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This communication deals with N -th order tensor decompositions. More precisely, we are interested in the (Canonical) Polyadic Decomposition. In our case, this problem is formulated under a variational approach where the considered criterion to be minimized is composed of several terms: one accounting for the fidelity to data and others that can represent not only regularization (such as sparsity prior) but also hard constraints (such as nonnegativity). The resulting optimization problem is solved by using the Block-Coordinate Variable Metric Forward-Backward (BC-VMFB) algorithm. The robustness and efficiency of the suggested approach is illustrated on realistic synthetic data such as those encountered in the context of environmental data analysis and fluorescence spectroscopy. Our simulations are performed on 4-th order tensors.

Introduction

In numerous applications, the data sets that are collected can be organized into multi-way (or N -way with N ≥ 3) arrays of numerical values. Consequently, a growing interest has been dedicated to the development of efficient methods and derived algorithms, capable of both processing such multi-way arrays and extracting as much relevant information as possible. The most famous tensor decomposition certainly remains the (Canonical) Polyadic Decomposition (CPD) since it has been proven effective in many application fields (see [START_REF] Kolda | Tensor decompositions and applications[END_REF] and [START_REF] Cichocki | Non negative matrix and tensor factorizations: Application to exploratory multi-way data analysis and blind separation[END_REF] for an overview of applications). Another of its main advantages is its uniqueness under mild conditions [START_REF] Kruskal | Rank, decomposition and uniqueness for 3-way and n-way arrays[END_REF] [START_REF] Sidiropoulos | On the uniqueness of multilinear decomposition of N -way arrays[END_REF]. In some leading applications of CPD particularly those linked to the image processing field (examples include 3D fluorescence spectroscopy and functional magnetic resonance imaging (fMRI) for brain mapping), some specific properties are generally known about the latent variables due to their physical meaning. Standing for concentrations, percentage, fractional abundance, spectra, and so on, these latent variables should be nonnegative and/or Caroline Chaux is the corresponding author.

smooth and/or sparse quantities and imposing these physical constraints can "help" the algorithms to recover more "relevant" pure constituent compounds. As a consequence, our main aim, here, is to properly tackle the relatively general problem of the CPD of N -way tensors subject to a certain number of constraints linked to a priori knowledge we may have about the involved latent variables. To that purpose, this general problem is formulated under the general framework of variational approaches where the cost function to be minimized is composed of several terms: the classical one accounting for the fidelity to data and additional ones that can either stand for regularization (such as sparsity prior) or represent hard constraints such as nonnegativity. The resulting optimization problem can become numerically difficult; the adopted algorithm is based upon a "Block Coordinate Variable Metric Forward-Backward" (BC-VMFB) approach [START_REF] Chouzenoux | A block coordinate variable metric forward-backward algorithm[END_REF] that gathers four main stages: 1) a gradient step involved in the forward stage, 2) a proximal step involved in the backward stage, 3) a preconditioning step ("variable metric") and finally 4) a block arrangement ("Block Coordinate") of the unknown (latent) variables that will be swept according to a random (or cyclic or other [START_REF] Vervliet | A randomized block sampling approach to canonical polyadic decomposition of large-scale tensors[END_REF]) rule. Such an approach but without preconditioning has been used to deal with third order tensor decompositions (CPD and Tucker) [START_REF] Xu | A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion[END_REF]. Alternatively, an alternating optimization approach based on an alternating direction method of multipliers has been recently proposed in [START_REF] Huang | A flexible and efficient algorithmic framework for constrained matrix and tensor factorization[END_REF]. Finally, this algorithm recently proved its effectiveness in third order tensor decomposition for 3D fluorescence spectroscopy [START_REF] Vu | A new penalized nonnegative third order tensor decomposition using a block coordinate proximal gradient approach: application to 3D fluorescence spectroscopy[END_REF]. The remaining of this communication is organized as follows. Section 2 is devoted to the presentation of the considered multilinear model and the objective to be reached. Section 3 describes the proposed approach which consists of two steps: after formulating the problem under a variational approach and introducing the resulting criterion to be minimized, the proximal algorithm based on the Block coordinate Variable Metric Forward-Backward algorithm is presented. The efficiency of the proposed approach is emphasized through numerical experiments conducted in Section 4. A complicated ill-posed scenario (noisy overestimated model) is considered for the decomposition of a synthetic, yet, realistic 4-th order tensor. Finally, a conclusion is drawn and perspectives are delineated.

