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ON HYPERBOLIC KNOTS IN S 3 WITH EXCEPTIONAL SURGERIES AT
MAXIMAL DISTANCE

BENJAMIN AUDOUX, ANA G. LECUONA, AND FIONNTAN ROUKEMA

Abstract. Baker showed that 10 of the 12 classes of Berge knots are obtained by surgery on the
minimally twisted 5-chain link. In this article we enumerate all hyperbolic knots in S 3 obtained by
surgery on the minimally twisted 5-chain link that realise the maximal known distances between
slopes corresponding to exceptional (lens, lens), (lens, toroidal), (lens, Seifert fibred spaces) pairs.
In light of Baker’s work, the classification in this paper conjecturally accounts for “most" hyper-
bolic knots in S 3 realising the maximal distance between these exceptional pairs. All examples
obtained in our classification are realised by filling the magic manifold. The classification high-
lights additional examples not mentioned in Martelli and Petronio’s survey of the exceptional
fillings on the magic manifold. Of particular interest, is an example of a knot with two lens space
surgeries that is not obtained by filling the Berge manifold.

1. Introduction

Let K be a knot in S 3 and consider its exterior S 3 \ ν(K) where ν(K) is a small open neigh-
borhood of the knot. For a slope α (the isotopy class of an essential simple closed curve) on the
boundary of the exterior of K, the closed manifold obtained from α-surgery (gluing a solid torus
to the exterior of K by identifying the meridian to α) is denoted by K(α).

Suppose that K is hyperbolic, that is, its complement admits a Riemannian metric of constant
sectional curvature −1 which is complete and of finite volume. Then Thurston’s hyperbolic
Dehn surgery theorem implies that all but finitely many slopes produce hyperbolic manifolds via
surgery [Th]. The exceptional cases are called exceptional slopes and exceptional surgeries.

It is a consequence of the geometrization theorem that every exceptional surgery on a hyper-
bolic link is S 3, a lens space, has an essential surface of non-negative Euler characteristic, or
fibres over the sphere with three exceptional fibres. We now assign the following standard names
to these classes of non-hyperbolic 3-manifolds following [G1]. We say that a manifold is of type
D, A, S or T if it contains, respectively, an essential disc, annulus, sphere or torus, and of type S H

or T H if it contains a Heegaard sphere or torus. Finally we denote by Z the type of small closed
Seifert manifolds. Notice that S H = {S 3} and T H is the set of lens spaces (including S 1 × S 2).
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The distance (minimal geometric intersection) between two slopes α, β on a torus is denoted
∆(α, β). The maximal distance between types of exceptional manifolds C and D is defined as
max{∆(α, β) | (X, α, β) ∈ (C,D)}) and denoted ∆(C,D).

Quite some energy has been devoted in the literature to the understanding of exceptional slopes
on hyperbolic manifolds. In the case of hyperbolic knot exteriors there are strong restrictions on
their exceptional surgeries or fillings. The S 3 filling is unique [GL1] and (obviously) no knot
exterior has a filling with an essential annulus or disc. Conjecturally no hyperbolic knot exterior
has a reducible surgery [GAS]. So, there are nine possible exceptional pairs obtained by surgery
on a hyperbolic knot in S 3. Namely, the (S 3,T H), (S 3,T ), (S 3,Z), (T H,T H), (T H,T ), (T H,Z),
(T,T ), (T,Z), (Z,Z) exceptional pairs.

The (S 3,T ) pairs have been completely enumerated [GL2]. Examples of (S 3,Z) pairs have
been constructed, see for example [Eud] and [Rou2]. The exceptional surgeries on the figure
eight knot tell us that ∆(T H,Z),∆(T,Z),∆(Z,Z) > 5, and from [Ago] we know that there are
only a finite number of examples realising these distances. The (S 3,T H) pairs are conjecturally
a subset of the Berge knots classified in [Be1]. It follows that, since the remaining three cases all
involve a T H surgery, an enumeration of the remaining three exceptional pairs is conjecturally an
enumeration of a subset of Berge knots. Baker showed [Bak] that 10 of the 12 classes of Berge
knots are obtained by surgery on the minimally twisted 5-chain link (5CL, see Figure 3) . So,
conjecturally, most of the hyperbolic knots realising (T H,T H), (T H,T ) and (T H,Z) exceptional
pairs of slopes are obtained by surgery on 5CL.

In this article we enumerate all hyperbolic knots obtained from surgery on the 5CL that realise
the maximum known distance between the exceptional filling types. We completely classify the
knots arising in this manner and having two different lens space surgeries; having a lens space
surgery and a toroidal surgery at distance 3; and having a lens space surgery and a small Seifert
surgery at distance 2. In light of Baker’s work, the classification in this article conjecturally
accounts for most examples of hyperbolic knots with an exceptional pair of slopes at maximal
distance. Our main result is the following:

Theorem 1.1. Let K be a hyperbolic knot in S 3 obtained by surgery on the minimally twisted
5-chain link with two exceptional slopes α and β, and let K(α) be a lens space. The following
statements are true:

• If K(β) is a lens space then K is in found in Figure 1.
• If K(β) is toroidal then the distance between α and β is at most three and if the distance

equals three then K is found in Figure 2.
• If K(β) fibres over the sphere with three exceptional fibres then the distance between α

and β is at most two and if the distance equals two then K is found in Figure 2.
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Figure 1: All hyperbolic knots with two lens space fillings obtained by surgery on the minimally
twisted 5-chain link.
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Figure 2: All hyperbolic knots with a lens space and a toroidal filling at distance 3, or a lens
space and a Seifert filling at distance 2, obtained by surgery on 5CL.

Given M, an orientable cusped hyperbolic 3–manifold and τ a fixed topic component of the
boundary of its compactification, it is a consequence of [LM] that 8 is a universal upper bound
for ∆(α1, α2) for each exceptional pair (M, τ;α1, α2) (where with this notation we indicate that
α1 and α2 are slopes on τ). The celebrated Gordon-Luecke theorem [GL1] can be formulated by
saying that ∆(S H, S H) = 0, the Cabling conjecture by saying that ∆(S , S H) = −∞ [GAS], the
Berge conjecture by saying that the Berge knots in [Be1] contain all exceptional pairs of type
(S H,T H), and the theorem of [GL2] by saying that the knots realizing ∆(α1, α2) = ∆(S H,T ) are
precisely the Eudave-Muñoz knots.

It is natural to generalise these types of questions by asking whether we can find ∆(C1,C2)
for each pair of classes C1,C2 ∈ {S H, S ,T H,T,D, A,Z}, and whether we can enumerate all
(M, τ;α1, α2) of type (C1,C2) with ∆(α1, α2) = ∆(C1,C2). A great deal is known, see [GL3]
or [G2] for an overview.

If a knot in S 3 is not a torus knot or a satellite knot then its exterior is a hyperbolic 3-
manifold. We can consider all (MK , τ;α1, α2) when MK is the exterior of a knot K in S 3 and
ask what is ∆(C1,C2) and which (MK , τ;α1, α2) of type (C1,C2) have ∆(α1, α2) = ∆(C1,C2) for
this subclass of hyperbolic manifolds. Of course, this is the same as asking what is the great-
est value of ∆(α2, α3) among exceptional triples (M, τ;α1, α2, α3) of type (S H,C,D) and which
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(M, τ;α1, α2, α3) realise the maximum ∆(α2, α3). From this perspective, in this article we enu-
merate such (S H,C,D) triples obtained from the minimally twisted 5-chain link.

In order to state some of the noteworthy remarks coming from the analysis done to establish
Theorem 1.1 we need to introduce some more notation. The chain links that are ubiquitous
throughout this paper are depicted in Figure 3. We keep the notation conventions of [MPR] and
denote the minimally twisted 5-chain link by 5CL and its exterior by M5; the 4-chain link is
denoted 4CL and its exterior is denoted M4. A −1 surgery on any component of 4CL gives a
3-chain link 3CL, whose exterior is denoted by M3. We closely reference the tables from [MP]
which give a classification of the exceptional surgeries on the mirror 3CL∗ shown in Figure 3.
The exterior of this link is the “magic manifold” [GW] which we will denote by N. The manifold
F, the exterior of the minimally twisted 4-chain link, will also appear extensively in the text.

4CL5CL 3CL 3CL*M4CL

Figure 3: The minimally twisted 5-chain link 5CL, the 4-chain link 4CL, the minimally twisted
4-chain link M4CL and the 3-chain links 3CL and 3CL∗. The exteriors of these links are respec-

tively called M5,M4, F,M3 and N.

The knots in Figures 1 and 2 are described by giving a filling instruction on two of the 3
boundary components of the magic manifold. The exceptional slopes on the knots N(−3

2 ,−
14
5 )

and N(−5
2 ,

1−2k
5k−2 ) from Figure 1 and corresponding fillings are found in Theorem 3.1. On the other

hand, the exceptional slopes on N(−1 + 1
n ,−1− 1

n ) and N(−1 + 1
n ,−1− 1

n−2 ) from Figure 2 and the
corresponding fillings are found in Theorem 4.1. Furthermore, Theorems 3.1 and 4.1 go further
and show that the three families of knots and the isolated example shown in Figures 1 and 2 are
all distinct knots.

There is a unique hyperbolic knot in a torus with two non-trivial surgeries [Be2]; the exterior
of this knot is called the Berge manifold, which will appear frequently in the text. It can be
obtained by filling one of the 3 boundary components of the magic manifold N. Indeed, the
Berge manifold is N(−5

2 ). Cutting, twisting and filling the boundary of the torus yields an infinite
family of inequivalent knots in S 3 with two lens space fillings. This family is precisely the set of
N(−5

2 ,
1−2k
5k−2 ) from Theorem 1.1. We find particularly interesting the following fact.
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Fact: the example N(−3
2 ,−

14
5 ) is not obtained by surgery on the Berge manifold (Theorem 3.1).

The article [BDH] contains a complete description of all surgeries on the 5CL with three
cyclic fillings. It is a more general question than our quest to find knot exteriors on the 5CL
with two cyclic fillings and the techniques used in [BDH] are different from ours. A transla-
tion of our results into the language of [BDH] follows. The family {N(−5

2 ,
1−2k
5k−2 )} is the family

{B(2k−1)/(5k−2)} ⊂ {Bp/q} from [BDH], and the isolated example N(−3
2 ,−

14
5 ) is A2,3 from [BDH].

A final remark, the family N(−1 + 1
n ,−1 − 1

n ) and its exceptional slopes and filling are high-
lighted in [MP, Table 17], but the distinct family N(−1 + 1

n ,−1 − 1
n−2 ) is not highlighted in [MP].

1.1. Article structure. The results in this article are obtained by a careful analysis of the classi-
fications of exceptional sets of slopes on surgeries of the minimally twisted 5-chain link given in
[MP] and [Rou2]. The work done there, translates the enumeration of exceptional pairs realising
maximal distances into finding the solutions to a (long) list of elementary diophantine equations.
The translation necessitates a table by table analysis of the work given in [MP] and [Rou2]. A
collection of easy (but technical) lemmas in the Appendix facilitates the translation and reduces
the amount of work needed. The proofs of the main results are littered with references to results
in the Appendix, [MP], and [Rou2]. Therefore, this article is best read with both articles and the
Appendix in-hand.

Section 2 sets out the notation and conventions used throughout this article. Section 3 gives an
enumeration of all exceptional (S H,T H,T H) triples obtained by surgery on 5CL. Section 4 gives
an enumeration of all exceptional (S H,T H,T ) triples obtained by surgery on 5CL. Section 5 gives
an enumeration of all exceptional (S H,T H,Z) triples obtained by surgery on 5CL. Sections 3-5
all proceed in the same way. The sections start with a precise statement about the enumeration of
the exceptional triples. The results are established by first showing that all examples are obtained
by surgery on 4CL, and then showing that all examples are obtained by surgery on 3CL. The final
sections then enumerate all examples of exceptional triples obtained by surgery on 3CL.

1.2. Acknowledgements and remarks. We are thankful to Daniel Matignon and Luisa Paoluzzi
for fruitful conversations. We also want to thank Ken Baker for interesting discussions. The sec-
ond author is partially supported by the Spanish GEOR-MTM2014-55565. The third author was
supported as a member of the Italian FIRB project ‘Geometry and topology of low-dimensional
manifolds’ (RBFR10GHHH), internal funding from the University of Sheffield and the French
ANR research project “VasKho” ANR-11-JS01-002-01.

2. Notation and conventions

In this section we set out notation and conventions used throughout the article. We will use
the conventions on surgery instructions set out in [Rou2] which we briefly outline. For more
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detailed descriptions, please refer to [Rou2]. Given an orientable compact 3-manifold X such
that ∂X is a collection of tori, we use the term slope to indicate the isotopy class of a non-trivial
unoriented loop on a component of ∂X. After fixing a choice of meridian and longitude on a
boundary torus, a slope is naturally identified with an element in Q∪ {∞}. A filling instruction α
for X is a set consisting of either a slope or the empty set for each component of ∂X. Throughout
this article the components of the chain links are ordered cyclically, and the filling instructions
are thus identified with tuples of elements in Q ∪ {∞}. The filling X(α) is the manifold obtained
by glueing one solid torus to ∂X for each non-empty slope in α. The meridian of the solid torus
is glued to the slope.

A very related concept to that of a filling is a surgery on a link L ⊂ S 3. By definition, a surgery
on L is a filling of the exterior of L, S 3 \ ν(L), where ν(L) is an open regular neighborhood of L.
By a surgery instruction for L we mean a filling instruction on the exterior of L.

In the present article we will be concerned with exceptional fillings. If the interior of X is
hyperbolic but the interior of X(α) is not, we say that α is an exceptional filling instruction for X
and X(α) is an exceptional filling. We follow the notation used to describe the sets of exceptional
slopes set out in [G2]. The set of exceptional slopes on a fixed toroidal boundary component
τ of a hyperbolic 3-manifold X is denoted by Eτ(X), and the cardinality of Eτ(X) by eτ(X). In
our case τ will refer to the nth component of the chain link with n components and is dropped
throughout the article. A word of caution: when F is a filling instruction on M5, we write the
elements of E(M5(F )) with respect to the choice of bases on M5 (and not M5(F )!).

Denoting by Ci a type of manifolds (for example lens spaces, or reducible manifolds) one of
the most recurrent notions in this article is that of an exceptional (C1, ...,Cn) n-tuple. By this we
mean the following: if X is a hyperbolic 3-manifold and α1, . . . , αn are exceptional slopes on
a fixed toroidal boundary component of X, with X(αi) a manifold of type Ci, then we say that
(X, α1, ..., αn) is an exceptional (C1, ...,Cn) n-tuple and write (X, α1, ..., αn) ∈ (C1, ...,Cn). There
is a notion of equivalence among exceptional tuples. We will say that two exceptional n-tuples
(X1, α1, ..., αn) and (X2, β1, ..., βn) are equivalent if there exists a homeomorphism h : X1 → X2

with X2(h(αi)) = X2(βi). When two n-tuples (X1, α1, ..., αn), (X2, β1, ..., βn) are equivalent we write
(X1, α1, ..., αn) � (X2, β1, ..., βn).

We now recall the following important notion introduced in [Rou2]: given α, a filling instruc-
tion on a manifold X, we say that α factors through a manifold Y if there exists some filling
instruction α′ ⊂ α such that Y = X(α′).

To describe the exceptional fillings on the minimally twisted 5-chain link, we follow the stan-
dard choice of notation used to describe graph manifolds set out in [Rou2]. Very briefly, if G is
an orientable surface with k boundary components and Σ is G minus n discs, we can construct
homology bases {(µi, λi)} on ∂(Σ × S 1). For coprime pairs {(pi, qi)}ni=1 with |pi| ≥ 2 we get a
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Seifert manifold (G, (p1, q1), . . . , (pn, qn)) with fixed homology bases on its k boundary compo-
nents. Given Seifert manifolds X and Y with boundary and orientable base surfaces as above and
an element B ∈ GL2(Z), we define X ∪B Y unambiguously to be the quotient manifold X ∪ f Y ,
with f : T → T ′ where T and T ′ are arbitrary boundary tori of X and Y , and f acting on homol-
ogy by B with respect to the fixed bases. Similarly one can define X

/
B when X has at least two

boundary components.
As it happens in other papers on the subject, we employ a somehow more flexible notation for

lens spaces than the usual one. We will write L(2, q) for the real projective space, L(1, q) for the
3-sphere, L(0, q) for S 2×S 1 and L(p, q) for L(|p|, q′) with q ≡ q′ modulo p and 0 < q′ < |p|, for any
coprime p, q. Later in the paper, we will often be interested in understanding when L(x, y) = S 3

when x and y have some complicated expression. As L(x, y) = S 3 if and only if x = 1, to simplify
matters, we will often replace “y” with “ ? ”.

Finally, throughout the text the symbols ε, ε′ etc. will all denote ±1.

3. (S H,T H,T H) triples from 5CL

In this section we completely enumerate all exceptional (S H,T H,T H) triples obtained by
surgery on the 5CL. Each one of these triples can be thought of as a knot in S 3 with two dif-
ferent lens space surgeries. To state the main result of this section we need to first define the
following family of 3–manifolds, where the parameter k is an integer:

Ak :=
(
N
(
− 5

2 ,
1−2k
5k−2

)
,∞,−2,−1,

)
.

