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HANDLE DECOMPOSITIONS OF RATIONAL BALLS AND

CASSON–GORDON INVARIANTS

PAOLO ACETO, MARCO GOLLA, AND ANA G. LECUONA

Abstract. Given a rational homology sphere which bounds rational homology balls,
we investigate the complexity of these balls as measured by the number of 1-handles
in a handle decomposition. We use Casson–Gordon invariants to obtain lower bounds
which also lead to lower bounds on the fusion number of ribbon knots. We use Levine–
Tristram signatures to compute these bounds and produce explicit examples.

1. Introduction

Given two concordant knots it is natural to ask how complicated a concordance
between them must be. An similar question can be asked about (rational) homology
cobordant 3-manifolds and cobordisms between them. Very little is known about these
two simple and natural questions.
In the context of knot concordance a natural notion of complexity already considered

by several authors [15, 12] is that of the fusion number of a ribbon knot. The analo-
gous notion for integral or rational homology spheres bounding an integral or rational
homology ball is the minimum number of 1-handles needed to construct an integral
or rational homology ball bounding the given 3-manifolds. These numerical invariants
encode deep 4-dimensional information of knots and 3-manifolds and are extremely
hard to compute. Motivation in this direction comes also from analogous questions
which are purely 4-dimensional. One of the oldest open problems in smooth 4-manifold
topology asks if it is true that every smooth simply-connected 4-manifold has a handle
decomposition with no 1-handles.
In this paper we investigate the complexity of rational balls (as measured by the num-

ber of handles in their handle decompositions) bounded by a given rational homology
sphere. More precisely we consider the following question.

Question 1.1. Let Y be a rational homology sphere which bounds a rational ball.
What is the minimal number of 1-handles needed to realise a rational ball bounded by
Y ? What if we restrict to those rational balls constructed only with 1- and 2-handles?

We provide lower bounds on these numbers using Casson–Gordon invariants. To
each rational homology sphere Y and a character ϕ : H1(Y ) → C∗ these associate a
rational number σ(Y, ϕ). We relate this number to handle decompositions of rational
balls bounding Y via the following statement.

Theorem 1.2. Let Y be a 3-manifold that bounds a rational homology ball W , and let

ϕ : H1(Y ) → C∗ be a nontrivial character that factors through H1(W ). Every handle

decomposition of W contains at least |σ(Y, ϕ)| − 1 odd-index handles.
1
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In order to use the above theorem one needs to understand for which Y there exist
characters which factor through any rational ball bounded by Y . One example of this
situation is described in the following corollary.

Corollary 1.3. Let Y be a 3-manifold with H1(Y ) cyclic of order m2 and ϕ : H1(Y ) →
Zk be a nontrivial character with k|m. If W is a rational homology ball with ∂W = Y ,
then every handle decomposition of W contains at least |σ(Y, ϕ)|−1 odd-index handles.

In order to produce specific examples we need an efficient way to compute Casson–
Gordon invariants. Using work of Cimasoni and Florens and focusing on 3-manifolds
obtained via Dehn surgery on knots we reduce our problem to a computation of Levine–
Tristram signatures.

Proposition 1.4. If Y = S3
m2(K) bounds a rational homology ballW with one 1-handle

and no 3-handles, then |1 − σK(e
2aπi/m) − 2a(m − a)| ≤ 1 for every 1 ≤ a < m such

that (a,m) = 1.

Note that S3
m2(K) bounds a rational homology ball with one 1-handle and no 3-

handles if and only if it can be obtained via Dehn surgery on a knot in S1 × S2 and
therefore we obtain an obstruction for this last property as well.
The examples obtained include the following:

• the 3-manifold Y = L(25, 21)#L(4, 3) bounds no rational homology ball with a
single 1-handle and it bounds one built with two 1-handles and two 2-handles;

• the 3-manifold S3
400(T4,25;2,201) (here T4,25;2,201 is the (2, 201)-cable of the torus

knot T4,25) bounds no rational homology ball with a single 1-handle and it
bounds one built with three 1-handles and three 2-handles.

