on both sides. If the type of the functor parameter were specialized, the functor application
in Example 1b would be well-typed. However, this makes no sense: M.y is supposed to represent a fragment whose
content is the client value of b, but this value doesn’t exist, since b was declared on the server. There would be no value
available to inject in the declaration of y'.

1 module%mixed F (A : sig val b : int end) = struct

2 let%server x = b

3 let%server y = [% client b]

4 end

(a) A mixed functor using a base declaration

1 module%server M = F(struct let%server b = 2 end)

2 let%client y' = ~%M.y

(b) An ill-typed application of F

Example 1. A mixed functor using base declaration polymorphically

4.3.2 Injections. Additionally, the body of mixed functors can only contain injections that refer to outside of the
functor. Escaped values, which are injections inside client fragments, are still allowed. The functor presented in
Example 2a is not allowed while the one in Example 2b is allowed.

This restriction is due to the delayed nature of Eliom and the fact that one cannot determine statically, in the general
case, which structure a functor will be applied to. One notable property of injections inside client sections (as opposed
to escaped values inside client fragments) is that they are independent of the control �ow. Indeed, if an injection is
Manuscript submitted to ACM
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1
2 module%mixed F (A:sig val%server x : int end) =

3 struct

4 let%client y = ~%A.x + 2

5 end

(a) An ill-typed mixed functor using an injection

1 let%server x = 3

2 module%mixed F (A:sig val%server y : int end) =

3 struct

4 let%client z = ~%x

5 let%server z' = [% client ~%A.y + 1]

6 end

(b) A well-typed mixed functor using an injection

Example 2. Mixed functor and injections

syntactically present in an Eliom program, there is only one such injection and its use sites are statically known. We
can just give a unique identi�er to each injection, and use that unique name for lookup on the client. This property
comes from the fact that injected server identi�ers can not be bound in a client section. Unfortunately, this property
does not hold in the presence of mixed functor when we assume the language can apply functor at arbitrary positions,
which is the case in OCaml. We show an example of this in Example 3. The functor F takes a structure containing a
server declaration x holding an integer and returns a structure containing the same integer, injected in the client. In
Example 3b, the functor is used on A or B conditionally. The issue is that the client integer depends both on the server
integer and on the local client control �ow. Lifting the functor application at toplevel would not preserve the semantics
of the language, due to side e�ects. Thus, we avoid this kind of situation by forbidding injections that access dynamic
names inside mixed functors.

1 module%mixed F (A : sig val%server x : int end) =

2 struct

3 let%client x' = ~%A.x

4 end

(a) An ill-typed mixed functor with an injection

1 module%mixed A = struct let%server x = 2 end

2 module%mixed B = struct let%server x = 4 end

3 let%client a =

4 if Random.bool ()

5 then let module M = F(A) in M.x'

6 else let module M = F(B) in M.x'

(b) A pathological functor application

Example 3. Ill-typed example of injection inside a mixed functor

4.3.3 Functor application. Mixed functors can only be applied to mixed structures. This means that in a functor
application F(M), M must be a structure de�ned by a moduleς declaration. Note that this breaks the property that the
current location of an expression or a module can be determined syntactically: The location inside F(struct ... end)

can be either mixed or not, depending on F. This could be mitigated by using a di�erent syntax for the application of
mixed functor. The justi�cation for this restriction is detailed in Section 6.2.

4.4 Type system

We introduce several type judgments for modules:
Γ Im m : M The modulem is of type M in Γ on the location m. De�ned in Figure 8.
Γ I P : τ The program P returns a client value of type τ . De�ned in Figure 8.
Γ Im M <: M ′ The module type M is a subtype of the module M ′ in Γ on `. De�ned in Figure 12.
Γ �m M The module type M is well-formed in Γ on `. Omitted for brevity.

We add a new relation on locations, de�ned in Figure 7: m <: m′ means that a module de�ned on location m can
contain component on location m

′. In particular, the mixed location ς can contain any component, while other location
can contain only component declared on the same location. Additionally, two rules are added to the expression language
typing rules to type module paths, shown in Figure 9.
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12 Gabriel Radanne and Jérôme Vouillon

ς <: s ς <: c ς <: b ∀` ∈ {s, c, ς ,b} ` <: `

Fig. 7. “can contain” relation on sides – m <: m′

Var
(xi : M)m′ ∈ Γ m

′ � m

Γ Im xi : bMcm

ModVar
Γ Im p : (sig S1; modulem′ xi : M ; S2 end) m

′ � m

Γ Im p.x : bM [ni 7→m
′ p.n | ni ∈ BV

m’(S1)] cm

Strength
Γ Im p : M
Γ Im p : M/p

Γ Im m : M ′ Γ Im M ′ <: M
Γ Im m : M

Γ �m M Γ Im m : M
Γ Im (m : M) : M

Γ �` M xi < BV`(Γ) Γ; (xi : M)` I` m : M ′

Γ I` functor(xi : M)m : functor(xi : M)M ′
Γ Im m1 : functor(xi : M)M ′ Γ Im m2 : M

Γ Im m1(m2) : M ′ [xi 7→m m2]

MixedFunctor
Γ �ς sig S end xi < BVς (Γ) ∀fi%xi ∈ INJS(m), Γ .c fi%xi : τi Γ; (xi : sig S end)ς Iς m : M ′

Γ Iς functorς (xi : sig S end)m : functorς (xi : sig S end)M ′

MixedApplication
Γ Im m1 : functorς (xi : M)M ′ ς � m Γ Iς m2 : M

Γ Im m1(m2) : M ′ [xi 7→m m2]

