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A PATHOLOGICAL EXAMPLE IN
NONLINEAR SPECTRAL THEORY

LORENZO BRASCO AND GIOVANNI FRANZINA

ABSTRACT. We construct an open set Q C RY on which an eigenvalue problem for the p—Laplacian
has not isolated first eigenvalue and the spectrum is not discrete. The same example shows that
the usual Lusternik-Schnirelmann minimax construction does not exhaust the whole spectrum of
this eigenvalue problem.
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1. INTRODUCTION

1.1. Framework. For an open set  C R, we pick an exponent 1 < p < oo and consider the
p—Laplace operator

Apu = div(|Vul[P~2 Vu),

acting on the homogeneous Sobolev space Dé’p (©). The latter is defined as the completion of
C°(€2) with respect to the norm

1
U (/ \Vu]pda:)p, for u € C5°(92).
Q
The usual eigenvalue problem for the p—Laplace operator with homogeneous Dirichlet boundary
condition is the following: find the numbers A € R such that the boundary value problem
(1.1) — Apu = A|ufP2u, inQ, u=20, on 01,
admits a solution u € Dé’p (©) \ {0}, see for example [5].
In this note we want to consider the following variant
(1.2) —Apu= A ||u||’£;(qm lul7%u, in Q, uw=20, on dQ,

where 1 < ¢ < p. This problem has already been studied by the second author and Lamberti in
[4]. At a first glance, equation (1.2) could seem a bit weird, due to the presence of the L? norm on
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2 BRASCO AND FRANZINA

the right-hand side. We observe that this term guarantees that both sides of the equation share
the same homogeneity, exactly like in the standard case (1.1).

Though the introduction of this term containing the L? norm may looks artificial, nevertheless
it is easily seen that (1.2) is a natural extension of (1.1). Indeed, eigenvalues of the p—Laplacian
can be seen as critical points of the functional u — fQ |VulP dx restricted to the manifold

Sp(92) = {u € Dg"(Q) : |lull () = 1}.

In a similar fashion, eigenvalues of (1.2) correspond to critical points of the same functional, this
time restricted to the manifold

Spa(Q) = {u € DGP(Q) : [Jul Loy = 1}
We define the (p, q)—spectrum of Q as follows
Spec(2;p,q) = {\ € R : equation (1.2) admits a solution in D(l)’p(Q) \ {0}},

and we call every element of this set a (p, ¢)—eigenvalue of Q.

Let us assume that the open set @ C R is such that the embedding D(l]’p(Q) — L1(Q) is
compact. It is known that Spec(€2;p, q) is a closed set, see [4, Theorem 5.1]. It is not difficult to
see that

A > )\zl,’q(Q) > 0, for every A € Spec(Q;p, q),

where )\Il,yq(Q) is the first (p, q)—eigenvalue of 2, defined by

M (Q)= mi VulP dx.
()= i, [ I

Moreover, it is known that Spec(2;p,q) contains an increasing unbounded sequence of eigenval-
ues {A’;’q(Q)}keN\{o}, defined through a variational procedure analogous to the so-called Courant

minimax principle used for the spectrum of the Laplacian.
Let us be more precise on this point. For every k € N\ {0}, we define

Z’;,q(Q) = {A C 85,,4(92) : A compact and symmetric, with y(A) > k:},
where 7(-) denotes the Krasnosel’skii genus of a closed set, defined by
v(A) = inf {k‘ € N : 3 a continuous odd map ¢ : A — Sk_l} ,

with the convention that y(A) = 400, if no such an integer k exists. Then for every k € N\ {0},
one can define the number

k _ p
Apg(2) Aeé%i(Q)rggf/ngm dzx.

By [4, Theorem 5.2] we have
D @}kemoy C Spec(Qip,q)  and  lim Ay () = +o0.
We will use the notation
Specrs(2p, ) = {A) (D)} rem fo)

for the Lusternik-Schnirelmann (p, q)—spectrum of .

