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Abstract. This communication deals with N -th order tensor decompo-
sitions. More precisely, we are interested in the (Canonical) Polyadic De-
composition. In our case, this problem is formulated under a variational
approach where the considered criterion to be minimized is composed of
several terms: one accounting for the fidelity to data and others that can
represent not only regularization (such as sparsity prior) but also hard
constraints (such as nonnegativity). The resulting optimization prob-
lem is solved by using the Block-Coordinate Variable Metric Forward-
Backward (BC-VMFB) algorithm. The robustness and efficiency of the
suggested approach is illustrated on realistic synthetic data such as those
encountered in the context of environmental data analysis and fluores-
cence spectroscopy. Our simulations are performed on 4-th order tensors.

Keywords: Constrained optimization - Proximal algorithm - Block al-
ternating minimization - Nonnegative tensor factorization (NTF)

1 Introduction

In numerous applications, the data sets that are collected can be organized into
multi-way (or N -way with N ≥ 3) arrays of numerical values. Consequently,
a growing interest has been dedicated to the development of efficient methods
and derived algorithms, capable of both processing such multi-way arrays and
extracting as much relevant information as possible. The most famous tensor de-
composition certainly remains the (Canonical) Polyadic Decomposition (CPD)
since it has been proven effective in many application fields (see [13] and [6] for
an overview of applications). Another of its main advantages is its uniqueness
under mild conditions [14][20]. In some leading applications of CPD particularly
those linked to the image processing field (examples include 3D fluorescence spec-
troscopy and functional magnetic resonance imaging (fMRI) for brain mapping),
some specific properties are generally known about the latent variables due to
their physical meaning. Standing for concentrations, percentage, fractional abun-
dance, spectra, and so on, these latent variables should be nonnegative and/or
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smooth and/or sparse quantities and imposing these physical constraints can
“help” the algorithms to recover more “relevant” pure constituent compounds.
As a consequence, our main aim, here, is to properly tackle the relatively general
problem of the CPD of N -way tensors subject to a certain number of constraints
linked to a priori knowledge we may have about the involved latent variables. To
that purpose, this general problem is formulated under the general framework of
variational approaches where the cost function to be minimized is composed of
several terms: the classical one accounting for the fidelity to data and additional
ones that can either stand for regularization (such as sparsity prior) or repre-
sent hard constraints such as nonnegativity. The resulting optimization problem
can become numerically difficult; the adopted algorithm is based upon a “Block
Coordinate Variable Metric Forward-Backward” (BC-VMFB) approach [5] that
gathers four main stages: 1) a gradient step involved in the forward stage, 2) a
proximal step involved in the backward stage, 3) a preconditioning step (“vari-
able metric”) and finally 4) a block arrangement (“Block Coordinate”) of the
unknown (latent) variables that will be swept according to a random (or cyclic
or other [21]) rule. Such an approach but without preconditioning has been used
to deal with third order tensor decompositions (CPD and Tucker) [23]. Alterna-
tively, an alternating optimization approach based on an alternating direction
method of multipliers has been recently proposed in [12]. Finally, this algorithm
recently proved its effectiveness in third order tensor decomposition for 3D flu-
orescence spectroscopy [22].
The remaining of this communication is organized as follows. Section 2 is devoted
to the presentation of the considered multilinear model and the objective to be
reached. Section 3 describes the proposed approach which consists of two steps:
after formulating the problem under a variational approach and introducing
the resulting criterion to be minimized, the proximal algorithm based on the
Block coordinate Variable Metric Forward-Backward algorithm is presented. The
efficiency of the proposed approach is emphasized through numerical experiments
conducted in Section 4. A complicated ill-posed scenario (noisy overestimated
model) is considered for the decomposition of a synthetic, yet, realistic 4-th order
tensor. Finally, a conclusion is drawn and perspectives are delineated.

2 Canonical Polyadic Decomposition of N -th order
tensors

2.1 Model

The Canonical Polyadic Decomposition (CPD) of tensors, also known as Parafac
(PARAllel FACtor analysis [10]), CanDecomp (Canonical Decomposition [2])
and CP (for CanDecomp/Parafac [8]), constitutes a compact and informative
model. It consists of decomposing an original tensor T into a minimal sum of
rank-1 terms:

T =

R∑
r=1

ā(1)r ◦ ā(2)r ◦ . . . ◦ ā(N)
r = [[Ā(1), Ā(2), . . . , Ā(N)]], (1)
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where N ∈ N is the tensor order and ◦ is the outer product of vectors. The
minimal R ∈ N such that Eq. (1) holds is called the tensor rank. For every n ∈
{1, . . . , N}, r ∈ {1, . . . , R}, the real column vector ā

(n)
r = (a

(n)
1r , a

(n)
2r , . . . , a

(n)
Inr

)> ∈
RIn is called a loading factor (where (·)> stands for the transpose operator) and

the unknown latent matrices Ā(n) = [ā
(n)
1 , ā

(n)
2 , . . . , ā

(n)

R
] = (ā

(n)
inr

)in,r ∈ RIn×R
are called the loading matrices.