2 Canonical Polyadic Decomposition of N -th order tensors

Model

The Canonical Polyadic Decomposition (CPD) of tensors, also known as Parafac (PARAllel FACtor analysis [START_REF] Harshman | Foundation of the Parafac procedure: models and conditions for an explanatory multimodal factor analysis[END_REF]), CanDecomp (Canonical Decomposition [START_REF] Carroll | Analysis of individual differences in multi-dimensional scaling via n-way generalization of Eckart-Young decomposition[END_REF]) and CP (for CanDecomp/Parafac [START_REF] Comon | Handbook of Blind Source Separation, Independent Component Analysis and Applications[END_REF]), constitutes a compact and informative model. It consists of decomposing an original tensor T into a minimal sum of rank-1 terms:

T = R r=1 ā(1) r • ā(2) r • . . . • ā(N) r = [[ Ā(1) , Ā(2) , . . . , Ā(N) ]], (1) 
where N ∈ N is the tensor order and • is the outer product of vectors. The minimal R ∈ N such that Eq. ( 1) holds is called the tensor rank. For every n ∈ {1, . . . , N }, r ∈ {1, . . . , R}, the real column vector ā(n) r = (a

(n) 1r , a (n) 
2r , . . . , a

Inr ) ∈ R In is called a loading factor (where (•) stands for the transpose operator) and the unknown latent matrices Ā

(n) = [ā (n) 1 , ā(n) 2 , . . . , ā(n) R ] = (ā (n)
inr ) in,r ∈ R In×R are called the loading matrices.

Objective

Given a tensor T (which can be an observation, possibly noisy, of an original tensor T ), we aim at approximating it using the CP model i.e. we intend to determine for all n ∈ {1, . . . , N } an estimation of the loading matrices Ā(n) . To estimate the loading matrices Ā(n) for all n ∈ {1, . . . , N }, it can be more convenient to rewrite Eq. ( 1) under a matrix form by using flattening. Indeed, let T

(n)

In,I-n ∈ R In×I-n be the matrix obtained by unfolding tensor T along mode n, where n ∈ {1, . . . , N } and I -n = I 1 . . . I n-1 I n+1 . . . I N , then the model given in Eq. ( 1) can be written in a compact matrix form [6, p. 352] as follows

T (n) In,I-n = Ā(n) (Z (-n) ) , ∀n ∈ {1, . . . , N } (2) 
where

Z (-n) = Ā(N) . . . Ā(n+1) Ā(n-1) . . . Ā(1) ∈ R I-n×R , (3) 
and denotes the Khatri-Rao product.

Optimization problem and proximal algorithm

We choose, here, to express the problem of estimating the loading matrices under a variational framework i.e. to solve an optimization problem whose solution constitutes an estimation of the initial loading matrices.

Criterion formulation, assumptions and properties

In classical variational approaches, the criterion is divided into two main terms: a data fidelity term denoted by F and a regularization term which is here constituted of the sum of N regularization functions, each linked to one of the loading matrices.

Mathematically, this problem is formulated as minimize

A (n) ∈R In ×R ,n∈{1,...,N } F(A (1) , . . . , A (N ) )+ N n=1 R n (A (n) ) (4) 
where F and (R n ) n∈{1,...,N } are assumed to be proper lower semi-continuous functions such that F is differentiable with a β-Lipschitz gradient where β ∈ ]0, +∞[ and such that for all n = 1, . . . , N , R n : R In×R → ]-∞, +∞[ is bounded from below by an affine function, and its restriction to its domain is continuous. The numerical method used to solve Eq. ( 4) is described in the next section.