Theorem 3.1. The following statements are true:

• If
(
M5( a

b ,
c
d ,

e
f ,

g
h ), α, β, γ

)
∈ (S H,T H,T H) then

(
M5( a

b ,
c
d ,

e
f ,

g
h ), α, β, γ

)
is equivalent to Ak

for some k or to
(
N(−3

2 ,−
14
5 ),−2,−1,∞

)
.

• The sets of exceptional slopes and corresponding fillings of N
(
− 5

2 ,
1−2k
5k−2

)
for k , 0 and of

N
(
− 3

2 ,−
14
5 ) are shown in Table 1.

•
(
N(−3

2 ,−
14
5 ),−2,−1,∞

)
� Ak for all k, and all N

(
− 5

2 ,
1−2k
5k−2

)
are obtained by filling the

Berge manifold.

Remark If k = 0 then N(−5
2 ,

1−2k
5k−2 ) is the exterior of the (−2, 3, 7) pretzel knot which has 7

exceptional slopes, see [MP, Table A.4] for details.

We prove Theorem 3.1 by first considering, in Section 3.1, all (M5(F ), α, β, γ) ∈ (S H,T H,T H)
with F not factoring through M4. This set will turn out to be empty and we proceed in Section 3.2
to investigate the (M4(F ), α, β, γ) ∈ (S H,T H,T H) with F not factoring through M3. Again, there
will be no such examples and we will finally consider in Section 3.3 the case (M3(F ), α, β, γ) ∈
(S H,T H,T H) . We will produce a complete list of examples, the family Ak and the isolated
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k ∈ Z\{0}, E(N(−5
2 ,

1−2k
5k−2 )) = {−3,−2,−3

2 ,−1, 0,∞}

β ∈ E(N(−5
2 ,

1−2k
5k−2 )) N(−5

2 ,
1−2k
5k−2 )(β)

β = ∞ S 3

β = −3
(
D, (2, 1), (3, −2)

)⋃0 1
1 0


(
D, (2, 1), (3k−1, 5k−2)

)
β = −2 L(18−49k, 7−19k)
β = −3

2

(
D, (2, 1), (3, 1)

)⋃1 1
0 −1


(
D, (2, 1), (8k−3, 5k−2)

)
β = −1 L(49k−19, 31k−12)
β = 0

(
D, (2, −1), (5k−2, 8k−3)

)⋃ 0 1
−1 −1


(
D, (2, 1), (3, 1)

)
E(N(−3

2 ,−
14
5 )) = {−3,−5

2 ,−2,−1, 0,∞}

β ∈ E(N(−3
2 ,−

14
5 )) N(−3

2 ,−
14
5 )(β)

β = ∞ L(32, −9)
β = −3

(
S 2, (2, 1), (3, 2), (9, −5)

)
β = −5

2

(
D, (2, 1), (3, 1)

)⋃1 1
0 −1


(
D, (2, 1), (4, −5)

)
β = −2 S 3

β = −1 L(31, 17)
β = 0

(
D, (2, 1), (5, −4)

)⋃ 0 1
−1 −1


(
D, (2, 1), (3, 1)

)
Table 1: The exceptional slopes and corresponding fillings of hyperbolic knot exteriors in S 3

with two lens space fillings obtained by surgery on 5CL.

example in the statement of Theorem 3.1. The fact that the examples we find are all different is
an easy consequence of the results in [MP] and is shown at the end of Section 3.3. Throughout
the argument, easy (but technical) lemmas from the Appendix are referenced.

3.1. Hyperbolic knots with two lens surgeries arising from the 5–chain link. In this section
we prove that if M5(a

b ,
c
d ,

e
f ,

g
h ) (below) is a hyperbolic knot exterior admitting two different lens

space fillings then the instruction (a
b ,

c
d ,

e
f ,

g
h ) factors through M4.

If
(
M5( a

b ,
c
d ,

e
f ,

g
h ), α, β, γ

)
∈ (S H,T H,T H) and ( a

b ,
c
d ,

e
f ,

g
h ) does not factor through M4 then

[Rou2, Theorem 4] tells us that there are two different scenarios to consider: there are 3 excep-
tional slopes, E

(
M5( a

b ,
c
d ,

e
f ,

g
h )

)
= {0, 1,∞}; or there are 4 or 5 with {0, 1,∞} ( E

(
M5(a

b ,
c
d ,

e
f ,

g
h )

)
,
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a
b

c
d

e
f

g
h

and the manifold M5( a
b ,

c
d ,

e
f ,

g
h ) is equivalent to some M5(F ) listed in [Rou2, Tables 6 – 11]. We

study separately these two cases, starting with the latter one.

3.1.1. The case e (M5(F )) > 3. A careful inspection of [Rou2, Tables 14 – 20] shows that if
e
(
M5( a

b ,
c
d ,

e
f ,

g
h )

)
> 3, and a slope β yields a lens space or S 3 then it appears in Tables 17 or 18.

Namely, F = (−2, p
q , 3,

u
v ) [Rou2, Tables 17] or F = (−2, p

q ,
r
s ,−2) [Rou2, Tables 18].

Moreover, [Rou2, Tables 17-18] tells us that if we want one of the exceptional slopes to not
be in {0, 1,∞} (the case when {0, 1,∞} all correspond to cyclic fillings is considered in the next
section) then we must assume that −1 is a T H slope. If −1 corresponds to a T H filling on M5(F )
and (M5(F ), α,−1, γ) ∈ (S H,T H,T H), then we must necessarily assume that α, γ , 1 because
∆(S H,T H) = ∆(T H,T H) = 1 [GL1]. Each of −1, 0,∞ corresponding to a cyclic filling imposes
conditions on the slopes of F . We will now show that these conditions can not all be satisfied.

If F = (−2, p
q ,

r
s ,−2) from [Rou2, Tables 18] and ∞ is a cyclic filling then |s| = |q| = 1, and

so F = (−2, n, k,−2). From [Rou2, Tables 18] if M5(F )(0) ∈ S H ∪ T H then p
q = n = 1 + 1

m

or r
s = k = 1 + 1

m . This implies that one of n or k is equal to 0, which makes M5(F ) non-
hyperbolic, or 2 which makes F factor through M4 (see Lemma A.4). This means that if F is in
[Rou2, Tables 18] and has three cyclic fillings then the three exceptional slopes corresponding to
S H ∪ T H fillings on M5(F ) are {0, 1,∞}.

If F = (−2, p
q , 3,

u
v ) from [Rou2, Tables 17] and −1 is a cyclic filling then |p| = |u + v| = 1, and

so F = (−2, 1
n , 3, 1+ 1

k ). From [Rou2, Tables 17] if M5(F )(0) ∈ S H∪T H then u
v = 1+ 1

k = 3 which
has no integer solutions in k, or p

q = 1
n = 1 + 1

m which implies that p
q = 1

2 , or u
v = 1 + 1

k = 3 + 1
m

which implies that u
v = 2. Both p

q = 1
2 and u

v = 2 are excluded by Lemma A.4. This means
that if F is in [Rou2, Tables 17] and has three cyclic fillings then the three exceptional slopes
corresponding to S H ∪ T H fillings on M5(F ) are {0, 1,∞}.

We conclude then that, if
(
M5(a

b ,
c
d ,

e
f ,

g
h ), α, β, γ

)
∈ (S H,T H,T H) and F does not factor through

M4 then {α, β, γ} = {0, 1,∞}.

3.1.2. The case E(M5(F )) = {0, 1,∞}. We now consider
(
M5(a

b ,
c
d ,

e
f ,

g
h ), α, β, γ

)
∈ (S H,T H,T H)

with {α, β, γ} = {0, 1,∞}. We have

(1) M5
(a

b ,
c
d ,

e
f ,

g
h

)
(∞) =

(35)
F
(
− a

b ,
f
e ,

d
c ,−

g
h

)
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Recall that if one of a, b, c, d, e, f , g, h = 0 then M5(a
b ,

c
d ,

e
f ,

g
h ) is non-hyperbolic (Lemma A.4).

The enumeration of closed fillings of F is found in [Rou2, Table 4]. We will use (1) to translate
instructions on M5 to instructions on F and carefully consider the entries from [Rou2, Table 4].
In the analysis, T4.n will denote the nth line of the x

y column.
Considering the T H ∪ S H fillings of F listed in [Rou2, Table 4] we learn that, up to a D4

permutation of slopes, T4.2–T4.5 is a complete list of necessary and sufficient conditions for
M5(a

b ,
c
d ,

e
f ,

g
h )(∞) ∈ S H ∪ T H. The lines T4.2 and T4.3, which correspond to p

q = 0, can be
ignored since by (1) and Lemma A.4 they yield a non hyperbolic filling.

The entry T4.4 tells us that if M5( a
b ,

c
d ,

e
f ,

g
h )(∞) = F(−a

b ,
f
e ,

d
c ,−

g
h ) ∈ S H ∪T H, then, taking into

consideration the action of D4 on F, one of the following conditions necessarily holds:

(i) a
b = 1

n & e
f = k (ii) c

d = n & g
h = 1

k (iii) a
b = 1

n & g
h = 1

k (iv) c
d = n & e

f = k.

These conditions can all be identified using Lemma A.3. In fact, to identify for example case (i)
with case (iii) it suffices to remark that:(

M5( a
b ,

c
d ,

e
f ,

g
h ),∞

)
�

(16)3◦(18)

(
M5( a

a−b ,
d−c

d ,
h
g ,

f
e ),∞

)
.

In a similar way, case (i) can be identified with case (ii) using (16) and (17), and case (i) can be
identified with case (iv) using (25).

The entry T4.5 tells us that if M5(a
b ,

c
d ,

e
f ,

g
h )(∞) = F(−a

b ,
f
e ,

d
c ,−

g
h ) ∈ S H ∪ T H, then one of the

following conditions necessarily holds:

(i) a
b = 1

n & c
d = ε−nk

k (ii) a
b = ε−nk

k & c
d = n (iii) g

h = 1
n & e

f = ε−nk
k (iv) g

h = ε−nk
k & e

f = n

where ε = ±1. Case (i) is identified with Case (iii), and Case (ii) is identified with Case (iv)
using (17). Case (i) is identified with Case (ii) using a composition of (16), (17) and (25).

Therefore, any M5( a
b ,

c
d ,

e
f ,

g
h ) with

(
M5( a

b ,
c
d ,

e
f ,

g
h ), α, β, γ

)
∈ (S H,T H,T H) and {α, β, γ} = {0, 1,∞}

is equivalent to one of:

M5(1
n ,

c
d , k,

g
h ) (Family 1) or M5(1

n ,
ε−nk

k , e
f ,

g
h ) (Family 2).

We first consider the examples from Family 1. We have assumed that both 0 and 1 corre-
spond to S H or T H slopes. Examining the 1 slope we obtain

M5( 1
n ,

c
d , k,

g
h )(1) =

(36)
F(1−n

n ,
c
d , k,

g−h
h ) =

Lemma A.11

(
D, (1−n, n), (k, 1)

)⋃0 1
1 0


(
D, (c, d), (g−h, h)

)
which has an essential torus unless 0,±1 ∈ {1−n, k, c, g−h} (Lemma A.2). Since we are interested
in hyperbolic manifolds and instructions not factoring through M4, we can use Lemma A.4 to
rule out the possibilities 1 − n, k ∈ {0,±1} and c, g − h = 0. Without loss of generality (we are
only interested in the quotients c

d and g
h ) we are then left with the cases c = 1 or g = h + 1.
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Case c = 1: Turning now our attention to the slope 0 and writing c
d = 1

m , it holds

M5( 1
n ,

1
m , k,

g
h )(0) =

(37)
F( n

n−1 , 1 − m,−h
g , k − 1),

which, by Lemma A.2 and Lemma A.11, has an essential torus unless we are in the case
0,±1 ∈ {n, 1−m,−h, k−1}. This time Lemma A.4 leaves us with the necessary condition
h = ±1, which translates to g

h ∈ Z. Combining the two necessary conditions and writing
g
h = l, we learn that

M5( 1
n ,

1
m , k, l)(1) =

(36)
F(1−n

n ,
1
m , k, l − 1) =

(34)

(
D, (1−n, n), (k, 1)

)⋃0 1
1 0


(
D, (1, m), (l−1, 1)

)
=

(13)

(
S 2, (1+ml−m, 1−l), (1−n, n), (k, 1)

)
∈ T H

only if 0,±1 ∈ {1 + m(l − 1), 1 − n, k} (Lemma A.2). Lemma A.4 is used to rule out any
of these cases occurring.

Case g − h = 1: As before, turning now our attention to the slope 0 and writing g
h = 1 + 1

m ,
it holds

M5( 1
n ,

c
d , k,

m+1
m )(0) =

(37)
F( n

n−1 ,
c−d

c ,−
m

m+1 , k − 1),

which, unless 0,±1 ∈ {n, c − d,m, k − 1}, will have an essential torus by Lemma A.2 and
Lemma A.11. Just as in the preceding case, we can use Lemma A.4 to conclude that the
only possibility is c− d = ±1, which is equivalent to c

d = 1 + 1
l . Combining the necessary

conditions obtained we learn that

M5( 1
n ,

l+1
l , k,

m+1
m )(1) =

(36)
F( 1−n

n ,
l+1

l , k,
1
m ) =

(34)

(
D, (1−n, n), (k, 1)

)⋃0 1
1 0


(
D, (l+1, l), (1, m)

)
=

(13)

(
S 2, (l+ml+m, −l−1), (1−n, n), (k, 1)

)
∈ T H

only if 0,±1 ∈ {l + ml + m, 1 − n, k} (Lemma A.2). Lemma A.4 is used to rule out any of
these cases occurring.

We proceed now to consider the examples from Family 2. The analysis follows verbatim
the steps considered in the study of Family 1. We have assumed that both 0 and 1 correspond to
S H or T H slopes. The manifold

M5(1
n ,

ε−kn
k , e

f ,
g
h )(1) =

(36)
F( 1

n − 1, ε−kn
k , e

f ,
g
h − 1)

has an essential torus unless 0,±1 ∈ {1 − n, ε − kn, e, g − h} (Lemma A.2 and Lemma A.11).
Lemma A.4 implies that 1 − n, ε − kn < 0,±1 and e, g − h , 0. We are thus left with the
possibilities e = ±1 and g − h = ±1.
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Case e = 1: Writing e
f = 1

m we have

M5(1
n ,

ε−kn
k , 1

m ,
g
h )(0) =

(37)
F( n

n−1 ,
ε−(n+1)k

k ,−h
g ,

1−m
m )

which has again an essential torus unless 0,±1 ∈ {n, ε − (n + 1)k, h, 1 − m}. Lemma
A.4 leaves us with the necessary condition h = ±1 (note that every possible solution to
ε−(n+1)k = ±1, 0 yields a non hyperbolic manifold or an instruction that factors through
M4). Now, calling g

h = l we have

M5( 1
n ,

ε−kn
k , 1

m , l)(1) =
(36)

F( 1−n
n ,

ε−kn
k , 1

m , l − 1) =
(34)

(
D, (1−n, n), (1, m)

)⋃0 1
1 0


(
D, (ε−kn, k), (l−1, 1)

)
=

(13)

(
S 2, (n+m(1−n), n−1), (l−1, 1), (ε−nk, k)

)
∈ T H

only when 0,±1 ∈ {n+m(1−n), l−1, ε−nk} (Lemma A.2). These cases are all discounted
using Lemma A.4.

Case g − h = 1: Turning now our attention to the slope 0 and writing g
h = 1 + 1

m , it holds

M5(1
n ,

ε−kn
k , e

f ,
m+1

m )(0) =
(37)

F( n
n−1 ,

ε−(n+1)k
k ,− m

m+1 ,
e− f

f )

which, unless 0,±1 ∈ {n, ε−(n+1)k,m, e− f }, will have an essential torus by Lemma A.2
and Lemma A.11. Once again we use Lemma A.4 to conclude that the only possibility
is e − f = ±1, which is equivalent to e

f = 1 + 1
l . Combining the necessary conditions

obtained we learn that

M5( 1
n ,

ε−kn
k , l+1

l ,
m+1

m )(1) =
(36)

F( 1−n
n ,

ε−kn
k , l+1

l ,
1
m ) =

(34)

(
D, (1−n, n), (l+1, l)

)⋃0 1
1 0


(
D, (ε−kn, k), (1, m)

)
=

(13)

(
S 2, (k+m(ε−kn), kn−ε), (1−n, n), (l+1, l)

)
∈ T H

only if 0,±1 ∈ {k + m(ε − kn), 1 − n, l + 1} (Lemma A.2). Lemma A.4 is used to rule out
any of these cases occurring.

We conclude that if (M5(F ), α, β, γ) ∈ (S H,T H,T H) then F factors through M4. This com-
pletes the argument and thus Section 3.1.

