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Abstract

Modeling the oxidation of soot particles in flames is a challenging topic both

from a chemical point of view and regarding the statistical treatment of

the evolution of the soot Number Density Function (NDF). The Method of

Moments is widely-used for the statistical modeling of aerosol dynamics in

various applications, and a number of di↵erent moment methods have been

established and successfully applied to the modeling of soot formation and

growth. However, a shortcoming of existing moment methods is the lack of

an accurate, numerically robust, and computationally e�cient way to treat

soot oxidation, especially regarding the prediction of the particle number

density. In this work, the recently developed Extended Quadrature Method

of Moments (EQMOM) is integrated with a physico-chemical soot model and

combined with a treatment for particle removal by oxidation. This leads to
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a modeling framework for the simulation of coupled inception, growth, coag-

ulation, and oxidation of soot in flames. In EQMOM, the moment equations

are closed by reconstructing the soot NDF with a superposition of continuous

kernel functions. Various standard distribution functions can be used as ker-

nel functions, and the algorithm has been implemented here using gamma

and lognormal distributions. It is shown that and discussed why gamma

distributions are more suitable as kernel functions than lognormal distribu-

tions in order to accurately predict soot oxidation. The integrated model

is validated by comparisons with analytical solutions for the NDF, results

from Monte Carlo simulations of soot formation and oxidation in flames, and

experimental data.

Keywords: Soot oxidation, method of moments, EQMOM, statistical soot

model

1. Introduction

In the development of engineering devices, such as next-generation aero or

diesel engines, one of the main concerns is the reduction of particulate emis-

sions. While reactive Computational Fluid Dynamics are already widely-used

in the design process, a substantial barrier for an extended use of numerical

simulations with respect to emissions reduction is a lack in the predictive

quality of models for soot formation, and especially for soot oxidation. Aero

engines designed following the rich-burn/quick-quench/lean-burn concept are

an example for applications in which soot oxidation is very important. While

a lot of soot is formed in the primary rich combustion zone, more than 95% of

the particles are oxidized before reaching the exit of the combustor. There-
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fore, in order to accurately predict the amount of soot emissions, reliable

models for soot oxidation are crucial.

In addition to the gas-phase chemistry, soot models consist of two main

building blocks: First, a physico-chemical model, which describes the various

micro-processes of soot inception, growth, and oxidation on a single-particle

level. Second, as not every single particle can be tracked in a simulation, a

statistical model is required. Statistical methods applicable to soot modeling

include Monte Carlo methods, sectional methods, and moment methods. The

goal of the present paper is the integration of a recently developed advanced

quadrature-based moment method [1] with soot models for an improved sta-

tistical description of soot evolution, especially of soot oxidation.

Targets for the development of statistical soot models are: high accuracy,

computational e�ciency, numerical robustness (related to moment realizabil-

ity), applicability to 3D turbulent simulations (i.e. relevant for engineering

applications), easy implementation, and applicability to multivariate models,

which parameterize the particles with more than one quantity. While Monte

Carlo (MC) methods [2, 3] are very accurate and well suitable for multi-

variate models, they are computationally expensive, and their applicability

is restricted to simplified configurations. However, due to their negligible

error, they can serve as a reference solution, which other methods can be

validated against.

The most widely-used class of methods is the Method of Moments in-

cluding the Method of Moments with Interpolative Closure (MOMIC) [4],

the (Direct) Quadrature Method of Moments (QMOM/DQMOM) [5, 6], and

the Hybrid Method of Moments (HMOM) [7]. The quadrature-based moment
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methods have been shown to be very accurate for the description of aerosol

dynamics including particle growth and coagulation. While DQMOM is com-

putationally e�cient and can easily be extended to multivariate models, it

can become numerically unstable. QMOM, which is numerically robust, has

recently been extended to the Conditional QMOM [8], which combines accu-

racy, robustness, and e�ciency, and has also been applied in 2D simulations

[9]. However, all of the mentioned methods have di�culties in dealing with

soot oxidation in a mathematically rigorous manner. Often, relatively crude

assumptions must be made due to shortcomings in the statistical methods

[10]. These shortcomings are discussed in more detail in the next section.

