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There is growing evidence that motor and speech disorders co-occur during
development. In the present study, we investigated whether stuttering, a developmental
speech disorder, is associated with a predictive timing deficit in childhood and
adolescence. By testing sensorimotor synchronization abilities, we aimed to assess
whether predictive timing is dysfunctional in young participants who stutter (8–16 years).
Twenty German children and adolescents who stutter and 43 non-stuttering participants
matched for age and musical training were tested on their ability to synchronize their
finger taps with periodic tone sequences and with a musical beat. Forty percent of
children and 90% of adolescents who stutter displayed poor synchronization with both
metronome and musical stimuli, falling below 2.5% of the estimated population based
on the performance of the group without the disorder. Synchronization deficits were
characterized by either lower synchronization accuracy or lower consistency or both.
Lower accuracy resulted in an over-anticipation of the pacing event in participants
who stutter. Moreover, individual profiles revealed that lower consistency was typical
of participants that were severely stuttering. These findings support the idea that
malfunctioning predictive timing during auditory–motor coupling plays a role in stuttering
in children and adolescents.

Keywords: developmental stuttering, predictive timing, sensorimotor synchronization, children, auditory–motor
coupling, rhythm

Introduction

There is growing evidence that speech and non-verbal motor functions are closely interrelated
during development. In the first months of life, infants produce their first language-specific
vocalizations (“canonical babbling”) at the samemoment when they begin to master rhythmic limb
movements (Kent and Bauer, 1985; Davis andMacNeilage, 1995; Ejiri andMasataka, 2001). Recent
research has also shown that developmental speech and language disorders often are accompanied
by deficits in non-verbal fine motor functions (e.g., Owen and McKinlay, 1997; Iverson and
Braddock, 2011). For example, children with speech sound disorders or dyslexia have more
difficulties than normally developing children with tasks demanding fine-grained temporal motor
adaptation such as when synchronizing to rhythmic sounds or music or when imitating a rhythm
via a motor manual response (Peter and Stoel-Gammon, 2008; Thomson and Goswami, 2008;

Frontiers in Psychology | www.frontiersin.org 1 July 2015 | Volume 6 | Article 847

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://dx.doi.org/10.3389/fpsyg.2015.00847
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3389/fpsyg.2015.00847
http://journal.frontiersin.org/article/10.3389/fpsyg.2015.00847/abstract
http://loop.frontiersin.org/people/135250
http://loop.frontiersin.org/people/24326
http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


Falk et al. Sensorimotor timing deficits in stuttering

Tierney and Kraus, 2013; Flaugnacco et al., 2014; Redle et al.,
2014). These findings suggest that developmental deficits in
motor and speech functions may emerge together because they
stem from a common underlying deficit (Redle et al., 2014). In
the present article, the possibility is examined for stuttering, a
developmental speech disorder with a particular focus on timing
mechanisms.

Stuttering is a disorder that is very disruptive in conversation.
During speech production, persons who stutter suffer from
frequent, involuntary disruptions in their forward flow of speech.
These disruptions, either silent or audible, occur as blocks,
as prolongations and repetitions of sublexical units such as
segments, syllables, or part-words and are often associated with
high effort or tension in the speaker’s production (e.g., Wingate,
1964; Starkweather, 1987). These disfluencies tend to increase in
demanding and stressful situations and are experienced as a loss
of control (Perkins, 1990). According to the WHO classification,
stuttering is characterized as a major disruption of the rhythmic
flow of speech (WHO, 2015). Despite the fact that persons
who stutter know exactly what they want to say and do not
suffer from problems in accessing words, they “find themselves
unable to initiate or complete motor execution of words in
a timely manner” (Brocklehurst, 2013, p. 291). Stuttering is
a disorder that arises mostly at preschool age (3 or 4 years)
and affects 5–9% of children during childhood and adolescence
(Bloodstein and Bernstein Ratner, 2008; Yairi and Ambrose,
2013). In approximately 1% of the population, stuttering persists
into adulthood.

A variety of explanations have been proposed to account for
stuttering phenomena (Ward, 2006; Howell, 2011; Guitar, 2014).
Many researchers agree that, besides linguistic and psychological
aspects, speech motor control plays a major role in the disorder
(e.g., Zimmermann, 1980; Ludlow and Loucks, 2003; Civier et al.,
2010; Namasivayam and van Lieshout, 2011). Within the motor
system, timing mechanisms have been targeted as a potential
source of deficits underlying stuttering (Cooper and Allen, 1977;
Van Riper, 1982; Borden, 1983; Kent, 1984; Harrington, 1988;
Boutsen et al., 2000; Max and Yudman, 2003; Olander et al.,
2010; Etchell et al., 2014). This hypothesis is in keeping with
the observation that speech production in persons who stutter is
temporally more variable than in individuals without stuttering,
notably, in the temporal dynamics of subglottal air pressure, in
articulatory kinematics, in utterance length, vowel duration, or
voice onset time (e.g., Cooper and Allen, 1977; Kleinow and
Smith, 2000; Smith and Kleinow, 2000; Max and Gracco, 2005).
Interestingly, timing deficits were also found in non-verbal motor
tasks, in studies which were almost exclusively conducted with
adult speakers. Increased motor execution times and delayed
initiation in non-verbal oral as well as manual reactions and
longer movement sequences were found in adults who stutter
compared to non-stuttering adults (e.g., Borden, 1983; Hulstijn
et al., 1992; Archibald and De Nil, 1999; Smits-Bandstra et al.,
2006). Decreased accuracy was found during bimanual finger
coordination tasks (Zelaznik et al., 1997), as well as increased
variability in self-paced tapping (Cooper and Allen, 1977) and in
joint synchronization of speech and tapping to tone sequences
(Hulstijn et al., 1992). However, these findings were not always