3.2. Hyperbolic knots with two lens surgeries arising from the 4–chain link. In this sec-
tion we prove that if M4( a

b ,
c
d ,

e
f ) (below) is hyperbolic with three fillings in S H ∪ T H then the
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instruction ( a
b ,

c
d ,

e
f ) factors through M3.

e
f

αc
d

a
b

From [Rou2, Theorem 5] and a careful inspection of [Rou2, Tables 12, 21, 22] we deduce that if(
M4(a

b ,
c
d ,

e
f ), α, β, γ

)
∈ (S H,T H,T H), then e

(
M4( a

b ,
c
d ,

e
f )
)

= 4 and {α, β, γ} ⊂ {0, 1, 2,∞}. Since
∆(S H,T H) = ∆(T H,T H) = 1 [GL1], it follows that either {α, β, γ} = {1, 2,∞} or {α, β, γ} =

{0, 1,∞}. For {α, β, γ} = {1, 2,∞} as ordered sets, we have

(†)
(
M4( a

b ,
c
d ,

e
f ), α, β, γ

)
�

Lemma A.7 & (29)◦(16)2

(
M5(−1, a−b

b ,
c
d ,

e
f ), α′, β′, γ′

)
,

where {α′, β′, γ′} = {0, 1,∞} as ordered sets. Now,

(†) �
(24)

(
M5( f

f−e ,−1, d
d−c ,

a−2b
a−b ), 1 − (α′)−1, 1 − (β′)−1, 1 − (γ′)−1

)
�

(29)◦(16)

(
M4(2 f−e

f−e ,
2d−c
d−c ,

a−2b
a−b ), 1 − (α′)−1, 1 − (β′)−1, 1 − (γ′)−1

)
and {1 − (α′)−1, 1 − (β′)−1, 1 − (γ′)−1} = {∞, 0, 1} as ordered sets. Hence, we may assume from
here on that if

(
M4( a

b ,
c
d ,

e
f ), α, β, γ

)
∈ (S H,T H,T H) then {α, β, γ} = {1, 2,∞}.

We now proceed to examine the necessary conditions on the filling instruction ( a
b ,

c
d ,

e
f ) im-

posed from {α, β, γ} = {1, 2,∞} corresponding to S H ∪ T H slopes.

3.2.1. Necessary conditions from M4
(a

b ,
c
d ,

e
f

)
(2). We have

M4(a
b ,

c
d ,

e
f )(2) =

(33)

(
D, (a−b, b), (e− f , f)

)⋃0 1
1 0


(
D, (c, d), (2, −1)

)
∈ S H ∪ T H

only if 0,±1 ∈ {a − b, e − f , c} by Lemma A.2. If a − b = 0, e − f = 0, c = 0 then a
b = 1, e

f = 1,
c
d = 0 respectively, which are all excluded since we are only interested in the hyperbolic case
(Lemma A.6). We continue with a case by case analysis:

The case |a − b| = 1: We are working with a
b , so, up to a simultaneous change of signs of a

and b, we may assume w.l.o.g. that a − b = 1. This gives us, again by Lemma A.2,

M4
(a

b ,
c
d ,

e
f

)
(2) =

(33)

(
D, (1, b), (e− f , f)

)⋃0 1
1 0


(
D, (c, d), (2, −1)

)
=

(13)

(
S 2, (b( f−e)− f , e− f), (c, d), (2, −1)

)
∈ S H ∪ T H
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only if 0,±1 ∈ {c, b( f − e) − f }. The case c = 0 is directly excluded by Lemma A.6. If
b( f − e) − f = 0 then b = 1 + e

f−e = 1 + 1
f
e −1

. But b is an integer, so f
e − 1 ∈ {0,±1} and

e
f ∈

{ 1
2 , 1,∞

}
which is excluded by Lemma A.6.

So, up to changing the signs of c and d or of e and f , we may even assume w.l.o.g. that
either c = 1 or b( f − e) = 1 + f ;

The case |e − f | = 1: Lemma A.7 tells us that M4( a
b ,

c
d ,

e
f )(2) = M4( e

f ,
c
d ,

a
b )(2). So, any

examples found in this case are contained in the case |a − b| = 1;
The case |c = 1|: Up to a simultaneous change of signs of c and d, we may assume w.l.o.g.

that c = 1. We get

M4( a
b ,

c
d ,

e
f )(2) =

(33)

(
D, (a−b, b), (e− f , f)

)⋃0 1
1 0


(
D, (1, d), (2, −1)

)
=

(13)

(
S 2, (e− f , f), (a−b, b), (1−2d, 2)

)
∈ S H ∪ T H

only when 0,±1 ∈ {a − b, e − f , 1 − 2d} by Lemma A.2. If a − b or e − f equals zero,
then a

b , respectively e
f , equals 1 which is excluded by Lemma A.6. Since d is an integer,

1 − 2d , 0 and if 1 − 2d = ±1, then d ∈ {0, 1} ⇒ c
d ∈ {1,∞} which is again excluded by

Lemma A.6.
So either |a− b| = 1 or |e− f | equals 1. As previously remarked, Lemma A.7 allows us

to assume w.l.o.g that |a − b| = 1. Up to a simultaneous change of signs of a and b, we
may assume that a − b = 1.

To summarise, if M4(a
b ,

c
d ,

e
f )(2) ∈ S H ∪T H, then we may assume that one of the following sets

of conditions holds:

a − b = 1 (C0
2)

c = 1 (C′2)
(C1

2) or
a − b = 1 (C0

2)

b( f − e) = 1 + f (C′′2 )
(C2

2).

3.2.2. Necessary conditions from M4( a
b ,

c
d ,

e
f )(1). We have

M4
(a

b ,
c
d ,

e
f

)
(1) =

(32)

(
S 2, (a−2b, b), (c−d, c), (e−2 f , f)

)
∈ S H ∪ T H

only if 0,±1 ∈ {a − 2b, c − d, e − 2 f } by Lemma A.2. If 0 ∈ {a − 2b, c − d, e − 2 f }, then one of
a
b = 2, c

d = 1 or e
f = 2 which are all excluded by Lemma A.6. So, if M4

( a
b ,

c
d ,

e
f

)
(1) ∈ S H ∪ T H

then one of the following conditions necessarily holds:

a − 2b = ε (C1
1) or c − d = ε (C2

1) or e − 2 f = ε (C3
1)

where ε = ±1.
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3.2.3. Arising from M4( a
b ,

c
d ,

e
f )(∞). We have

M4(a
b ,

c
d ,

e
f )(∞) =

(30)

(
S 2, (a, b), (d,−c), (e, f )

)
∈ S H ∪ T H

only when 0,±1 ∈ {a, d, e} by Lemma A.2. If one of a, d, e equals zero, then one of a
b = 0, c

d = ∞,
e
f = 0 which are all excluded by Lemma A.6. So, if M4( a

b ,
c
d ,

e
f )(∞) ∈ S H ∪ T H then one of the

following conditions necessarily holds:

a = η (C1
∞) or d = η (C2

∞) or e = η (C3
∞)

where η = ±1.

3.2.4. Enumeration of M4( a
b ,

c
d ,

e
f ) satisfying the necessary conditions. We have shown that if

(M4(F ), α, β, γ) ∈ (S H,T H,T H) then we may assume that F is equivalent to a filling instruction
( a

b ,
c
d ,

e
f ) satisfying one of C1

2 or C2
2, one of C1

1, C2
1 or C3

1 and one of C1
∞, C2

∞ or C3
∞. We will now

show that any such ( a
b ,

c
d ,

e
f ) must factor through M3:

C0
2 + C1

1: substituting a − b = 1 into a − 2b = ε gives b = 1 − ε ⇒ a
b = 1 + 1

1−ε ∈
{ 3

2 ,∞
}

which is excluded by Lemma A.6.
C0

2 + C1
∞: substituting a = η in to a − b = 1 gives a

b =
η

η−1 = 1 + 1
η−1 ∈

{1
2 ,∞

}
which is

excluded by Lemma A.6.

C′2 + C2
1: substituting c = 1 into c − d = ε gives d = 1 − ε ⇒ c

d = 1
1−ε ∈

{ 1
2 ,∞

}
which is

excluded by Lemma A.6.
C′2 + C2

∞: c
d = ±1 and which is excluded by Lemma A.6.

C2
2 + C3

1: C3
1 implies e − f = f + ε which we substitute into b( f − e) = 1 + f to get

−b( f + ε) = 1 + f . If f = −ε then e
f = −1 which is excluded by Lemma A.6, and

otherwise −b = 1 + 1−ε
f +ε

. If ε = 1, then b = −1, a = 0 and a
b = 0 which are excluded

by Lemma A.6. If ε = −1 then 2
f−1 = −b − 1 is an integer, so f − 1 divides 2 and

f ∈ {−1, 0, 1, 2, 3}. If f = 3, then b = −2, a = −1 and a
b = 1

2 which is excluded by
Lemma A.6. Otherwise, e

f = 2 − 1
f ∈

(
1, 3

2 , 3,∞
)

which is excluded by Lemma A.6;
C2

2 + C3
∞: if e = η then f , ±1 by Lemma A.6. Substituting e = η into b( f − e) = 1 + f

gives b( f − η) = 1 + f ⇒ b = 1 +
1+η

f−η . If η = −1, then b = 1, a = 2 and a
b = 2 which is

excluded by Lemma A.6. If η = 1 then 2
f−1 = b−1 is an integer, and f −1 divides 2 which

implies f ∈ {−1, 0, 1, 2, 3}. If f = 3, then b = 2, a = 3 and a
b = 3

2 which is excluded by
Lemma A.6. Otherwise, e

f = 1
f ∈

(
− 1, 1

2 , 1,∞
)

which is excluded by Lemma A.6.
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C2
1 + C2

∞: we have c = η + ε ⇒ c
d =

η+ε

eta = 1 + εη ∈ {0, 2} which is excluded by Lemma
A.6.

C3
1 + C3

∞: we have 2 f = η − ε⇒ f ∈ {0,±1}, so e
f ∈ {±1,∞} which is excluded by Lemma

A.6.

We now observe that the above analysis is enough to conclude that no triple Cn
2 ∪ Cm

1 ∪ Ck
∞ of

conditions can hold:

• C0
2 necessarily holds. The above analysis implies that C1

1 or C1
∞ do not hold.

• If C′2 holds then the above analysis shows that neither C2
1 or C2

∞ holds. Moreover, C1
2 and

C3
∞ do not hold simultaneously. So, any (S H,T H,T H)-triple of the form

(
M4(a

b ,
c
d ,

e
f ), α, β, γ

)
with (a

b ,
c
d ,

e
f ) not factoring through M3 necessarily satisfies C2

2.
• If C2

2 holds then C3
1 and C3

∞ cannot hold. Moreover, C2
1 and C2

∞ cannot hold simultane-
ously.

We conclude that, as announced at the beginning of the section, if (M4(F ), α, β, γ) ∈ (S H,T H,T H)
then F factors through M3.

3.3. Hyperbolic knots with two lens surgeries arising from the 3–chain link. We now enu-
merate all the hyperbolic knots with two lens space surgeries obtained by surgery on the 3–chain
link. We prove the following result:

Proposition 3.2. If
(
M3(a

b ,
c
d ), α, β, γ

)
∈ (S H,T H,T H) then

(
M3(a

b ,
c
d ), α, β, γ

)
is equivalent to(

N
(
− 3

2 ,−
14
5 ),−2,−1,∞

)
or some Ak.

The enumeration of all (S H,T H,T H) triples obtained by surgery on 3CL comes from a careful
examination of the tables in [MP]. It should be noted that the classification of exceptional fillings
on the exterior of the 3-chain link in [MP] is performed on the exterior of the mirror image 3CL∗.
The exterior of 3CL∗ is denoted N, and, of course, M3( a

b ,
c
d ,

e
f ) = N(−a

b ,−
c
d ,−

e
f ). For the sake of

clarity when referencing tables, we adopt the convention in [MP].
All exceptional closed fillings of N are shown in [MP, Tables 2 – 4] and we consider each

of the tables individually. First, we note that [MP, Table 4] involves no fillings of the form
L(?, ?) so we restrict our attention to [MP, Tables 2 –3]. In Table 3 there are some entries where
N( p

q ,
r
s ,

t
u ) = L(?, ?). However, in each case, applying Lemma A.10 we can conclude that if F ⊂

{
p
q ,

r
s ,

t
u } with |F | = 2 then N(F ) is non-hyperbolic. So, if

(
M3(a

b ,
c
d ), α, β, γ

)
∈ (S H,T H,T H) then(

M3(a
b ,

c
d ), α, β, γ

)
is equivalent to some

(
N( r

s ,
t
u ), α′, β′, γ′

)
with α′, β′, γ′ ∈ {−3,−2,−1, 0,∞} and

the r
s ,

t
u can be found in [MP, Table 2] if all slopes are finite, or in [MP, Theorem 1.3] if some

slope is∞. We now examine each case individually.
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3.3.1. Case 0 is an S 3 slope. We see directly from [MP, Table 2] that if N( r
s ,

t
u )(0) = L(?, ?) then

r
s = n, t

u = −4 − n + 1
m and N( r

s ,
t
u )(0) = L(6m−1, 2m−1). So, if N( r

s ,
t
u )(0) = S 3 then m = 0 and

t
u = ∞ implies the manifold is non-hyperbolic (Lemma A.10).

3.3.2. Case −1 is an S 3 slope. We see directly from [MP, Table 2] that if N( r
s ,

t
u )(−1) = L(?, ?)

then r
s = −3+ 1

n , and N( r
s ,

t
u )(−1) = L(2n(t+3u)−t−u, ?). If L(2n(t+3u)−t−u, ?) = S 3 then 2n(t+3u)−t−u =

±1. By changing the signs of both t and u, we may assume w.l.o.g. that

(2) 2n(t + 3u) − t − u = 1.

Moreover, we know that ∆(S H,TH) = ∆(TH,TH) = 1 [GL1]. If ∆(β,−1) = 1 then β = 1−k
k and

we can quickly see that the only pairs of possibilities for the T H slopes among the cases we are
considering are {−2,∞} and {0,∞}. From [MP, Theorem 1.3] we know that N( r

s ,
t
u )(∞) is always

a lens space.
We will now use (see [MP, Table 2]) to further refine the constraints, r

s = −3 + 1
n and (2), that

we have found from imposing −1 to be a S 3 slope. This time we will analyse the restrictions
we obtain by considering 0 and −2 to be lens space slopes and through this analysis we will
enumerate all (S 3,T H,T H) triples. We will denote the new parameters with primes.

Case 0 is a TH slope: Either r
s = −3 + 1

n = n′ or r
s = −3 + 1

n = −4 − n′ + 1
m′ .

Case r
s = −3 + 1

n = n′: In this case n′ = −2 or −4 and t
u = −4 − n′ + 1

m′ . The case
n′ = −2 is excluded by Lemma A.10. So, n′ = −4 which implies t

u = 1
m′ and n = −1.

From (2), we have −t(3 + 7m′) = 1 which cannot hold.
Case r

s = −3 + 1
n = −4 − n′ + 1

m′ : In this case t
u = n′ and from the former equality we

deduce n′ + 1 = 1
m′ −

1
n ∈ [−2, 2]∪ {∞} so n′ ∈ [−3, 1]∪ {∞}. From Lemma A.10 we

know that for N( r
s ,

t
u ) to be hyperbolic the only possible value of n′ = t

u is 1, which
implies that n = −1. Substituting this information in (2) we obtain −10u = 1. A
contradiction.

Case −2 is a TH slope: Either r
s = −3 + 1

n = −2 + 1
n′ or −2 + 1

n′ = t
u .

Case r
s = −2 + 1

n′ = −3 + 1
n : In this case n = 2 and, by (2),

(
N(−5

2 ,
t
u ),−1,−2,∞

)
is a

(S 3,TH,TH) triple whenever 3t + 11u = 1. Namely, for t = 4 − 11k and u = 3k − 1

with any k ∈ Z. That is
(
N(−5

2 ,
4−11k
3k−1 ),−1,−2,∞

)
are (S 3,TH,TH) triples for every

k ∈ Z.
Case −2 + 1

n′ = t
u : In this case t

u = 1−2n′
n′ so (2) becomes 2n(1+n′)+n′ = 2 so 3

2n+1 = n′+
1 ∈ Z. It follows that n ∈ {−2,−1, 0, 1}. For n ∈ {0, 1}, we have r

s = −3+ 1
n ∈ {−2,∞}

so the associated space is non-hyperbolic (Lemma A.10). For n = −2 and −1 we find

that
(
N(−7

2 ,−
5
2 ),−1,−2,∞

)
and

(
N(−4,−9

4 ),−1,−2,∞
)

are (S 3,TH,TH) triples.
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3.3.3. Case −2 is an S 3 slope. We see directly from [MP, Table 2] that if N( r
s ,

t
u )(−2) = L(?, ?)

with N( r
s ,

t
u ) hyperbolic then r

s = −2 + 1
n , and N( r

s ,
t
u )(−2) = L((3n(t+2u)−2t−u, ?). So, up to simulta-

neously reversing the signs of t and u, we have N( r
s ,

t
u )(−2) = S 3 if and only if w.l.o.g.

(3) 3n(t + 2u) − 2t − u = 1.

As in the previous section case ∆(S 3,TH) = ∆(TH,TH) = 1, so the only possibles pairs of
TH slopes are {−3,∞} and {−1,∞}. We know that the ∞–filling is always a lens space [MP,
Theorem 1.3].

If −1 or −3 correspond to lens space slopes, then there are conditions on r
s and t

u (see [MP,
Table 2]). We can use these conditions (the parameters are denoted with primes) in conjunction
with r

s = −2 + 1
n (already established) to enumerate all (S 3,T H,T H) triples. The cases are now

considered one at a time.