We recall that when p = ¢ = 2 then the Lusternik-Schnirelmann spectrum coincides with the
whole spectrum of the Dirichlet-Laplacian, see for example [1, Theorem A.2]. In all the other cases,
it is not known whether Spec; ¢(€2; p, ¢) and Spec(2; p, q) coincide or not.
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1.2. The content of the paper. The humble aim of this small note is to shed some light on the
relation between the two spectra. More precisely, in Theorem 3.1 below we construct an example
of an open set B C RN such that for 1 < ¢ < p

e the embedding Dé’p (B) < L%(B) is compact (the set B is indeed bounded);
e Specys(B;p,q) # Spec(B;p, q);

e Spec(B;p, q) has (at least) countably many accumulation points.

Actually, by using the same idea, in Theorem 3.2 below we present an even worse example, i.e. an
open set 7 C RY such that for 1 < ¢ < p

e the embedding Dy (7)) < L4(T) is compact;
® Specys(T:p,q) # Spec(T;p, q).

e Spec(T;p,q) has (at least) countably many accumulation points;

e the first eigenvalue A} () is not isolated, i.e. there exists {\,}n C Spec(T;p,q) such that

1 T
Aog(T) = nh—>Holo An-

Although we agree that our examples are quite pathological (in particular 7 could be bounded,

but made of infinitely many connected components) and strongly based on the fact that ¢/p < 1,

we believe them to have their own interest in abstract Critical Point Theory.

Remark 1.1 (More general index theories). For simplicity, in this paper we consider the Lusternik-
Schnirelmann spectrum defined by means of the Krasnosel’skii genus. We recall that it is possible to
define diverging sequences of eigenvalues in a similar fashion, by using another index in place of the
genus. For example, one could use the Zy—cohomological index [3] or the Lusternik-Schnirelmann
Category [6, Chapter 2]. Our examples still apply in each of these cases, since they are independent
of the choice of the index.

Acknowledgments. We thank Peter Lindqvist for his kind interest in this work. This manuscript
has been finalized while the first author was visiting the KTH (Stockholm) in February 2017. He
wishes to thank Erik Lindgren for the kind invitation. The authors are members of the Gruppo
Nazionale per I’Analisi Matematica, la Probabilita e le loro Applicazioni (GNAMPA) of the Istituto
Nazionale di Alta Matematica (INAAM).

2. SPECTRUM OF DISCONNECTED SETS

2.1. General eigenvalues. For the standard eigenvalue problem (1.1), i.e. when g = p, it is well-
known that the spectrum of a disconnected open set €2 is made of the collection of the eigenvalues
of its connected components. For 1 < ¢ < p this only gives a part of the spectrum, the general
formula is contained in the following result.

Proposition 2.1. Let 1 < ¢ < p < oo and let @ C RN be an open set such that Dé’p(Q) — L1(0)
is compact. Let us suppose that

Q= Q1 U Qo,
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with Q; C RN open set, such that dist(Q1,Q2) > 0. Then X is a (p, q)—eigenvalue of Q if and only
if it is of the form

q q ap

6 —a 5 —a q

(2.1) A= [(;) o + <)\2> ’ q] for some eigenvalue \; of €,
1 2

where the coefficients 61 and do are such that

d; € {0, 1} and 01 + 02 7é 0.

1
)\ o—a
’ai:<)\i>pq7 i:1727

each (p, q)—eigenfunction U of Q0 corresponding to (2.1) takes the form
(2.2) U=C <(51 a1 uy + 09 ap U2>,

Moreover, if we set

where C' € R and u; € Dé’p(Qi) is a (p, q)—eigenfunction of Q; with unitary LY norm corresponding
to A, fori=1,2.

Proof. Let us suppose that A is an eigenvalue and let U € Dé’p (Q) be a corresponding eigenfunction.
For simplicity, we take U with unitary LY norm. Let us set

u=U-1g, € DyP(),  i=1,2,
then these two functions are weak solutions of
—Apui =A |ui|q_2 Uq, in Qi, 1= 1, 2.

