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We construct an open set Ω ⊂ R N on which an eigenvalue problem for the p-Laplacian has not isolated first eigenvalue and the spectrum is not discrete. The same example shows that the usual Lusternik-Schnirelmann minimax construction does not exhaust the whole spectrum of this eigenvalue problem.

acting on the homogeneous Sobolev space D 1,p 0 (Ω). The latter is defined as the completion of C ∞ 0 (Ω) with respect to the norm

u → Ω |∇u| p dx 1 p , for u ∈ C ∞ 0 (Ω).
The usual eigenvalue problem for the p-Laplace operator with homogeneous Dirichlet boundary condition is the following: find the numbers λ ∈ R such that the boundary value problem (1.1) -∆ p u = λ |u| p-2 u, in Ω, u = 0, on ∂Ω, admits a solution u ∈ D 1,p 0 (Ω) \ {0}, see for example [START_REF] Lindqvist | On the equation div(|∇u| p-2 ∇u) + λ |u| p-2 u = 0[END_REF]. In this note we want to consider the following variant (1.2) -∆ p u = λ u p-q L q (Ω) |u| q-2 u, in Ω, u = 0, on ∂Ω, where 1 < q < p. This problem has already been studied by the second author and Lamberti in [4]. At a first glance, equation (1.2) could seem a bit weird, due to the presence of the L q norm on the right-hand side. We observe that this term guarantees that both sides of the equation share the same homogeneity, exactly like in the standard case (1.1).

Though the introduction of this term containing the L q norm may looks artificial, nevertheless it is easily seen that (1.2) is a natural extension of (1.1). Indeed, eigenvalues of the p-Laplacian can be seen as critical points of the functional u → Ω |∇u| p dx restricted to the manifold

S p (Ω) = {u ∈ D 1,p 0 (Ω) : u L p (Ω) = 1}
. In a similar fashion, eigenvalues of (1.2) correspond to critical points of the same functional, this time restricted to the manifold S p,q (Ω) = {u ∈ D 1,p 0 (Ω) : u L q (Ω) = 1}. We define the (p, q)-spectrum of Ω as follows Spec(Ω; p, q) = {λ ∈ R : equation (1.2) admits a solution in D 1,p 0 (Ω) \ {0}}, and we call every element of this set a (p, q)-eigenvalue of Ω.

Let us assume that the open set Ω ⊂ R N is such that the embedding

D 1,p 0 (Ω) → L q (Ω) is compact. It is known that Spec(Ω; p, q) is a closed set, see [4, Theorem 5.1]. It is not difficult to see that λ ≥ λ 1 p,q (Ω) > 0,
for every λ ∈ Spec(Ω; p, q), where λ 1 p,q (Ω) is the first (p, q)-eigenvalue of Ω, defined by

λ 1 p,q (Ω) = min u∈Sp,q(Ω) Ω |∇u| p dx.
Moreover, it is known that Spec(Ω; p, q) contains an increasing unbounded sequence of eigenvalues {λ k p,q (Ω)} k∈N\{0} , defined through a variational procedure analogous to the so-called Courant minimax principle used for the spectrum of the Laplacian.

Let us be more precise on this point. For every k ∈ N \ {0}, we define Σ k p,q (Ω) = A ⊂ S p,q (Ω) : A compact and symmetric, with γ(A) ≥ k , where γ(•) denotes the Krasnosel'skiȋ genus of a closed set, defined by

γ(A) = inf k ∈ N : ∃ a continuous odd map φ : A → S k-1 ,
with the convention that γ(A) = +∞, if no such an integer k exists. Then for every k ∈ N \ {0}, one can define the number λ k p,q (Ω) = inf

A∈Σ k p,q (Ω) max u∈A Ω |∇u| p dx.
By [4, Theorem 5.2] we have {λ k p,q (Ω)} k∈N\{0} ⊂ Spec(Ω; p, q) and lim k→∞ λ k p,q (Ω) = +∞.

We will use the notation Spec LS (Ω; p, q) := {λ k p,q (Ω)} k∈N\{0} for the Lusternik-Schnirelmann (p, q)-spectrum of Ω.

We recall that when p = q = 2 then the Lusternik-Schnirelmann spectrum coincides with the whole spectrum of the Dirichlet-Laplacian, see for example [START_REF] Brasco | Stability of variational eigenvalues for the fractional p-Laplacian[END_REF]Theorem A.2]. In all the other cases, it is not known whether Spec LS (Ω; p, q) and Spec(Ω; p, q) coincide or not.