Proposed algorithm

Here, we suggest to use the Block Coordinate Variable Metric Forward Backward (BC-VMFB) algorithm [START_REF] Chouzenoux | A block coordinate variable metric forward-backward algorithm[END_REF][START_REF] Chouzenoux | Variable metric forward-backward algorithm for minimizing the sum of a differentiable function and a convex function[END_REF] to solve the problem described by Eq. ( 4). The general principle of the resulting iterative method is detailed in the following paragraph and is summed up in Algorithm 1. Our different choices (of cost function, preconditioning matrix, etc.) to tackle specifically the CPD problem are discussed in section 3.3. The approach chosen here mainly consists of two steps:

a gradient step (linked to F which is assumed to be differentiable with a β-Lipschitz gradient). It requires to compute the partial gradient matrices of F with respect to A (n) for all n = 1, . . . , N . In the following, they are denoted by ∇ n F(A (1) , . . . , A (N ) ). a proximal step (linked to (R n ) n∈{1,...,N } ): for all n = 1, . . . , N it requires to compute the proximity operator of R n associated to the metric P (n) . The definition of the proximity operator is recalled hereafter.

The proximity operator of a proper, lower semicontinuous function from R I to ]-∞, +∞[ associated with a Symmetric Positive Definite (SPD) matrix P is defined as [START_REF] Hiriart-Urruty | Convex Analysis and Minimization Algorithms[END_REF] prox P,ϕ : R I → R I : v → arg min

u∈R I 1 2 u -v 2 P + ϕ(u). (5) 
where ∀x ∈ R I , x 2 P = x, Px , and •, • stands for the inner product. The original definition of the proximity operator [START_REF] Moreau | Proximité et dualité dans un espace hilbertien[END_REF] is recovered when P reduces to the identity matrix. To simplify the notations, the partial gradient matrices ∇ n F(A (1) [k], . . . A (N ) [k]) associated to k-th iteration are simply denoted by ∇ n [k]. The Hadamard division between two matrices is denoted by . Finally, we recall that under some technical assumptions [5, Sec. 2.2] (concerning the preconditioning matrices P (n) , the step-size γ, the block scanning rule, and the fact that F + R satisfies the Kurdyka-Lojasiewicz inequality) the convergence of the algorithm to a critical point is guaranteed [5, Theorem 3.1].

Criterion choice: related gradient and proximity operators

The algorithm described hereabove was presented in a very general way. We now introduce the objective that we have chosen to minimize, explain some of our choices and provide the resulting involved quantities (partial gradient matrices, preconditioning matrix, and so on). For the computer simulations provided in this communication, the data fidelity term F takes a quadratic form. It thus leads to the following definition 1) , . . . ,

F(A (1) , . . . , A (N ) ) = 1 2 T -[[A ( 
A (N ) ]] 2 F = 1 2 T (n) In,I-n -A (n) Z (-n) 2 F , (6) 
where • F stands for the Frobenius norm. As a consequence Algorithm 1 BC-VMFB algorithm to minimize Eq. ( 4).

1: Let A (n) ∈ dom Rn, n ∈ {1, . . . , N }, k ∈ N and γ[k] ∈]0, +∞[ // Initialization 2: for k = 0, 1, ..., K do // k-th iteration 3:
Choose a block n ∈ {1, . . . , N } // Quasi cyclic rule 4:

Compute P (n) [k] = P (n) (A (1) [k], . . . , A (N ) [k]) // Preconditioner construction 5:

Compute the Gradient Matrix ∇n[k] // Calculation of Gradient 6:

A (n) [k + 1 2 ] = A (n) [k] -γ[k]∇n[k] P (n) [k] // Gradient step 7: A (n) [k + 1] ∈ prox γ[k] -1 P (n) [k],Rn (A (n) [k + 1 2 ]) // Proximal step 8: A (n) [k + 1] = A (n) [k]
where n = {1, . . . , N } \ {n} // Other blocks kept unchanged 9: end for 10: ∀n ∈ {1, . . . , N },

A (n) = A (n) [K]
// Convergence reached at K-th iteration the associated partial gradient matrices are given by [START_REF] Franc | Etude algébrique des multi-tableaux : apport de l'algèbre tensorielle[END_REF] ∇ n F(A (1) , . . . ,