We have to distinguish two situations: either both u; and wuo are not identically zero; or at least
one of the two identically vanishes.
In the first case, by setting o; = |luil|e(q,), for i = 1,2, we can rewrite the previous equation as

A _ _ . .
_Apui - W HUZHin]Qz) |ul’q 2uiv n 2, i=1,2,
7

which implies that \; := Ao ” is an eigenvalue of ;, i = 1,2. By using that af + ad = 1, we can

infer that
_q 1 pzq 1 pzq
1:a?+ag=)\p‘q <>\1> +<)\2> )

which implies that A has the form (2.1), with §; = d2 = 1. Moreover, since A «
that the eigenfunction U has the form

7P = )\, this gives

U u
1 +Oég| 2

U=u14+us=0oq

w1l La(o) [uzl|La(a)

g —_— P — _|_ - R
A1 utllLa(a) A2 |uzllLa(a)
which is formula (2.2).

Let us now suppose that us = 0, this implies that U = u; and u; has unitary L? norm. This
automatically gives that A is an eigenvalue of Q4, i.e. we have formula (2.1) with 6; = 1 and d3 = 0.
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Let us now suppose that ); is an eigenvalue of €2; with eigenfunction u; € Dé’(Qi) normalized in
L4, for i = 1,2. We first observe that we immediately get that A\; and A are eigenvalues of €2, with
eigenfunctions u; and us extended by 0 on the other component.

Now we set

U=pBrur+ Baug € Dé’p(Q)a

where (1, 82 > 0 has to be suitably chosen. By using the equations solved by u; and us and using
that these have disjoint supports, we get that

—AU = _55)_1 Apu; = Bf_l i i |72
=B\ U, inQ;, i=1,2.

The previous implies that if we want U to be an eigenfunction of €} with eigenvalue A\ given by
formula (2.1) with §; = d3 = 1, we need to choose (31, B2 in such a way that

B0 = AUty = 857 e

Since we have

U1, = (BT + 89«

this is equivalent to require that

_ (f1NFE 1N p=
(2.3 o= () ()| e
L 1 2 -
and
_ NS 1N p=
(2.4 = | () ()| @
L 1 2 -

If we now impose that U has unitary L? norm, we now get that U must be of the form (2.2), in
the case d1 = d9 = 1. O

We can iterate the previous result and get the following

Corollary 2.2. Let 1 < g < p < oo and let Q@ C RN be an open set such that Dé’p(Q) — L1(Q) is
compact. Let us suppose that

#
o=,
=1

with Q; C RY open set, such that dist(Q;,$2;) > 0, fori # j. Then X is a (p,q)—eigenvalue of ) if
and only if it is of the form

# N-L] ¢
(2.5) A= [Z (51) ! q] for some (p, q)—eigenvalue \; of €,

=1

where the coefficients &; are such that

#
6 €{0,1} and > 6 #0.
=1
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1
(AP
ol = (5:)""

each corresponding (p, q)—eigenfunction U of Q0 has the form

#
(2.6) U=C (Z 0; Uz) ;

=1

Moreover, if we set

where C' € R and u; € Dé’p(ﬂ) is (p, q)—eigenfunction of Q; with unitary L1 norm corresponding
to )\i-

2.2. The first eigenvalue. Thanks to the formula of Proposition 2.1, we can now compute the
first (p,q)—eigenvalue of a disconnected set. For ease of readability, we start as before with the
case of two connected components.

Corollary 2.3. Let 1 < ¢ < p < oo and let Q@ C RN be an open set such that Dé’p(Q) — LY(Q) is
compact. Let us suppose that
Q=01 U Qo,

with Q; C RN open connected set, such that dist(y, Q2) > 0. Then we have

Moreover, each first (p,q)—eigenfunction of Q with unitary LY norm has the form

(2.8) + here || Mgl o
. a1 Uy a9 U9, wnere &l = | 47 ~~ 5
Z )‘119761(91')
and u; € Dé’p(Q) is the first positive (p, q)—eigenfunction of Q; with unitary LY norm, fori=1,2.

Proof. From formula (2.1), we already know that we must have

- 4—p

1 51 ﬁ 52 ﬁ ? .
(2.9) Apg(2)= || — + = for some eigenvalue \; of ;.
P A1 A2
We now observe that the function
_ q9—-p
s, t) = [s77+177| T (s,) € ([0.400) x [0,400)) \ {(0,0)},

is decreasing in both variables (here we use that ¢ < p). This implies that the right-hand side of
(2.9) is minimal when

51 = (52 = 1, )\1 = )\11)7Q(Q1) and )\2 = )\1177(1((22),
i.e. formula (2.7). The representation formula (2.8) now follows from that of Proposition 2.1.