Finally we use this machinery to provide lower bounds on the fusion number of ribbon
knots, i.e. the minimal number of 1-handles used to construct a ribbon disk. This is
done by considering the branched double cover of a ribbon knot and then implementing
the available obstructions.

Organisation of the paper. In Section 2 we develop the lower bounds based on
Casson–Gordon signatures and, in specific situations, we relate these invariants to
Tristram–Levine signatures. In Section 3 we give some examples.
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Centro de Giorgi in Pisa; we would like to thank both institutions for their hospitality.
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conversations.

2. Casson–Gordon signatures and handle decompositions

We briefly recall the definition of Casson–Gordon signature invariants [6] and set up
some notation. In what follows H∗(X) will denote the homology of X with integer
coefficients and Cm the cyclic group of m elements.
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Let (Y 3, ϕ) be a rational homology 3-sphere with a multiplicative character ϕ :
H1(Y ) → C∗. The bordism group Ω3(K(Cm, 1)) is finite for each m ∈ Z+, and therefore
r copies of (Y 3, ϕ) bound a pair (X4, ψ), where ψ : H1(X) → Cm ⊂ C∗ restricts to ϕ on

each of the r boundary components. Let X̃ denote the m-fold cover of X correspond-
ing to ψ with group of deck transformations isomorphic to Cm. This action induces a

Z[Cm]-module structure on H2(X̃). Recall that given ζm, a primitive root of unity of
order m, the the cyclotomic field Q(ζm) is a natural Z[Cm]-module and we can define
the twisted homology group

Hψ
2 (X ;Q(ζm)) := H2(X̃ ;Q)⊗Z[Cm] Q(ζm).

This group admits a C-valued Hermitian intersection form whose signature will be
denoted by σψ(X). The signature of the standard intersection pairing on H2(X) will
be denoted by σ(X). The Casson–Gordon signature invariant of the pair (Y, ϕ) is
given by the difference:

(1) σ(Y, ϕ) :=
1

r

(
σψ(X)− σ(X)

)
.

Our main result provides a bound on the complexity of rational homology balls in terms
of their handle decompositions. The bound is established making use of the Casson–
Gordon signature invariant. The proof of this result is very similar in nature to the
one in the original paper of Casson and Gordon [6, Theorem 1] but with a different
application in mind.

Theorem 2.1. Let Y be a 3-manifold that bounds a rational homology ball W , and let

ϕ : H1(Y ) → C∗ be a nontrivial character that factors through H1(W ). Every handle

decomposition of W contains at least |σ(Y, ϕ)| − 1 odd-index handles.

Proof. Let ψ : H1(W ) → C∗ be a character that extends ϕ, namely, ϕ = i∗ψ, where
i : Y →֒ W is the inclusion. We shall use the manifold W to compute σ(Y, ϕ) as in (1).
In this case r = 1 and since W is a rational homology ball, H2(W ) is torsion and hence
σ(W ) = 0. Therefore, in (1), we are only concerned with the first summand, σψ(W ).

We denote by W̃ the covering associated to ψ and fixm to be the order of ψ(H1(W )) ⊂

C∗. Any cell decomposition ofW induces a chain complex of the covering C∗(W̃ ), which
we view as generated over Z[Cm] by one lift of each cell in the given decomposition of
W . The module structure allows us to consider the twisted chain complex