replicated in similar studies (Zelaznik et al., 1994; Max and
Yudman, 2003; Neef et al., 2011). Inconsistent findings in adults
may result from task and measurement factors. Indeed, it was
more likely to uncover deficits when using more demanding
tasks and when examining articulatory kinematics in addition
to acoustic measurements in non-speech oral movements (e.g.,
Hulstijn et al., 1992). In sum, results showing temporal deficits
in both verbal and non-verbal tasks are compatible with the
idea that speech and non-verbal motor deficits may jointly
emerge from a common malfunctioning timing mechanism in
stuttering.

In keeping with the possibility of a timing disorder in
stuttering, there is also evidence from functional and structural
neuroimaging studies that persons who stutter differ from
persons who do not stutter with regard to the timing system
(see Etchell et al., 2014, for a review). Differences are found
in adults at the level of the basal ganglia (e.g., Alm, 2004;
Giraud et al., 2008; Chang and Zhu, 2013; Civier et al.,
2013) and of the cerebellum (e.g., Brown et al., 2005) in a
variety of speech production tasks. These regions play a crucial
role in mediating the flow of information for temporal fine-
tuning and coordination of motor responses as well as for
sensorimotor integration (Wing, 2002; Zatorre et al., 2007;
Kotz and Schwartze, 2010). In adults and adolescents who
stutter, reduced connectivity was found in the three cerebellar
peduncles (Connally et al., 2014) and hyperactivation of
the cerebellar vermis, a region typically involved in motor
control, was also reported (see Brown et al., 2005, for a
review). Furthermore, Giraud et al. (2008) found a positive
correlation between stuttering severity and the activation of
the nucleus caudate and a negative correlation with activation
in the left substantia nigra. A few other studies also point
to differences between persons who do and do not stutter
in the basal ganglia-thalamocortical circuit (Fox et al., 2000;
Ingham et al., 2004; Watkins et al., 2008; Lu et al., 2010;
Chang and Zhu, 2013). In the only study on young children
(4–9 years), Chang and Zhu (2013) found attenuated activity
and reduced connectivity in the basal ganglia-thalamocortical
circuit and in the auditory–motor cortical loops in the left
hemisphere, potentially associated with deficits in self-initiated
timing of speech movement and auditory feedback integration
in stuttering. Altered connectivity between the basal ganglia
and the premotor area was found during speech planning in
adults who stutter while the cerebellar-premotor circuit was
more affected during speech production (Lu et al., 2010). At
the cortical level, differences in further areas and connections
related to the subcortical motor timing circuitry and important
hubs for sensorimotor integration have been found in persons
who stutter. For instance, the supplementary motor area (SMA;
e.g., Casini and Vidal, 2011; Kotz and Schwartze, 2011) was
characterized by lower amplitude of low-frequency fluctuations
in a resting-state MRI study in adults who stutter compared
to adults who do not stutter (Xuan et al., 2012). During
speech production in persons who stutter, however, the SMA
showed hyperactivation in other studies (see Brown et al., 2005).
Another area of interest for timing that is often pointed out
is the left ventral premotor cortex (e.g., Watkins et al., 2008;
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Civier et al., 2013). Functionally, this area is associated with
articulatory planning and integration of motor actions with
their sensory consequences (Wise et al., 1999; Kohler et al.,
2002). Adults and adolescents who stutter displayed reduced
integrity of white fiber tracts in this area (Watkins et al.,
2008).

Altogether, there is converging behavioral and brain
evidence that stuttering in adult speakers is associated with
deficient temporal processing in both verbal and non-verbal
domains. However, whether these deficits are also found
during development, when stuttering is more prevalent, is still
unclear. There is a paucity of studies on non-verbal timing
mechanisms in children suffering from developmental stuttering.
In the few non-verbal motor timing studies with children
who stutter, Howell et al. (1997) and Olander et al. (2010)
reported higher variability in synchronization–continuation
tasks (Wing, 2002). In these tasks, children were asked to
synchronize their hand or non-speech lip movements to an
auditory or visual rhythmic stimulus and to continue these
movements at the same pace after the end of the pacing
stimulus. Olander et al. (2010) tested 17 children between 4
and 6 years of age. The children were asked to clap along with
a metronome with an Inter-Onset-Interval (IOI) of 600 ms,
and then to continue at the same pace after the end of the
metronome. Fifty-nine percent of the children who stutter were
more variable in interclap-interval rate in the continuation
phase compared to age-matched peers. However, these findings
have to be considered with caution, as they are not confirmed
with a larger sample size1. Howell et al. (1997) reported
higher variability in the continuation phase of non-speech lip
movements in five children aged 9–10 years. Analyses in this
study indicated that the variability was more likely to pertain
to the planning and realization of motor actions than to central
cognitive mechanisms, such as an internal biological clock
or timekeeper (Wing and Kristofferson, 1973; Howell et al.,
1997).