Remark 2.4. Under the assumptions of the previous result, we obtain in particular that Q =
Q1 U Qy has exatcly 4 first (p, ¢)—eigenfunctions with unitary L? norm, given by

o | g + |az| ug, lon| w1 — [az| ug, —lar|ur + |oo| up and — |a|ur + || us.
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In particular, even if Aéjq(ﬂ) is multiple in this situation, however the collection of the first eigen-
functions on S, 4(€2) is a set of genus 1. This phenomenon disappears when p = q.
More generally, we get the following

Corollary 2.5. Let 1 < g < p < oo and let Q C RY be an open set such that Dé’p(Q) — L1(Q) s
compact. Let us suppose that
#
o=,
i=1

with Q; C RN open set, such that dist(£;, Q) >0, fori# j. Then we have

9—pP

q q

> (i)™

=1

(2.10) Apg() =

Moreover, each corresponding first (p, q)—eigenfunction of Q with unitary LY norm has the form

# | =
Ao () \*7¢
(2.11) g Q; U, where |a;| = | 2~ ,

and u; € D(l)’p(Q) is a first (p,q)—eigenfunction of Q; with unitary LY norm corresponding to ;.
3. CONSTRUCTION OF THE EXAMPLES
We are now ready for the main results of this note.
Theorem 3.1. Let 1 < g<p<oo and 0 <r < R, we take the disjoint union of balls
B = Br(zo) U By (), with [xo — yo| > R+ .
Then
(3.1) Specys(B;p, q) # Spec(B; p, q)-
Moreover, the set Spec(B;p,q) has (at least) countably many accumulation points.

Proof. We observe that for every k > 2 there exists a sequence {\, ; }nen C Spec(B;p, ¢) such that
k _ .
(3.2) Ap.q(Br(0)) = nh_}rrolo An k-

Namely, e 1
Amkz[(Agﬂé;@m»>pﬂ'*<M%U;@mﬂ>pﬂ]

is a (p, q)—eigenvalue of B for all n > 1, thanks to formula (2.1), and we have that
Tim A7, (B, (o)) = +oc.

From (3.2) we immediately deduce the second part of the statement, since A’;,q(B r(z0)) belongs
to Spec(B;p,q) by formula (2.1). Moreover, (3.2) implies (3.1) as well. Indeed, if the two spectra
were the same then

Spec(B;p, q) = {5 ,(B)}rem (o}
would be an increasing sequence diverging to +oo, with (infinitely many) accumulation points,
which is impossibile. O
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We can refine the previous construction and obtain that for our eigenvalue problem even the
isolation of the first eigenvalue is not guaranteed, in general.

Theorem 3.2. Let 1 < q < p and let {r;}ien C R be a sequence of strictly positive numbers, such
that

(3.3) Zr”ﬂﬁ < 400.
i=0

7

We then define the sequence of points {x;}ieny C RY by
o = (0, .'..,O),
Tip1 = (2747 +741,0,...,0) + x4,

and the disjoint union of balls

(3.4) T =B (z:).
i=0
Then
Specs(T3p,q) # Spec(T;p, q).-
and the set Spec(T;p,q) has (at least) countably many accumulation points. Moreover, the first
eigenvalue X} (T is not isolated.

Proof. We first observe that the condition (3.3) guarantess compactness of Dé’p (T) < LY(T), see
[2, Theorem 1.2 & Example 5.2]. The first statement follows as in the previous theorem.

In order to prove that /\},,q(’T) is an accumulation point of the spectrum, we can now use Corol-
laries 2.5 and 2.2 to construct a sequence of eigenvalues {\, } ey such that \,, converges to )\113761(7').
We just set

q q9—p

“[ﬂxém)]

This gives the desired sequence. ([

O O 0000

F1GURE 1. The set T is a disjoint union of countably many shrinking balls.
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Remark 3.3. The examples above are given in terms of disjoint unions of balls just for simplicity.
Actually, they still work with disjoint unions of more general bounded sets.

(1]
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