2.2 Objective

Given a tensor T (which can be an observation, possibly noisy, of an original
tensor T ), we aim at approximating it using the CP model i.e. we intend to
determine for all n ∈ {1, . . . , N} an estimation of the loading matrices Ā(n).
To estimate the loading matrices Ā(n) for all n ∈ {1, . . . , N}, it can be more
convenient to rewrite Eq. (1) under a matrix form by using flattening. Indeed,

let T
(n)

In,I−n ∈ RIn×I−n be the matrix obtained by unfolding tensor T along mode
n, where n ∈ {1, . . . , N} and I−n = I1 . . . In−1In+1 . . . IN , then the model given
in Eq. (1) can be written in a compact matrix form [6, p. 352] as follows

T
(n)

In,I−n = Ā(n)(Z
(−n)

)>, ∀n ∈ {1, . . . , N} (2)

where

Z
(−n)

= Ā(N) � . . .� Ā(n+1) � Ā(n−1) � . . .� Ā(1) ∈ RI−n×R, (3)

and � denotes the Khatri-Rao product.

3 Optimization problem and proximal algorithm

We choose, here, to express the problem of estimating the loading matrices under
a variational framework i.e. to solve an optimization problem whose solution
constitutes an estimation of the initial loading matrices.

3.1 Criterion formulation, assumptions and properties

In classical variational approaches, the criterion is divided into two main terms:
a data fidelity term denoted by F and a regularization term which is here consti-
tuted of the sum of N regularization functions, each linked to one of the loading
matrices.

Mathematically, this problem is formulated as

minimize
A(n)∈RIn×R,n∈{1,...,N}

F(A(1), . . . ,A(N))+

N∑
n=1

Rn(A(n)) (4)

where F and (Rn)n∈{1,...,N} are assumed to be proper lower semi-continuous
functions such that F is differentiable with a β-Lipschitz gradient where β ∈
]0,+∞[ and such that for all n = 1, . . . , N , Rn : RIn×R → ]−∞,+∞[ is bounded
from below by an affine function, and its restriction to its domain is continuous.
The numerical method used to solve Eq. (4) is described in the next section.
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3.2 Proposed algorithm

Here, we suggest to use the Block Coordinate Variable Metric Forward Backward
(BC-VMFB) algorithm [5, 4] to solve the problem described by Eq. (4). The
general principle of the resulting iterative method is detailed in the following
paragraph and is summed up in Algorithm 1. Our different choices (of cost
function, preconditioning matrix, etc.) to tackle specifically the CPD problem
are discussed in section 3.3. The approach chosen here mainly consists of two
steps:

Ê a gradient step (linked to F which is assumed to be differentiable with a
β-Lipschitz gradient). It requires to compute the partial gradient matrices
of F with respect to A(n) for all n = 1, . . . , N . In the following, they are
denoted by ∇nF(A(1), . . . ,A(N)).

Ë a proximal step (linked to (Rn)n∈{1,...,N}): for all n = 1, . . . , N it requires

to compute the proximity operator of Rn associated to the metric P(n). The
definition of the proximity operator is recalled hereafter.

The proximity operator of a proper, lower semicontinuous function from RI to
]−∞,+∞[ associated with a Symmetric Positive Definite (SPD) matrix P is
defined as [11]

proxP,ϕ : RI → RI : v 7→ arg min
u∈RI

1

2
‖u− v‖2P + ϕ(u). (5)

where ∀x ∈ RI , ‖x‖2P = 〈x,Px〉, and 〈·, ·〉 stands for the inner product. The
original definition of the proximity operator [17] is recovered when P reduces to
the identity matrix.
To simplify the notations, the partial gradient matrices∇nF(A(1)[k], . . .A(N)[k])
associated to k-th iteration are simply denoted by∇n[k]. The Hadamard division
between two matrices is denoted by �. Finally, we recall that under some tech-
nical assumptions [5, Sec. 2.2] (concerning the preconditioning matrices P(n),
the step-size γ, the block scanning rule, and the fact that F + R satisfies the
Kurdyka- Lojasiewicz inequality) the convergence of the algorithm to a critical
point is guaranteed [5, Theorem 3.1].