Recently, the Extended Quadrature Method of Moments (EQMOM) has

been introduced [1, 11] as a statistical approach to solve the Population

Balance Equation (PBE). This method retains the accuracy and e�ciency

of the QMOM algorithm, and has already been applied to soot formation

and growth processes [12]. However, although, for reasons discussed below,

EQMOM is especially suitable to accurately describe soot oxidation and the

related disappearance of particles, a formulation for soot oxidation has not

yet been investigated.

Soot oxidation is also challenging from a chemical point of view, and it is

an active field of research, both experimentally [13] and numerically [14]. It

should be noted that the goal of the present paper is not the improvement

of chemical soot models. However, in order to benefit from advances of the

chemical description of soot oxidation in simulations of engineering interest,

high-fidelity statistical methods applicable to soot oxidation must be devel-

oped, and the purpose of this paper is to contribute to this development.
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The following section provides a more detailed analysis why the statistical

description of soot oxidation is challenging within the framework of moment

methods. In section 3, two variants of EQMOM are discussed. Section 4

briefly describes the physico-chemical soot model. Then, the performance

of EQMOM is analyzed in the context of two validation cases: First, pure

soot oxidation is studied in section 5.1. Second, in section 5.2, the model

is validated for a laminar premixed flame with coupled soot growth and

oxidation.

2. Why Soot Oxidation is a Challenge for Moment Methods

The statistics of a soot particle population are embodied in the Number

Density Function (NDF). For a spatially homogeneous system, the governing

PBE for the NDF, n (t, V ), based on particle volume, V , and dependent on

time, t, reads

@n (t, V )

@t
+
X

i

@

@V
[gi (t, V )n (t, V )] =

X

j

Ṡj . (1)

The summation over j on the r.h.s. includes the discontinuous source terms of

nucleation, Ṡnucl, and coagulation, Ṡcoag, which can be expressed as integrals

of the NDF. The summation over i on the l.h.s. includes all continuous source

terms, i.e. surface reactions leading to particle growth and oxidation. The

growth rates of these processes, gi, appear as convective velocities in phase

space.

The volume-moments of the NDF are defined as

mk(t) =

Z 1

0

V kn (t, V ) dV , (2)
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where k is the order of the moment. Transport equations for the moments

can be derived by multiplication of Eq. 1 with V k and subsequent integration

over the phase space:

dmk

dt
= �

X

i

V kgi (t, V )n (t, V ) |1
0

+
X

i

Z 1

0

kV k�1gi (t, V )n (t, V ) dV

+
X

j

Z 1

0

V kṠjdV . (3)

On the r.h.s. of Eq. 3, there are integral terms as well as boundary terms

resulting from the integration by parts of the hyperbolic growth terms (second

term in Eq. 1). As the support interval of the NDF is semi-infinite, only the

boundary term at the minimum particle size (zero in this case) is of concern.

If gi is positive, as in the case of surface growth, the term is zero, but if gi

is negative, as in the case of oxidation, the boundary flux is non-zero and

needs to be computed. Hence, as long as oxidation is excluded, the r.h.s. of

Eq. 3 contains only integral terms. In presence of oxidation, the additional

flux term appears.

The Method of Moments seeks the closure of the generally unclosed mo-

ment source terms, which enables the solution of Eq. 3. The time evolution of

the moments represents the evolution of the statistics of the soot NDF. While

the zeroth and first order moments are related to the soot number density

and volume fraction, respectively, typically a few more moments are solved

for in order to obtain a more accurate evaluation of the moment source terms.

The evaluation of the boundary flux is especially challenging as it requires

the knowledge of the pointwise values of the NDF, which are not directly

6



available from the moments.

For the following discussion, it is important to distinguish between the

terms “representation of the NDF” and “approximation of the NDF”. In

classical quadrature-based moment methods, such as (D)QMOM, from the

computed set of moments, a multi-delta function is reconstructed, which con-

stitutes a representation of the NDF. The goal of the representation of the

NDF is to accurately reproduce its statistics in terms of moments with the

assumption that this will help to accurately predict the source terms in the

moment equations, while the shape of the reconstructed NDF might be com-

pletely di↵erent from the true NDF. As long as oxidation is not considered,

all source terms appear as integrals of the NDF, and using the (D)QMOM

representation for their evaluation is equivalent to a Gaussian quadrature.