Cψ
k (W ) := Ck(W̃ )⊗Z[Cm] Q(ζm),

with associated homology Hψ
∗ (W ) and Euler characteristic χψ(W ). Note that, since W

is a rational homology ball and has χ(W ) = 1, then also χψ(W ) = 1. Moreover, remark

that the k-th twisted Betti number bψk (W ) := rkHψ
k (W ) of W is bounded from above

by the number nk of k-cells in the decomposition of W .
The quantity σψ(W ) in formula (1) is obviously bounded by bψ2 (W ) and since ψ is

nontrivial by assumption, Hψ
0 (W ) = 0. Therefore, since

1 = χψ(W ) = −bψ1 (W ) + bψ2 (W )− bψ3 (W ),
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we have

|σ(Y, ϕ)| = |σψ(W )| ≤ bψ2 (W ) = 1 + bψ1 (W ) + bψ3 (W ) ≤ 1 + n1 + n3.

as desired. �

The statement of Theorem 2.1 requires that a character defined on a 3-manifold
extends over a rational homology 4-ball. In Corollary 2.2 we deal with a particular case
in which the extension of the character is guaranteed and in Corollary 2.3 we give a
bound on fusion number of ribbon knots.

Corollary 2.2. Let Y be a 3-manifold with H1(Y ) cyclic of order m2 and ϕ : H1(Y ) →
Ck be a nontrivial character with k|m. If W is a rational homology ball with ∂W = Y ,
then every handle decomposition of W contains at least |σ(Y, ϕ)|−1 odd-index handles.

Proof. Using the long exact sequence for the pair (W,Y ), it is not difficult to show that
the image of i∗ : H1(Y ) → H1(W ) has order m. It follows that, whenever k|m, ker i∗ ⊂
kerϕ, and hence ϕ factors through the image of i∗, giving ψ0 : i∗(H1(Y )) → Q/Z, where
we look at Q/Z as the set of roots of unity in C∗. Since Q/Z is an injective Z-module,
we can extend ψ0 to H1(W ), hence obtaining an extension ψ : H1(W ) → Q/Z ⊂ C∗.
Therefore, the assumptions of Theorem 2.1 are satisfied, and the result follows. �

We now turn to give a lower bound on the fusion number of a ribbon knot. In what
follows, given a knot K ⊂ S3, we will denote with detK the determinant of K and
with Σ(K) the double cover of S3 branched over K.

Corollary 2.3. Let K be a ribbon knot with fusion number b. Then

b ≥ min
H

max
ϕ

|σ(Y, ϕ)| − 1,

where the minimum is taken over all subgroups H < H1(Σ(K)) of index
√

| detK| and
the maximum is taken over all characters ϕ whose kernel contains H.

Proof. Let D be a disk in the 4-ball realizing the fusion number for K. The double
cover of B4 branched over this disk is a rational homology ball W bounded by Σ(K),
the double cover of S3 branched over K. By Theorem 2.1, from every character ϕ
defined on H1(Σ(K)) which extends over the rational homology ball we obtain a lower
bound, |σ(Y, ϕ)| − 1, on the number of odd-index handles in any decomposition of W .
Now, since D is a ribbon disk, W can be built with no 3-handles and with only b

1-handles. It is well known that the order of H1(Σ(K)) is equal to | detK| and, since

there are no 3-handles in W , the order of H1(W ) equals
√

| detK| and the inclusion
i∗ : H1(Σ(K)) → H1(W ) is a surjection. Notice that a character ϕ extends if and only
if ker i∗ ⊂ kerϕ, which in this case can be translated into ϕ vanishing on a subgroup of
H1(Σ(K)) of order

√
| detK|. The result follows. �

We now focus on the special case of 3-manifolds Y obtained as surgery on a knot K ⊂
S3. We shall denote such manifolds as S3

r (K), where r ∈ Q is the surgery coefficient.
For this class of manifolds we will give a bound on the complexity of a rational homology
ball bounded by Y in terms of σK(ωm), the Levine–Tristram signature of the knot K
evaluated at a primitive root of unity of order m. The precise statement follows.
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Proposition 2.4. If Y = S3
m2(K) bounds a rational homology ballW with one 1-handle

and no 3-handles, then |1 − σK(e
2aπi/m) − 2a(m − a)| ≤ 1 for every 1 ≤ a < m such

that (a,m) = 1.