1.2. The content of the paper. The humble aim of this small note is to shed some light on the relation between the two spectra. More precisely, in Theorem 3.1 below we construct an example of an open set B ⊂ R N such that for 1 < q < p • the embedding D 1,p 0 (B) → L q (B) is compact (the set B is indeed bounded); • Spec LS (B; p, q) = Spec(B; p, q); • Spec(B; p, q) has (at least) countably many accumulation points.

Actually, by using the same idea, in Theorem 3.2 below we present an even worse example, i.e. an open set T ⊂ R N such that for 1 < q < p

• the embedding D 1,p 0 (T ) → L q (T ) is compact; • Spec LS (T ; p, q) = Spec(T ; p, q).
• Spec(T ; p, q) has (at least) countably many accumulation points;

• the first eigenvalue λ 1 p,q (T ) is not isolated, i.e. there exists {λ n } n ⊂ Spec(T ; p, q) such that

λ 1 p,q (T ) = lim n→∞ λ n .
Although we agree that our examples are quite pathological (in particular T could be bounded, but made of infinitely many connected components) and strongly based on the fact that q/p < 1, we believe them to have their own interest in abstract Critical Point Theory.

Remark 1.1 (More general index theories). For simplicity, in this paper we consider the Lusternik-Schnirelmann spectrum defined by means of the Krasnosel'skiȋ genus. We recall that it is possible to define diverging sequences of eigenvalues in a similar fashion, by using another index in place of the genus. For example, one could use the Z 2 -cohomological index [START_REF] Fadell | Bifurcation for odd potential operators and an alternative topological index[END_REF] or the Lusternik-Schnirelmann Category [6, Chapter 2]. Our examples still apply in each of these cases, since they are independent of the choice of the index.

Spectrum of disconnected sets

2.1. General eigenvalues. For the standard eigenvalue problem (1.1), i.e. when q = p, it is wellknown that the spectrum of a disconnected open set Ω is made of the collection of the eigenvalues of its connected components. For 1 < q < p this only gives a part of the spectrum, the general formula is contained in the following result.

Proposition 2.1. Let 1 < q < p < ∞ and let Ω ⊂ R N be an open set such that D 1,p 0 (Ω) → L q (Ω) is compact. Let us suppose that

Ω = Ω 1 ∪ Ω 2 , with Ω i ⊂ R N open set, such that dist(Ω 1 , Ω 2 ) > 0. Then λ is a (p, q)-eigenvalue of Ω if and only if it is of the form (2.1) λ = δ 1 λ 1 q p-q + δ 2 λ 2 q p-q q-p q
for some eigenvalue λ i of Ω i ,

where the coefficients δ 1 and δ 2 are such that

δ i ∈ {0, 1} and 
δ 1 + δ 2 = 0.
Moreover, if we set

|α i | = λ λ i 1 p-q , i = 1, 2, each (p, q)-eigenfunction U of Ω corresponding to (2.1) takes the form (2.2) U = C δ 1 α 1 u 1 + δ 2 α 2 u 2 ,
where C ∈ R and u i ∈ D 1,p 0 (Ω i ) is a (p, q)-eigenfunction of Ω i with unitary L q norm corresponding to λ i , for i = 1, 2.

Proof. Let us suppose that λ is an eigenvalue and let U ∈ D 1,p 0 (Ω) be a corresponding eigenfunction. For simplicity, we take U with unitary L q norm. Let us set

u i = U • 1 Ω i ∈ D 1,p 0 (Ω i ), i = 1, 2,
then these two functions are weak solutions of

-∆ p u i = λ |u i | q-2 u i , in Ω i , i = 1, 2.
We have to distinguish two situations: either both u 1 and u 2 are not identically zero; or at least one of the two identically vanishes.

In the first case, by setting α i = u i L q (Ω i ) , for i = 1, 2, we can rewrite the previous equation as

-∆ p u i = λ α p-q i u i p-q L q (Ω i ) |u i | q-2 u i , in Ω i , i = 1, 2,
which implies that λ i := λ α q-p i is an eigenvalue of Ω i , i = 1, 2. By using that α q 1 + α q 2 = 1, we can infer that

1 = α q 1 + α q 2 = λ q p-q 1 λ 1 q p-q + 1 λ 2 q p-q
, which implies that λ has the form (2.1), with δ 1 = δ 2 = 1. Moreover, since λ α q-p i = λ i , this gives that the eigenfunction U has the form

U = u 1 + u 2 = α 1 u 1 u 1 L q (Ω) + α 2 u 2 u 2 L q (Ω) = λ λ 1 1 p-q u 1 u 1 L q (Ω) + λ λ 2 1 p-q u 2 u 2 L q (Ω) ,
which is formula (2.2).