Γ .` e : τ m <: ` vi < BV`(Γ) Γ; (v : Close(τ , Γ))` Im s : S
Γ Im (let` vi = e; s) : (val` vi : τ ; S)

Γ �` τ m <: ` ti < BV`(Γ) Γ; (ti = τ )` Im s : S
Γ Im (type` ti = τ ; s) : (type` ti = τ ; S)

Γ Im m : M m
′ <: m xi < BVm(Γ) ∀m′′ ∈ locations(M). m′′ � m Γ; (module xi : M)m Im

′ s : S
Γ Im

′ (modulem xi =m; s) : (modulem xi : M ; S)

Γ Im s : S
Γ Im struct s end : sig S end Γ Im ε : ε

Γ Iς (struct s end) : (sig valc res : τ end)
Γ I (prog s end) : τ

Fig. 8. Module typing rules – Γ Im m : M

Γ I` p : (sig S1; val`′ vi : τ ; S2 end) `′ � `
Γ .` p.v : τ [ni 7→` p.n | ni ∈ BV`(S1)]

Γ I` p : (sig S1; type`′ ti = τ ; S2 end) `′ � `
Γ .` p.t ≈ τ [ni 7→` p.n | ni ∈ BV`(S1)]

Fig. 9. Additional typing rules for the expression language

The rule Strength uses a strengthening operation notedM/p and de�ned in Figure 10. A justi�cation and explanation
for this operation can be found in Leroy (1994). The rules Var and ModVar follow the usual rules of modules (Leroy
1995) with two modi�cations: We �rst check that the module we are looking up can indeed be used on the current
location. This is done by the side condition m

′ � m where m is the current location and m
′ is the location where the

identi�er is de�ned. This allows, for instance, to use base identi�ers in a client scope. We also specialize the module
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ε/p = ε (modulem mi = M ; S)/p = modulem mi = M/p; S/p
(sig S end)/p = sig S/p end (type` ti = τ ; S)/p = type` ti = p.t ; S/p

(functor(xi : M)M ′)/p = functor(xi : M)(M ′/p(xi )) (type` ti ; S)/p = type` ti = p.t ; S/p
(functorς (xi : M)M ′)/p = functorς (xi : M)(M ′/p(xi )) (val` vi : τ ; S)/p = val` vi : τ ; S/p

Fig. 10. Module strengthening operation – M/p

bMcb = M bMcς = M

bsig S endcι = sig bScι end bfunctorς (xi : M)M ′cι = functorς (xi : M)bM ′cι
bεcι = ε bfunctor(xi : M)M ′cι = functor(xi : bMcι )bM ′cι

bval` vi : τ ; Scι =
{
valι vi : τ ; bScι when ` � ι
bScι otherwise

btype` ti = τ ; Scι =
{
typeι ti = τ ; bScι when ` � ι
bScι otherwise

btype` ti ; Scι =
{
typeι ti ; bScι when ` � ι
bScι otherwise

bmodulem mi : M ; Scι =
{
moduleι mi : bMcι ; bScι when m � ι
bScι otherwise

Fig. 11. Module specialization operation – bM cm

σ : [1;m] → [1;n] ∀i ∈ [1;m], Γ;D1; . . . ;Dn Im Dσ (i) <: Di

Γ Im (sig D1; . . . ;Dn end) <: (sig D ′1; . . . ;D ′m end)
m <: `1 � `2 Γ .`2 τ1 ≈ τ2

Γ Im (val`1 vi : τ1) <: (val`2 vi : τ2)

m <: m1 � m2 Γ Im2
M1 <: M2

Γ Im (modulem1
xi = M1) <: (modulem2

xi = M2)
Γ I` M ′a <: Ma Γ, (module x : M′a)` I` Mr <: M ′r

Γ I` functor(x : Ma )Mr <: functor(x : M ′a )M ′r

Γ Iς M ′a <: Ma Γ, (module x : M′a)ς Iς Mr <: M ′r
Γ Iς functorς (x : Ma )Mr <: functorς (x : M ′a )M ′r

m <: `1 � `2 Γ .`2 τ1 ≈ τ2

Γ Im (type`1 ti = τ1) <: (type`2 ti = τ2)

m <: `1 � `2
Γ Im (type`1 ti ) <: (type`2 ti )

m <: `1 � `2 Γ .`2 ti ≈ τ
Γ Im (type`1 ti ) <: (type`2 ti = τ )

m <: `1 � `2
Γ Im (type`1 ti = τ1) <: (type`2 ti )

Fig. 12. Module subtyping rules – Γ Im M <: M ′

type of the identi�er towards the current location m. The specialization operation, which was described in Section 4.2,
is noted bMcm and is de�ned in Figure 11.

There are two new typing rules compared to Leroy (1995): Rules MixedFunctor and MixedApplication de�ne
mixed functor de�nition and application. We use INJS(·) which returns the set of all injections in client declarations.
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14 Gabriel Radanne and Jérôme Vouillon

4.5 Subtyping and equivalence of modules

Subtyping rules are given in Figure 12. For brevity, we note m <: m1 � m2 as a shorthand for m <: m1∧m <: m2 ∧m1 �
m2 , that is, both m1 and m2 are valid locations for components of a module on location m and location m1 encompass
location m2 . Note that the following holds:

Γ Im struct valb ti : int end <: struct valc ti : int end

This is perfectly safe, since for any identi�er xi on base, letc x ′j = xi is always valid. This allows programmers to
declare some code on base (and get the guarantee that the code is only using usual OCaml constructs) but to expose it
as client or server in the module type.