Case −1 is a TH slope: From [MP, Table 2], either −2 + 1
n = −3 + 1

n′ or t
u = −3 + 1

n′ .
Case −2 + 1

n = −3 + 1
n′ : In this case n = −2 and we find that

(
N(−5

2 ,
t
u ),−1,−2,∞

)
is a (S 3,TH,TH) triple whenever 8t + 13u + 1 = 0. That is, for t = 13k − 5 and

u = 3 − 8k with any k ∈ Z. So
(
N(−5

2 ,
13k−5
3−8k ),−2,−1,∞

)
is a (S 3,TH,TH) triple for

every k ∈ Z.
Case −3 + 1

n′ = t
u : In this case t

u = 1−3n′
n′ and (3) becomes 3n(1−n′)+5n′ = 3 so 2

5−3n =

1−n′ ∈ Z. It follows that n ∈ {1, 2}. For n = 1, we have r
s = −1 which makes N( r

s ,
t
u )

non-hyperbolic (Lemma A.10). For n = 2 we find that
(
N(−3

2 ,−
8
3 ),−2,−1,∞

)
is a

(S 3,TH,TH) triple.
Case −3 is a TH slope: If t

u = −2 then N( r
s ,

t
u ) is non-hyperbolic (Lemma A.10). So, from

[MP, Table 2], −2 + 1
n = −1 + 1

n′ making n = 2 and t
u = −1 + 1

m′ = 1−m′
m′ . Using (3), we

obtain m′ = −7
3 < Z.

3.3.4. Case −3 is an S 3 slope. From [MP, Table 2], if N( r
s ,

t
u )(−3) = L(?, ?) then either t

u = −2
(which is excluded by Lemma A.10) or r

s = −1 + 1
n and t

u = −1 + 1
m . In the latter case we have

N(−1 + 1
n ,−1 + 1

m )(−3) = L((2n+1)(2m+1)−4, ?) = S 3 if and only if (2n + 1)(2m + 1) − 4 = ±1; that is
(2n + 1)(2m + 1) = 3 or 5. Since both 3 and 5 are primes, it follows that either 2n + 1 or 2m + 1
is ±1. By symmetry, we may assume that 2n + 1 = ±1, making n = −1 or 0 which is excluded
by Lemma A.10.

3.3.5. Case∞ is an S 3 slope. From [MP, Theorem 1.3], N( r
s ,

t
u )(∞) = L(tr−us, ?). So,∞ is an S 3

slope if and only if

(4) tr − us = ±1.
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As before, we have ∆(S 3,TH) = ∆(TH,TH) = 1 so the only possibles pairs of TH slopes are
{−3,−2}, {−2,−1} or {−1, 0}. Each TH slope imposes conditions on r

s , t
u . We will use primes on

the parameters to denote the conditions imposed from the smallest TH–slope and double primes
on the parameters coming from the conditions on the second TH–slope.

Case 0 is a TH–slope: From [MP, Table 2] we have r
s = n′ and t

u = −4−n′+ 1
m′ =

1−m′(n′+4)
m′ .

Equation (4) becomes then
(
1 − m′(n′ + 4)

)
n′ = m′ ± 1. According to Lemma A.15,

we have n′ ∈ {−5,−4,−3,−2,−1, 0, 1}. For N( r
s ,

t
u ) to be hyperbolic, n′ cannot be in

{−3,−2,−1, 0} (Lemma A.10). So we are left to consider the following cases (n′,m′) ∈{
(−5,−1), (−4,−5), (−4,−3), (1, 0)

}
. If (n′,m′) = (−5,−1) then t

u = 0, and if (n′,m′) =

(1, 0) then t
u = ∞. So, these cases are both excluded by Lemma A.10. The other two

cases
(
N(−4,−1

5 ),∞,−1, 0,
)

and
(
N(−4,−1

3 ),∞,−1, 0
)

are indeed (S 3,TH,TH) ([MP,

Table 2]).
Case −2 and −1 are the TH–slopes: In this case, either −2 + 1

n′ = −3 + 1
n′′ or, up to sym-

metry,
(

r
s ,

t
u

)
=

(
1−2n′

n′ ,
1−3n′′

n′′

)
.

Case −2 + 1
n′ = −3 + 1

n′′ : This means n′ = −2. Up to symmetry, we may assume that
r
s = −5

2 . Up to a simultaneous change of sign of t and u, (4) becomes 5t + 2u = 1.

We find
(
N(−5

2 ,
1−2k
5k−2 ),∞,−2,−1)

)
is a (S 3,TH,TH) triple for every k ∈ Z.

Case
(

r
s ,

t
u

)
=

(
1−2n′

n′ ,
1−3n′′

n′′

)
: We find that (4) becomes 2n′ + 3n′′ − 5n′n′′ = 0 or 2.

Case 2n′ + 3n′′ = 5n′n′′: In this case n′ = 3n′′
5n′′−2 ∈ Z. If n′′ ≥ 0 then 5n′′ − 2 ≤

3n′′ ⇒ n′′ ≤ 1 and, if n′′ ≤ 0, 3n′′ ≤ 5n′′ − 2 then n′′ ≥ 1. It follows
that n′′ = 0 ⇒ t

u = ∞ or n′′ = 1 ⇒ t
u = −2 which are both excluded by

Lemma A.10.
Case 2n′ + 3n′′ = 2 + 5n′n′′: In this case n′ = 3n′′−2

5n′′−2 ∈ Z. If n′′ < 0 then 0 <

n′ < 1, and if n′′ ≥ 2
3 then 0 < n′ < 1. So n′′ = 0 and t

u = ∞ which is excluded
by Lemma A.10.

Case −3 is a TH–slope: From [MP, Table 2] we have r
s = −2 (which is excluded by Lemma

A.10) or r
s = 1−n′

n′ and t
u = 1−m′

m′ . In the latter case (4) becomes n′ + m′ = 0 or 2.
Using ∆(T H,T H) = 1, if −3 is a TH–slope then −2 is the only possible second T H.

Up to symmetry, we have −1 + 1
n′ = −2 + 1

n′′ ⇒ n′ = −2. Subbing this value into (4)

with t
u = 1−m′

m′ we find that either m′ = 2 or 4. We find that
(
N(−3

2 ,−
1
2 ),∞,−3,−2

)
and(

N(−3
2 ,−

3
4 ),∞,−3,−2

)
are (S 3,TH,TH) triples.

3.3.6. Identifying cases. In the above analysis we have proved above that the only (S 3,T H,T H)
triples of the form

(
N( r

s ,
t
u ),∞, β, γ

)
are:
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(i) Ak :=
(
N(−5

2 ,
1−2k
5k−2 ),∞,−2,−1

)
for k ∈ Z;

(ii) Bk :=
(
N(−5

2 ,
4−11k
3k−1 ),−1,−2,∞

)
for k ∈ Z;

(iii) Ck :=
(
N(−5

2 ,
13k−5
3−8k ),−2,−1,∞

)
for k ∈ Z;

(iv)
(
N(−7

2 ,−
5
2 ),−1,−2,∞

)
;

(v)
(
N(−4,−9

4 ),−1,−2,∞
)
;

(vi)
(
N(−3

2 ,−
8
3 ),−2,−1,∞

)
;

(vii)
(
N(−4,−1

5 ),∞,−1, 0
)
;

(viii)
(
N(−4,−1

3 ),∞,−1, 0
)
;

(ix)
(
N(−3

2 ,−
1
2 ),∞,−3,−2

)
;

(x)
(
N(−3

2 ,−
3
4 ),∞,−3,−2

)
.

In this list there are many repetitions. Indeed, using the first equality in [MP, Theorem 1.5], one
can show that case (vii) is isomorphic to case (x), which in turn is isomorphic to case (v) and case
(viii) is isomorphic to case (ix). Moreover, using the third equality in [MP, Theorem 1.5], we
see that (ix) is isomorphic to case (vi), which is in turn isomorphic to (x). Summing up, all cases
(v) to (x) are isomorphic and again via [MP, Theorem 1.5] we choose to fix the representative as(
N(−3

2 ,−
14
5 ),−2,−1,∞

)
.

On the other hand we have that case (iv) is B1 and using the second equality in [MP, Theo-
rem 1.5], we see that Ck � Bk � Ak for every k ∈ Z.

3.3.7. Distinctness of examples. The Berge manifold is the unique hyperbolic knot exterior in a
solid torus T with three distinct solid torus fillings [Gab]. The Berge manifold is equal to N(−5

2 )
[MP]. By filling along a 1

n slope on ∂T we obtain a family of hyperbolic knot exteriors with two
lens space fillings. As our enumeration of (S 3,T H,T H) triples obtained by surgery on 5CL is
exhaustive, the family of (S 3,T H,T H) triples obtained by filling along a boundary component of
the Berge manifold is

{(
N(−5

2 ,
1−2k
5k−2 ),∞,−2,−1

)}
. By considering the sets of exceptional fillings,

we will now show that N(−3
2 ,−

14
5 ) , N(−5

2 ,
1−2k
5k−2 ) for any k.

Using [MP, Tables 2–3] we can write down the set of exceptional slopes and fillings of
N(−5

2 ,
1−2k
5k−2 ) and N(−3

2 ,−
14
5 ). The result is shown in Table 1. We immediately observe that

N(−5
2 ,

1−2k
5k−2 ) has three distinct toroidal fillings for every k, and that N(−3

2 ,−
14
5 ) has only two

toroidal filling. This shows N(−3
2 ,−

14
5 ) , N(−5

2 ,
1−2k
5k−2 ) for any k.

4. (S H,T H,T ) triples

In this section we are going to enumerate all (S H,T H,T ) triples obtained by surgery on the
five chain link and realizing the maximal distance. We know, from [Rou2, Theorem 1], that if
(M5(F ), β, γ) ∈ (T H,T ), then ∆(β, γ) ≤ 3. In order to state the main theorem of this section we
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need to first define the following families

Bn :=
(
N(−1 + 1

n ,−1 − 1
n ),∞,−3, 0

)
and Cn :=

(
N(−1 + 1

n ,−1 − 1
n−2 ),∞,−3, 0

)
.

We prove the following:

Theorem 4.1. The following statements are true:

• If (M5(F ), α, β, γ) ∈ (S 3,T H,T ) with ∆(β, γ) = 3, then (M5(F ), α, β, γ) ∈ {Bn} for some
n ∈ Z \ {0,±1} or (M5(F ), α, β, γ) ∈ {Cn} for some n ∈ Z \ {0,±1, 2, 3}.
• For all n and all k, Bn is not equivalent to Ck.
• Furthermore, if n ∈ Z\{±1, 0,±2} then E(Bn) = {−3,−2,−1, 0,∞} and the exceptional

fillings are shown in Table 2. If n = ±2 then Bn is the exterior of the pretzel knot (−2, 3, 7)
and e(B±2) = 7.
• Finally, if n ∈ Z\{±1, 0, 2, 3} then E(Cn) = {−3,−2,−1, 0,∞} and the exceptional fillings

are shown in Table 2.

n ∈ Z\{±1, 0,±2}, E(N(−1 + 1
n ,−1 − 1

n )) = {−3,−2,−1, 0,∞}

β ∈ E(N(−1 + 1
n ,−1 − 1

n )) N(−1 + 1
n ,−1 − 1

n ))(β)

β = ∞ S 3

β = −3 L(4n2+3, 2n2+n+2)
β = −2

(
S 2, (3, 2), (1+n, n), (1−n, n)

)
β = −1

(
S 2, (2, 1), (1+2n, −n), (1−2n, n)

)
β = 0

(
D, (n, 1+n), (n, n−1)

)⋃ 0 1
−1 −1


(
D, (2, 1), (3, 1)

)
n ∈ Z\{±1, 0, 2, 3}, E(N(−1 + 1

n ,−1 − 1
n−2 )) = {−3,−2,−1, 0,∞}

β ∈ E(N(−1 + 1
n ,−1 − 1

n−2 )) N(−1 + 1
n ,−1 − 1

n−2 ))(β)

β = ∞ S 3

β = −3 L(4n2+8n−1, 2n2−3n)
β = −2

(
S 2, (1+n, n), (3−n, n−2), (3, 2)

)
β = −1

(
S 2, (2, 1), (1+2n, −n), (5−2n, n−2)

)
β = 0

(
D, (n, 1+n), (2−n, 2−n)

)
3 − 3n

⋃ 0 1
−1 −1


(
D, (2, 1), (3, 1)

)
Table 2: The sets of exceptional slopes and fillings of all knot exteriors obtained by surgery on

the minimally twisted 5-chain link realising ∆(T H,T ) = 3 or ∆(T H,Z) = 2.
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In Sections 4.1– 4.3 we enumerate all (M5(F ), α, β, γ) ∈ (S H,T H,T ) with ∆(β, γ) = 3 relying
heavily on [MP] and [Rou2]. In Section 4.4, the various examples from the enumeration are
studied to understand which among them are equivalent, and we show that {Bn} ∩ {Cn} = ∅.
Theorem 4.1 follows from this complete analysis carried out all through Section 4.

4.1. Triples from M5 and M4. [Rou2, Theorem 4] gives a complete enumeration of E(M5(F ))
for F not factoring through M4. A careful inspection of [Rou2, Tables 6 –11] allows us to
conclude that if F is a filling instruction on M5 such that E(M5(F )) contains a pair of slopes
at distance greater than 2 apart, then F is equivalent to a filling instruction F ′ found in [Rou2,
Table 14]. In this table we can also find the class of M5(F ′)(α) for each α ∈ E(M5(F ′)); no
M5(F ′)(α) = S 3. Therefore, if (M5(F ), α, β, γ) ∈ (S H,T H,T ) with ∆(β, γ) = 3, then F factors
through M4.

Similarly, [Rou2, Theorem 5] gives a complete enumeration of E(M4(F )) for F not factoring
through M3. If F is a filling instruction on M4 such that E(M4(F )) contains a pair of slopes
at distance greater than 2 apart, then F is equivalent to a filling instruction F ′ found in [Rou2,
Tables 21–22]. These tables provide also the class of M4(F ′)(α) for each α ∈ E(M4(F ′)); no
M4(F ′)(α) = S 3. Therefore, if (M4(F ), α, β, γ) ∈ (S H,T H,T ) with ∆(β, γ) = 3 then F factors
through M3.

We conclude that if (M5(F ), α, β, γ) ∈ (S H,T H,T ) then F factors through M3.

4.2. Exceptional triples from M3(F ) with e(M3(F )) > 5. As in the previous section, we re-
call that [MP] classifies the exceptional filling instructions and fillings on N, the exterior of
the mirror image of 3CL. Of course N = M3, but the sign of the slopes change sign; namely,
M3(α1, α2, α3) = N(−α1,−α2,−α3). For the sake of clarity, as we work with the Tables in [MP],
we work with the filling instructions on N which are identified with instructions on M3 by chang-
ing signs at the end of the argument.

Any filling instruction F on N consisting of two slopes and such that e(N(F )) > 5 can be
found in [MP, Tables A.2-A.9]. The tables A.2, A.3, A.4 and A.9 each contain a finite list of
N(F ). The remaining tables consist of four infinite families; Table A.5 considers N(1, r

s ) with
p
q exceptional, Table A.6 considers N(−3

2 ,
r
s ) with p

q exceptional, Table A.7 considers N(−5
2 ,

r
s )

with p
q exceptional, and finally Table A.8 considers N(−1

2 ,
r
s ) with p

q exceptional. We proceed to
examine each of these tables in our quest for examples.

4.2.1. Examples arising from [MP, Tables A.2–A.4 and A.9]. The only hyperbolic knots (i.e.
N(F ) with an S 3 filling) listed are N(1, 2), also known as the Figure-8 knot, in Table A.2 and
N(−4,−1

3 ), the (−2, 3, 7) pretzel knot, in Table A.4. The former has no lens space filling while
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the latter gives a unique (S 3,TH,T)–triple with ∆(TH,T) = 3. So, from Tables A.2–A.4 and A.9

the only example we get is
(
N(−4,−1

3 ),∞, 0,−3
)
∈ (S 3,TH,T).

4.2.2. Examples arising from [MP, Table A.5]. In this table, the possible triples come from
N(F ) = N(1, r

s ) with p
q ∈ E(N(F )) = {−3,−2,−1, 0, 1,∞} exceptional. By inspection we con-

clude that in this table the only S 3 filling comes from p
q = ∞ when r − s = ±1. As we are

interested in r
s , we may assume w.l.o.g. that r = s + 1. Moreover, if N(1, r

s )(α) is toroidal then
α = −3 or α = 1. We study both cases separately.

Case −3 is a toroidal slope on N(1, r
s ): for N(1, r

s )( p
q ) ∈ T H with ∆( p

q ,−3) = 3 we need
p
q = 0. Hence, Table A.5 combined with the fact that r = s + 1 tells us that either r

s = 0
or r

s = 1 + 1
s = −5 + 1

n . The former case gives rise to a non-hyperbolic space while the
latter case cannot occur since 1

n −
1
s ∈ (−2, 2) ∪ {∞} <6.

Case 1 is a toroidal slope on N(1, r
s )): In this case, the T H slope is necessarily p

q = −2 to
realise ∆(1, p

q ) = 3. From Table A.5, the requirement that −2 is a lens space slope is
r
s = −2 or r

s = 1 + 1
s = −2 + 1

n . The former case gives rise to a non-hyperbolic manifold
while the latter case cannot occur since 1

n −
1
s ∈ (−2, 2) ∪ {∞} and 3 is not in this set.

4.2.3. Examples arising from [MP, Table A.6]. In this table, the possible triples come from
N(F ) = N(−3

2 ,
r
s ) with p

q ∈ E(N(F )) = {−3,−5
2 ,−2,−1, 0,∞} exceptional. Table A.6 tells us that

the possible S 3 slopes are p
q = ∞,−3,−2,−1. Examining each possible p

q individually we find:
p
q = ∞: in this case, ∆( p

q , α) ≤ 2 for all α ∈ E(N(F )).
p
q = −3: in this case we require r

s = −1 + 1
n and 6n + 7 = ±1. It follows that r

s = −2 which
implies that N(F ) is non-hyperbolic (Lemma A.10).

p
q = −2: in this case, Table A.6 requires 4r + 11s = ±1 so that r

s = 1
4k −

11
4 where k = ±s.