Proof. Under these assumptions, π1(W ) is cyclic, any surjective character ϕ : H1(Y ) →
Cm factors through the map H1(Y ) → H1(W ) induced by the inclusion, and there is
an extension of ϕ to ψ : H1(W ) → C∗ (see the proof of Theorem 2.2). We can therefore
use (W,ψ) to compute the Casson–Gordon signature invariant of the pair (Y, ϕ). Notice
that in this case in formula (1) we have r = 1 and σ(W ) = 0, so σ(Y, ϕ) = σψ(W ).
We proceed now to estimate |σψ(W )|. Since there are no 3-handles, H1(W ) = Cm, the

covering associated to ψ is the universal cover of W and therefore Hψ
1 (W ) = 0, which

implies bψ1 (W ) = 0. Since Hψ
1 (W ) = 0, we deduce, from the long exact sequence for

the pair (W,Y ), that Hψ
1 (W,Y ) = 0. By Poincaré duality it follows that H3

ψ(W ) = 0,

and thus bψ3 (W ) also vanishes. Finally, since ψ is non trivial, we have bψ0 (W ) = 0. Now,
since W is a rational homology ball,

χ(W ) = 1 = χψ(W ) = bψ0 (W )− bψ1 (W ) + bψ2 (W )− bψ3 (W ) = bψ2 (W )

and we obtain that dimHϕ
2 (W ) = 1 and hence the signature σψ(W ) of the equivariant

intersection form is bounded by 1 in absolute value, and therefore |σ(Y, ϕ)| ≤ 1.
To finish the proof, we rewrite the Casson–Gordon signature invariant of Y in terms

of the Levine–Tristram signature of the surgery knot K using the formula in Cimasoni–
Florens [7, Theorem 6.7]. To this end, identify Cm with the cyclic group generated by
ωm = e2iπ/m ∈ C∗ by sending 1 ∈ Cm to e2iπ/m and denote by σK(·) the Levine–Tristram
signature of a knot. Let ωam be the image of the meridian of K under the character ϕ.
The statement of the proposition then follows from the equality:

|σ(Y, ϕ)| = |σK(ω
a
m)− 1 +

2

m2
(m− a)am2|. �

Remark 2.5. Notice that, when working with a rational homology sphere Y that
bounds a rational homology ball W without 3-handles, one can give a lower bound on
the complexity of W by looking at H1(Y ): if H1(Y ) is generated by no fewer than g
generators, every handle decomposition of W contains at least ⌊g/2⌋ 1-handles.
To prove this, take a handle decomposition of W with b 1-handles and b 2-handles,

and do a dot-zero surgery along the core of each 1-handle. This presents Y as an integer
surgery along a 2b-component link, and correspondingly presents H1(Y ) as a quotient
of Z2b, hence 2b ≥ g.

The statement of Proposition 2.4 can be extended to surgeries with rational coeffi-
cients. As shown in Figure 1, a rational surgery on a knot K can be interpreted as an
integral surgery on a link L = K ∪U2 ∪ · · ·∪Un where all the Ui’s are unknots. We will
use this link L to compute the Casson–Gordon signature invariants of Y = S3

m2/q(K).

Notice that any character ϕ : H1(Y ) → Cm can be determined from a character defined
on H1(S

3 \ L) sending the meridian of K to a ∈ Cm and extending to H1(Y ). If in
the link L we replace K with an unknot U1 and leave the same surgery coefficients, we
obtain a surgery description of the lens space L(m2,−q) = S3

m2/q(U) and a character
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K . . .

a1 a2 an

Figure 1. The integral surgery picture for p/q-surgery along K, where
[a1, . . . , an]

− is the negative continued fraction expansion of p/q.

χa : H1(L(m
2,−q)) → Cm sending the meridian of U1 to a. With all these conventions

in place, we have the following statement.