5 TARGET LANGUAGES

Eliomm is a compiled language that produces two programs: one server program (which is linked and executed on the
server) and a client program (which is compiled to JavaScript and executed in a browser). Description of the complete
compilation toolchain, including emission of JavaScript code, is out of scope of this article. Instead, we describe the
compilation process in term of emission of client and server programs in an ML-like language equipped with additional
communication primitives.

5.1 Base language

We note MLε the simple ML language without any tierless features. This language uses the module language described
in Leroy (1995) and the core language described in Wright and Felleisen (1994). Alternatively, the syntax and type
system for this language can be obtained by ignoring the colored part in the de�nition of Eliomm in Section 3 and
Section 4. We note Γ .ML e : τ ; Γ IML m : M ; Γ �ML τ and Γ �ML M the associated typing and well-formedness
relations. Given an Eliomm module m, we note m[` 7→`′] the substitution on locations. Given an MLε module m, we
note m[ML7→`] the Eliomm module where all the module components have been annotated with location `. We extend
both notations to module types and environments.

Proposition 5.1. Given an Eliomm module typeM and a location ` ∈ {b, c, s}, if Γ �` M , then bMc` = M .

Proof. By de�nition of <:, M can only contain declarations on `. This means that, by re�exivity of �, only
specialization rules that leave the declaration unchanged are involved. �

Proposition 5.2. Given an Eliomm module typeM and a location ` ∈ {c, s}, if Γ �b M , then bMc` = M[b 7→`].

Proof. We remark that for all ` ∈ {c, s}, b � `. Additionally, mixed functors cannot appear on base (since ς � b).
We can then proceed by induction over the rules for specialization. �

Proposition 5.3. Given MLε type τ , expression e , modulem and module typeM and locations `, `′:

Γ �ML τ =⇒ Γ[ML 7→`′] �` τ Where `′ � `

Γ .ML e : τ =⇒ Γ[ML 7→`′] .` e : τ Where `′ � `

Γ �ML M =⇒ Γ[ML 7→`′] �` M[ML 7→`] Where `′ � `

Γ IML m : M =⇒ Γ[ML 7→`′] I` m[ML 7→`] : M[ML 7→`] Where `′ � `
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Proof. We remark that each syntax, typing rule or well formedness rule for MLε has a direct equivalent rule in
Eliomm . We can then simply rewrite the proof tree of the hypothesis to use the Eliomm type and well-formedness
rules. We consider only some speci�c cases:

• By Proposition 5.1 and since the modules are of uniform location, the specialization operation in Var and
ModVar are the identity.

• The side conditions `′ <: ` are always respected since the modules are of uniform location and by re�exivity
of <:.

• The side conditions `′ � ` are respected by hypothesis. �

Proposition 5.4. Given MLε type τ , expression e , modulem and module typeM :

Γ �b τ =⇒ Γ[b 7→ML] �ML τ Γ �b M =⇒ Γ[b 7→ML] �ML M[b 7→ML]

Γ .b e : τ =⇒ Γ[b 7→ML] .ML e : τ Γ Ib m : M =⇒ Γ[b 7→ML] IML m[b 7→ML] : M[b 7→ML]

Proof. We �rst remark that the following features are forbidden in the base part of the language: injections,
fragments, mixed functors and any other location than base. The rest of the language contains no tierless features and
coincide with MLε . We can then proceed by induction over the proof trees. �

By Propositions 5.3 and 5.4, we can completely identify the language MLε and the part of Eliomm on the base
location b. This is of course by design: the base location allows us to reason about the host language, OCaml, inside the
new language Eliomm . It also provides the guarantee that anything written in the base location does not contain any
communication between client and server. Furthermore, it means that, given a �le previously typechecked by an MLε
typechecker, we can directly use the module types either on base, but also on the client or on the server, by simply
annotating all the signature components. In the rest of this article, we omit location substitutions of the form [ML 7→b]
and [b 7→ML].

5.2 MLs and MLc

We introduce the two target languages MLc and MLs as extension of MLε . The additions in these two new languages
are highlighted in Figure 13. Typing is provided in Figure 14. The semantics of most of those primitives are detailed in
Radanne et al. (2016a). We simply give an informal reminder. We introduce a new class of identi�ers, called “references”
and noted in bold: v. Those identi�ers are dynamically created and have no scoping rules. They are dynamically bound,
as opposed to the statically bound identi�ers. In practice, they are implemented with uniquely generated names and
associative tables. References are used to synchronize values between the server and the client. A reference used inside
an expression is always of type serial.

5.2.1 Injections. For an injection, we associate server-side the injected value e to a reference v using the construction
injection v e , where e is of type serial. When the server execution is done, a mapping from references to injected
values is sent to the client. v is then used client-side to access the value.

5.2.2 Fragments. To implement fragments, we use two primitives:

• bind f = e declares a client function.
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• fragment f e is a delayed application function that is used on the server to register that, on the client, the
function associated to f will be applied to the arguments e . All the arguments must be of type serial. It
returns a value of type frag, which holds a unique identi�er refering to the result of this application..

5.2.3 Converters. For each converter f , we note f s and f c the server side encoding function and the client side
decoding function. If f is of type τs { τc , then f s is of type τs → serial and f c is of type serial→ τc.

5.2.4 Modules. We introduce three new module-related construction.

• bindm F =m is equivalent to bind for modules. It is a client instruction that associates the module or functor
m to the reference F. This construction cannot be nested. We denote by F(p).f references that are created by
bind inside a functor bound by bindm .