This method has been shown to be very accurate for soot growth [15].

In case of oxidation, the additional boundary term cannot be closed with

such a quadrature, because the pointwise flux at the minimum particle size

needs to be known. Therefore, an approximation of the NDF is required, i.e.

a reconstruction of the NDF which not only reproduces its statistics, but also

accurately approximates its shape, especially close to the minimum particle

size. Only from the knowledge of the number density of the smallest particles

that will be oxidized during the next time step, the disappearance rate of

particles can be computed. This quantity is not available in (D)QMOM, and

modeling assumptions are required to compute the decrease in the number

density due to oxidation.

In the original variant of MOMIC [4], a transport equation for the moment

of order minus infinity is solved, and in HMOM [7], a delta function at the
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size of nucleating particles is introduced. Although the main purpose of

adding these equations was not the treatment of oxidation, they can be used

to determine the number of the smallest particles. However, the issue is

shifted to the question of how many particles are transferred from larger

size classes into the first bin. The pointwise knowledge of the NDF would be

required to answer this question. However, this information is not available in

interpolation-based or standard quadrature methods, and model assumptions

need to be introduced.

In order to close this gap, EQMOM has recently been developed. Its

moment inversion algorithm provides a continuous function as approximation

of the NDF, which is used to evaluate the source terms and the oxidation

boundary flux.

3. EQMOM for Soot Formation and Oxidation

3.1. Moment Inversion Algorithm

The concept of EQMOM relies on the replacement of the delta-functions

in (D)QMOM with continuous kernel functions. The NDF is hence approxi-

mated by a superposition of N continuous kernel functions, �� (V ;V↵), which

are weighted by w↵:

n (V ) ⇡
NX

↵=1

w↵�� (V ;V↵) . (4)

The moment inversion then consists in reconstructing such kind of NDF from

its moments of order 0 to 2N , i.e., finding the non-negative weights, w↵, the

abscissas of the kernel functions, V↵, and their shape parameter, �, which

is identical for all kernel functions. Once these parameters are determined,
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the moment source terms in integral form can be computed with a so-called

secondary quadrature, that is a quadrature for each kernel function [1]. The

boundary term in Eq. 3 can be computed from the approximated NDF, as

described in Sec. 3.4.

Di↵erent kinds of kernel functions are possible, which all satisfy the two

following constraints: First, they formally tend to a Dirac delta function

when � tends to zero, thus recovering a quadrature. Second, there is a linear

dependence between any moment vector, m, of a reconstructed NDF and the

vector m? of components m?
k =

PN
↵=1

w↵V k
↵ :

m = A (�)m? . (5)

The form ofA (�) depends on the specific choice of kernel functions. This sec-

ond constraint allows the use of the e�cient and robust standard quadrature

algorithm. Indeed, for any value of �, one can compute m
?(�) = A(�)�1

m

and then the quadrature points (w↵ (�) , V↵ (�))
N
↵=1

, thus leading to a recon-

struction. The moments of order 0 to 2N � 1 of this reconstruction are thus

the given mk and the value of � has then to be adapted in order for its 2Nth

order moment m̄2N(�) to be m2N . The algorithm for moment inversion is

illustrated in Fig. 1.

A new robust and e�cient algorithm for the reconstruction provided in

[16], improving the one of [1], is applied here. It uses an e�cient way to solve

the nonlinear problem J(�) = 0, where J(�) = m2N � m̄2N(�). In some

cases, a solution does not exist; then, J(�)2 and hence the error on the last

moment is minimized. Moreover, the algorithm is able to deal e�ciently with

moment vectors at the boundary of the space of realizable moments, where

the only possible corresponding NDF is a single or multi-delta function. Such
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Figure 1: Schematic of the EQMOM algorithm.

cases frequently appear in regions of a flame where soot nucleation has just

started. A method then detects if the moment vector is close to the boundary

of moment space. If this is the case, the algorithm adaptively switches to the

standard quadrature algorithm, until coagulation has broadened the NDF.