Malfunctioning timing mechanisms are likely to negatively
affect speech production in individuals who stutter. Some models
of stuttering posit that a major problem lies in deficient auditory–
motor integration or forward modeling (e.g., Neilson and
Neilson, 1987; Max et al., 2004). More specifically, Harrington
(1988) hypothesized that mechanisms related to the prediction
and integration of the moment of one’s own speech production
with the moment of actual sensory feedback are malfunctioning
in persons who stutter. In Harrington’s (1988) model it is
hypothesized that persons who stutter expect the time of sensory
feedback of their own productions to occur earlier than it actually
does. Thereby, they would erroneously correct for the moment
of their actual segmental production, thus sometimes leading to
repetitions, prolongations or even blockades of the articulatory
gestures. The idea of erroneous predictive timing in the case
of stuttering of stuttering is attractive in light of the finding
that external predictable temporal cues can considerably aid

1See recent findings presented by the same research group (Hilger, Zelaznik,
and Smith) at the 2014 Convention of the American Speech-Language-Hearing
Association (ASHA).

persons who stutter to speak fluently (e.g., Johnson and Rosen,
1937; Wingate, 1969; Andrews et al., 1982; Stager et al., 2003;
Toyomura et al., 2011). For example, stuttering symptoms are
reduced when speech production is paced by an isochronous tone
sequence (i.e., in paced or metronomic speech) or by the speech
of another person (e.g., in shadowed speech, choral reading)
or choral singing. Interestingly, improved fluency induced by
rhythmic cues is accompanied by a normalization of hyper- and
hypo-activation in neural circuits mediating temporal processing
and movement initiation, such as the basal ganglia, SMA, and
the cerebellum (Fox et al., 1996; Stager et al., 2003; Toyomura
et al., 2011). To account for these effects, Stager et al. (2003)
proposed that fluency-evoking conditions aid persons who stutter
to achieve better coupling of their auditory and motor systems.

In the present study, we tested the hypothesis that children
and adolescents who stutter show deficits in non-verbal timing
abilities, with a particular focus on predictive timing, which is
tested using a sensorimotor synchronization task. Sensorimotor
synchronization is ideally suited to test predictive timing as it
involves coupling of fine motor movement with a predictable
sound sequence (e.g., a metronome or music; Repp, 2005;
Neef et al., 2011; Repp and Su, 2013). This task was used
here to test timing abilities in young participants (8–16 years),
from childhood to adolescence, as stuttering is more prevalent
in this age group than in adults. An additional goal of the
study was to examine individual profiles of young participants
who stutter to shed light on the link between stuttering
severity and non-verbal motor timing. Indeed, we expect
a malfunctioning timing system (e.g., inaccurate predictive
timing) to particularly characterize the performance of those
individuals showing most severe stuttering. In previous studies,
sensorimotor synchronization has proven to be particularly
sensitive to individual differences in unimpaired and impaired
individuals (e.g., patients with movement disorders, such as
Parkinson’s disease, or individuals with beat deafness; Sowiński
and Dalla Bella, 2013; Benoit et al., 2014). Notably, to our
knowledge, this is the first study to examine sensorimotor
synchronization in children and adolescents who stutter as the
previous studies on motor timing skills in these populations
focused on unpaced movement (i.e., the continuation phase in a
synchronization–continuation task; Howell et al., 1997; Olander
et al., 2010).

Participants’ synchronization abilities were assessed with a
finger tapping task (Repp, 2005, 2006; Repp and Su, 2013).
They tapped along with the rhythm of non-verbal auditory
pacing stimuli such as isochronous tone sequences (i.e., a
metronome). The difficulty of the task was varied by speeding
up or slowing down the metronome and by varying the
complexity of the pacing stimulus by using musical excerpts
which have a complex rhythmic structure. A timing deficit
in children and adolescents who stutter is expected in terms
of lower synchronization accuracy, particularly indicative of
predictive timing, as well as lower synchronization consistency
(i.e., higher variability) as compared to children and adolescents
who do no stutter. In addition, differences between the two
groups are expected to be more visible when increasing task
difficulty.
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Materials and Methods

Participants
Sixty-three native German-speaking children (M = 10.3 years)
and adolescents (M = 14.5 years) participated in the Experiment.
Each age group consisted of participants with developmental
stuttering (10 children, 3 females, 7 males, M = 9.9 years,
SD = 0.99; 10 adolescents, 2 females, 8 males, M = 14.0 years,
SD = 1.6) and a randomly selected age-matched control group
(22 children, 8 females, 14 males, M = 10.5 years, SD = 0.5;
21 adolescents, 8 females, 13 males, M = 14.7 years, SD = 0.6).
Participants who stutter were recruited and tested prior to a
therapy course held in the surroundings of Munich in summer
2012 and 2013 (staerker-als-stottern.de). Participants had on
average 2.4 years of musical training (range = 0–8.5 years,
SD = 2.3). Neither experimental and control groups nor the age
groups differed in terms of musical training. Stuttering severity
was assessedwith the Stuttering Severity Instrument (SSI-3, Riley,
1994) and the German FzS (‘Fragebogen zum Sprechen’, Cook
et al., 2013), the latter being an assessment of the psychosocial
impact of stuttering on the everyday life of the participants. SSI
scores ranged from very mild to very severe stuttering as did
the scores for the psychosocial impact (see Table 1). The study
was carried out in conformity with ethical standards. Participants
and their parents gave informed consent to participate in the
study.