• fragmentm F (x) is equivalent to fragment f e for modules. It is a delayed functor application that is used on
the server to register that the functor associated to F will have to be applied to the modules associated to x. It
returns a fresh reference that represents the resulting module. Contrary to fragment, it can only be applied to
module references.

• p.dyn returns a reference that represents the client part of a server module p. This is used for Eliomm mixed
structure that have both a server and a client part.

From a practical point of view, these new primitives are implemented using �rst-class modules and the primitives
bind and fragment respectively.

MLs grammar

e ::= . . . | fragment f e (Fragment call)
τ ::= . . . | frag (Fragment type)
d ::= . . .

| module dyn = fragmentm F (p.dyn)
| injection v e (Injection)
| end () (End token)

MLc grammar

e ::= . . . | v (Reference)
d ::= . . .
| bind f = e (Fragment closure)
| bindm F =m (Module fragment closure)
| exec () (Fragment execution)

Fig. 13. Grammar for MLs and MLc as extensions of MLε

MLs Typing rules

∀i, Γ .MLs ei : serial
Γ .MLs fragment f ei : frag

Γ .MLs e : serial
Γ IMLs injection v e : ε

Γ IMLs end () : ε

Γ IMLs module dyn = fragmentm F (pi .dyn)dyn : ε

MLc Typing rules

Γ .MLc e : τ
Γ IMLc bind f = e : ε Γ .MLc v : serial

Γ IMLc m : M
Γ IMLc bindm F =m : ε Γ IMLc exec () : ε

Fig. 14. Additional types rules for MLc and MLs
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6 COMPILATION

Compilation for Eliom is the process of transforming one Eliomm program into two distinct MLs and MLc programs.
Before giving a more formal description, we present the compilation process with three examples of increasing
complexity that demonstates the most distinctive features of the language.

Our �rst example, in Example 4, only contains simple declarations involving fragments and injections without
modules. In this example, a �rst fragment is created. It only contains an integer and is bound to a. A second fragment
that uses a is created and bound on the server to b. Finally, b is used on the client via an injection. The program returns
4. For each fragment, we have a bind declaration. The client expression contained in the fragment is abstracted and
transformed in a closure that is bound to a fresh reference. The number of arguments of the closure corresponds to the
number of injections inside the fragment. On the server, each fragment is replaced by a call to the primitive fragment.
The argument of the call are the identi�er of the closures and all the injections that are contained in the fragment. This
primitive registers that the closure should be executed later on. Since all the arguments of fragment should be of type
serial, we apply the client and server parts of the converters at the appropriate places. The exec and end primitives
synchronize the execution so that the order of side e�ects is preserved. When exec is encountered, it executes queued
fragment up to an end token which was pushed by an end primitive. Note that injections, which occur outside of
fragments, and escaped values, which occur inside fragments, are compiled in very di�erent way. Injections have the
useful property that the use site and number of injections is completely static: we can collect all the injections on the
server, independently of the client control �ow and send them to the client. This is the property that allows us to avoid
communications from the client to the server.

Eliomm MLs MLc
lets a = {{ 1 }};

lets b = {{ frag%a + 1 }};

letc res = frag%b + 2;

let a = fragment f0 ();
end ();
let b = fragment f1 (frags a);
end ();
injection v (frags b);

bind f0 = λ().1;
exec ();
bind f1 = λv .((fragc v) + 1);
exec ();
let res = (fragc v) + 2;

Example 4. Compilation of expressions

We now present an example with client and server modules in Example 5. We declare a server module containing a
client fragment, a client functor containing an injection, a client functor application and �nally the client return value,
with another injection. The important thing to note here is that for client and server modules or functors, the special
instructions for fragments and injection can be freely lifted to the outer scope. Indeed, let us consider the injection
inside the client functor f : the functor argument must be on the client, hence it cannot introduce new server binding.
As such, the server identi�er that is injected must have been introduced outside of functor, which means it can be lifted.
A similar remark can be made for client fragments in server modules.

Finally, Example 6 presents the compilation of mixed modules. In this example, we create a mixed structure x

containing a server declaration and a client declaration with an injection. We de�ne a functor f that takes a module
containing a client integer and use it both inside a client fragment, and inside a client declaration. We then apply f to x

and use an injection to compute the �nal result of the program.
The slicing of the mixed module x is similar to the procedure for programs: we treat each declaration and use the

injection primitive as needed. Additionally, we introduce a new identi�er F0 that allows us to associate the server
part of the module to the corresponding client part. In MLs we de�ne the dyn �eld using the fragmentm primitive
that returns said identi�er. In MLc, the bindm primitive allows to associate the identi�er to the module in a table. For
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Eliomm MLs MLc
modules x = struct
lets a = {{ 2 }}
lets b = 4

end;
modulec f (x : M) = struct
letc a = x .b + int%x .b

end;
modulec y = f (struct letc b = 2 end);
letc res = frag%x .a + y.a;

module x = struct
let a = fragment f0 ()
let b = 4

end; end ();

injection v0 (ints x .b);

injection v1 (frags x .a);

bind f0 = λ().2;

exec ();
module f (x : M) = struct
let a = x .b + (intc v0)

end;
module y = f (struct let b = 2 end);
let res = (fragc v1) + y.a;

Example 5. Compilation of client and server modules and functors

functors, each call to fragmentm generates a new, fresh identi�er. On the client, we emit two di�erent functors: one
that contains only the client declarations to be used inside the rest of the client code and one that contains both client
declaration and also calls to the bind and exec primitives. This module is used to perform client side e�ects. When the
server version of f is applied, a call to F1 is registered and will be executed when the client reaches the associated exec

call (here, the last one).