Let us now suppose that u 2 ≡ 0, this implies that U = u 1 and u 1 has unitary L q norm. This automatically gives that λ is an eigenvalue of Ω 1 , i.e. we have formula (2.1) with δ 1 = 1 and δ 2 = 0.

Let us now suppose that λ i is an eigenvalue of Ω i with eigenfunction u i ∈ D 1, 0 (Ω i ) normalized in L q , for i = 1, 2. We first observe that we immediately get that λ 1 and λ 2 are eigenvalues of Ω, with eigenfunctions u 1 and u 2 extended by 0 on the other component. Now we set U = β 1 u 1 + β 2 u 2 ∈ D 1,p 0 (Ω), where β 1 , β 2 ≥ 0 has to be suitably chosen. By using the equations solved by u 1 and u 2 and using that these have disjoint supports, we get that

-∆ p U = -β p-1 i ∆ p u i = β p-1 i λ i |u i | q-2 u i = β p-q i λ i |U | q-2 U, in Ω i , i = 1, 2.
The previous implies that if we want U to be an eigenfunction of Ω with eigenvalue λ given by formula (2.1) with δ 1 = δ 2 = 1, we need to choose β 1 , β 2 in such a way that

β p-q 1 λ 1 = λ U p-q L q (Ω) = β p-q 2 λ 2 .
Since we have

U p-q L q (Ω) = (β q 1 + β q 2 ) p-q q ,
this is equivalent to require that (2.3)

β p-q 1 λ 1 = 1 λ 1 q p-q + 1 λ 2 q p-q q-p q (β q 1 + β q 2 ) p-q q ,

and

(2.4)

β p-q 2 λ 2 = 1 λ 1 q p-q + 1 λ 2 q p-q q-p q (β q 1 + β q 2 ) p-q q .
If we now impose that U has unitary L q norm, we now get that U must be of the form (2.2), in the case δ 1 = δ 2 = 1.

We can iterate the previous result and get the following

Corollary 2.2. Let 1 < q < p < ∞ and let Ω ⊂ R N be an open set such that D 1,p 0 (Ω) → L q (Ω) is compact. Let us suppose that Ω = # i=1 Ω i , with Ω i ⊂ R N open set, such that dist(Ω i , Ω j ) > 0, for i = j. Then λ is a (p, q)-eigenvalue of Ω if and only if it is of the form (2.5) λ = # i=1 δ i λ i q p-q q-p q for some (p, q)-eigenvalue λ i of Ω i ,
where the coefficients δ i are such that

δ i ∈ {0, 1} and 
# i=1 δ i = 0.
Moreover, if we set

|α i | = λ λ i 1 p-q
, each corresponding (p, q)-eigenfunction U of Ω has the form

(2.6) U = C # i=1 δ i α i u i ,
where C ∈ R and u i ∈ D 1,p 0 (Ω) is (p, q)-eigenfunction of Ω i with unitary L q norm corresponding to λ i .

2.2. The first eigenvalue. Thanks to the formula of Proposition 2.1, we can now compute the first (p, q)-eigenvalue of a disconnected set. For ease of readability, we start as before with the case of two connected components.

Corollary 2.3. Let 1 < q < p < ∞ and let Ω ⊂ R N be an open set such that D 1,p 0 (Ω) → L q (Ω) is compact. Let us suppose that Ω = Ω 1 ∪ Ω 2 ,
with

Ω i ⊂ R N open connected set, such that dist(Ω 1 , Ω 2 ) > 0. Then we have (2.7) λ 1 p,q (Ω) = 1 λ 1 p,q (Ω 1 ) q p-q + 1 λ 1 p,q (Ω 2 ) q p-q q-p q .
Moreover, each first (p, q)-eigenfunction of Ω with unitary L q norm has the form

(2.8) α 1 u 1 + α 2 u 2 , where |α i | = λ 1 p,q (Ω) λ 1 p,q (Ω i ) 1 p-q
, and u i ∈ D 1,p 0 (Ω) is the first positive (p, q)-eigenfunction of Ω i with unitary L q norm, for i = 1, 2. Proof. From formula (2.1), we already know that we must have (2.9)

λ 1 p,q (Ω) = δ 1 λ 1 q p-q + δ 2 λ 2 q p-q q-p q
for some eigenvalue λ i of Ω i .

We now observe that the function

Φ(s, t) = s q p-q + t q p-q q-p q , (s, t) ∈ [0, +∞) × [0, +∞) \ {(0, 0)},
is decreasing in both variables (here we use that q < p). This implies that the right-hand side of (2.9) is minimal when

δ 1 = δ 2 = 1, λ 1 = λ 1 p,q (Ω 1 )
and λ 2 = λ 1 p,q (Ω 2 ), i.e. formula (2.7). The representation formula (2.8) now follows from that of Proposition 2.1.