Stimuli and Procedure
Participants performed the sensorimotor synchronization tasks
taken from the Battery for the Assessment of Auditory
Sensorimotor and Timing Abilities (BAASTA – Benoit et al.,
2014). They synchronized with three isochronous sequences of
tones referred to as “metronome” and two musical excerpts.
They tapped along with the tones or the beat of the music
using the index finger of their dominant hand. The metronome
sequences were presented at three different tempi and consisted
of 60 tones (frequency = 1319 Hz) separated by an IOI of
either 450, 600, or 750 ms. The musical stimuli were two
short excerpts (64 notes) of pieces from Bach (“Badinerie”) and
Rossini (Ouverture from Wilhelm Tell) presented in a piano
timbre at a tempo of 100 beats per minute (IOI = 600 ms).
The motor performance was recorded with a MIDI SPD-6
Roland percussion pad. Stimuli were presented in free field
via JBL studio monitors (LRS2325p) installed in front of the
participant. Metronome sequences were presented first (i.e., in
the order of 600, 450, and 750 ms), followed by the musical
excerpts. Each trial was preceded by a practice trial. During the
whole session, the experimenter was present. In addition, in the
experimental groups, spontaneous (i.e., unpaced) tapping was
assessed previous to the Experiment by asking the participants
to tap as regularly as possible during 1 min at a comfortable, self-
chosen pace. The Experiment was run onMaxMSP (6.0) software
and lasted 15 to 20 min.

Data Analysis
Prior to the main analyses, raw tapping time series were pre-
processed. The taps corresponding to the first 10 tones/beats were

TABLE 1 | Characteristics of participants who stutter including stuttering
assessment [Stuttering Severity Instrument, (SSI-3) and Fragebogen zum
Sprechen (FzS)].

Participant
number

Age
(years)

Gender SSI-3 FzS Musical training
(years)

S01 15 Male 52∗∗∗ 130∗∗∗ 2

S02 9 Male 15∗ 92∗∗∗ 0

S03 15 Male 27∗∗ 53∗ 5

S04 11 Female 24.5∗∗ 81∗∗ 0

S05 15 Male 27.5∗∗∗ 89∗∗ 0

S06 13 Male 33∗∗∗ 73∗∗ 0

S07 9 Male 26.5∗∗ 42∗ 0

S08 10 Male 17∗ 63∗ 3

S09 11 Male 18∗ 114∗∗∗ 3

S10 12 Female 19∗ 98∗∗∗ 4

S11 16 Female 30.5∗∗∗ 97∗∗∗ 2

S12 12 Male 28∗∗∗ 62∗ 0

S13 10 Male 30∗∗∗ 51∗ 0

S14 10 Female 10∗ 76∗∗ 2

S15 15 Male 38∗∗∗ 106∗∗∗ 8

S16 12 Male 6∗ 41∗ 4

S17 11 Male 35∗∗∗ 63∗ 0

S18 15 Male 28∗∗∗ 105∗∗∗ 1,5

S19 8 Female 21∗∗ 88∗∗ 3

S20 10 Male 8∗ 75∗∗ 3

Degree of stuttering severity: ∗∗∗severe, ∗∗moderate, ∗mild.

removed. Moreover, taps occurring at an inter-tap-interval (ITI)
which departed by more than the 3∗inter-quartile range from the
median ITI in the trial (i.e., outliers) were removed. In addition, a
constant MIDI delay of 211 ms was subtracted from tapping data.
Sequences of tapping times, relative to the pacing stimuli, were
submitted to analyses using circular statistics which represent a
valuable option for processing synchronization data (Kirschner
and Tomasello, 2009; Pecenka and Keller, 2011; Sowiński and
Dalla Bella, 2013). The advantage of circular statistics is that
they do not require a one-to-one correspondence between taps
and pacing stimuli, a condition rarely met in poor synchronizers
(e.g., Kirschner and Tomasello, 2009; Sowiński and Dalla Bella,
2013). In addition, metrics derived from circular statistics have
proven to be very sensitive to uncover individual differences in
sensorimotor synchronization tasks (Sowiński and Dalla Bella,
2013).