The distance 3 pairs of slopes from E(N(−3
2 ,

r
s )) are (−3, 0) and (−5

2 ,−1). In the first case,
−3 must be the lens space surgery and r

s is forced to be −1 + 1
n and so −1 + 1

n = 1
4k −

11
4

from where we arrive to the contradiction 7
4 = 1

4k −
1
n ≤

5
4 .

In the second case −1 must be the lens space surgery and r
s is forced to be −3 + 1

n .
So −3 + 1

n = r
s = 1

4k −
11
4 or 4k − n = nk. According to Lemma A.14 we have then

(n, k) ∈
{
(0, 0), (3, 3), (5,−5), (8,−2), (6,−3), (2, 1)

}
.

Case (n, k) = (0, 0): then r
s = ∞ and the space is non-hyperbolic (Lemma A.10).

Case (n, k) = (3, 3): then r
s = −3 + 1

n = −8
3 is excluded from Table A.6.

Case (n, k) = (5,−5): we obtain
(
N(−3

2 ,−
14
5 ),−2,−1,−5

2

)
which is a (S 3,TH,T) triple

with ∆(TH,T) = 3.
Case (n, k) = (8,−2): then r = 1±11k

4 < Z.
Case (n, k) = (6,−3): then r = 1±11k

4 < Z.
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Case (n, k) = (2, 1): then r = 1±11k
4 = −10

2 < Z.
p
q = −1: In this case Table A.6 requires that r

s = −3 + 1
n and 6n + 1 = ±1 which has no

solutions.

4.2.4. Examples arising from [MP, Table A.7]. In this table, the possible triples come from
N(F ) = N(−5

2 ,
r
s ) with p

q ∈ E(N(F )) = {−3,−2,−3
2 ,−1, 0,∞} exceptional. Table A.7 tells us that

the possible lens space slopes are p
q = ∞,−2,−1. However, none of these slopes are at distance

equal to 3 from any other slopes in E(N(F )). So no examples are found in Table A.7.

4.2.5. Examples arising from [MP, Table A.8]. In this table, the possible triples come from
N(F ) = N(−1

2 ,
r
s ) with p

q ∈ E(N(F )) = {−4,−3,−2,−1, 0,∞} exceptional. Table A.8 tells us that
the possible S 3 slopes are p

q = ∞,−3,−2,−1. If p
q = −3,−2,−1 corresponds to an S 3 filling, then

we would have either r
s = ∞, which makes N(F ) non-hyperbolic (Lemma A.10), or n < Z. So,

if a triple exists in Table A.8, then the S 3 slope is necessarily∞ and r
s = −2 + 1

s .
The only pairs of slopes at distance 3 apart in E(N(F )) are (−4,−1) and (−3, 0). Table A.8

tells us that −4 and 0 can not correspond to lens space fillings.

If −1 is a TH slope: then Table A.8 requires r
s = −3 + 1

k , but r
s = −2 + 1

s from before, and
so r

s = −5
2 , which is excluded in Table A.8.

If −3 is a TH slope: then Table A.8 requires r
s = −1 + 1

k , but r
s = −2 + 1

s from before, and
so r

s = −3
2 , which is excluded in Table A.8.

4.3. Exceptional triples arising from N(F ) with e(N(F )) = 5. The same arguments presented
at the beginning of Section 3.3 reduce the study of the cases coming from [MP, Theorem 1.3 and
Tables 2–4] to just Table 2 and Theorem 1.3; namely the hyperbolic N( r

s ,
t
u ) with E(N( r

s ,
t
u )) =

{−3,−2,−1, 0,∞}. Notice that such N( r
s ,

t
u )( p

q ) are toroidal only when p
q = −3 or 0.

4.3.1. Case p
q = −3 is the T–filling. In this case, [MP, Table 2] gives us the conditions that

r
s ,

t
u , −1 − 1

n . We also require the lens space slope to be at distance 3 from the toroidal slope so
we require p

q = 0 to be a lens space slope.
For p

q = 0 to be the lens space slope we need { rs ,
t
u } = {n,−4− n + 1

m }, and we may assume that
r
s = n and t

u = −4 − n + 1
m . The possible S 3–slopes are −1, −2 and∞.

Case p
q = −1 is the S 3–slope: From [MP, Table 2] we know that either r

s = −3 + 1
n′ = n or

t
u = −3 + 1

n′ = −4 − n + 1
m .

Case r
s = −3 + 1

n′ = n: then 1
n′ = 3 + n ∈ Z so 3 + n = ±1 and n = −4 or n = −2. For

N(F ) to be hyperbolic, n is necessarily −4 (Lemma A.10), so t
u = 1

m . However, from
[MP, Table 2] we get N(F )(−1) = N(−4, 1

m )(−1) = L
(
− 3 − 7m, ?

)
, S 3.
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Case t
u = −3 + 1

n′ = −4 − n + 1
m : then 1+n = 1

m−
1
n′ ∈ [−2, 2], so n ∈ {−3,−2,−1, 0, 1}.

N(F ) is hyperbolic only when n = 1 (Lemma A.10). In this case n′ = −1 and t
u =

−4. However, again from [MP, Table 2], N(F )(−1) = N(1,−4)(−1) = L(−10, ?) ,
S 3.

Case p
q = −2 is the S 3–slope: From [MP, Table 2] we know that either r

s = −2 + 1
n′ = n or

t
u = −2 + 1

n′ = −4 − n + 1
m .

Case r
s = −2 + 1

n′ = n: in this case 1
n′ = 2 + n ∈ Z so n = −3 or n = −1. In both cases

N(F ) is non-hyperbolic (Lemma A.10).
Case t

u = −2 + 1
n′ = −4 − n + 1

m : then 2+n = 1
m−

1
n′ ∈ [−2, 2], so n ∈ {−4,−3,−2,−1, 0}.

For N(F ) to be hyperbolic, r
s = n is necessarily −4, but then n′ = 1 and t

u = −2+ 1
n′ =

−1, which makes N(F ) non-hyperbolic by Lemma A.10.
Case p

q = ∞ is the S 3–slope: From [MP, Theorem 1.3] we obtain the identities N(F )(∞) =

N(n, 1−m(n+4)
m )(∞) = L

((
1 − m(n + 4)

)
n − m, ?

)
. So N(F )(∞) = S 3 only when

(
1 − m(n +

4)
)
n = m ± 1. Lemma A.15 tells us that we have then n ∈ {−5,−4,−3,−2,−1, 0, 1}. For

N(F ) = N(n, 1−m(n+4)
m ) to be hyperbolic, n cannot be in {−3,−2,−1, 0} (Lemma A.10), so

we are left with the cases (n,m) ∈
{
(−5,−1), (−4,−5), (−4,−3), (1, 0)

}
. The cases (n,m) =

(−5,−1), (1, 0) yield again a non-hyperbolic N(F ), while (n,m) = (−4,−5), (−4,−3) give

the (S H,T H,T ) triples
(
N(−4,−1

5 ),∞, 0,−3
)

and
(
N(−4,−1

3 ),∞, 0,−3
)

with ∆(TH,T) =

3.

4.3.2. Case p
q = 0 is a T–filling. To have a (TH,T) pair of slopes at distance 3 apart, we require

N( r
s ,

t
u )(−3) ∈ TH . For this to be the case, [MP, Table 2] tells us that either r

s = −2, in which
case N(F ) is non-hyperbolic, or that we may assume r

s = −1 + 1
n and t

u = −1 + 1
m . The S 3–slope

is now one of −1, −2 or∞.

Case p
q = −2 is the S 3–slope: From [MP, Table 2] we know that, without loss of generality,

r
s = −2 + 1

n′ = −1 + 1
n so n′ = 2 and t

u = 1−m
m . Table 2 then tells us that N(F )(−2) =

L
(
4 + 7m, ?

)
, S 3.

Case p
q = −1 is the S 3–slope: [MP, Table 2] tells us that, with out loss of generality, r

s =

−3 + 1
n′ = −1 + 1

n so n′ = 1 and r′
s′ = −2 which makes N(F ) non-hyperbolic by Lemma

A.10.
Case p

q = ∞ is the S 3–slope: By [MP, Theorem 1.3], we have the identities: N(F )(∞) =

N( 1−n
n ,

1−m
m )(∞) = L(1 − n −m, ?). So, if N(F )(∞) = S 3 then 1 − n −m = ±1⇔ n + m ∈

{0, 2}. The cases n + m = 0 and n + m = 2 give (S 3,TH,T) triples with ∆(TH,T) = 3.

These families are, respectively, Bn :=
(
N(−1 + 1

n ,−1 − 1
n ),∞,−3, 0

)
for n ∈ Z \ {0,±1}

and Cn :=
(
N(−1 + 1

n ,−1 − 1
n−2 ),∞,−3, 0

)
for n ∈ Z \ {0,±1, 2, 3}.
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4.4. Conclusion. All the examples found in Sections 4.1 – 4.3 are:

• Bn = N
(
−1 + 1

n ,−1 − 1
n

)
(∞,−3, 0) for n ∈ Z \ {0,±1};

• Cn = N
(
−1 + 1

n ,−1 − 1
n−2

)
(∞,−3, 0) for n ∈ Z \ {0,±1, 2, 3};

• N
(
−3

2 ,−
14
5

) (
−2,−1,−5

2

)
;

• N
(
−4,−1

3

)
(∞, 0,−3);

• N
(
−4,−1

5

)
(∞, 0,−3).

Using [MP, Theorem 1.5], it is easy to see that:(
N

(
−3

2 ,−
14
5

)
,−2,−1,−5

2

)
�

(
N(−4,−1

5 ),∞, 0,−3
)
�

(
N(−3

2 ,−
3
4 ),∞,−3, 0

)
� C−2.(

N(−4,−1
3 ),∞, 0,−3

)
�

(
N(−3

2 ,−
1
2 ),∞,−3, 0

)
� B−2.

This completes the proof that every (S H,T H,T ) triple with ∆(T H,T ) = 3 is equivalent to some
Bn or Cn. We now show that these families are distinct by showing that the set of exceptional
fillings of Bn is different from the set of exceptional fillings of Ck.

Using [MP, Theorem 1.3] and [MP, Table 2] we can write down the exceptional slopes and
fillings of N

(
− 1 + 1

n ,−1 − 1
n

)
. The result is shown in Table 2. We note that both Bn and Ck have

unique lens space fillings. We have Bn(−3) = L(4n2+3, 2n2+n+2) and Ck(−3) = L(4k2+8k−1, 2k2−3k).
If Bn(−3) = Ck(−3) then the order of their fundamental groups are equal. It is well known
that π1(L(p, q)) is the cyclic group of order p (see for example [Rol, Exercise 9.B.5]). So, if
Bn(−3) = Ck(−3) then 3 + 4n2 = 4k2 + 8k − 1 ⇔ 4(n − k)(k + n) = 2(4k + 1) which implies that
2 | 4k + 1, a contradiction. Hence, {Bn} ∩ {Ck} = ∅ and the proof of Theorem 4.1 is complete.

Remark 4.2. B−2 = B2 is the exterior of the (−2, 3, 7) pretzel knot. In this case, e(B±2) = 7
and the exceptional slopes and fillings can be found in [MP, Table A.2]. In the second family,
E(C−2) = {−3,−5

2 ,−2,−1, 0,∞}, C−2(α) is found in Table 2 for α ∈ E(C−2)\{− 5
2 }, and C−2(−5

2 ) =(
D, (2, 1), (3, 1)

)⋃1 1
0 −1


(
D, (2, 1), (5, 4)

)
.

5. (S H,T H,Z) triples

In this section we are going to enumerate all (S H,T H,Z) triples obtained by surgery on the
five chain link and realizing the maximal distance. It turns out that all such triples are obtain by
surgery on the 3CL. The main result of this section is the following.

Theorem 5.1. If
(
M5

( p
q ,

r
s ,

u
v ,

x
y

)
, α, β, γ

)
∈ (S H,T H,Z) then ∆(β, γ) ≤ 2. If

(
M5

( p
q ,

r
s ,

u
v ,

x
y

)
, α, β, γ

)
∈

(S H,T H,Z) and ∆(β, γ) = 2 then either(
M5( p

q ,
r
s ,

u
v ,

x
y ), α, β, γ

)
�

(
N
(
− 1 + 1

n ,−1 − 1
n

)
,∞,−3,−1

)
, or
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M5( p

q ,
r
s ,

u
v ,

x
y ), α, β, γ

)
�

(
N
(
− 1 + 1

n ,−1 + 1
2−n

)
,∞,−3,−1

)
.

We will prove this theorem in three steps. In Section 5.1, we will show that if (M5(F ), α, β, γ) ∈
(S H,T H,Z) and ∆(β, γ) ≥ 2 then F factors through M4. Then, in Section 5.2, we will show that if
(M4(F ), α, β, γ) ∈ (S H,T H,Z) and ∆(β, γ) ≥ 2 then F factors through M3. Finally, in Section 5.3
we show that if (N(F ), α, β, γ) ∈ (S H,T H,Z) then ∆(β, γ) ≤ 2. All triples with ∆(β, γ) = 2 are
enumerated to complete the proof of Theorem 5.1.

Remark Note that the knot exteriors in Theorem 5.1 are the same as the knot exteriors in Theo-
rem 4.1. Therefore, we know that these examples are distinct and that the exceptional slopes and
fillings of N

(
− 1 + 1

n ,−1 − 1
n

)
and N

(
− 1 + 1

n ,−1 + 1
2−n

)
are found in Table 2.

5.1. (S H,T H,Z) triples from M5. If (M5(F ), α, β, γ) ∈ (S H,T H,Z) and F does not factor
through M4 then, from [Rou2, Theorem 4], we have E(M5(F )) = {0, 1,∞}, or F is equivalent to
one of the surgery instructions in [Rou2, Tables 14 – 20]. Clearly, if E(M5(F )) = {0, 1,∞} then
no two exceptional slopes are at distance greater than 2 apart. Hence, any such (S H,T H,Z) triple
realising ∆(T H,Z) ≥ 2 is to be found in [Rou2, Tables 14 – 20]. In these tables, each filling in-
struction F is shown together with E(M5(F )) and the class of each M5(F )(α) for α ∈ E(M5(F ))
(which may depend on parameters). It is immediately clear that if (M5(F ), α, β, γ) ∈ (S H,T H,Z)
then it is found in Table 17 with F = (−2, p

q , 3,
u
v ) or it is found in in Table 18 with F =

(−2, p
q ,

r
s ,−2). In both cases, it is also clear that ∆(β, γ) ≤ 2, and that the (Z,T H) slopes realising

∆(β, γ) = 2 must be (−1, 1) or (1,−1) and that the S H slope must be 0 or ∞. We proceed with a
case by case analysis.

Case F = (−2, p
q , 3,

u
v ): By (23), we may assume that 0 corresponds to the S H slope. [Rou2,

Table 17] tells us that if 0 is an S H slope then either p
q = 1+ 1

n and |(3+2n)u−(7+6n)v| = 1,
or u

v = 3 + 1
k and |(3 + 2k)p − (1 + 2k)q| = 1. We also obtain the condition from [Rou2,

Table 17] that |p| = 1 or |u + v| = 1 if −1 corresponds to a type Z or T H surgery.
We will now show that these conditions are incompatible.
Case p

q = 1 + 1
n and |(3 + 2n)u − (7 + 6n)v| = 1: We have p

q = n+1
n . [Rou2, Table 17]

tells us that if −1 corresponds to a type Z or T H slope then |p| = 1 or |u + v| = 1. If
|p| = 1 and p

q = n+1
n then |p| = |n + 1| = 1. This occurs only when n = −2 or n = 0

and both cases are excluded from Table 17 in [Rou2].
If |u + v| = 1 then u

v = 1−k
k . Subbing u

v = 1−k
k into |(3 + 2n)u − (7 + 6n)v| = 1 and

solving for k in terms of n gives

k =
4 + 2n

10 + 8n
or k =

1 + n
5 + 4n

.
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In the first case, k is an integer if and only if n = −1,−2 ⇒ p
q = 0, 1

2 which, by
Lemma A.4, make F exceptional or factor through M4 respectively. In the second
case, k is an integer if and only if n = −1 which makes M5(F ) non-hyperbolic.

Case u
v = 3 + 1

k and |(3 + 2k)p − (1 + 2k)q| = 1: We have u
v = 1+3k

k . [Rou2, Table 17]
tells us that if −1 corresponds to a type Z or T H slope then |p| = 1 or |u + v| = 1. In
the case |u+v| = 1 we get |u+v| = |1+4k| = 1 only when k = 0 which makes M5(F )
non-hyperbolic by Lemma A.4. If |p| = 1 then p

q = 1
n and |(3 + 2k)p − (1 + 2k)q| =

|(3 + 2k) − (1 + 2k)n| = 1. Solving for n in terms of k gives

n = 1 +
3

1 + 2k
or n = 1 +

1
1 + 2k

.