Proposition 2.6. If Y = S3
m2/q(K) bounds a rational homology ball W with one 1-

handle and no 3-handles, then |σK(e
2iπa/m)+σ(L(m2,−q), χa)| ≤ 1 for every 1 ≤ a < m

such that (a,m) = 1.

Remark 2.7. There is an explicit formula for σ(L(m2,−q), χa) given by Gilmer [10,
Example 3.9].

Proof of Proposition 2.6. The same arguments used in Proposition 2.4 allow us to con-
clude in this case that any surjective character ϕ : H1(Y ) → Cm has an extension ψ to

W , σ(Y, ϕ) = σψ(W ) and, since bψ2 = 1, we have |σ(Y, ϕ)| ≤ 1.
To finish the proof, we want to express σ(Y, ϕ) using [7, Theorem 6.7] applied to

the surgery diagram depicted in Figure 1. We refer the reader to [7] for the pertinent
definitions. The formula given by Cimasoni and Florens has one term that depends on
the knot K, the colored signature of L, and all the others, which we will denote by Tϕ,Λ,
depend exclusively on the image of the meridians of L via ϕ and on the linking matrix
Λ of the surgery presentation of Y . It follows that, with the exception of the first term
in the formula, all the others remain unchanged if we substitute K with an unknot.
That is, if we compute the Casson–Gordon invariant of a lens space from the chain
surgery presentation with coefficients [a1, . . . , an] and for the character that is defined
by sending the meridian of U1 to e2iπa/m. This Casson–Gordon invariant is precisely
σ(L(m2,−q), χa).
Now, notice that the link L bounds an evident C-complex in the sense of [7] given

by a Seifert surface for K and a series of embedded disks, one for each unknot. The
first homology of this complex coincides with the first homology of the Seifert surface
for K, and the multivariable colored signature of L evaluated at any vector of roots of
unity (ω1, . . . , ωn) coincides with the Levine–Tristram signature of K evaluated at ω1.
This yields

σ(Y, ϕ) = σL(ω) + Tϕ,Λ = σK(ω1) + Tϕ,Λ.

Since there is an evident contractible C-complex for the chain surgery presentation of
L(m2,−q), it follows that σ(L(m2,−q), χa) = Tϕ,Λ and, by definition of ϕ, we have
ω1 = e2iπa/m. The result follows. �
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3. Examples

Example 3.1. As promised in the introduction, we prove that the 3-manifold Y =
L(25, 21)#L(4, 3) bounds no rational homology ball constructed with a single 1-handle
and no 3-handles. However, it bounds a rational homology ball built with two 1-handles
and two 2-handles.
Indeed, as shown by Moser [16], S3

100(T4,25) = L(25, 21)#L(4, 3); we can now use
Proposition 2.4 to obstruct the existence of such a ball. In fact, using the formula
from [14], we see that σT4,25(e

iπ/5) = −15 (note that eiπ/5 is a root of the Alexander
polynomial of T4,25, thus explaining why the signature is odd), and therefore

σ(Y, ϕ) = |1− σT4,25(e
iπ/5)− 2(10− 1)| = |1 + 15− 18| = 2.

Since each of L(25, 21) and L(4, 3) bounds a rational homology ball built with a single
1-handle and a single 2-handle [4], their connected sum does indeed bound a ratio-
nal homology ball, built with two 1-handles and two 2-handles, namely the boundary
connected sum of the two balls above.
Also, note that L(25, 7) is a lens space that bounds a rational homology ball W , and

that L(25, 7)#L(25, 7) bounds a rational homology ball built with a single 1-handle
and a single 2-handle, which is therefore simpler than the boundary connected sum of
two copies of W . This shows that the example above is nontrivial.