Several types of kernel functions can be used, e.g. Gaussian distributions

for internal coordinates with an unbounded support interval, or beta distri-

butions if the support interval is bounded. As the support interval for soot

particle volume is semi-infinite, [0,1), two possible choices for the kernel

functions are gamma [1] or lognormal [11] distributions. Both variants are

applied and compared in this paper.

3.2. Gamma EQMOM

The kernel functions for gamma EQMOM [1] are given as

�� (V ;V↵) =
V �↵�1e�V/�

� (�↵) ��↵
, (6)

where �↵ = V↵/�, and � is the Gamma function. The corresponding mo-

ments can be analytically expressed as

m0 =
NX

↵=1

w↵ , mk =
NX

↵=1

w↵

k�1Y

i=0

(V↵ + i�) , k � 1 . (7)
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The matrix A (�) is then triangular with coe�cients [A(�)]i,j = ai,j�i�j for

0  j  i, where ak,k = 1 and ak,i is given by the following recurrence formula

[16]:

ak,i = (k � 1)ak�1,i + ak�1,i�1 , k � 1, i = 2, . . . , k � 1 . (8)

3.3. Lognormal EQMOM

The lognormal kernel functions are

�� (V ;V↵) =
1

V �
p
2⇡

exp

 
� (ln (V )� ln (V↵))

2

2�2

!
. (9)

The moments take the form

mk =
NX

↵=1

w↵V
k
↵ exp

✓
1

2
k2�2

◆
, (10)

leading to the matrixA (�) being diagonal with diagonal coe�cients exp
�
1

2
k2�2

�
.

Moreover, the nonlinear problem is then solved for exp (�2/2) instead of �

[11].

3.4. Treatment of Oxidation

Operator splitting is applied for the time integration of the moments. The

soot growth and coagulation terms are integrated first. Then, oxidation is

accounted for using an adaptation to an odd number of moments [16] of the

scheme by Massot et al. [17]. The NDF is first reconstructed according to the

EQMOM algorithm. Then, eliminating the disappearance flux, i.e. the part

of the reconstructed distribution, which is oxidized during the current time

step, the corresponding partial moments, are computed analytically (gray

region in Fig. 2):

emk (t) =

Z 1

VOx

V kn (t, V ) dV , k = 0, 1, . . . , 2N + 1 . (11)
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Figure 2: Schematic illustration of the oxidation treatment.

The size of the largest particle that is oxidized in the time step, VOx, can be

evaluated from the oxidation rate.

An (N + 1)-point quadrature, ( ewi, eVi), corresponding to these modified

moments, {emk}2N+1

k=0
, is computed. The abscissas are then convected in phase

space according to the oxidation rate, and the updated moments are com-

puted as

mk (t+�t) =
N+1X

i=1

ewi
eV k
i (t+�t) . (12)

A very important property of this algorithm is that it ensures the realiz-

ability of the moment set [17, 16].

4. Soot Model

For the flames discussed in the following, detailed chemistry computa-

tions of the gas phase were performed using the FlameMaster code [18] and

the chemical kinetic mechanism of Narayanaswamy et al. [19], which was

developed with special focus on soot precursors, and which contains PAH

(polycyclic aromatic hydrocarbons) chemistry up to four-ringed molecules.

Two-way coupling between gas phase and particulate phase is applied to ac-

count for the removal of PAH from the gas phase during soot inception and

growth.
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The following soot processes are included in the computations of the

particle phase: nucleation using the dimerization model by [15], condensation

of PAH dimers, coagulation in the transition regime, surface growth modeled

with the HACA mechanism [20, 21], with reactions rates given by [15], and

oxidation by OH and O2, with rates given by [15] and references therein.

Thermophoretic e↵ects are also included.

5. Results

For a thorough validation, model-predicted results are compared to Monte

Carlo simulations as well as experimental data from three di↵erent experi-

ments. First, we will consider two analytical cases for pure oxidation starting

from realistic initial size distributions experimentally determined in [13, 22].

Then, the model will be further validated with an experimental data set of

laminar premixed flames [23], focusing on oxidation.

5.1. Results for Pure Oxidation

First, soot oxidation is considered isolated from other processes. The

goal of this validation case is to test if the EQMOM reconstruction yields

a good approximation of realistic soot NDFs at all times during the oxida-

tion process, which is necessary for the accurate prediction of the moments,

especially of m0 representing the number density.