6.1 Slicing rules

The slicing rules are de�ned in Figure 15. Given an Eliomm module m or module type M , and a location ι that is either
client or server, we note 〈m〉ι the result of the compilation ofm to the location ι. The result of 〈m〉s is a module of MLs

and the result of 〈m〉c is a module in MLc.
The compilation rules for the core language are similar to the one presented by Radanne et al. (2016a). As before, we

use the notation e [a 7→ b] to denote the substitution of a by b in e . e [ai 7→ bi ]i denotes the repeated substitution of ai
by bi in e . We note FRAGS(e) (resp. INJS(e)) the fragments (resp. injections) present in the expression e . We note ei the
list of elements ei . For ease of presentation, we use dm and Dm for de�nitions and declarations located on location m.

Our slicing rules only applies to sliceable programs. A program is said sliceable if mixed structures are only de�ned
at top level, or directly inside a toplevel mixed functor. We explain how to partially relax this restriction in Section 6.4.
We also require the program to be well typed.

Eliomm MLs MLc
moduleς x = struct

lets a = 2
letc b = 4 + int%a

end;

moduleς f (y : M) = struct
lets c = {{ y.b }}
letc d = 2 ∗ y.b

end;

moduleς z = f (x);
letc res = frag%z.c + z.d ;

module x = struct
module dyn = fragmentm F0 ();
let a = 2; end ();
injection v0 (ints a);

end;
module f (y : M) = struct

module dyn = fragmentm F1 (y.dyn);
let c = fragment dyn.f0 (); end ();

end;

module z = f (x); end ();
injection v1 (frags z.c);

module x = struct
let b = 4 + (intc v0)

end;
bindm F0() = x ;
module f (y : M) = struct

let d = 2 ∗ y.b
end;
bindm F1(y : M) = struct

bind f0 = λ().(y.b); exec ();
let d = 2 ∗ y.b

end;
module z = f (x); exec ()
letc res = (fragc v1) + z.d ;

Example 6. Compilation of a mixed functor
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We now describe how to slice the various constructions of our language. Base structure and signature components
are kept untouched. Indeed, according to Theorem 5.4, base elements are valid MLε elements. We do not need to
modify them in any way. Signature components that are not valid on the target location are simply omitted. Signature
components that are valid on the target have their type expressions translated. The translation of a type expression to
the client is the identity: indeed, there are no new Eliomm type constructs that are valid on the client. Server types, on
the other hand, can contains pieces of client types inside fragments {τc} and inside converters τs { τc . Fragments
in MLs are represented by a primitive type, fragment, without parameters. The type of converters is represented by
the type of their server part, which is τs → serial. Module and module type expressions are traversed recursively.
Functors and functor applications have each part sliced. Mixed functors are turned into normal functors.

Slicing of structure components inserts additional primitives that were described in Section 5.2. In client structure
components, we need to handle injections. We associate each injection to a new fresh reference noted v. In MLs, we
use the injection primitive to register the fact that the given server value should be associated to a given reference. In
MLc, we replace each injection by its associated reference. This substitution is applied both inside expressions and
structures. Note that for each injection f %x , we use the encoding part f s and decoding part f c for the server and
client code, respectively. For server structures components, we apply a similar process to handle fragments. For each
fragment, we introduce a reference noted f . In MLs, we replace each fragment by a call to fragment with argument the
associated reference and each escaped value inside the fragment (with the encoding part of the converters). We also
add, after the translated component, a call to end which indicates that the execution of the component is �nished. In
MLc, we use the bind primitives to associate to each reference a closure where all the escaped values are abstracted.
We also introduce the decoding part of each converter for escaped values. We then call exec, which executes all the
pending fragments until the next end (). This allows to synchronize interleaved side e�ects between fragments and
client components.

Given the constraint of sliceability, a mixed module is either a multi-argument functor returning a structure, or it
does not contain any structure at all. Mixed modules without structures can simply be sliced by leaving the module
expression unchanged. Mixed module types are also straightforward to slice. Mixed structures (with an arbitrary
number of arguments) need special care. For each structure, we generate a fresh reference noted F. In MLs, we introduce
a new �eld in the structure called dyn. The value of this �eld is the result of a call to the primitive fragmentm with
arguments F and all the dyn �elds of the arguments of the functor. In MLc, we create two structures for each mixed
structure. One is simply a client functor where all the server parts have been removed. Note here that we don’t use the
slicing operation. The resulting structure does not contain any call to bind and exec. We also create another structure
that uses the regular slicing operation. This structure is associated to F with the bindm primitive

6.2 Notes about mixed functors

Mixed functors can be seen from two perspectives. The client part of a mixed functor is exactly the same as a pure
client functor. Indeed, since we disallow arbitrary injections, we can remove all the server code and leave the client
part untouched. The server part, however, can be seen as a pair of a server module and an client module hidden inside
a fragment. Indeed, given the presence of fragments inside the server part, each mixed functor application done on
the server needs a corresponding functor application on the client which performs all the client-side evaluation. This
means that we need a way to associate each server version of mixed modules to its client version. In order to do that,

Manuscript submitted to ACM



20 Gabriel Radanne and Jérôme Vouillon

Signatures

〈Db ; S〉ι = Db ; 〈S〉ι
〈Dm; S〉ι = 〈S〉ι when m � ι

= 〈Dm〉ι ; 〈S〉ι when m � ι

Type expressions

〈{τ }〉s = frag
〈τs { τc 〉s = 〈τs〉s → serial

Module Type Expressions

〈sig s end〉ι = sig 〈s〉ι end〈
functor(xi : M)M ′

〉
ι = functor(xi : 〈M〉ι )