A (N ) ) = -(T (n) In,I-n -A (n) Z (-n) )Z (-n) . ( 7 
)
in the same spirit as in [START_REF] Lee | Algorithms for non-negative matrix factorization[END_REF][START_REF] Repetti | A preconditioned Forward-Backward approach with application to large-scale nonconvex spectral unmixing problems[END_REF], the preconditioning matrix P (n) , ∀n ∈ {1, . . . , N }, can be defined as follows

P (n) (A (1) , . . . , A (N ) ) = A (n) (Z (-n) Z (-n) ) A (n) . (8) 
It is based on the n-th mode unfolding of the tensor (see ( 2)) and on the definition of a majorant function of the restriction of F to the n-th loading matrix on the domain of R n . Additional details about preconditioning matrix construction can be found in [START_REF] Vu | A new penalized nonnegative third order tensor decomposition using a block coordinate proximal gradient approach: application to 3D fluorescence spectroscopy[END_REF].

Concerning the regularization terms, they may account at the same time for the nonnegativity constraint we want to impose on the solution and to the sparsity of the data (possible overfactoring). For all A (n) = (a

(n)
inr ) (in,r)∈{1,...,In}×{1,...,R} , we thus choose [5, p. 18-20],

R n (A (n) ) = In in=1 R r=1 ρ n (a (n) inr ) (9) 
where ∀n ∈ {1, . . . , N }

ρ n (ω) = α (n) |ω| π (n) if η (n) min ≤ ω ≤ η (n) max +∞ otherwise ( 10 
)
and

α (n) ∈]0, +∞[, π (n) ∈ N * , η (n) min ∈ [-∞, +∞[, and 
η (n) max ∈ [η (n)
min , +∞] (block dependent regularization parameters 3 ). This choice enables to ensure nonnegativity by taking for example η (n) min = 10 -10 and η (n) max = +∞ and to promote sparsity by choosing the exponent π (n) = 1 (hence performing an 1 -norm regularization). To be properly computed, the associated proximity operator requires first to define4 i) a (n) = vec(A (n) ) ∈ R RIn (vectorization of loading matrices and operator vec(•) stacks the columns of the matrix given in argument into a vector) and ii) P (n) = Diag(vec(P (n) )) ∈ R RIn×RIn (vectorization and diagonalization of preconditioning matrices, the Diag(•) operator builds a diagonal matrix whose diagonal elements are the elements of the vector passed as a parameter ). By using definition in Eq. ( 5), we can derive the expression of prox γ -1 P (n) ,Rn (a (n) ) as

∀A (n) = (a (n) inr ) (in,r)∈{1,...,In}×{1,...,R} prox γ -1 P (n) ,Rn (A (n) ) = prox γ -1 p (n) inr ,ρn (a (n) inr ) 
(in,r)∈{1,...,In}×{1,...,R}

where ∀(i n , r) ∈ {1, ..., I n } × {1, ..., R}, we have [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF] (∀υ ∈ R)

prox γ -1 p (n) in r ,ρn (υ) = min η (n) max , max η (n) min , prox γα (n) (p (n) inr ) -1 | . | π (n) (υ) . (12) 
A closed form expression of the proximity operator presented in Eq. ( 12) can be found in [START_REF] Chaux | A variational formulation for frame based inverse problems[END_REF]. Note that in Algorithm 1, at iteration k, the proximity operator is associated with metric P (n) [k] and is computed at

A (n) [k + 1 2 ] with stepsize γ[k].
4 Numerical simulations: application to 4-th order CPD

We consider here a tensor of order N = 4. It has been constructed synthetically but following realistic guidelines. Inspired by 3D fluorescence spectroscopy, we build this tensor simulating: (uni or bimodal type) emission and excitation spectra, smooth (either linear or unimodal) concentrations (the 3 classical components of 3D fluorescence spectroscopy) and an additional 4-th dimension modelling the lifetime (exponential decay) of compounds (such as those observed when time resolved spectroscopy is performed [START_REF] Lakowicz | Fluorescence lifetime imaging[END_REF]).