The burner-stabilized stagnation (BSS) flame approach has been estab-

lished as an experimental technique to measure the soot NDF in laminar

premixed flames [22, 24]. Experiments in this configuration have shown that

at downstream locations, bimodal shapes are observed for the soot NDFs in

13
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a rich C2H4/O2/Ar flame [22]. In a similar flame that was recently exper-

imentally studied by the same research group [13], a unimodal NDF in the

flame has been found. Both cases are interesting test cases, as both NDFs

might be present at some point in a turbulent flame and be subjected to

strong oxidation when reaching the flame front. Therefore, both cases will

be considered here and used as initial conditions for the oxidation test cases

described in the following.

5.1.1. Analytical Solution

Both gamma and lognormal EQMOM are applied using both experimen-

tally measured soot NDFs discussed above (flame C3 in [22] at HAB = 8mm

and C2H4 flame in [13]) as initial conditions. For pure oxidation, if the initial

NDF is given, the temporal evolution of the NDF and its moments can be

obtained analytically from the oxidation law. As the goal is the validation

of the statistical part of the model, a relatively simple chemical model is

applied, and results are compared to the analytical solution. The oxidation

rate is taken proportional to the particle surface, and particles are assumed

to be spherical. The particle diameter is taken as internal coordinate of the

NDF, such that oxidation simply shifts the initial NDF to smaller sizes, and

the evolution of the NDF and its moments can easily be computed. As parti-

cles smaller than 2.5nm are below the detection limit of the particle sampler,

a small part of the initial NDF is unknown. Therefore, the comparison of

EQMOM and the analytical solution starts at the time when the smallest

measured particle has reached zero size. These simplifications do not lead to

a loss of generality regarding the conclusions drawn for the performance of

the statistical model.
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Figure 3: Reconstruction of two experimentally measured, normalized NDFs from rich,

premixed ethylene flames (left: [13]; right: [22]) using gamma EQMOM (upper row) and

lognormal EQMOM (lower row) with three kernel functions.

5.1.2. Discussion: Gamma EQMOM More Suitable than Lognormal EQ-

MOM

From the experimental NDFs, the diameter-moments are computed as

initial conditions, and the EQMOM reconstruction for this first validation

case is based on diameter-moments. During the oxidation process, the NDF

is reconstructed in every time step using the EQMOM algorithm of Sec. 3.1.

Then, the oxidation algorithm of Sec. 3.4 is applied. Figure 3 shows the

reconstructed initial NDFs using gamma and lognormal EQMOM with three

kernel functions, i.e. seven moments need to be transported. The reconstruc-

tions of the NDFs at di↵erent times during the simulation are provided in

the Supplementary Material.

Both the unimodal and the bimodal NDF can be very well approximated

using two (not shown here) or three gamma distributions, while lognormal

EQMOM is less accurate. The lognormal kernels do not overlap very much,

which leads to a bimodal shape for both NDFs; also the experimentally
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Figure 4: Time evolution of the first three moments, representing number density, soot

volume fraction, and variance of the NDF, normalized with the initial particle number,

during pure oxidation of the soot population represented by the bimodal NDF in Fig. 3.

bimodal NDF is not well approximated in the region of small particles. Log-

normal EQMOM has di�culties to capture non-zero values at the minimum

particle size, because the lognormal distribution always starts at zero. In

gamma EQMOM, depending on the parameters of the gamma distributions,

a smooth transition occurs between the NDF starting at zero and at a non-

zero value. Although the parameter � is identical for all kernels, the shapes

of the kernels can di↵er in that the first kernel starts at a non-zero value,

while the others start at zero. This is a results of the definition of � and the

parameter of the gamma distribution, �↵ = V↵/�, and it enables an accurate

approximation of the NDF, especially for small particle sizes, which is im-

portant for an accurate prediction of the number density during oxidation.

Figure 4 shows the time evolution ofm0,m1, andm2, representing number

density, soot volume fraction, and variance of the NDF, respectively, during

16
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oxidation of the bimodal NDF. Oxidation of this NDF is the more general case

and is therefore discussed here; corresponding results for the unimodal NDF

are provided in the Supplementary Material. EQMOM with just one kernel

function, i.e. three transported moments, does not yield su�cient accuracy.