Taps in a sequence were represented on a circle. One full
circle (i.e., a 360◦ scale) indicates the IOI between the periodically
recurring pacing events (metronome tones or musical beats).
The time of the pacing event corresponds to 0◦. Each tap
is represented by an angle relative to the time of the pacing
event. For example, a tap occurring 150 ms after one of the
tones of the metronome sequences with an IOI of 600 ms
corresponds to an angle of 90◦ on the circle. In contrast, a
tap preceding the tone by 150 ms is indicated by –90◦. For
each tapping sequence, the angles corresponding to the taps
were transformed into unit vectors, and the mean resultant
vector R (see Fisher, 1993; Mardia and Jupp, 2000; Berens,
2009) was computed. The vector R served to calculate two
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measures of synchronization abilities, namely consistency and
accuracy (Sowiński and Dalla Bella, 2013). Consistency refers
to the variability of the discrepancy between the time of the
taps and of the pacing events. High consistency is achieved if
the person taps always at the same point in time in relation
to the pacing event (e.g., tone or musical beat). Consistency
corresponds to the length of vector R, with values ranging
between 0 and 1. A value of 0 reflects a random distribution of
angles around the circle (i.e., at-chance performance), whereas a
value of 1 refers to maximum consistency (absence of variability).
Accuracy indicates the average difference between the timing of
the taps and the timing of the pacing events. Perfect accuracy is
achieved if the participant taps exactly at the time of the pacing
event. Accuracy is expressed by the angle of the vector R (θ
or relative phase, in degrees). It indicates whether participants
tapped before (negative angle) or after (positive angle) the pacing
event and how close the taps occurred on average to the time
of the pacing event. Accuracy values were only calculated if
participants’ synchronization performance was above chance, as
assessed with the Rayleigh test for circular uniformity (Wilkie,
1983; Fisher, 1993). Rejection of the null hypothesis (i.e., random
distribution of data points around the circle) occurs when vector
length is big enough (i.e., when taps occurred reliably at a given
phase relationship relative to the pacing stimulus). In addition,
before performing further analyses, vector length values were
submitted to a logit transformation to reduce data skewness,
which is typical of synchronization data (e.g., Kirschner and
Tomasello, 2009; Sowiński and Dalla Bella, 2013). Finally, in
the spontaneous tapping task, the mean ITI was calculated as
a measure of preferential tapping tempo and the Coefficient of
Variation of the ITIs (CV ITI) was computed as a measure of
motor variability.

Results

Mean consistency and accuracy for participants who stutter
and controls are presented in Figures 1 and 2, respectively.
Consistency data were entered in a 2× 2× 3 Analysis of Variance
(ANOVA). Group (participants who stutter vs. controls) and
Age (children vs. adolescents) were both between-subject factors,
whereas IOI (450 ms vs. 600 ms vs. 750 ms) was the within-
subject factor2. Age differences in consistency varied among the
groups, as shown by a significant Group × Age interaction
[F(1,58) = 17.96, p = 0.0001, η2

p = 0.236]. Analysis of simple
effects revealed an increase of consistency with age in controls
[F(1,59) = 7.8, p = 0.007, η2

p = 0.116], whereas participants who
stutter showed the reverse pattern [F(1,59) = 9.1, p = 0.004,
η2
p = 0.134]. Moreover, a tendency for all participants to show

lower consistency at the fast tempo (IOI = 450 ms) was observed,
but it just failed to reach significance [F(2,116) = 2.8, ε = 0.89
p = 0.07]3. The other interactions were not significant.

2Data for one participant from the control group could not be included because of
failure to complete the 750-ms condition.
3The Greenhouse–Geisser correction for inhomogeneity of variance was applied
when appropriate. Uncorrected degrees of freedom, epsilon, and probability level
following correction are reported.

To test whether predictive timing differed between the
participants who stutter and controls, accuracy data were
submitted to 2 × 2 factorial ANOVAs for circular statistics
(Harrison–Kanji Test), using theMatlab Circstat toolbox (Berens,
2009), one for each IOI4, taking Group and Age as factors. At
the slowest tempo (IOI = 750 ms) and at the fastest tempo
(IOI = 450 ms), children and adolescents who stutter tapped
more in advance of the pacing event than controls did [750 ms,
F(1,59) = 5.67, p = 0.02; 450 ms, F(1,59) = 3.82, p = 0.06,
marginally significant; 600 n.s., p = 0.31]. No age differences
(p > 0.25) and no interaction were found (p > 0.45).

The same analyses as above were carried out for
synchronization with music5. In both the experimental and
control groups, adolescents showed greater synchronization
consistency than children, as attested by a main effect of Age
[F(1,58) = 4.19, p = 0.04, η2

p= 0.067]. Furthermore, there were
differences between the two excerpts. One excerpt (“Badinerie”)
yielded higher consistency than the other stimulus [“Rossini”,
F(1,58) = 4.48, p = 0.04, η2

p= 0.072]. The Group × Age
interaction failed to reach significance [F(1,58) = 2.99, p = 0.09].
The analysis of accuracy revealed main effects of Group and
Age for “Badinerie” only (the interaction being non-significant,
p > 0.45). With this stimulus, participants who stutter tapped
in advance of the beat while controls’ taps lagged after the
beat [F(1,53) = 4.45, p = 0.04]. Additionally, regardless of
stuttering, children tapped later than adolescents [F(1,53) = 4.09,
p = 0.05].

In sum, participants who stutter differed in predictive
timing from age-matched peers as they anticipated the pacing
event more than controls did when they synchronized with
a metronome and with more complex musical excerpts.
Differences depending on stimulus type were also found
for consistency. With music, both groups of participants
showed higher consistency with age. However, with metronome
sequences, adolescents who stutter were less consistent than
children, whereas in the control group consistency increased with
age. To examine whether these age differences in the stuttering
group could be related to differences in stuttering severity, a
correlation between stuttering severity (measured by the SSI-3
scores) and age was computed. Older participants exhibited
greater stuttering severity than younger participants (Pearson,
two-tailed, r = 0.55, p = 0.01). Hence, the observation that
consistency decreased with age in participants who stutter may
have been confounded with differences between the two age
groups in terms of stuttering severity.