Example 3.2. In fact, the previous example readily generalises to the following family:
whenever Ya,b = L(a2,−b2)#L(b2,−a2) = S3

(ab)2(Ta2,b2) and ⌊b/a⌋ ≤ 2 bounds a rational

homology ball, we will show that for the character ϕ on Ya,b that maps the meridian to
exp(2πi/ab), |σ(Ya,b, ϕ)| ≥ 2, thus showing that Ya,b does not bound a rational homology
ball with one 1-handle and no 3-handles.
Note that if ab is odd, Ya,b is the branched double cover of a ribbon knot by work

of Lisca [13], and for every character ϕ′ of order a prime power, |σ(Ya,b, ϕ
′)| ≤ 1 [6,

Theorem 2]. As a concrete example, we can choose a = 5, b = 13; in this case, Ya,b
bounds a rational homology ball, obtained as the complement of a rational cuspidal
curve in CP2 (see [18, 9]).
Indeed, infinitely many pairs of odd integers arise in this fashion: if we denote with

Fn the n-th Fibonacci number (where we let F0 = 0, F1 = 1), for each pair (a, b) =
(F6k−1, F6k+1) the 3-manifold Ya,b bounds a rational homology ball [18, 9] and H1(Ya,b)
has odd order, since both F6k−1 and F6k+1 are odd.
We remark here that, when ab is odd, Ya,b is the branched double cover of a knot

Ka,b which is a connected sum of two 2-bridge knots; when (a, b) = (5, 13), for instance,
K5,13 = K(169/25)#K(25/14), and each of the two summands is ribbon with fusion
number 1. However, K5,13 has fusion number 2: indeed, by Corollary 2.3 its fusion
number is at least 2, and since it is the connected sum of two fusion number-1 knots,
the inequality is sharp.
These examples show, once again, that the assumption that the order of ϕ′ is a prime

power in [6, Theorem 2] is indeed essential.
We now prove the claim above that |σ(Ya,b, ϕ)| ≥ 2. Since

σ(Ya,b, ϕ) = 3− σT
a2,b2

(e2πi/ab)− 2ab,
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it suffices to show that σT
a2,b2

(e2πi/ab) ≥ −2ab + 5. Observe that the Alexander poly-

nomial of Ta2,b2 has simple roots, and there are a2b2-th roots of unity that are neither
a2-th nor b2-th roots of 1. By these two observations, we know that σT

a2,b2
can only

jump by 2 at each such root of unity, and that the value at the root of unity is the
average of the neighbouring values; since the signature vanishes at 1, at e2πi(

1
ab

−ε) it is
bounded by the number of roots in the arc e2πit with t ∈ [0, 1

ab
− ε]. These are easily

counted to be ab− ⌊b/a⌋ ≥ ab− 2. Since e2πi/ab is a root of the Alexander polynomial,
σT

a2,b2
(e2πi/ab) ≥ −2ab+ 5, as desired.

Example 3.3. One can refine the example above to produce an irreducible surgery
that bounds no rational homology ball with one 1-handle, but does bound one with
three. In fact, Y = S3

400(T4,25;2,201) bounds a rational homology ball [3], and a quick
computation with the Levine–Tristram signature using [14] yields

σ(Y, ϕ) = |1− σT4,25;2,201(e
iπ/10)− 2 · (20− 1)| = |σ2,201(e

iπ/10)− 37| = |35− 37| = 2,

where ϕ is the character that sends the meridian to e2iπ/20.
Irreducibility is proven by looking at the canonical plumbing diagram for Y ; since it

is connected, Y is irreducible (see [17, 8] for details).
We can also find examples when H1(Y ) has odd order. Indeed, one can look at

Y = S3
9·25·169(T25,169;3,3·25·169+1) and the character ϕ that sends a meridian to e2πi/(3·5·13):

a similar computation to the one above with the Levine–Tristram signatures yields:

σ(Y, ϕ) = |1− σT25,169;3,3·25·169+1
(e2πi/(3·5·13))− 2 · (3 · 5 · 13− 1)| = 2,

hence proving that Y does not bound a rational homology ball with no 3-handles and
a single 1-handle.