Using two or more kernels, i.e. five or more moments, both gamma and

lognormal EQMOM can very accurately predict the soot volume fraction and

higher moments. Gamma EQMOM also excellently predicts the evolution of

the number density. Due to the bimodality of the NDF, it first decreases fast

until the peak of small particles has been oxidized, then the rate slows down,

before increasing again when the second peak is oxidized. This behavior is

qualitatively and quantitatively very well captured.

For modeling the disappearance rate of particles during oxidation using

traditional moment methods, it is often assumed that a particle is removed

after the mass of an average-sized particle has been oxidized. This model as-

sumption couples the rate of change of number density to the rate of change

of volume fraction. This coupling is obviously wrong, especially for the typ-

ical bimodal NDFs, and can only be avoided if the pointwise values of the

NDF are known with su�cient accuracy, as is the case in gamma EQMOM.

Lognormal EQMOM produces jumps in the number density. This be-

havior is linked to the evolution of the parameters of the kernel functions.

Figure 5 shows the weights and abscissas, and Fig. 6 shows the evolution of

the shape parameter, �. While the weights of the gamma distributions follow

smooth curves, the weights of the lognormal distributions show jumps, whose

positions are dependent on the time step size (not shown here). During ox-

idation, the first lognormal kernel becomes very narrow, until it disappears

17
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Figure 5: Time evolution of the weights and abscissas of the kernel functions during pure

oxidation of the soot population represented by the bimodal NDF in Fig. 3.

Figure 6: Time evolution of the shape parameter �. Same case as in Fig. 5.
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Figure 7: Time evolution of m1/m0. Same case as in Fig. 4.

in a certain time step, which leads to the jump in the number density. The

gamma distributions are always broad, and, as discussed above, the kernels

have di↵erent parameters �↵ = V↵/� for a common value of �, such that the

first kernel starts at a non-zero value, while the other kernels start at zero.

This behavior helps to avoid the sudden disappearance of a kernel and en-

ables an accurate prediction of the number density, which is also independent

of the time step size.

Another benefit of gamma EQMOM over lognormal EQMOM is evident

from Fig. 7, which shows the time evolution of m1/m0, corresponding to a

mean particle diameter. Gamma EQMOM is able to accurately predict the

mean particle diameter even for large times, when both m1 and m0 go to

zero. For lognormal EQMOM, in contrast, the convergence with increasing

number of transported moments is much slower, and for large times, the

monotonically decreasing behavior is not captured any more.

5.2. Results for Coupled Soot Formation and Oxidation

The two-stage burner experiment by Neoh et al. [23] is simulated to vali-

date the EQMOM algorithm for combined soot formation, growth, coagula-

tion, and oxidation. In this experiment, soot is produced in a rich, premixed,

burner-stabilized CH4/air flame. Then, secondary air is added, and the soot

19
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is oxidized in a second premixed flame (case with �global = 1.15 in [23] is stud-

ied here). Although soot formation and oxidation are dominant in the pri-

mary and secondary burner, respectively, all soot processes are relevant and

considered in both flames. As the flames are laminar and one-dimensional,

the spatial coordinate is transformed into a pseudo-time or Lagrangian time

using the particle velocity, i.e. the sum of gas and thermophoretic velocities.

The particulate phase is then integrated in time. The simulation results of

the primary burner are used as initial conditions for the secondary burner.

5.2.1. Monte Carlo Simulations

As an analytical solution for the NDF is no longer possible for this case,

EQMOM predictions are here compared to Monte Carlo simulations using the

same physico-chemical soot model. In addition, model results are compared

to experimental data for the secondary burner.

MC simulations are particularly useful for validation of statistical mod-

els, since they require no closure assumption and hence describe the exact

NDF evolution for a given physico-chemical model. The MC code uses the

algorithm by [3, 25] for coagulation in the transition regime. To improve com-

putational e�ciency of the MC simulations, the method of majorant kernels

[26] is used for the continuum regime.