For this reason we further focused on the relation between
stuttering severity and synchronization abilities across the two
age groups. Cases of poor synchronization were first identified
among individuals who stutter relative to their respective age
group. Cutoff scores for consistency and accuracy in each age
group were defined for synchronization with each of the five

4To our knowledge, there is no 3-way circular ANOVA. For that reason three 2-way
ANOVAs were computed.
5Consistency data was excluded for one participant of the test group who was not
able to synchronize with one musical excerpt (Rossini). Accuracy data of nine
participants was not entered in the analyses as the Raleigh test did not reach
significance (i.e., participants’ performance was at chance).
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FIGURE 1 | Mean synchronization consistency for metronome and musical stimuli in both age groups of participants who stutter vs. the control
group. Raw values are shown. Error bars represent 95% confidence intervals.

FIGURE 2 | Accuracy differences between the control group and participants who stutter. Mean vector angle is displayed averaged over age groups.
Significant differences are marked by stars (marginal for 450 ms). Error bars represent 95% confidence intervals.

pacing stimuli, based on the performance of the control groups
and using t-statistics for single-case designs (Crawford and
Howell, 1998; Crawford and Garthwaite, 2002). Cutoff scores
indicate values for consistency and accuracy at which 2.5% of
the estimated population, based on performance of the control
groups, fall below the score (see Table 2).

Thirteen out of 20 participants who stutter exhibited poor
synchronization on one or both measures of synchronization
with at least one of the stimulus types. Five participants
showed low consistency, five low accuracy, and three were
affected on both measures relative to controls. Four out of
10 children and 9 out of 10 adolescents showed impaired
synchronization.

The link between these individual profiles and stuttering
severity was further examined, as illustrated in Figure 3.
Participants showing low consistency relative to controls were
grouped (n = 8) and compared to the participants who did not
differ from controls (n = 12). Participants with low consistency

presented more severe stuttering symptoms in both SSI- and FzS-
measures6 than the participants who exhibited consistency within
the range of controls (with SSI, t(18) = 2.2, p = 0.04, r2= 0.21;

6Note that SSI and FzS-Scores were not correlated in our participant group.

TABLE 2 | Cutoff-scores for synchronization performance.

Stimulus Consistency (0–1) Accuracy (degrees)

Children Adolescents Children Adolescents

Metronome 600 ms 0.84 0.91 <–64.26 <–64.68

Metronome 450 ms 0.57 0.89 <–68.36 <–69.34

Metronome 750 ms 0.85 0.91 <–40.88 <–38.84

Badinerie 0.12 0.86 <–33.38 <–44.19

Rossini 0.03 0.34 <–59.33 <–70.73

For accuracy, only the relevant lower cutoff scores are displayed.
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FIGURE 3 | Individual profiles for participants who stutter depending
on their performance in the synchronization tasks plotted against
stuttering severity. (A) Psychosocial severity of stuttering (FzS) (B) Severity
of stuttering symptoms (Stuttering Severity Instrument, SSI-3).

with FzS, t(18) = 2.8, p = 0.01, r2= 0.30). The same analysis was
performed on accuracy. No differences in stuttering severity were
found between participants who stutter showing low accuracy
and those participants whowere comparable to the control group.
In sum, only consistency in a non-verbal synchronization task
was associated with stuttering severity, not accuracy.

Finally, additional analyses were conducted in the group
of participants who stutter to test whether their poor timing
performance was specific to synchronization or whether it more
generally concerned the production of a rhythmic sequence,
even in the absence of a pacing stimulus (i.e., in the unpaced
tapping task; for data on children without disorders, see

Drake et al., 2000; McAuley et al., 2006). No significant
correlation was found between consistency obtained in the paced
tapping tasks and variability in unpaced tapping (i.e., CV ITI).
Moreover, participants who stutter showing low synchronization
consistency did not differ in motor variability from participants
without synchronization deficits (mean CV ITI= 0.07, SD= 0.03
in both sub-groups).

Discussion

In the present study, we examined non-verbal timing abilities
in children and adolescents who stutter, with a focus on
predictive timing, tested with a sensorimotor synchronization
task. Participants who stutter showed poorer synchronization
to a rhythmic auditory stimulus such as a metronome or
music (i.e., lower accuracy or consistency) than age-matched
peers. Examining individual synchronization profiles revealed
that 65% of participants who stutter displayed timing deficits.
Adolescents who stutter were more impaired (in particular in
consistency) than children. Low synchronization accuracy was
reflected by the fact that participants who stutter tapped earlier
in relation to the pacing stimulus as compared to controls.
Low synchronization consistency (i.e., higher variability) was
observed in particular in participants with severe stuttering.
These differences in synchronization performance associated
with stuttering severity were unlikely to result merely from
general motor impairment, as indicated by the performance in
an unpaced tapping task.

These results provide for the first time evidence of a
very specific deficit in synchronization accuracy in children
and adolescents who stutter, namely a consistent bias toward
over-anticipating the moment of occurrence of the pacing
event. This is manifest in their tendency to tap earlier in
relation to the auditory pacing stimulus than controls (i.e.,
they showed a higher negative mean asynchrony – NMA –
than controls). This finding is in keeping with models of
stuttering underscoring the role of predictive timing in the
disorder (Harrington, 1988). Furthermore, we provided evidence
for a link between lower synchronization consistency and
stuttering severity in the tested age groups. Synchronization
performance also differed from spontaneous rhythmic activity
in the absence of a pacing stimulus (i.e., in unpaced tapping).
These results suggest that stuttering may be associated with
a general-purpose timing deficit that pertains specifically to
sensorimotor tasks requiring auditory–motor integration in
children and adolescents. This intriguing hypothesis deserves
further enquiry.