We conclude with a rather lengthy example where we produce a family of irreducible
3-manifold with cyclic H1, each of which bounds a rational homology ball built with
handles of index at most 2, but such that the number of handles needed is arbitrarily
large.
The structure of the argument will be the following: we fix an integer v, and we

construct a 3-manifold Y by a construction that is akin to the plumbing of spheres.
The construction of Y depends on the choice of v knots K1, . . . , Kv ⊂ S3 and v + 1
integers a, n1, . . . , nv, and we show that, under certain assumptions, all these manifolds
have cyclic H1. We then specialise to a certain family of knots Kj and integers nj ,
coming from the example above, and we prove that the resulting Y does indeed bound
a rational homology ball built out of 2v + 1 1-handles and 2v − 1 2-handles. We then
compute the signature defect associated to a certain character ϕ of Y within an error
of 2, and using Corollary 2.2 we show that any rational homology ball 2-handlebody
needs at least 2v − 1 1-handles. Finally, we argue the irreducibility of Y .
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Example 3.4. Let us consider the following (modified) plumbing diagram, representing
a 3-manifold Y :

• • . . . • •

•

•• •

[K1, n
2
1] [K2, n

2
2] [Kv−1, n

2
v−1] [Kv, n

2
v]

a

−2−2 −1

❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦

✇✇✇✇✇✇✇✇✇✇✇ ●●
●●

●●
●●

●●
●

❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙

Where each label [K, n] at the bottom signifies that, in the corresponding surgery
picture for Y , instead of an unknot we tie a copy of the knot K, with framing n. In
other words, instead of plumbing sphere bundles, we plumb the trace of n-surgery along
K using the co-core of the 2-handle.
Whenever S3

n2
j

(Kj) bounds a rational homology ball for each j = 1, . . . , v, so does Y

([1]; see also [2]). We claim that if each nj is odd, nj and nk are pairwise coprime for
each j 6= k, and a 6≡ v (mod 2), then H1(Y ) is cyclic. From now on, we will make these
assumptions on nj and a.
In order to prove the claim, let us first modify the diagram by blowing down the

−1-vertex and one of the two −2-vertices, obtaining the following diagram:

• • . . . • •

•

•

[K1, n
2
1] [K2, n

2
2] [Kv−1, n

2
v−1] [Kv, n

2
v]

a + 2

0

❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦

✇✇✇✇✇✇✇✇✇✇✇ ●●
●●

●●
●●

●●
●

❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙

Note that the double edge between the two top-most vertices is not to be intended
in the plumbing diagram sense, but rather signifies a double intersection between the
corresponding attaching circles; in particular, it does not increase b1. Let P be the
4-manifold associated to the diagram above, with ∂P = Y .
Notice that P is a 2-handlebody, i.e. it is obtained from B4 by attaching only 2-

handles, and hence H1(P ;R) = 0 and H2(P ;R) = H2(P ) ⊗ R, and H2(P, Y ;R) =
H2(P, Y )⊗ R for each ring R, and that the latter are both free over R of rank v + 2.
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We now set out to compute H1(Y ) as the quotient of Zv+2 by the image of the
intersection matrix of the link coming from the diagram above. The matrix is

Q =




a+ 2 2 1 · · · 1
2 0 0 · · · 0
1 0 n2

1
...

...
. . .

1 0 n2
v



.

By expanding along the second row, we easily see that detQ = (
∏v

j=0 nj)
2, where we

let n0 = 2 for convenience.
In order to see that H1(Y ) is cyclic, since detQ =

∏v
j=0 |Z/n

2
jZ|, it is enough to

check that, for each j, H1(Y ;Z/n2
jZ)

∼= Z/n2
jZ. Let R = Z/n2

jZ.
The long exact sequence for the pair (P, Y ) yields:

H2(P ;R)