5.2.2. Validation: Soot Formation and Oxidation in a Two-Stage Burner

In Fig. 8, the soot volume fraction in the primary burner is shown on the

left. Very good agreement between EQMOM and MC results is obtained. To

highlight the e↵ect of oxidation even in this rich flame (� = 2.1), additional

simulations excluding oxidation are also shown. As for both simulations
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Figure 8: Soot volume fraction in the primary (left) and secondary burner (middle),

and number density in the secondary burner (right). Comparison of EQMOM with MC,

and with experimental data in the secondary burner from [23], where two postprocessing

techniques were used to determine the number density.

the agreement between EQMOM and MC is very good, it can be concluded

that EQMOM is suitable to accurately predict isolated soot formation and

coagulation as well as simultaneous oxidation.

Figure 8 also shows the evolution of soot volume fraction and number

density in the oxidation-dominated secondary burner. Comparisons are made

between EQMOM, MC and experimental data. It should be noted that a de-

viation of EQMOM results from experimental results is always due to a com-

bination of uncertainties in the physico-chemical and the statistical model,

while the comparison of EQMOM with MC simulations isolates the statisti-

cal error, which is of prime concern here. Regarding the soot volume fraction,

EQMOM results are in excellent agreement both with MC simulations and

experimental data.

The prediction of the experimental number density is also reasonable,

given the experimental uncertainty. The overprediction of the number den-

sity might be a result of an underprediction of the coagulation rate in the

primary burner, which could be improved with a more sophisticated, multi-

variate soot model including a model for aggregation. It should also be noted
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that a significant experimental uncertainty can be expected, as Neoh [23]

computed the number density using extinction and scattering measurements,

and making assumptions about the particle size distribution (monodisperse

or single lognormal). More importantly, the EQMOM results for the number

density agree well with the MC simulations, which validates the EQMOM

approach for coupled soot formation and oxidation.

6. Conclusions

The EQMOM algorithm has been integrated with a physico-chemical soot

model including soot inception, growth, coagulation, and oxidation processes.

Extending existing EQMOM implementations, the algorithm has for the first

time been combined with a treatment for particle removal by oxidation. Two

variants of EQMOM applicable to NDFs with a semi-infinite support interval,

gamma and lognormal EQMOM, have been applied to soot oxidation using

realistic soot NDFs taken from two di↵erent experiments as initial conditions.

While both methods are able to accurately predict the soot volume fraction

and higher order moments of the NDF, lognormal EQMOM has di�culties

to predict the soot number density. On the contrary, gamma EQMOM using

at least two kernel functions yields an excellent approximation of the NDF,

and it is therefore a suitable method for the accurate prediction of both soot

volume fraction, number density, and the soot NDF itself. A subsequent

application of gamma EQMOM to the two-stage burner experiment revealed

that this is also true for coupled soot formation and oxidation in flames.
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Evolution of Moments during Oxidation of the Unimodal NDF

Fig. 4 in the main paper shows the evolution of the moments during oxidation of the soot population represented

by the bimodal NDF. These results are supplemented here by the corresponding results for the unimodal NDF.

Figure S1: Time evolution of the first three moments, representing number density, soot volume fraction, and skewness of the NDF,

normalized with the initial particle number, during pure oxidation of the soot population represented by the unimodal NDF.

Reconstruction of the NDF during Oxidation

Fig. 3 in the main paper shows the reconstruction of both the unimodal and the bimodal NDF in the first time

step using both gamma and lognormal EQMOM with three kernel functions. These results are supplemented here

by the reconstructions of the NDF at several times during the oxidation using both gamma and lognormal EQMOM

with two and three kernels.

S1
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Figure S2: Reconstruction of the NDF at several times during the oxidation of the soot population represented by the bimodal NDF.

Gamma and lognormal EQMOM with two and three kernel functions are compared to the initial experimental NDF (top row) and the

analytical solution at di↵erent times (time increasing from top to bottom). Line types and colors are the same as in Fig. 3 in the main

paper.
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Figure S3: Reconstruction of the NDF at several times during the oxidation of the soot population represented by the unimodal NDF.

Gamma and lognormal EQMOM with two and three kernel functions are compared to the initial experimental NDF (top row) and the

analytical solution at di↵erent times (time increasing from top to bottom). Line types and colors are the same as in Fig. 3 in the main

paper.
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