3.3 Criterion choice: related gradient and proximity operators

The algorithm described hereabove was presented in a very general way. We now
introduce the objective that we have chosen to minimize, explain some of our
choices and provide the resulting involved quantities (partial gradient matrices,
preconditioning matrix, and so on).
For the computer simulations provided in this communication, the data fidelity
term F takes a quadratic form. It thus leads to the following definition

F(A(1), . . . ,A(N)) =
1

2
‖T − [[A(1), . . . ,A(N)]]‖2F =

1

2
‖T(n)

In,I−n
−A(n)Z(−n)>‖2F ,

(6)
where ‖ · ‖F stands for the Frobenius norm. As a consequence



A proximal approach for nonnegative tensor decomposition 5

Algorithm 1 BC-VMFB algorithm to minimize Eq. (4).

1: Let A(n) ∈ domRn, n ∈ {1, . . . , N}, k ∈ N and γ[k] ∈]0,+∞[ // Initialization
2: for k = 0, 1, ...,K do // k-th iteration
3: Choose a block n ∈ {1, . . . , N} // Quasi cyclic rule
4: Compute P(n)[k] = P(n)(A(1)[k], . . . ,A(N)[k]) // Preconditioner construction
5: Compute the Gradient Matrix ∇n[k] // Calculation of Gradient

6: A(n)[k +
1

2
] = A(n)[k]− γ[k]∇n[k]�P(n)[k] // Gradient step

7: A(n)[k + 1] ∈ proxγ[k]−1P̃(n)[k],Rn(A(n)[k +
1

2
]) // Proximal step

8: A(n̄)[k + 1] = A(n̄)[k] where n̄ = {1, . . . , N} \ {n} // Other blocks kept
unchanged

9: end for
10: ∀n ∈ {1, . . . , N}, Â(n) = A(n)[K] // Convergence reached at K-th iteration

Ê the associated partial gradient matrices are given by [9]

∇nF(A(1), . . . ,A(N)) = −(T
(n)
In,I−n

−A(n)Z(−n)>)Z(−n). (7)

Ë in the same spirit as in [16, 19], the preconditioning matrix P(n), ∀n ∈
{1, . . . , N}, can be defined as follows

P(n)(A(1), . . . ,A(N)) =
(
A(n)(Z(−n)>Z(−n))

)
�A(n). (8)

It is based on the n-th mode unfolding of the tensor (see (2)) and on the
definition of a majorant function of the restriction of F to the n-th loading
matrix on the domain ofRn. Additional details about preconditioning matrix
construction can be found in [22].

Concerning the regularization terms, they may account at the same time for the
nonnegativity constraint we want to impose on the solution and to the sparsity

of the data (possible overfactoring). For all A(n) = (a
(n)
inr

)(in,r)∈{1,...,In}×{1,...,R},
we thus choose [5, p. 18-20],

Rn(A(n)) =

In∑
in=1

R∑
r=1

ρn(a
(n)
inr

) (9)

where ∀n ∈ {1, . . . , N}

ρn(ω) =

{
α(n)|ω|π(n)

if η
(n)
min ≤ ω ≤ η

(n)
max

+∞ otherwise
(10)

and α(n) ∈]0,+∞[, π(n) ∈ N∗, η(n)min ∈ [−∞,+∞[, and η
(n)
max ∈ [η

(n)
min,+∞] (block

dependent regularization parameters3). This choice enables to ensure nonneg-

ativity by taking for example η
(n)
min = 10−10 and η

(n)
max = +∞ and to promote

3 In our case, the easiest way to proceed is to consider that each block matches a
loading matrix, but other choices could have been made.
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sparsity by choosing the exponent π(n) = 1 (hence performing an `1-norm regu-
larization).
To be properly computed, the associated proximity operator requires first to de-
fine4 i) a(n) = vec(A(n)) ∈ RRIn (vectorization of loading matrices and operator
vec(·) stacks the columns of the matrix given in argument into a vector) and

ii) P̃(n) = Diag(vec(P(n))) ∈ RRIn×RIn (vectorization and diagonalization of
preconditioning matrices, the Diag(·) operator builds a diagonal matrix whose
diagonal elements are the elements of the vector passed as a parameter ).
By using definition in Eq. (5), we can derive the expression of proxγ−1P̃(n),Rn(a(n))
as (
∀A(n) = (a

(n)
inr

)(in,r)∈{1,...,In}×{1,...,R}

)
proxγ−1P̃(n),Rn(A(n)) =

(
prox

γ−1p
(n)
inr

,ρn
(a

(n)
inr

)
)
(in,r)∈{1,...,In}×{1,...,R}

(11)

where ∀(in, r) ∈ {1, ..., In} × {1, ..., R}, we have [7] (∀υ ∈ R)

prox
γ−1p

(n)
inr

,ρn
(υ) = min

{
η(n)max,max

{
η
(n)
min,prox

γα(n)(p
(n)
inr

)−1| . |π(n) (υ)
}}

. (12)

A closed form expression of the proximity operator presented in Eq. (12) can be
found in [3]. Note that in Algorithm 1, at iteration k, the proximity operator

is associated with metric P(n)[k] and is computed at A(n)[k +
1

2
] with stepsize

γ[k].