〈
M ′

〉
ι〈

functorς (xi : M)M ′
〉
ι = functor(xi : 〈M〉ι )

〈
M ′

〉
ι

Declarations and De�nitions

〈typeι ti = τ 〉ι = type ti = 〈τ 〉ι
〈typeι ti 〉ι = type ti
〈valι vi : τ 〉ι = val vi : 〈τ 〉ι
〈letι vi = e〉ι = let vi = e

〈modulem xi : M〉ι = module xi : 〈M〉ι
〈moduleι xi =m〉ι = module xi = 〈m〉ι

Module Expressions

〈struct s end〉ι = struct 〈s〉ι end〈
m(m′)

〉
ι = 〈m〉ι (

〈
m′

〉
ι )

〈functor(xi : M)m〉ι = functor(xi : 〈M〉ι ) 〈m〉ι〈
functorς (xi : M)m

〉
ι = functor(xi : 〈M〉ι ) 〈m〉ι

Structure components

〈db ; s〉ι = db ; 〈s〉ι
〈
dς ; s

〉
ι =

〈
dς

〉
ι ; 〈s〉ι

〈dc ; s〉s =
[
injection vi (f si vi );

]
i 〈s〉s

〈dc ; s〉c =
dc

[
fi%vi 7→ (f ci vi )

]
;

〈s〉c

Where

{
fi%vi = INJS(dc )
vi is a list of fresh variables.

〈ds ; s〉s =
〈ds 〉s

[
{{ ei }} 7→ fragment fi (f si a)i

]
i

;
end ();
〈s〉s

〈ds ; s〉c =

[
bind fi = λ(x)i .(ei

[
(f %a)i 7→ (f ci x)i

]
);
]
i

exec ();
〈s〉c

Where


{{ ei }} = FRAGS(ds )
fi is a list of fresh variables.
∀i, (f %a)i = INJS(ei )
∀i, (x)i is a list of fresh variables;

Mixed structures〈
moduleς xi (aik : Mk ) = struct s end

〉
s
=

module xi (aik : 〈Mk 〉c ) = struct

module dyn = fragmentm Fi (aik .dyn);
〈s〉s

end〈
moduleς xi (aik : Mk ) = struct s end

〉
c
=

module xi (aik : 〈Mk 〉c ) = struct s ′ |c end;
bindm Fi(aik : 〈Mk 〉c ) = struct 〈s〉c end;

Where Fi is a fresh reference.

Mixed modules〈
moduleς xi =m

〉
ι = module xi = 〈m〉ι

〈
moduleς xi : M

〉
ι = module xi : 〈M〉ι

Fig. 15. Slicing – 〈·〉ι
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we equip the server version with a new �eld dyn which contains a unique identi�er. This identi�er is later transmitted
to the client and used to retrieve the client part of the mixed module.

In order to handle functors, we register each mixed functor application that happens on the server and use dyn �elds
to perform them client side. Since mixed functors can only be applied to mixed structures, they necessarily have a dyn

�eld.
The design space for mixed functors is quite large. We could consider only fully separable functors: mixed functors

such that client and server execution are completely independent. While this would be easy to implement, it would also
mean preventing any meaningful usage of fragments inside functors. Our version of mixed functors is slightly more
expressive: the client part of the functor is indeed independent from the server part, but the server part is not. The cost
is that we must do some extra book-keeping to ensure that for each server-side application of a mixed functors, all the
client side e�ects are performed. We believe this expressive power is su�cient for most use cases. In particular, it is
su�cient for converters, which are described in Section 7.4.

6.3 Results on slicing

One desirable property is that the introduction of new elements in the language and the slicing operation does not
compromise the guarantees provided by the host language. To ensure this, we show that slicing a well typed Eliomm

program provides two well typed MLc and MLs programs.
We only consider typing environments Γ such that (frag)s ∈ Γ and (serial)b ∈ Γ. We also extend the slicing

operation to typing environments. Slicing a typing environments is equivalent to slicing a signature with additional
rules for converters. Converters, in Eliomm , are not completely �rst class: they are only usable in injections and not
manipulable in the expression language. As such, they must be directly provided by the environment. We add the two
following slicing rules that ensures that converters are properly present in the sliced environment:

〈val f : τs { τc 〉s = val f s : 〈τs 〉s { serial 〈val f : τs { τc 〉c = val f c : serial { τc

Theorem 6.1 (Slicing preserves typing). Let us considerm andM such that Γ Iς m : M .

Then 〈Γ〉s I 〈m〉s : 〈M〉s and 〈Γ〉c I 〈m〉c : 〈M〉c

Proof. We proceed by induction over the proof tree of Γ Iς m : M . The only di�cult cases are client and server
structure components and mixed structures. For brevity, we only detail the case of client structure components with
one injection.

Let us consider dc such that Γ Iς dc ; s : S and INJS(dc ) = f %v . We note v the fresh reference. By de�nition of the
typing relation on Eliomm , there exists Γ′ and τc , τs such that Γ ⊂ Γ′, Γ′ .s f : τs { τc and Γ′ .s v : τs. We observe
that there cannot be any server bindings in dc , Hence we can choose Γ′ = Γ.

By de�nition of slicing on typing environments, (f s : 〈τs〉s → serial) ∈ 〈Γ〉s and (f c : serial→ τc) ∈ 〈Γ〉c . By
de�nition of MLc and MLs typing rules, we have 〈Γ〉s .MLs (f s v) : serial and 〈Γ〉c .MLc (f c v) : τc.