In the former case n is an integer if and only if k ∈ {−2,−1, 0, 1}. If k = −1, 0 then, by
Lemma A.4, F factors through M4 or is exceptional respectively. If k = −2, 1 then
n = −1, 1 respectively, and, by Lemma A.4, F factors through M4 or is exceptional
respectively.
In the latter case n is an integer if and only if k = −1 or 0. If k = 0 then u

v = ∞

making F exceptional by Lemma A.4. If k = −1 then u
v = 2 and F factors through

M4 by Lemma A.4.
Case F = (−2, p

q ,
r
s ,−2): From [Rou2, Table 18] we see that for −1 to be a type Z or T H

slope we need |q| = 1 or |s| = 1. By (17), we may assume that |q| = 1. The same table
tells us that if 1 corresponds to a type Z or T H slope then |p| = 1 or |r| = 1. Since we
are assuming |q| = 1, the case |p| = 1 is excluded from Table 18, so we require |r| = 1.
Examining the table we see that the only possible S H slope is 0, and that 0 as an S H

necessitates either p
q = 1 + 1

n or r
s = 1 + 1

n . However, when |q| = 1 the only solutions are
p
q = 0, 2, and when |r| = 1 the only solution is r

s = 1
2 . These three solutions are excluded

from Table 18.

5.2. (S H,T H,Z) triples from M4. If (M4(F ), α, β, γ) ∈ (S H,T H,Z) withF not factoring through
M3, then E(M4(F )) = {0, 1, 2,∞} or F is equivalent to a filling instruction listed in [Rou2,
Tables 21 – 22]. In these tables no M4(F ) has an S 3 filling. Hence ∆(β, γ) ≤ 2 and if ∆(β, γ) = 2
then {β, γ} = {0, 2} and α ∈ {∞, 1}.

We will now show that we may assume that∞ corresponds to the S 3 slope. We have

M4(a
b ,

c
d ,

e
f ,

g
h ) =

(29)
M5(a

b ,
c−d

d ,−1, e− f
f ,

g
h ) =

(20)
M5( g

g−h ,
b−a

b ,−1, d
c−d ,

2 f−e
f )

=
(29)

M4( g
g−h ,

2b−a
b , c

c−d ,
2 f−e

f ). =
Lemma A.7

M4( 2b−a
b , c

c−d ,
2 f−e

f , g
g−h )
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Hence (
M4

( p
q ,

r
s ,

u
v

)
, 1, 0, 2

)
�

(
M4

(2q−p
q , r

r−s ,
2v−uu

v

)
,∞, 0, 2

)
and we are allowed to assume that ∞ corresponds to the S 3 slope. We will now show that we
may also assume without loss of generality that the (S H,T H,Z) triple of slopes is (∞, 0, 2). We
have

M4(a
b ,

c
d ,

e
f ,

g
h ) =

(29)
M5(a

b ,
c−d

d ,−1, e− f
f ,

g
h ) =

(18)
M5(−1, h−g

h ,
a

a−b ,
2d−c

d , f
e− f )

=
(16)◦(16)

M5( 2d−c
d , f

e− f ,−1, h−g
h ,

a
a−b ) =

Lemma A.7 & (29)
M4( a

a−b ,
2d−c

d , e
e− f ,

2h−g
h ),

which gives us (
M4

( p
q ,

r
s ,

u
v

)
,∞, 0, 2

)
�

(
M4

( p
p−q ,

2s−r
s , u

u−v

)
,∞, 2, 0

)
.

The result is that if (M4(F ), α, β, γ) ∈ (S H,T H,Z) with F not factoring through M3 and ∆(β, γ) ≥
2, then we may assume that α = ∞, β = 0, and γ = 2.

We set the filling instruction on M4 to be F = (a
b ,

c
d ,

e
f ). By (30), we know that M4(F )(∞) ∈ Z

unless one of a, b, c, d, e, f ∈ {0,±1}. If one of a, b, c, d, e, f = 0, then one of a
b ,

c
d ,

e
f ∈ {0,∞} and

M4(a
b ,

c
d ,

e
f ) is non-hyperbolic (Lemma A.6). We conclude that if(

M4
(a

b ,
c
d ,

e
f

)
,∞, 0, 2

)
∈ (S H,T H,Z), then one of a, d, e = ±1.

We see from Identity (31) and Lemma A.2 that the slope 0 is toroidal unless 0 ∈ { f , b, c−2d} or
±1 ∈ { f , b, c−2d}. If f , b = 0 or c−2d = 0 then one of a

b ,
e
f = ∞ or c

d = 2 and M4( a
b ,

c
d ,

e
f ) is non-

hyperbolic (Lemma A.6). So if 0 corresponds to a T H slope then necessarily ±1 ∈ { f , b, c − 2d}
meaning e

f ,
a
b = n, or c

d = 2 + 1
k . Using Lemma A.7 we may assume that one of the following

conditions hold:
a
b

= n,(5)

c
d

= 2 +
1
k
.(6)

If a
b = n then (31) implies

M4(n, c
d ,

e
f )(0) =

(31)

(
D, ( f , −e), (1, 2−n)

)⋃0 1
1 0


(
D, (2, 1), (c−2d, d)

)
=

(13)

(
S 2, (2, 1), (c−2d, d), (e+ f n−2 f , f)

)
.

Since we have fixed 0 to be the TH slope, we require 0,±1 ∈ {c − 2d, e + f (n − 2)} (otherwise
M4(F )(0) ∈ Z). We only need to consider the cases |e + f (n−2)| = 1: if |c−2d| = 1 then Identity
(6) is satisfied (so we are in a subset of this case), c − 2d = 0 implies c

d = 2 (which is excluded
by Lemma A.6), while e + f (n − 2) = 0 implies

M4(n, c
d ,

e
f )(0) =

(14)

(
S 2, (2, 1), (c−2d, d), (0, f)

)
= L(2, 1)#L(c−2d, d)
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which is a lens space if and only if c− 2d = ±1 (which means again that Identity (6) is satisfied).
So for (M4(a

b ,
c
d ,

e
f ),∞, 0, 2) ∈ (S H,T H,Z) we necessarily require one of

a
b

= n and
e
f

= 2 − n +
1
k

c
d

= 2 +
1
k
.

We see from Identity (33) that the slope 2 is toroidal unless one of 0 ∈ {a − b, e − f , c} or
±1 ∈ {a − b, e − f , c}. If a − b = 0, e − f = 0, c = 0 then a

b = 1, e
f = 1, c

d = 0 respectively
and M4

(a
b ,

c
d ,

e
f

)
is not hyperbolic (Lemma A.6). So if 2 corresponds to a type Z slope then

±1 ∈ {a − b, e − f , c} meaning e
f ,

a
b = 1 + 1

p , or c
d = 1

m .
Collecting the necessary conditions for (∞, 0, 2) to be a (S H,T H,Z) triple found above, we see

that we require at least one condition from each column of Table 3.

∞{ S H 0 { T H 2 { Z

a = ±1 c
d = 2 + 1

k
a
b = 1 + 1

p

d = ±1 a
b = n and e

f = 2 − n + 1
k

e
f = 1 + 1

q

e = ±1 c
d = 1

m

Table 3: Necessary conditions for (∞, 0, 2) to be a (S 3,T H,Z) triple.

We will now discount the possibility a
b = n and e

f = 2 − n + 1
k . The condition a

b = 1 + 1
p

from column 3 of Table 3 is discounted because taken together with a
b = n we get a

b = 0, 2 which
implies M is non-hyperbolic by Lemma A.6. While the condition that e

f = 1 + 1
q from column 3

in Table 3 is discounted because e
f = 2 − n + 1

k = 1 + 1
q implies n ∈ {0, 1, 2} meaning a

b ∈ {0, 1, 2}
and so M is non-hyperbolic by Lemma A.6. So we necessarily require

(7)
c
d

=
1
m
.

The condition a = ±1 from column 1 of Table 3 is discounted because a
b = ±1

b = n ⇒ n = ±1
meaning M4(F ) is non-hyperbolic or (a

b ,
c
d ,

e
f ) factors through M3 (Lemma A.6). The condition

e = ±1 from column 1 of Table 3 is discounted because e
f = 2 − n + 1

k ⇒ n ∈ {1, 2, 3} and
these cases are again excluded by Lemma A.6. So we necessarily require d = ±1. However,
d = ±1 together with (7) implies that c

d = ±1 meaning M is non-hyperbolic or that (a
b ,

c
d ,

e
f )

factors through N by Lemma A.6.
We will now discount the possibility that c

d = 2 + 1
k . If 0 is a T H slope and c

d = 2 + 1
k then the

condition that d = ±1 in the first column of Table 3 implies c
d ∈ {1, 3} which means M4( a

b ,
2k+1

k , e
f )
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is non-hyperbolic (Lemma A.6). Namely

(8)
c
d

= 2 +
1
k

implies d , ±1.

When c
d = 2 + 1

k , Identity (31) implies

M4( a
b ,

c
d ,

e
f )(0) =

(31)

(
D, ( f , −e), (b, 2b−a)

)⋃0 1
1 0


(
D, (2, 1), (1, k)

)
=

(13)

(
S 2, (2k+1, −1), ( f , −e), (b, 2b−a)

)
.

So for M = M4(a
b ,

2k+1
k , e

f )(0) to be a lens space we require k = 0 or k = −1 (meaning M is
non-hyperbolic by Lemma A.6) or b = ±1 or f = ±1 (b, f = 0 makes M4(F ) non-hyperbolic).
Using Lemma A.7 we may assume that b = ±1. If b = ±1 then the only possible condition from
column 1 of Table 3 is e = ±1 (d = ±1 is excluded by (8) and a = ±1 implies a

b = ±1 meaning M
factors through N or is non-hyperbolic by Lemma A.6). From column 3 of Table 3 we see that
either c

d = 1
m or e

f = 1 + 1
p or a

b = 1 + 1
p . If c

d = 1
m = 2 + 1

k then c
d = 1 and M4(F ) is non-hyperbolic

by Lemma A.6. If e
f = 1 + 1

p = 1
k then e

f = 1
2 and F factors through M3 by Lemma A.6. This

implies that the only possible condition from column 3 of Table 3 is a
b = 1 + 1

p . Summing up, we
obtain the following conditions

a
b = 1 + 1

p ,
c
d = 2 + 1

k ,
e
f = 1

m .

If M4( p+1
p ,

2k+1
k , 1

m ) is non-hyperbolic and does not factor through M3 then p , 0,±1,±2 and
m , 0,±1, 2 by Lemma A.6. We will now use the assumption that M4(F )(∞) = S 3 to show that
if (M4( p+1

p ,
2k+1

k , 1
m ),∞, 0, 2) ∈ (S H,T H,Z) then p = 0,±1,±2 or m = 0,±1,±2. From (30) we

see that

M4( p+1
p ,

2k+1
k , 1

m )(∞) =
(30)

(
S 2, (p+1, p), (k, −2k−1), (1, m)

)
=

(15)
L(−(p+1)(2k+1)+kp+kmp+km, ?).

So, ∞ is an S 3 slope on M4( p+1
p ,

2k+1
k , 1

m ) if and only if ((m − 1)p + m − 2)k = 1 ± 1 + p. If
(m − 1)p + m − 2 = 0 then 1 ± 1 + p = 0 which makes p = 0 or p = −2. If p = 0 then
M4( p+1

p ,
2k+1

k , 1
m ) is non-hyperbolic by Lemma A.6, and if p = −2 then ( p+1

p ,
2k+1

k , 1
m ) factors

through M3 by Lemma A.6. This means that ∞ is an S 3 slope on M4( p+1
p ,

2k+1
k , 1

m ) if and only if
one of the following holds

k =
p

(m − 1)p + m − 2
,(9)

k =
2 + p

(m − 1)p + m − 2
.(10)
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In (9) we see that (m − 1)p + m − 2 divides p. We already know that p , 0,±1,±2, so we are
only left to study the cases p > 2 and p < 2. If p > 2 then

−p ≤ (m − 1)p + m − 2 ≤ p⇒ 2 ≤ m(p + 1) and (m − 2)(p + 1) ≤ 0

⇒ m ≥ 1 and m ≤ 2⇒ m = 1, 2.

As we argued before m = 1, 2 yields a M4( p+1
p ,

2k+1
k , 1

m ) which factors through M3.
If p < −2 then

p ≤ (m − 1)p + m − 2 ≤ −p⇒ 0 ≤ (m − 2)(p + 1) and m(p + 1) ≤ 2

⇒ m ≤ 2 and m ≥ −1⇒ m = −1, 0, 1, 2.

Once more, Lemma A.6 rules out these possibilities for m.
In (10) we see that (m− 1)p + m− 2 divides p + 2. As before we study two cases: if p > 2 then

−2 − p ≤ (m − 1)p + m − 2 ≤ 2 + p⇒ 0 ≤ m(p + 1) and (m − 2)(p + 1) ≤ 2

⇒ m ≥ 0 and m ≤ 2⇒ m = 1, 2.

On the other hand, if p < −2 then

2 + p ≤ (m − 1)p + m − 2 ≤ −2 − p⇒ 2 ≤ (m − 2)(p + 1) and m(p + 1) ≤ 0

⇒ m < 2 and m ≥ 0⇒ m = 0, 1.

Once again, all these possible values for m are ruled out by Lemma A.6.
We have now completed the proof that if

(
M5

( p
q ,

r
s ,

u
v ,

x
y

)
, α, β, γ

)
∈ (S H,T H,Z) and ∆(β, γ) ≥ 2

then ( p
q ,

r
s ,

u
v ,

x
y

)
factors through N.

5.3. (S H,T H,Z) triples from N.

Proposition 5.2. If
(
N
(a

b ,
c
d ), α, β, γ

)
∈ (S H,T H,Z) then ∆(β, γ) ≤ 2.

Proof. [MP, Corollary A.6] tells us that if
(
N
( r

s ,
t
u

)
, α, β, γ

)
∈ (S H,T H,Z) and ∆(β, γ) > 2 then

either e
(
N( r

s ,
t
u )

)
= 5 or N

( r
s ,

t
u

)
is found in [MP, Tables A.2 – A.9]. If e

(
N( r

s ,
t
u )

)
= 5 then, it is a

consequence of [MP, Theorem 1.1] that E
(
N( r

s ,
t
u )

)
= {∞,−3,−2,−1, 0}. Since we are interested

in slopes at distance greater than two then we conclude {β, γ} = {0,−3}.
We first suppose that {β, γ} = {0,−3}. In this case, we can see in [MP, Table 2] that if N( r

s ,
t
u )

is hyperbolic with N( r
s ,

t
u )(−3) ∈ T H then r

s = −1+ 1
n and t

u = −1+ 1
m . Moreover, if N( r

s ,
t
u )(0) ∈ Z,

[MP, Table 2] tells us that one of r
s = −1 + 1

n or t
u = −1 + 1

m is an integer, which makes one of
r
s ,

t
u ∈ {−3, 0}, implying N( r

s ,
t
u ) non-hyperbolic by Lemma A.10.
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If {β, γ} = {0,−3} with N( r
s ,

t
u ) hyperbolic and N( r

s ,
t
u )(−3) ∈ Z, the same table tells us that

−1 + 1
n ∈ {

r
s ,

t
u }

1. Lemma A.8 allows us to assume that r
s = −1 + 1

n . If N( r
s ,

t
u )(0) ∈ T H, then [MP,

Table 2] tells us that { rs ,
t
u } = {k,−4− k + 1

m }. The case when r
s is an integer was discounted in the

previous paragraph, so we assume that r
s = −1 + 1

n = −4 − k + 1
m and t

u = k. As n = ±1 makes
N( r

s ,
t
u ) non-hyperbolic (Lemma A.10), we have r

s = −1+ 1
n = −4−k+ 1

m ⇒ −1 ≤ 3+k = 1
m −

1
n ≤

1 ⇒ −4 ≤ k ≤ −2. If −3 ≤ t
u = k ≤ −2 then N( r

s ,
t
u ) is non-hyperbolic (Lemma A.10), and if

k = −4 then t
u = −4 and r

s = −1 + 1
n = −4 − (−4) + 1

n ⇒
r
s = −1

2 . However, N( r
s ,

t
u ) = N(−4,−1

2 )
is non-hyperbolic (see [MP, Table 1]).

We now consider the case when N
( r

s ,
t
u

)
is found in [MP, Tables A.2 – A.9]. It is immedi-

ately clear that the only
(
N( r

s ,
t
u ), α, β, γ

)
∈ (S H,T H,Z) in Tables A.2 – A.4 and Table A.9 is the

triple obtained from the (−2, 3, 7) pretzel knot, and in this case ∆(β, γ) = 2.
If

(
N( r

s ,
t
u ), α, β, γ

)
∈ (S H,T H,Z) with ∆(β, γ) > 2 is found in [MP, Table A.5] then E(N( r

s ,
t
u )) =

{−3,−2,−1, 0, 1,∞} and one of β, γ = 1. However, this table tells us N( r
s ,

t
u )(1) < T H ∪ Z. So,

[MP, Table A.5] produces no
(
N( r

s ,
t
u ), α, β, γ

)
∈ (S H,T H,Z) with ∆(β, γ) > 2.

If
(
N( r

s ,
t
u ), α, β, γ

)
∈ (S H,T H,Z) with ∆(β, γ) > 2 is found in [MP, Table A.6] then E(N( r

s ,
t
u )) =

{−3,−5
2 ,−2,−1, 0,∞} and one of β, γ = −5

2 . This table tells us N( r
s ,

t
u )(−5

2 ) < T H and that
N( r

s ,
t
u )(−5

2 ) ∈ Z only when r
s = −2 + 1

n . If ∆(β,−5
2 ) > 2 then β ∈ {−1, 0}. Note that β is not a T H

slope. If β = −1 is a T H slope then [MP, Table A.6] tells us that r
s = −2 + 1

n = −3 + 1
k ⇒

r
s = −5

2

which is actually excluded from this table. We conclude that [MP, Table A.6] produces no(
N( r

s ,
t
u ), α, β, γ

)
∈ (S H,T H,Z) with ∆(β, γ) > 2.