4 Numerical simulations: application to 4-th order CPD

We consider here a tensor of order N = 4. It has been constructed synthetically
but following realistic guidelines. Inspired by 3D fluorescence spectroscopy, we
build this tensor simulating: (uni or bimodal type) emission and excitation spec-
tra, smooth (either linear or unimodal) concentrations (the 3 classical compo-
nents of 3D fluorescence spectroscopy) and an additional 4-th dimension mod-
elling the lifetime (exponential decay) of compounds (such as those observed
when time resolved spectroscopy is performed [15]).
The tensor rank has been fixed here to R = 5. The resulting tensor T is of
size I1 = I2 = I3 = I4 = 100 and T ∈ R100×100×100×100

+ . Original spectra,
concentrations, lifetimes are displayed in Fig. 1 (black curves).
The following scenario has been considered: the observed tensor T is assumed to
be a perturbed version of the original tensor, that is T = T +B where B stands
for an additive white Gaussian noise with σ = 0.001 resulting in an initial SNR
of 18.46dB. Furthermore, the tensor rank R is assumed to be unknown and the
decomposition is performed assuming a tensor rank R̂ = 7 (which corresponds
to an overestimation of a factor 2).

4 In practice, elementwise operations are performed instead making it possible to avoid
memory issues.
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We compare our algorithm (with π(n) ≡ π = 1, α(n) ≡ α = 0.05, η
(n)
min ≡ ηmin =

10−16 and η
(n)
max ≡ ηmax = 102) performances to two state-of-the-art methods:

1) fast HALS algorithm [18] and 2) Bro’s N -way algorithm [1] for which, to be
fair, we used the non-negativity constrained versions). Algorithm initialization
is random.
In addition to visual results, we compute three error measures. Let Â(n) =

[â
(n)
1 , â

(n)
2 , . . . , â

(n)

R̂
] denote the normalized permuted estimate of

Ā(n) = [ā
(n)
1 , ā

(n)
2 , . . . , ā

(n)

R
]. The considered error measures are given by

1. Signal to Noise Ratio (SNR) defined as SNR = 20 log10
‖T ‖F
‖T̂ −T ‖F

2. Estimation error

E1 = 10 log10

(∑4
n=1 ‖Â(n)(1 : R)− Ā(n)‖1∑4

n=1 ‖Ā(n)‖1

)
(13)

3. Over-factoring error E2:

E2 = 10 log10

‖ R̂∑
r=R+1

â(1)r ◦ â(2)r ◦ â(3)r ◦ â(4)r ‖1

 (14)

All the considered approaches being iterative, the following stopping conditions
were used: either the maximum number of iterations fixed to K = 105 has
been reached or the relative diminishing rate of the quadratic criterion reads
‖F [·+1]−F [·]‖

F [·] < 10−8.

The estimated spectra are displayed in Fig. 1.We can see that despite the over-
estimation factor and the noise, the proposed algorithm, contrary to fHALS or
N -way approaches, allows to accurately recover the original data without cre-
ating phantoms in the artificially added compounds. This is confirmed by the
numerical results given in Tab. 1 where we can see that the estimation error
is equal or higher for fHALS and N -way methods and that the over-factoring
error is much more smaller for the proposed method. Concerning the algorithm
computation times, we can see that the proposed approach is very competitive
but requires more iterations to reach the stopping criterion.

fHALS N -way BC-VMFB

Time (in s) for 50 iterations 15.4 251 9.7

Time (in s) to reach stopping criterion 139 554 1689
Iteration number to reach stopping criterion 506 176 17000

Associated (SNR,E1,E2) in dB (29.61,0.21,47.74) (29.61,0.11,46.61) (34.15,0.11,-543)
Table 1. Computation times and numerical performances of fHALS, N -way with non
negativity constraints and BC-VMFB algorithms. Simulations were performed on a 8
cores Intel i7 @3.40GHz.
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Fig. 1. Estimated scaled spectra using N -way (blue) with non negativity constraints ,
fHALS (green) and BC-VMFB (red). Black curves: ground truth.
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5 Conclusion

In this communication, we addressed the problem of the CP decomposition of
N -th order tensors subject to given constraints such as nonnegativity, sparsity,
regularity, etc. We tackled this problem within the very general framework of
Block Coordinate Variable Metric Forward-Backward (BC-VMFB) approaches.
An algorithm was provided and its robustness and efficiency was demonstrated
on synthetic yet realistic 4-th order data inspired by those encountered in the
context of environmental data analysis and more precisely fluorescence spec-
troscopy. The obtained results are encouraging, and future developments could
be to apply this algorithm on raw data sets, to test other cost functions, other
preconditioning matrices, etc. It could be also interesting to test other kind of
regularization functions and to better understand their impact on the perfor-
mance of the algorithm.
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