The tensor rank has been fixed here to R = 5. The resulting tensor T is of size I 1 = I 2 = I 3 = I 4 = 100 and T ∈ R 100×100×100×100 + . Original spectra, concentrations, lifetimes are displayed in Fig. 1 (black curves). The following scenario has been considered: the observed tensor T is assumed to be a perturbed version of the original tensor, that is T = T + B where B stands for an additive white Gaussian noise with σ = 0.001 resulting in an initial SNR of 18.46dB. Furthermore, the tensor rank R is assumed to be unknown and the decomposition is performed assuming a tensor rank R = 7 (which corresponds to an overestimation of a factor 2).

We compare our algorithm (with π (n) ≡ π = 1, α (n) ≡ α = 0.05, η (n) min ≡ η min = 10 -16 and η (n) max ≡ η max = 10 2 ) performances to two state-of-the-art methods: 1) fast HALS algorithm [START_REF] Phan | Fast alternating ls algorithms for high order CANDECOMP/PARAFAC tensor factorizations[END_REF] and 2) Bro's N -way algorithm [START_REF] Bro | Parafac: tutorial and applications[END_REF] for which, to be fair, we used the non-negativity constrained versions). Algorithm initialization is random. In addition to visual results, we compute three error measures. Let

A (n) = [ a (n) 1 , a (n) 2 , . . . , a (n) R ] denote the normalized permuted estimate of Ā(n) = [ā (n) 1 , ā(n) 2 , . . . , ā(n) R ].
The considered error measures are given by 1. Signal to Noise Ratio (SNR) defined as SNR = 20 log 10

T F T -T F 2. Estimation error E 1 = 10 log 10 4 n=1 A (n) (1 : R) -Ā(n) 1 4 n=1 Ā(n) 1 (13) 
3. Over-factoring error E 2 :

E 2 = 10 log 10   R r=R+1 a (1) r • a (2) r • a (3) r • a (4) r 1   (14) 
All the considered approaches being iterative, the following stopping conditions were used: either the maximum number of iterations fixed to K = 10 5 has been reached or the relative diminishing rate of the quadratic criterion reads

F [•+1]-F [•] F [•]
< 10 -8 . The estimated spectra are displayed in Fig. 1.We can see that despite the overestimation factor and the noise, the proposed algorithm, contrary to fHALS or N -way approaches, allows to accurately recover the original data without creating phantoms in the artificially added compounds. This is confirmed by the numerical results given in Tab. 1 where we can see that the estimation error is equal or higher for fHALS and N -way methods and that the over-factoring error is much more smaller for the proposed method. Concerning the algorithm computation times, we can see that the proposed approach is very competitive but requires more iterations to reach the stopping criterion. 

Conclusion

In this communication, we addressed the problem of the CP decomposition of N -th order tensors subject to given constraints such as nonnegativity, sparsity, regularity, etc. We tackled this problem within the very general framework of Block Coordinate Variable Metric Forward-Backward (BC-VMFB) approaches. An algorithm was provided and its robustness and efficiency was demonstrated on synthetic yet realistic 4-th order data inspired by those encountered in the context of environmental data analysis and more precisely fluorescence spectroscopy. The obtained results are encouraging, and future developments could be to apply this algorithm on raw data sets, to test other cost functions, other preconditioning matrices, etc. It could be also interesting to test other kind of regularization functions and to better understand their impact on the performance of the algorithm.

Fig. 1 .

 1 Fig.1. Estimated scaled spectra using N -way (blue) with non negativity constraints , (green) and BC-VMFB (red). Black curves: ground truth.

Table 1 .

 1 Computation times and numerical performances of fHALS, N -way with non negativity constraints and BC-VMFB algorithms. Simulations were performed on a 8 cores Intel i7 @3.40GHz.

	fHALS	N -way	BC-VMFB

In our case, the easiest way to proceed is to consider that each block matches a loading matrix, but other choices could have been made.

In practice, elementwise operations are performed instead making it possible to avoid memory issues.