If
(
N( r

s ,
t
u ), α, β, γ

)
∈ (S H,T H,Z) with ∆(β, γ) > 2 is found in [MP, Table A.7] then E(N( r

s ,
t
u )) =

{−3,−2,−3
2 ,−1, 0,∞} and one of β, γ = −3

2 . This table tells us N( r
s ,

t
u )(−3

2 ) < T H and that
N( r

s ,
t
u )(−3

2 ) ∈ Z only when r
s = −2 + 1

n . If ∆(β,−3
2 ) > 2 then β ∈ {−3, 0}. However we can

directly see in the table that N( r
s ,

t
u )(β) < T H for β ∈ {−3, 0}. Summing up, [MP, Table A.6]

produces no
(
N( r

s ,
t
u ), α, β, γ

)
∈ (S H,T H,Z) with ∆(β, γ) > 2.

Finally, if
(
N( r

s ,
t
u ), α, β, γ

)
∈ (S H,T H,Z) with ∆(β, γ) > 2 is found in [MP, Table A.8] then

E(N( r
s ,

t
u )) = {−4,−3,−2,−1, 0,∞} and one of β, γ = −4. This table tells us N( r

s ,
t
u )(−4) < T H

and that N( r
s ,

t
u )(−4) ∈ Z only when r

s ∈ Z. If ∆(β,−4) > 2 then β ∈ {−1, 0}. We can see
in this table that N( r

s ,
t
u )(0) < T H, and that N( r

s ,
t
u )(−1) ∈ T H only if the integer r

s = −3 +
1
n ⇒

r
s = −2,−4. These cases are excluded from the table. So, [MP, Table A.8] produces no(

N( r
s ,

t
u ), α, β, γ

)
∈ (S H,T H,Z) with ∆(β, γ) > 2. �

1A word of caution: in [MP, Table 2], as one can read in the arXiv preprint of this article, the relation between
the entries on the r

s column and the t
u column is more intricate than what a reader might appreciate in the published

version.
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Proposition 5.3. If
(
N
( r

s ,
t
u ), α, β, γ

)
∈ (S H,T H,Z) and ∆(β, γ) = 2 then either(

N
( r

s ,
t
u ), α, β, γ

)
�

(
N
(
− 1 + 1

n ,−1 − 1
n

)
,∞,−3,−1

)
, or(

N
( r

s ,
t
u ), α, β, γ

)
�

(
N
(
− 1 + 1

n ,−1 + 1
2−n

)
,∞,−3,−1

)
.

Proof. We know from [MP, Corollary A.6] and [MP, Theorem 1.1] that either E(N
( r

s ,
t
u )) =

{0,−1,−2,−3,∞} or the set {0,−1,−2,−3,∞} ⊂ E(N
( r

s ,
t
u )) and N

( r
s ,

t
u ), E(N

( r
s ,

t
u )) are found in

[MP, Tables A.2 – A.9].
For

(
N
( r

s ,
t
u ), α, β, γ

)
∈ (S H,T H,Z) we separate our enumeration into two cases:

Case 1: {α, β, γ} 1 {0,−1,−2,−3,∞}, in which no examples will be found and
Case 2: {α, β, γ} ⊂ {0,−1,−2,−3,∞}.

Case 1: In this case, one of α, β, γ < {0,−1,−2,−3,∞} and N( r
s ,

t
u ), E(N( r

s ,
t
u )) are found in

[MP, Tables A.2 – A.9]. It is immediately clear that the only
(
N
(a

b ,
c
d ), α, β, γ

)
∈ (S H,T H,Z) in

[MP, Tables A.2 – A.4 and Table A.9] is the (−2, 3, 7) pretzel knot exterior (N
(
− 3

2 ,−
1
2 ),∞, 0,−2).

If an (S H,T H,Z) triple
(
N
( r

s ,
t
u ), α, β, γ

)
∈ (S H,T H,Z) with one of α, β, γ < {0,−1,−2,−3,∞}

comes from [MP, Table A.5] then t
u = 1 and E(N

( r
s ,

t
u )) = {−3,−2,−1,−0, 1,∞}. So, one of

α, β, γ = 1. However, in this table N(1, r
s )(1) < T H ∪ S H ∪ Z.

If an (S H,T H,Z) triple
(
N
( r

s ,
t
u

)
, α, β, γ

)
∈ (S H,T H,Z) with one of α, β, γ < {0,−1,−2,−3,∞}

comes from [MP, Table A.6] then t
u = −3

2 and E(N
( r

s ,
t
u )) = {−3,−5

2 ,−2,−1,−0,∞}. So, one of
α, β, γ = −5

2 . In this table N( r
s ,−

3
2 )(−5

2 ) is only in S H ∪ T H ∪ Z if r
s = −2 + 1

n , in which case
N(−2 + 1

n ,−
3
2 )(−5

2 ) ∈ Z. We have ∆(β,−5
2 ) = 2 for β ∈ E(N

( r
s ,

t
u )) only when β = ∞.

We can see from Table A.6 that the only possible S 3 slopes on hyperbolic N( r
s ,−

3
2 ) are ∞

(which is a T H slope in our case) and −2. In the table we can read that N( r
s ,−

3
2 )(−2) = S 3 if and

only if |4r+11s| = 1. In our case, r
s = 1−2n

n , so |4r+11s| = 1 if and only if n = −1⇒ r
s = −3 which

is excluded by Lemma A.10. So if [MP, Table A.6] contains an
(
N
( r

s ,
t
u

)
, α, β, γ

)
∈ (S H,T H,Z)

with ∆(β, γ) = 2, then α, β, γ ∈ {0,−1,−2,−3,∞}.
If an (S H,T H,Z) triple

(
N
( r

s ,
t
u

)
, α, β, γ

)
∈ (S H,T H,Z) with one of α, β, γ < {0,−1,−2,−3,∞}

comes from [MP, Table A.7] then t
u = −5

2 and E(N
( r

s ,
t
u )) = {−3,−2,−3

2 ,−1, 0,∞}. This table
tells us that N( r

s ,−
5
2 )(−3

2 ) is in S H∪T H∪Z only if r
s = −2+ 1

n , in which case N(−2+ 1
n ,−

5
2 )(−3

2 ) ∈ Z.
The only possible S H slopes found in this table are∞, −2 or −1. [MP, Table A.7] tells us that

N
(
−2 + 1

n ,−
3
2

)
(∞) = N

(
1−2n

n ,−3
2

)
(∞) = L(5(1−2n)+2n, ?)

which is S 3 if and only if |5 − 8n| = 1 which has no integer solutions. The possibility for the −2
slope is

N
(
−2 + 1

n ,−
3
2

)
(−2) = N(1−2n

n ,−3
2 )(−2) = L(8(1−2n)+13n, ?)
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which is S 3 if and only if |8− 3n| = 1⇒ n = 3 which is excluded from [MP, Table A.7]. Finally,
the −1 slope yields

N
(
−2 + 1

n ,−
3
2

)
(−1) = N

(
1−2n

n ,−3
2

)
(−1) = L(3(1−2n)+11n, ?)

which is S 3 if and only if |3 + 5n| = 1 which has no integer solutions.
We conclude that if [MP, Table A.7] contains an

(
N
( r

s ,
t
u

)
, α, β, γ

)
∈ (S H,T H,Z) with ∆(β, γ) =

2, then α, β, γ ∈ {0,−1,−2,−3,∞}.
If an (S H,T H,Z) triple

(
N
( r

s ,
t
u

)
, α, β, γ

)
∈ (S H,T H,Z) with one of α, β, γ < {0,−1,−2,−3,∞}

comes from [MP, Table A.8] then t
u = −1

2 and E(N
( r

s ,
t
u )) = {−4,−3,−2,−1, 0,∞}. This table

tells us that N( r
s ,−

1
2 )(−4) is in S H ∪ T H ∪ Z only if r

s = n, in which case N(n,−1
2 )(−4) ∈ Z.

Moreover, we see in this table that the only possible S H slope with N( r
s ,−

1
2 ) hyperbolic is ∞.

Since

N
(
n,−1

2

)
(∞) = L(n+2, ?)

is S 3 if and only if n = −3, which makes N
(
n,−1

2

)
non-hyperbolic by Lemma A.10, we conclude

once again that if [MP, Table A.8] contains an
(
N
( r

s ,
t
u

)
, α, β, γ

)
∈ (S H,T H,Z) with ∆(β, γ) = 2,

then α, β, γ ∈ {0,−1,−2,−3,∞}.
Case 2: We now consider the case

(
N
( r

s ,
t
u ), α, β, γ

)
∈ (S H,T H,Z) with ∆(β, γ) = 2 and

{α, β, γ} ⊂ {−3,−2,−1, 0,∞}. All examples can be constructed from [MP, Table 2]. We will
write T2.n to refer to line n in the t

u column of [MP, Table 2] from the arXiv preprint.
We will first show that we may assume that ∞ corresponds to the S H slope. The distance

between the S H and the T H slope is 1 [GL1]. So, when ∞ is not an S H slope, and the distance
between the T H and Z slopes is 2 we have six choices of (S H,T H,Z) slopes:

(1) The (S H,T H,Z) triple of slopes correspond to (−3,−2, 0)
(2) The (S H,T H,Z) triple of slopes correspond to (−2,−3,−1)
(3) The (S H,T H,Z) triple of slopes correspond to (−2,−1,−3)
(4) The (S H,T H,Z) triple of slopes correspond to (−1,−2, 0)
(5) The (S H,T H,Z) triple of slopes correspond to (−1, 0,−2)
(6) The (S H,T H,Z) triple of slopes correspond to (0,−1,−3)

If we are in Case (1) then N( r
s ,

t
u ) is hyperbolic and N( r

s ,
t
u )(−3) = L(X, Y). T2.4 tells us that

r
s = −1+ 1

n and t
u = −1+ 1

m (all other lines of Table 2 with p
q = −3 make N( r

s ,
t
u ) non-hyperbolic or

N( r
s ,

t
u )(−3) , L(X, Y)). Since 0 is a type Z slope, we have to look for r

s ,
t
u in T2.16. This implies

that r
s = n′ = −1 + 1

n which yields n′ ∈ {−2, 0} making N( r
s ,

t
u ) non-hyperbolic.

If we are in Case (2) then T2.4 tells us that r
s = −1 + 1

n and t
u = −1 + 1

m , and T2.9 tells us that
one of r

s ,
t
u equals −2 + 1

k . By Lemma A.8 we may assume that r
s = −1 + 1

n = −2 + 1
m ⇒

r
s = −3

2 .
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However, Identity (1.3) in [MP, Proposition 1.5] gives us:

(11)
(
N
(
− 3

2 ,
t
u

)
,−2, β, γ

)
�

(
N
(
− 3

2 ,
2t+5u
t+2u

)
,∞,−2β+5

β+2 ,−
2γ+5
γ+2

)
.

So all examples found in Case (2) are contained in the case when ∞ is the S 3 slope (considered
below).

If we are in Case (3) then T2.5 tells us that one of r
s ,

t
u ∈ {−1 + 1

n }. Lemma A.8 tells us that
we may assume r

s = −1 + 1
n . T2.12 tells us that one of r

s ,
t
u = −3 + 1

k . As we have r
s = −1 + 1

n

and r
s = −2 is excluded by Lemma A.10, we require t

u = −3 + 1
k . T2.9 requires one of r

s ,
t
u =

−2 + 1
n . So, the possible (S H,T H,Z) triples in this case are

(
N
(
− 3

2 ,−3 + 1
k

)
,−2,−1,−3

)
and(

N
(
− 1 + 1

n ,−
5
2

)
,−2,−1,−3

)
. Equation (11) tells us that any examples of the form(

N
(
− 3

2 ,−3 + 1
k

)
,−2,−1,−3

)
are contained in the analysis of the case when ∞ is the S 3 slope

(considered below). T2.9 tells us that filling along our S 3 slope, −2, gives us

N
(
− 1 + 1

n ,−
5
2

)
(−2) = N

(
− 5

2 ,
1−n

n ,
)
(−2) = L(3(−2)(1−n+2n)−2(1−n)−n, ?) = L(−8−6n, ?) , S 3.

If we are in Case (4) then T2.9 tells us that one of r
s ,

t
u = −2 + 1

n . Lemma A.8 tells us that we
may assume r

s = −2 + 1
n . T2.12 tells us that one of r

s ,
t
u = −3 + 1

k . So, either r
s = −2 + 1

n = −3 + 1
k

(i.e. n = −2 = −k), or r
s = −2 + 1

n and t
u = −3 + 1

k . In the former case, T2.16 requires t
u = k and

filling along the S 3 slope, −1, gives

N
(
− 5

2 , k
)
(−1) = L(2(2)(k+3)−k−1, ?) = L(3k+11, ?) = S 3 only when k = −4.

So,
(
N
(
− 5

2 ,−4
)
,−1,−2, 0

)
∈ (S H,T H,Z). In the latter case, T2.16 requires one of r

s = −2 + 1
n ,

−3 + 1
k to be an integer. The slopes −1,−2,−3 are excluded by Lemma A.10, and the remaining

case is t
u = −4. In this case, by T2.12, filling along the S 3 slope, −1, gives

N
(
− 4, 1−2n

n

)
(−1) = L(2(−1)(1−2n+3n)−(1−2n)−n, ?) = L(−3−n, ?) = S 3 only when n = −1 or n = −4.

This gives the example
(
N
(
− 5

2 ,−4
)
,−1,−2, 0

)
∈ (S H,T H,Z) (already listed) and the example(

N
(
− 9

4 ,−4
)
,−1,−2, 0

)
∈ (S H,T H,Z).

If we are in Case (5) then T2.12 tells us that one of r
s ,

t
u = −3 + 1

n . Lemma A.8 tells us that we
may assume r

s = −3 + 1
n . T2.12 tells us that { rs ,

t
u } = {k,−4 − k + 1

m }. If r
s = −3 + 1

n ∈ Z then, by
Lemma A.10, we necessarily have r

s = k = −4 and t
u = 1

m . T2.12 tells us that our S 3 slope, −1,
gives us

N
(
− 4, 1

m

)
= L(2(−1)(1+3m)−1−m, ?) = L(−3−7m, ?) , S 3.

On the other hand, if r
s = −3+ 1

n = −4−k + 1
m and t

u = k then k = −1+ 1
m −

1
n ⇒ k ∈ {−3,−2, 0, 1}.

The cases k ∈ {−3,−2, 0} are excluded by Lemma A.10. If t
u = k = 1 then n = −1 ⇒ r

s = −4.
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T2.12 tells us that our S 3 slope, −1, gives us

N
(
− 4, 1

)
= L(2(−1)(1+3)−1−1, ?) , S 3.

If we are in Case (6) then [MP, Table 2] tells us that N( r
s ,

t
u )(0) = S 3 only if t

u = ∞ which
makes N( r

s ,
t
u ) non-hyperbolic.

The arguments so far allow us to assume that
(
N
( r

s ,
t
u ),∞, β, γ

)
∈ (S H,T H,Z), with the slopes

{β, γ} ⊂ {0,−1,−2,−3} and ∆(β, γ) = 2. We immediately see that either {β, γ} = {0,−2} or
{β, γ} = {−1,−3} giving us four cases to examine:

Case 2.1:
(
N
( r

s ,
t
u ),∞,−2, 0

)
∈ (S H,T H,Z)

Case 2.2:
(
N
( r

s ,
t
u ),∞, 0,−2

)
∈ (S H,T H,Z)

Case 2.3:
(
N
( r

s ,
t
u ),∞,−1,−3

)
∈ (S H,T H,Z)

Case 2.4:
(
N
( r

s ,
t
u ),∞,−3,−1

)
∈ (S H,T H,Z)

In all cases for∞ to be an S H slope we require

(12) |rt − su| = 1.

In Case 2.1 we see from [MP, Table 2] that N
( r

s ,
t
u )(−2) ∈ T H implies that −2 + 1

n ∈ {
r
s ,

t
u } and

N
( r

s ,
t
u )(0) ∈ Z implies that one of r

s ,
t
u is an integer k. If −2 + 1

n = k then k = −3,−1 (which are
excluded by Lemma A.10). So we are interested in N(k, 1−2n

n ) with∞ an S H slope. By condition
(12) we find

k =
n + 1

1 − 2n
or k =

n − 1
1 − 2n

.

For k to be an integer in the first equality we require n = −1, 0, 1 or k = −1 which are all excluded
by Lemma A.10. For k to be an integer in the second equality we require n = 0, 1 which are all
excluded by Lemma A.10. So, Case 2.1 produces no examples.

In Case 2.2 we see in [MP, Table 2] that N
( r

s ,
t
u )(0) ∈ T H implies that { rs ,

t
u } = {n,−4 − n + 1

m }.
By Lemma A.8 we may assume that ( r

s ,
t
u ) = (n, 1−4m−nm

m ). Identity (12) implies that

n(1 − 4m − nm) − m = ±1⇒ m =
n + 1

n2 + 4n + 1
or m =

n − 1
n2 + 4n + 1

.

This implies n ∈ {−3,−1, 0} in the first case and n ∈ {−5,−3,−2,−1, 0, 1} in the second case. We
know that n ∈ {−3,−2,−1, 0} are excluded by Lemma A.10. In the second case, if n = −5 then
m = −1 which implies t

u = 0 which is excluded by Lemma A.10. If n = 1 in the second case
then m = 0 which implies t

u = ∞ which is excluded by Lemma A.10. So, the Case 2.2 produces
no examples.