We easily have that 〈Γ〉s IMLs injection v (f s v) : ε .
By induction hypothesis on Γ, (vj : τc)c .ς dc

[
f %v 7→ vj

]
: ε where vj is fresh, we have

〈Γ〉c , (vj : τc) .MLc dc
[
f %v 7→ vj

]
: ε . We can then replace the proof tree of vj by the one of (f c v). We simply need

to ensure that the environments coincide. This is the case since f c cannot be introduced by new bindings. We can then
remove the binding of vj from the environment, since it is unused. We obtain that 〈Γ〉c .MLc dc [f %v 7→ (f c v)] : ε
which allows us to conclude. �
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6.4 Structure li�ing

The sliceability requirement is quite restrictive. A set of rewriting rules can be used to increase the set of accepted
programs. An example is given in Example 7. The idea is quite simple: we can lift mixed structures out of mixed
structures by progressively moving their de�nition upward and out of a structure. For this, we need to add new functor
arguments for each useful declaration. Since all mixed modules can be argument of mixed functors, we can only use
mixed declarations. This procedure, however, is not complete.

1 module%mixed F (A : S) = struct

2 module%mixed C = G(A.C)

3 module%mixed M = struct

4 let%client c = C.v

5 let%server s = A.s

6 end

7 end

(a) A mixed structure before li�ing

1 module%mixed M' (A:S) (C':sig ... end) = struct

2 let%client c = C'.C.v

3 let%server s = A.s

4 end

5 module%mixed F (A : S) = struct

6 module%mixed C = G(A.C)

7 module%mixed M = M'(A)(C)

8 end

(b) A li�ed mixed structure

Example 7. Mixed structure li�ing

7 EXTENSIONS

We present several extension to Eliomm . We give a quick informal sketch of how they might work.

7.1 Parameterized datatypes

One very useful tool in ML languages is the ability to de�ne parameterized datatypes. For example 'a list is the type
of lists that contain elements of type 'a. It is very natural to extend an ML language with declarations of parameterized
datatypes inside structures and signatures: type` (α0, . . . ,αn )t = τ

We also would like abstract parameterized datatypes. However, a naive implementation would cause issues. Let us
consider the following declaration:

(struct types α t = int ∗ {α } end) : (sig types α t end)

The type variable α should only be instantiated with client types. This problem is very similar to the interaction
between variance and abstract parameterized datatypes. The solution is simply to annotate type variables with a
location. During checking of a type expression, we need to change the scoping location of type parameters, according
to the de�nition of t.

7.2 Expressions inside injections

It is desirable to handle expressions inside injections, for example : letc y = f %(x + 1). This can be implemented by
hoisting the server expression to the nearest outer mixed scope. We however need to check proper scoping of bound
identi�ers to forbid client expressions of the form: λx . f %{{ x }}. This also allows converters to be expressions.

7.3 Inference of mixed annotations

In Eliomm , we present four annotations on modules: base, server, client and ς , mixed. We showed that base corresponds
exactly to the underlying ML language. From a programming point of view, we can simply omit such annotations. Most
mixed annotations can also be inferred: when typechecking a module declaration modulem x =m where m is neither
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client nor server, it might be either mixed or base. Note that any valid base structure is also a valid mixed structure.
The main point is then to decide if a given module expression can be declared on base or not. The module expressionm

can be declared on base if all of the following properties hold:

• all the identi�ers used inm are declared on base;
• ifm contains a structure, all the de�nitions must be on base;
• there are no mixed functors.

We can infer mixed functors in a similar way by looking at the argument signature and the result module. Some modules
can still be ambiguous, in particular in the presence of high order functors. However, this procedure allows to omit
most “obvious” mixed and base annotations.

7.4 Converters

In our formalization, converters are global constants that are provided by the typing environment. We simply require
them to have a client and a server part. The actual implementation and de�nition of new converters is not treated. Our
current implementation relies on runtime dispatch of converters by inspecting the value.

module type CONV = sig

type%server t

type%client t

val%server serialize : t -> serial

val%client deserialize : serial -> t

end

Fig. 16. A signature for converters

However, one promising lead to implement converters in a way that
is both convenient and more in line with the formalization is to use
mixed modules following the signature shown in Figure 16. We can then
use ad-hoc polymorphism with modular implicits (White et al. 2014).
This is one of the main motivations for mixed functors: converters for
parameterized datatypes would then be functors that take and return
modules of type CONV.

8 IMPLEMENTATION

We implemented our extension of OCaml as a patch on the OCaml compiler and typechecker, including annotations on
parametrized datatypes and inference of mixed annotations. Details on the implementation for the expression language
can be found in Radanne et al. (2016b).

Our implementation is quite faithful to the formalization of the new module system. The main di�erence with
Eliomm is that locations are annotated on identi�ers instead of binders. The downside is that the specialization
operation is more invasive (it needs to explore type expressions). However, it allows us to leave the implementation
of the typing environment mostly untouched (no need to annotate bindings in the environment itself). This was
considered preferable, as the implementation of typing environments in the OCaml typechecker is very complex.
Another peculiarity of our implementation, which corresponds closely to our compilation scheme, is that each .eliom

�le is compiled to one .cmi �le (the typing signature of the module) but two .cmo �les (the output of the compiler,
similar to .o for C). Finally, our implementation does not modify the representation of compiled objects. This means
that any .cmi or .cmo compiled with the vanilla OCaml compiler can be used directly in Eliom, along with a number of
tools. It is also possible to specify that a given pure-OCaml module can be loaded either as base, as client or as server.