Remark 2.4. Under the assumptions of the previous result, we obtain in particular that Ω = Ω 1 ∪ Ω 2 has exatcly 4 first (p, q)-eigenfunctions with unitary L q norm, given by

|α 1 | u 1 + |α 2 | u 2 , |α 1 | u 1 -|α 2 | u 2 , -|α 1 | u 1 + |α 2 | u 2 and -|α 1 | u 1 + |α 2 | u 2 .
In particular, even if λ 1 p,q (Ω) is multiple in this situation, however the collection of the first eigenfunctions on S p,q (Ω) is a set of genus 1. This phenomenon disappears when p = q.

More generally, we get the following Corollary 2.5. Let 1 < q < p < ∞ and let Ω ⊂ R N be an open set such that D 1,p 0 (Ω) → L q (Ω) is compact. Let us suppose that

Ω = # i=1 Ω i , with Ω i ⊂ R N open set, such that dist(Ω i , Ω j ) > 0, for i = j. Then we have (2.10) λ 1 p,q (Ω) = # i=1 1 λ 1 p,q (Ω i ) q p-q q-p q .
Moreover, each corresponding first (p, q)-eigenfunction of Ω with unitary L q norm has the form

(2.11) # i=1 α i u i , where |α i | = λ 1 p,q (Ω) λ 1 p,q (Ω i ) 1 p-q
, and u i ∈ D 1,p 0 (Ω) is a first (p, q)-eigenfunction of Ω i with unitary L q norm corresponding to λ i .

Construction of the examples

We are now ready for the main results of this note.

Theorem 3.1. Let 1 < q < p < ∞ and 0 < r ≤ R, we take the disjoint union of balls

B = B R (x 0 ) ∪ B r (y 0 ), with |x 0 -y 0 | > R + r.

Then

(3.1) Spec LS (B; p, q) = Spec(B; p, q).

Moreover, the set Spec(B; p, q) has (at least) countably many accumulation points.

Proof. We observe that for every k ≥ 2 there exists a sequence {λ n,k } n∈N ⊂ Spec(B; p, q) such that

(3.2) λ k p,q (B R (x 0 )) = lim n→∞ λ n,k .
Namely,

λ n,k = 1 λ k p,q (B R (x 0 )) q p-q + 1 λ n p,q (B r (y 0 )) q p-q q-p q
is a (p, q)-eigenvalue of B for all n ≥ 1, thanks to formula (2.1), and we have that lim n→∞ λ n p,q (B r (y 0 )) = +∞.

From (3.2) we immediately deduce the second part of the statement, since λ k p,q (B R (x 0 )) belongs to Spec(B; p, q) by formula (2.1). Moreover, (3.2) implies (3.1) as well. Indeed, if the two spectra were the same then Spec(B; p, q) = {λ k p,q (B)} k∈N\{0} would be an increasing sequence diverging to +∞, with (infinitely many) accumulation points, which is impossibile.

We can refine the previous construction and obtain that for our eigenvalue problem even the isolation of the first eigenvalue is not guaranteed, in general. Theorem 3.2. Let 1 < q < p and let {r i } i∈N ⊂ R be a sequence of strictly positive numbers, such that

(3.3) ∞ i=0 r p q p-q +N i < +∞.
We then define the sequence of points {x i } i∈N ⊂ R N by x 0 = (0, . . . , 0), x i+1 = (2 -i + r i + r i+1 , 0, . . . , 0) + x i , and the disjoint union of balls

(3.4) T = ∞ i=0 B r i (x i ).
Then Spec LS (T ; p, q) = Spec(T ; p, q). and the set Spec(T ; p, q) has (at least) countably many accumulation points. Moreover, the first eigenvalue λ 1 p,q (T ) is not isolated.

Proof. We first observe that the condition (3.3) guarantess compactness of D 1,p 0 (T ) → L q (T ), see [2, Theorem 1.2 & Example 5.2]. The first statement follows as in the previous theorem.

In order to prove that λ 1 p,q (T ) is an accumulation point of the spectrum, we can now use Corollaries 2.5 and 2.2 to construct a sequence of eigenvalues {λ n } n∈N such that λ n converges to λ 1 p,q (T ). We just set

λ n = n i=1 1 λ 1
p,q (B r i (x i )) q p-q q-p q .

This gives the desired sequence. 
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 1 Figure 1. The set T is a disjoint union of countably many shrinking balls.
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