In Case 2.3 [MP, Table 2] tells us that N
( r

s ,
t
u )(−1) ∈ T H implies that −3 + 1

n ∈ {
r
s ,

t
u } and

N
( r

s ,
t
u )(−3) ∈ Z implies that −1 + 1

m ∈ {
r
s ,

t
u }

2. If the slope −3 + 1
n = −1 + 1

m then n = 1 and

2see footnote in Section 5.3.
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our slope is −2 which is forbidden by Lemma A.10. So, by Lemma A.8, we may assume that
( r

s ,
t
u ) = (−3 + 1

n ,−1 + 1
m ). Identity (12) implies that

(1 − 3n)(1 − m) − nm = ±1⇒ m =
3n

2n − 1
or m =

3n − 2
2n − 1

.

This implies n ∈ {−1, 0, 1, 2} in the first case and n ∈ {0, 1} in the second case. The cases n = 0, 1
make r

s = ∞,−2 respectively, which are excluded by Lemma A.10. If n = 1 in the first case then
m = 1 ⇒ t

u = 0 which is excluded by Lemma A.10. If n = 2 in the first case then m = 2 which
implies r

s = − r
s and t

u = −1
2 . This gives us the example(

N
(
− 5

2 ,−
1
2

)
,∞,−1,−3

)
∈

(
S H,T H,Z

)
.

In Case 2.4 we see in [MP, Table 2] that N
( r

s ,
t
u )(−3) ∈ T H implies that { rs ,

t
u } = {−1+ 1

n ,−1+ 1
m }

and N
( r

s ,
t
u )(−1) ∈ Z implies that −3,−3 + 1

k < {
a
b ,

c
d }. The condition ( r

s ,
t
u ) = (−1 + 1

n ,−1 + 1
m ) and

(12) imply that
(1 − n)(1 − m) − nm = ±1⇒ m = 1 ± 1 − n.

This gives us (
N
(
− 1 + 1

n ,−1 − 1
n

)
,∞,−3,−1

)
∈

(
S H,T H,Z

)
and (

N
(
− 1 + 1

n ,−1 + 1
2−n

)
,∞,−3,−1

)
∈

(
S H,T H,Z

)
.

We have thus proved the following: if
(
N
( r

s ,
t
u ), α, β, γ

)
∈ (S H,T H,Z) and ∆(β, γ) = 2 then(

N
( r

s ,
t
u ), α, β, γ

)
�

(
N
(
− 5

2 ,−4
)
,−1,−2, 0

)
, or(

N
( r

s ,
t
u ), α, β, γ

)
�

(
N
(
− 9

4 ,−4
)
,−1,−2, 0

)
, or(

N
( r

s ,
t
u ), α, β, γ

)
�

(
N
(
− 5

2 ,−
1
2

)
,∞,−1,−3

)
, or(

N
( r

s ,
t
u ), α, β, γ

)
�

(
N
(
− 1 + 1

n ,−1 − 1
n

)
,∞,−3,−1

)
, or(

N
( r

s ,
t
u ), α, β, γ

)
�

(
N
(
− 1 + 1

n ,−1 + 1
2−n

)
,∞,−3,−1

)
.

From [MP, Table A.4] we know that N
(
− 5

2 ,−4
)

and N
(
− 5

2 ,−
1
2

)
are both equal to the (−2, 3, 7)

pretzel knot exterior N(−3
2 ,−

1
2 ), which is also N(−1 − 1

n ,−1 + 1
n ) for n = 2. We have

N
(
−9

4 ,−4
)

=
Lemma A.9

M3

(
9
4 , 4

)
=

Lemma A.6
M4

(
5
4 ,−1, 3

)
=

(16)◦(29)◦(16)
M5

(
1
4 ,−1,−2, 3

)
=

(17)◦(20)
M5

(
−2,−1,−1

2 ,
3
4

)
=

Lemma A.6 ◦ (29)
M3

(
3
2 ,

3
4

)
=

Lemma A.9

(
−3

2 ,−
3
4

)
= N

(
−1 + 1

n ,−1 + 1
2−n

)
with n = −2.
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We observed in Section 4.4 that the two families are distinct. This completes the proof.
�

Appendix A. Facts used liberally throughout this article

The classification in this article comes from a careful consideration of the tables found in
[MP] and [Rou2]. Often, cases considered in the enumeration are identified and/or discounted
using technical results, most of which are found in [MP] and [Rou2]. To keep this article as
self-contained as possible we list the technical lemmas that are used in this article.

A.1. Identities between graph manifolds. The following lemma consists of a list of identities
between graph manifolds which are found in both [Rou2] and [MP]. Details can be found in
[FM].

Lemma A.1. The following identities on graph manifolds hold:

(
D, (1, b), (c, d)

)⋃0 1
1 0


(
D, (e, f), (g, h)

)
=

(
D, (e, f), (g, h)

)⋃0 1
1 0


(
D, (1, b), (c, d)

)
(13)

=
(
S 2, (e, f), (g, h), (d+bc, −c)

)
(
S 2, (a, b), (c, d), (0, 1)

)
= L(a, b)#L(c, d)(14) (

S 2, (a, b), (c, d), (1, e)
)

= L(a(d+ce)+bc, ?)(15)

The following obvious lemma is used throughout the article.

Lemma A.2. If
(
D, (a, b), (c, d)

)⋃0 1
1 0


(
D, (e, f), (g, h)

)
or

(
S 2, (a, b), (c, d), (e, f)

)
is a lens space or

S 3, then one of |a|, |c|, |e| or |g| is less than or equal to 1.

A.2. Concerning surgery instruction on 5CL.

Lemma A.3 ([Rou2, Lemma 2.2]). The action of Aut(M5) on surgery instructions on 5CL is
generated by (16)–(28). Moreover, for 18 ≤ n ≤ 28 each (n) corresponds to the action of a
distinct element of Aut(M5)/G where G is the subgroup generated by the elements (16)–(17)
corresponding to the generators of the link symmetry group of 5CL.

(16) (α1, α2, α3, α4, α5) 7−→ (α5, α1, α2, α3, α4)

(17) (α1, α2, α3, α4, α5) 7−→ (α5, α4, α3, α2, α1)

(18)
(a

b ,
c
d ,

e
f ,

g
h ,

i
j

)
7−→

( f
e ,

j−i
j ,

a
a−b ,

d−c
d ,

h
g

)
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(19)
(a

b ,
c
d ,

e
f ,

g
h ,

i
j

)
7−→

( b
b−a ,

i− j
i ,

e− f
e ,

d
d−c ,

g
h

)
(20)

( a
b ,

c
d ,

e
f ,

g
h ,

i
j

)
7−→

( i
i− j ,

b−a
b ,

f
e ,

d
c ,

h−g
h

)
(21)

(a
b ,

c
d ,

e
f ,

g
h ,

i
j

)
7−→

( j
j−i ,

e
f ,

b
b−a ,

c−d
c ,

g−h
g

)
(22)

(a
b ,

c
d ,

e
f ,

g
h ,

i
j

)
7−→

( a
a−b ,

e
e− f ,

i
i− j ,

c
c−d ,

g
g−h

)
(23)

(a
b ,

c
d ,

e
f ,

g
h ,

i
j

)
7−→

( h
g ,

j
i ,

f−e
f ,

c
c−d ,

b−a
b

)
(24)

(a
b ,

c
d ,

e
f ,

g
h ,

i
j

)
7−→

( h
h−g ,

a
b ,

f
f−e ,

c−d
c ,

i− j
i

)
(25)

(a
b ,

c
d ,

e
f ,

g
h ,

i
j

)
7−→

( g
g−h ,

f−e
f ,

b
a ,

d
c ,

j−i
j

)
(26)

(a
b ,

c
d ,

e
f ,

g
h ,

i
j

)
7−→

( g−h
g ,

f
f−e ,

i
j ,

d
d−c ,

a−b
a

)
(27)

(a
b ,

c
d ,

e
f ,

g
h ,

i
j

)
7−→

( h−g
h ,

b
a ,

j
i ,

d−c
d ,

e
e− f

)
(28)

(a
b ,

c
d ,

e
f ,

g
h ,

i
j

)
7−→

(a−b
a ,

e− f
e ,

h
h−g ,

c
d ,

j
j−i

)
.

Lemma A.4 ([Rou2, Theorem 4 and Eq. (70)]). The following statements hold:

• If 0, 1,∞ ∈ {ab ,
c
d ,

e
f ,

g
h ,

i
j } then M5(a

b ,
c
d ,

e
f ,

g
h ,

i
j ) is non-hyperbolic.

• If −1, 1
2 , 2 ∈ {

a
b ,

c
d ,

e
f ,

g
h ,

i
j } then (a

b ,
c
d ,

e
f ,

g
h ,

i
j ) factors through M4.

As highlighted in [MPR]:

Lemma A.5. The following identity holds:

(29) M5(a
b ,

c
d ,−1, e

f ,
g
h ) = M4( a

b ,
c+d

d ,
e+ f

f ,
g
h ).

A.3. Concerning surgery instructions on 4CL. From [Rou2] we have the following identities:

M4(a
b ,

c
d ,

e
f )(∞) =

(
S 2, (a, b), (d, −c), (e, f)

)
,(30)

M4( a
b ,

c
d ,

e
f )(0) =

(
D, ( f , −e), (b, 2b−a)

)⋃0 1
1 0


(
D, (2, 1), (c−2d, d)

)
,(31)

M4( a
b ,

c
d ,

e
f )(1) =

(
S 2, (a−2b, b), (c−d, c), (e−2 f , f)

)
,(32)

M4(a
b ,

c
d ,

e
f )(2) =

(
D, (a−b, b), (e− f , f)

)⋃0 1
1 0


(
D, (c, d), (2, −1)

)
.(33)

Lemma A.6 ([Rou2, Theorem 5 and Eq. (69)]). The following statements hold:
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• If (a
b ,

c
d ,

e
f ,

g
h ) is an instruction on 4CL and one of the slopes is in {0, 1, 2,∞} then M4( a

b ,
c
d ,

e
f ,

g
h )

is non-hyperbolic.
• If ( a

b ,
c
d ,

e
f ,

g
h ) is an instruction on 4CL and one of the slopes is in {−1, 1

2 ,
3
2 , 3} then

M4( a
b ,

c
d ,

e
f ,

g
h ) factors through M3. In particular, M4( a

b ,−1, c
d ,

e
f ) = M3( a

b + 1, c
d + 1, e

f )

The action induced from the link symmetry group of 4CL tells us:

Lemma A.7. For a filling instruction ( a
b ,

c
d ,

e
f ,

g
h ) on M4 we have

M4( a
b ,

c
d ,

e
f ,

g
h ) = M4( e

f ,
c
d ,

a
d ,

g
h ) and M4( a

b ,
c
d ,

e
f ,

g
h ) = M4( g

h ,
a
b ,

c
d ,

e
f ).

A.4. Concerning surgery instructions on 3CL.

Lemma A.8. If σ ∈ S 3 and (α1, α2, α3) is a filling instruction on N then

N(α1, α2, α3) = N(ασ(1), ασ(2), ασ(3)).

Lemma A.9. For all filling instructions it holds M3( a
b ,

c
d ,

e
f ) = N(−a

b ,−
c
d ,−

e
f ).

The following Lemma is contained in the statement of [MP, Corollary A.6].

Lemma A.10. The following statements hold:

• If ( a
b ,

c
d ,

e
f ) is an instruction on 3CL and one of the slopes is {0,−1,−2,−3,∞} then

N( a
b ,

c
d ,

e
f ) is non-hyperbolic.

• If ( a
b ,

c
d ,

e
f ) is an instruction on 3CL and one of the slopes is {−4,−5

2 ,−
3
2 ,−1,−1

2 , 1} then
N( a

b ,
c
d ,

e
f ) is found in Tables 8–15 of [MP].

A.5. Concerning surgery instructions on M4CL. [Rou2, Proposition 2.1] gives us a complete
enumeration of the Dehn fillings on F, the exterior of the minimally twisted 4 chain link. We
have:

Lemma A.11. For slopes a
b , c

d , e
f , g

h on M4CL the following identity holds:

(34) F( a
b ,

e
f ,

c
d ,

g
h ) =

(
D, (a, b), (c, d)

)⋃0 1
1 0


(
D, (e, f), (g, h)

)
In fact, “most" exceptional fillings of M5 are obtained by filling F (c.f. [Rou2, Proposi-

tion 3.1]).

Lemma A.12. The following identities hold:

M5( a
b ,

c
d ,

e
f ,

g
h )(∞) = F(−a

b ,
f
e ,

d
c ,−

g
h )(35)

M5(a
b ,

c
d ,

e
f ,

g
h )(1) = F(a−b

b ,
c
d ,

e
f ,

g−h
h )(36)

M5( a
b ,

c
d ,

e
f ,

g
h )(0) = F( b

b−a ,
c−d

c ,−
h
g ,

e− f
f )(37)
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Consequently,

Lemma A.13. The following identities hold:

F( a
b ,

c
d ,

e
f ,

g
h ) = M5(−a

b ,
f
e ,

d
c ,−

g
h )(∞)(38)

F(a
b ,

c
d ,

e
f ,

g
h ) = M5(a+b

b ,
c
d ,

e
f ,

g+h
h )(1)(39)

F( a
b ,

c
d ,

e
f ,

g
h ) = M5( a−b

a ,
d

d−c ,−
h
g ,

f +e
f )(0)(40)

A.6. Some elementary diophantine equations.

Lemma A.14. For (n, s) ∈ Z2, we have

• s − n = ns =⇒ (n, s) ∈
{
(0, 0), (2,−2)

}
;

• 2s − n = ns =⇒ ((n, s) ∈
{
(0, 0), (1, 1), (3,−3), (4,−2)

}
;

• 4s − n = ns =⇒ ((n, s) ∈
{
(0, 0), (3, 3), (5,−5), (8,−2), (6,−3), (2, 1)

}
;

• s − n = 3ns =⇒ (n, s) ∈
{
(0, 0)

}
;

• 2s − n = 3ns =⇒ ((n, s) ∈
{
(0, 0), (1,−1)

}
;

• 4s − n = 3ns =⇒ ((n, s) ∈
{
(0, 0), (1, 1), (2,−1)

}
;

• 8s − n = 3ns =⇒ (n, s) ∈
{
(0, 0), (3,−3), (2, 1), (4,−1)

}
;

• 5s − n = 3ns =⇒ ((n, s) ∈
{
(0, 0), (2,−2)

}
;

• s − n = −5ns =⇒ (n, s) ∈
{
(0, 0)

}
;

• 2s − n = −5ns =⇒ (n, s) ∈
{
(0, 0)

}
;

• 4s − n = −5ns =⇒ (n, s) ∈
{
(0, 0), (−1, 1)

}
;

• 8s − n = −5ns =⇒ (n, s) ∈
{
(0, 0), (−2, 1)

}
:

• 3s − n = −5ns =⇒ (n, s) ∈
{
(0, 0)

}
.

Proof. Here, we consider equations of the form αs− n = βns for some α, β ∈ Z. They are solved
by induction on the number of prime factor of α.

Indeed, we first note that s | n and n | αs.

• If actually n | s, then s = ±n and n satisfies either (α − 1)n = βn2 or (α + 1)n = βn2. It
follows that (n, s) = (0, 0), or

(
α−1
β
, α−1

β

)
if α−1

β
∈ Z, or

(
α+1
β
,−α+1

β

)
if α+1

β
∈ Z.

• If n - s then n = kn′ with some prime divisor of α, but then α
k n′ − s = βn′s and by

induction, we know all such (n′0, s0) and each of them leads to a solution (kn′0, s0).

�

Lemma A.15. If m, n are integers such that
(
1 − m(n + 4)

)
n = m ± 1 then

(m, n) ∈
{
(−5,−1), (−4,−3), (−4,−5), (−3, 1), (−3, 2), (−2, 1), (−1, 0), (−1, 1), (0,−1), (0, 1), (1, 0)

}
.

Proof. Then m
(
1 + n(n + 4)

)
= n ± 1. So either m = 0 or

(
1 + n(n + 4)

)
| n ± 1.
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Case m = 0: then n = ±1.
Case m

(
1 + n(n + 4)

)
| n + 1: then 1 + n(n + 4) ≤ |n + 1|.

If n + 1 ≥ 0: then n(n + 3) ≤ 0 so n ∈ {−3,−2,−1, 0}. Only −1 and 0 satisfy n + 1 ≥ 0,
leading to solutions (n,m) ∈

{
(−1, 0), (0, 1)

}
.

If n + 1 ≤ 0: then n2 +5n+2 ≤ 0 so n ∈
[
−5−

√
17

2 , −5+
√

17
2

]
∩Z = {−4,−3,−2,−1}. If n =

−2, then m = 1
3 < Z. Other cases lead to solutions (n,m) ∈

{
(−4,−3), (−3, 1), (−1, 0)

}
.

Case m
(
1 + n(n + 4)

)
| n − 1: 1 + n(n + 4) ≤ |n − 1|.

If n − 1 ≥ 0: then (n + 1)(n + 2) ≤ 0 so n ∈ {−2,−1} and doesn’t satisfy n − 1 ≥ 0.
If n − 1 ≤ 0: then n(n + 5) ≤ 0 so n ∈ {−5,−4,−3,−2,−1, 0} leading to solutions

(n,m) ∈
{
(−5,−1), (−4,−5), (−3, 2), (−2, 1), (−1, 1), (0,−1)

}
.

�
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