∼=
��

α
// H2(P, Y ;R) //

∼=
��

H1(Y ;R) //

∼=
��

0

Rv+2 QR
// Rv+2 // cokerQR

// 0

where QR is the reduction of Q modulo n2
j . It is enough to show that the quotient

is cyclic. This is elementary from the matrix Q, since nk is now invertible in R for
every k 6= j. When j = 0, it is helpful (but not necessary) to use the fact that n2

k ≡ 1

(mod 4) for each k > 0; one then reduces to the case of the matrix

(
a+ 2− v 2

2 0

)
,

which is well-known to have cyclic cokernel precisely when a+ 2− v is odd.
Observe that, after doing a dot-zero surgery on the 0-framed unknot, the diagram

above also exhibits a rational homology cobordism W from Y ′ := #v
j=1S

3
n2
j

(Kj) to Y .

Moreover, it is easy to check that the inclusion induces an injection ι′∗ : H1(Y
′) →

H1(W ), hence every character ϕ′ of Y ′ extends to W , and we can further restrict it to
Y . Let ι∗ : H1(Y ) → H1(W ) be the map induced by the inclusion. Additionally, since
coker ι′∗ = coker ι∗ = Z/2Z and since |H1(Y

′)| is odd, the order of the induced character
on Y is either the order of ϕ′ or twice as large.
We are going to look at a character ϕ : H1(Y ) → C∗ induced as above from the

character ϕ′ on Y ′ that sends the meridian of Kj to exp(2πi/n2
j) for each j.

By additivity of the Casson–Gordon signature defects [11],

σ(Y ′, ϕ′) =

n∑

j=1

σ
(
S3
n2
j
(Kj), ϕj

)
=

n∑

j=1

1− σKj

(
e2πi/nj

)
+ 2(nj − 1).

Let us now assume that Kj = TF 2
pj
,F 2

pj+2
, nj = FpjFpj+2, where the sequence pj is defined

recursively by p1 = 5, pj+1 = 6
∏

k≤j(p
2
k + 2pk)− 1.

Since gcd(Fa, Fb) = Fgcd(a,b), and since F3 = 2, we have that nj is odd for each j.
Moreover, by construction,

pj ≡ 1 (mod 2), pj ≡ −1 (mod pk), pj ≡ −1 (mod pk + 2),
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and hence both pj and pj + 2 are odd and coprime with pk for each k; thus, nj and nk
are coprime, too.
It also follows from work of Orevkov ([18]; see also [9, 5]) that S3

n2
j

(Kj) bounds a

rational homology ball, as seen in the previous example, too, and that we can choose
these balls to be constructed using only 1- and 2-handles. Since W is a rational ho-
mology cobordism constructed with one 1-handle and one 2-handle, Y has the same
property.
In fact, the rational homology balls of the previous example used two 1-handles, and

W uses only one 1-handle, so Y bounds a rational homology ball constructed with 2v+1
1-handles and 2v + 1 2-handles.
The computation in the previous example, together with additivity, shows that

σ(Y ′, ϕ′) = 2v.
Since ϕ′ extends to the cobordism W , we can glue W to any 4-manifold Z ′ to which

ϕ′ extends (rationally), and use the resulting 4-manifold Z = W ∪ Z ′ to compute the
signature defect σ(Y, ϕ).
Since W is a rational homology cobordism, the ordinary signature does not change;

that is, σ(Z) = σ(Z ′). The twisted signature σψ(Z) is also controlled by σψ
′

(Z ′):
indeed, sinceW contains a single 2-handle, |σψ(Z)−σψ

′

(Z ′)| ≤ 1 by Novikov additivity.
It follows that σ(Y, ϕ) ≥ σ(Y ′, ϕ′)− 1 = 2v− 1, and therefore any rational homology

ball filling Y , that is built only using 1- and 2-handles, has at least 2v − 1 1-handles,
by Corollary 2.2.
To conclude, we argue that Y is irreducible. Indeed, we can replace each of the

nodes labelled with [Kj , n
2
j ] above with a negative definite plumbing tree, and, using

Neumann’s criterion [17], one can check that the plumbing is in normal form, and its
boundary is irreducible.
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