Synchronization accuracy and consistency deficits can derive
from several and probably independent sources. The fact that
individuals who stutter over-anticipated the pacing stimulus
(i.e., they showed larger NMA) than controls may shed
light on the nature of the underlying malfunctioning timing
mechanism. NMA is a common phenomenon in synchronized
tapping to simple periodic stimuli such as a metronome (see
Aschersleben, 2002; Repp, 2005; Repp and Su, 2013). With
more complex stimuli, such as music, NMA is typically smaller
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or may disappear. NMA is likely to be linked to perceived
synchronicity and predictive timing, that is, the estimation of
the time when a self-produced motor response and an external
periodic auditory event will coincide (Białuńska et al., 2011;
Repp and Su, 2013). In this respect, the higher NMA would
act as a non-verbal indicator of a predictive motor timing
error.

In the timing literature, several accounts of the origins
of the NMA have been proposed. The sensory accumulation
hypothesis (Aschersleben, 2002) proposes that proprioceptive
tactile feedback is integrated more slowly than auditory
information by the central nervous system. As a consequence,
taps are produced in advance in order to subjectively coincide
with the percept of the auditory stimulus. In this perspective, the
higher NMA in stuttering participants may derive from a slower
or less efficient kinesthetic integration function. Previous studies
on manipulation of kinesthetic feedback of orofacial effectors
pointed in this direction (e.g., Archibald andDe Nil, 1999; Loucks
and De Nil, 2006; Namasivayam et al., 2009). For example,
adults who stutter show reduced acuity of jaw movements
when depending on kinesthetic feedback alone (Loucks and
De Nil, 2006). Increasing orofacial kinesthetic feedback aids
persons who stutter in stabilizing their speech production at
fast speech rates (Namasivayam et al., 2009). Alternatively, a
purely perceptual account of the NMA proposes that it is due to
temporal underestimation of the IOI (Wohlschläger and Koch,
2000). In keeping with this account, participants who stutter
may have underestimated the duration of the IOI more than
controls did. To date, there are very few studies that tested
temporal perception and estimation in stuttering. In a recent
experiment on the perception of millisecond differences in voice
onset times, Neef et al. (2012) observed that adults who stutter
show a larger range of ambiguous perceptions between voiced
and voiceless German plosives than adults who do not stutter.
In temporal estimation paradigms for larger time lapses (i.e.,
30 s), adults who stutter showed less accurate estimation, in
particular those participants that were severely stuttering (Ezrati-
Vinacour and Levin, 2001). In a very recent study, Wieland
et al. (2015) showed that children who stutter aged 6 to 11 years
have greater difficulty than controls in discriminating rhythmic
sequences of tones. This finding points toward a deficit in
rhythm perception that could also relate to impaired rhythm
production. Further studies should shed light on the role of
perceptual and proprioceptive auditory–motor mechanisms in
motor and speech synchronization tasks with participants who
stutter.

Consistency deficits can also be linked to a faulty auditory–
motor coupling mechanism. Although there are various
sources of variability in periodic motor tasks, such as central
and peripheral mechanisms (i.e., central timekeeping vs.
motor effector variability, see Wing and Kristofferson, 1973),
adaptation to the auditory stimulus requires both phase and
period correction, which are critical processes to maintain
synchronization in paced tapping tasks (see Repp, 2005, 2006). It
is worth noting that some previous studies also reported higher
motor variability in unpaced motor tasks (i.e., reproducing the
same time interval without a pacing stimulus) in stuttering.

In the two studies focusing on timing abilities in children
who stutter, higher motor timing variability in the unpaced
continuation phase of a synchronization–continuation task
was observed (Howell et al., 1997; Olander et al., 2010). In
adults who stutter, evidence was at times pointing toward
higher (Subramanian and Yairi, 2006) or lower motor timing
variability (Brown et al., 1990) during unpaced tapping relative
to controls. Based on our findings, we cannot exclude generally
increased motor variability in stuttering. Nevertheless, because
the difficulties in coupling movement to a predictable auditory
stimulus were unrelated to motor variability in unpaced tapping,
our findings suggest that coupling of perception and action
may represent an additional source of impairment, linked to
stuttering severity.

Deficient processes relevant to auditory–motor integration
have been discussed in models of stuttering. Neilson and
Neilson (1987) were among the first to propose that a basic
problem in stuttering is the formation or access of auditory–
motor models in speech processing. They based their proposal
on tracking experiments with visual and auditory stimuli
that showed that adults who stutter performed significantly
poorer than a control group with auditory stimuli than with
visual stimuli. Recent models also assume that stuttering
is based on sensorimotor predictions that are not correctly
integrated with sensory feedback information during speech
production (Max et al., 2004; Civier et al., 2010; Hickok
et al., 2011). In terms of temporal processing, we can
speculate about several mechanisms which can be the locus
of impairment in stuttering. First, there may be a lack
of precise temporal predictions generated by unstable or
deficient forward-models (compatible with Max et al., 2004),
whether in fine motor or in speech production. Alternatively,
predictions may be subject to a temporal delay and therefore,
may not appropriately match with feedback information
(Harrington, 1988). Finally, temporal predictions and forward-
models may be correct, but a temporal mismatch may still
occur because sensory feedback is too slow or not aligned
in time with the predictions (compatible with Civier et al.,
2010).