9 RELATED WORK

A comprehensive comparison of the tierless expression language can be found in Radanne et al. (2016b). It is notoriously
delicate to compare modules systems. Instead, we focus on the modularity and abstraction aspects. In particular,
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separate compilation and data abstraction. Within these criteria, the various approaches can be separated into various
categories: slicing as a global compiler transformation, interpreted languages and modular compiled languages.

9.1 Global slicing

One approach for slicing a tierless program into a client part and a server part is to apply a whole-program transformation
over the complete program. Such approach is, by essence, incompatible with separate compilation. Furthermore, whole-
program slicing usually rely on some other program transformations (inlining, monomorphisation, defunctorisation,
. . . ) that tend to be non-modular and cross abstraction boundaries.

Ur/Web (Chlipala 2015a,b) is a statically typed ML-like tierless programming language. It only provides compilation
units, not modules. Its approach to compilation is similar to MLton (MLton 2014): it applies a set of whole-program
optimizations to remove all high order calls, then slice the program. This process is incompatible with separate
compilation.

There has been several work on bringing static slicing to JavaScript (Chong et al. 2007; Philips et al. 2014). These
approaches do not provide any tools to talk about modules and are whole-program transformations. Furthermore,
JavaScript modules do not provide any form of data abstraction.

9.2 Dynamic slicing

Some interpreted languages rely on slicing at runtime to extract the client part of the program and send it alongside the
generated Web page. While this is more expressive, it does not provide any of the guarantees provided by static slicing.

Hop (Boudol et al. 2012; Serrano and Queinnec 2010) is a dialect of Scheme for programming Web applications. Its
successor, Hop.js (Serrano and Prunet 2016) takes the same concepts and brings them to JavaScript. There is no static
typing, JavaScript modules do not provide any data abstraction feature and the slicing is not modular.

Meteor.js (Meteor.js 2017) is a framework where both the client and the server side of an application are written in
JavaScript. As a JavaScript extension, it also does not provide static typing nor any form of abstraction.

Links (Cooper et al. 2006) is an experimental functional language for client-server Web programming with a type
and e�ect system. The slicing is type-directed, leveraging e�ects to annotate client, server or database functions. The
current implementation of Links is interpreted and relies on dynamic slicing. It does not have a module system. Some
work has been done on introducing static compilation (Cheney et al. 2013), but it relies on normalization by evaluation,
which is not immediately compatible with separate compilation.

9.3 Modular languages

Haste (Ekblad and Claessen 2014) is an extension of Haskell similar to Eliom. Instead of using syntactic annotations,
it embeds client and server code into monads. It inherits the Haskell features in term of modules and data abstraction.
Furthermore, the tierless compiler for Haste relies heavily on the GHC, providing support for separate-compilation.
However, a complete expressive module language for Haskell is still work in progress (Kilpatrick et al. 2014).

MetaOCaml (Kiselyov 2014) is an extension of OCaml for staged meta-programming. While the expression language
is quite similar to the one in Eliom, MetaOCaml provides no support for modules. Staging annotations are only on
expressions, not on declarations. Code generation and checking of the generated code is dynamic.

Modular macros (Nicole 2016; Yallop and White 2015) are another extension of OCaml. It uses staging to implement
macros. It provides both a quotation-based expression language along with staging annotations on declarations. It also
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aims to support modules and functors. Contrary to Eliom, there is only one type universe. Furthermore, the slicing
can also be seen as dynamic (since code is executed at compile time to produce pieces of programs). In particular, this
allows to lift most of the restriction imposed on multi-stage functors.

Acute (Sewell et al. 2007) is an extension of OCaml for distributed programming. It provides typesafe serialization
and deserialization and also allows arbitrary loading of modules at runtime. Like Eliom, it provides a full-blown module
system. However, it takes an opposite stance on the execution model: each actor runs independent programs and
communications are completely dynamic. Handling of multiple type universes is done by providing a description of the
type with each messages and by versioning APIs.

CONCLUSION

We presented Eliomm , a tierless Web programming language with an expressive ML-like module system. Its expression
language is a reformulation of Eliomε (Radanne et al. 2016a). It features a module language with manifest types
in the style of Leroy (1995) with base, client, server and mixed modules. Additionally, we were able to propose a
limited notion of mixed functors that contain both client and server declarations. We gave a compilation scheme that
transforms tierless programs in two non-tierless programs, one for the client and one for the server. We showed that
our compilation scheme preserves the typing relations and provides good support for separate compilation.

The Eliomm language aims to model our current implementation of Eliom, an extension of the OCaml programming
language with tierless annotations. This extension was designed to integrate well with the OCaml language which
allows to use OCaml modules and compilation products from the vanilla OCaml compiler directly.

The need for a module system which integrates tierless annotations comes directly from the development of libraries
and Web applications as part of Ocsigen. Web sites have become increasingly complex in the past decade. While
several solutions for the “tiers” problem has been proposed, very few tackle the practical issues raised by programming
large web applications with tierless languages. We believe that good support for modularity and abstraction is essential
for any serious large-scale programming.

While the notion of locations and mixed modules achieve the desired modularity, several questions remain open
regarding mixed functors. Functors are very expressive, combining this expressivity with a static slicing operation and
a one-way communication scheme is challenging. We proposed to impose careful restrictions over the shape of mixed
functors that allow to slice them statically, associated with some code transformations that help the slicing operation.
We believe these restrictions can be further relaxed. User feedback should give us insight on how mixed functors are
used and which kind of programming idioms and library organization they allow.
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