Another question is to what extent the relatively long non-
speech movements tested in our tasks can inform about temporal
prediction mechanisms directing speech movements on a much
smaller time scale. The frequencies of speech movements are
among the highest in human behavior, ranging from 9.5 to 21
phones/second or from 1.5 to 6 syllables/second (e.g., Koreman,
2006; de Jong and Wempe, 2009). In the present and in previous
synchronization studies with persons who stutter, time intervals
were tested at lower movement rates adequate for manual
synchronization, often not yielding significant differences (70–
300 beats/minute; Hulstijn et al., 1992; Zelaznik et al., 1994;
Max and Yudman, 2003; Neef et al., 2011; see also Repp, 2003,
2006). Slower movement rates may put less demand on timing
mechanisms than speech does and thereby may fail to show
differences in predictive timing between persons who do and do
not stutter. However, this does not preclude the possibility of
temporal prediction deficits at faster rates. This possibility should
be carefully assessed in further studies with adults and children
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using other appropriate tests (e.g., verbal tasks; perceptual timing
tasks).

For children and adolescents who are still developing
timing abilities in both speech and non-verbal behavior (Drake
et al., 2000; McAuley et al., 2006), task demands during
synchronization seemed to be adequately high to reveal group
differences in our study. However, an analysis of individual
differences indicate that synchronization tasks were sensitive
in particular to severe timing deficits. Synchronization deficits
were visible in all eight participants who stutter with severe
SSI-3. In the group of participants with mild to moderate
stuttering, 40% showed differences compared to their age-
matched peers. Remarkably, in our sample of participants
who stutter, consistency and accuracy deficits did rarely co-
occur. Only three participants (15%) were impaired at both
levels. A subgroup (25%) displayed particularly low consistency,
but accuracy was comparable to controls. Another subgroup
(25%), in contrast, displayed low accuracy (i.e., high NMA),
but consistency was as high as in controls. In this subgroup,
one of the participants exhibited synchronization consistency
which was even superior to that of the control group (mean
vector length = 0.99, SD = 0.005). Interestingly, one of the
previous studies also reported less variable motor performance
in adults who stutter than in controls during unpaced finger
tapping and oromotor movement tasks (Brown et al., 1990).
The authors suggested that excessive consistency could reflect
a less flexible and adaptive motor system. Although a larger
group of participants is needed to confirm a bimodal distribution,
these results point to subgroups which could be indicative
of different timing mechanisms or compensatory strategies
underlying stuttering.

The observed link between stuttering severity and consistency
deficits in synchronization opens interesting perspectives for
future studies. Severe stuttering as measured by the SSI at
age 8 is the most reliable predictor of persistent stuttering
(Howell and Davis, 2011). Eighty percent of the children
showing stuttering symptoms develop a merely temporary
disorder which will disappear by adulthood (Yairi and Ambrose,
1999). In the remaining 20%, however, stuttering does persist
into adulthood. From age 16 on, recovery from stuttering is
highly unlikely. Recovery rates before 16 years are around
50% for children aged 8 years, and around 25% when aged
10 years; recovery above 12 years is only occasionally reported
(Andrews and Harris, 1964; Howell and Davis, 2011; for
a review, see Howell, 2011). In our study, synchronization
deficits were most visible in the group of severely stuttering
participants which were also more numerous among the
adolescents who were more prone to persistent stuttering than

children. If the likelihood of persistence of stuttering is related
to the severity of an underlying timing deficit, non-verbal
synchronization ability could be an indicator of the persistence
of stuttering. Moreover, given the results of Chang and Zhu
(2013) on attenuated connectivity in neural timing circuits, it
would be valuable to test younger children near the age of
stuttering onset on their non-verbal synchronization abilities,
stuttering symptoms and corresponding neural correlates in
verbal tasks. Another aspect worth considering is that persons
who stutter exhibit deficits in learning motor sequences (Smits-
Bandstra et al., 2006; Smits-Bandstra and De Nil, 2007, 2009,
2013). It is unclear whether these deficits are associated or
co-develop with deficits in coupling action and perception
(e.g., sensorimotor synchronization) during childhood and
adolescence – a possibility for future investigation. Finally,
as other developmental speech disorders have recently been
proposed to jointly emerge with deficits in the non-verbal domain
(e.g., reading disabilities, Woodruff Carr et al., 2014), it will be
relevant to address the specificity of timing deficits in stuttering,
as indicated by our results, in comparison with other disorders in
future research.

To conclude, children and adolescents who stutter in
our sample showed deficits in sensorimotor synchronization
compared to age-matched peers. Deficits were visible in
synchronization accuracy, as well as in consistency, but affected
different subgroups of participants. In addition, synchronization
consistency was indicative of stuttering severity, a relation which
could be of potential interest for future studies. Accuracy deficits
pointed to altered mapping of perception to action and were
indicative of impaired predictive timing. In sum, our results
lend support to the hypothesis that stuttering is associated
with timing deficits in young age and are found in the non-
verbal domain. Whether these deficits are pertaining more to
perception, sensorimotor integration or motor planning and how
they reflect verbal timing has to be clarified in future research.
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