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Abstract 

Industrials have an intensive use of numerical simulations in order to avoid 
physical testing and to speed up the design stages of their products. The 
numerical testing is indeed quicker to set-up, less expensive, and supplies a lot 
of information about the system under study. Moreover, it can be much closer 
to the physical tests as the computation power increases. Despite the rise of this 
power, time consuming simulations remain challenging to be used in design 
process, especially in an optimization study. Crash simulations belong to this 
category. These rapid dynamic computations are used by RENAULT during 
the sizing of the vehicle structure in order to ensure that it meets specifications 
set up to reach safety criteria in case of accidents. They are completed using 
finite element software such as VPS (Virtual Performance Solver) developed 
by ESI group that will be used in this study. For car manufacturers, the goal of 
the optimization study is to minimize the mass of the vehicle (and thus its 
consumption) by modifying the thicknesses of some parts (from 20 to 100 
variables). Industrials such as RENAULT currently perform optimization 
studies based on numerical design of experiments. The number of 
computations required by this technique is from 3 to 10 times the number of 
variables. This is too much in order to be intensively used in a design process. 

In order to decrease the time-to-market and to explore alternative technical 
solutions, we explore the potential of using a parametrized reduced order 
model in the optimization studies. The parametrized reduced order model gives 
an estimation of the high-fidelity result for a new set of parameters without 
using the solver, by analysing the existing results of previous computations 
with various sets of parameters. The developed reduced order model is called 
ReCUR. It is partly based on a CUR approach embedded in a regression 
analysis. The regression statistical model uses the data of a few calculations 
made with the solver. Other tools such as clustering and linear programming 
are used to get the regression analysis more efficient. 
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It is hoped to drastically reduce the number of required simulations of a 
standard optimization study. In this paper, the construction of the reduced order 
model will be presented. Then, the relevancy of using the reduced order model 
into a design process will be exhibited through the treatment of two industrial 
test-cases. Some improvements of the method as well as several potential uses 
will then be outlined. The applications will highlights the promising power of 
the method to shorten design process using optimisation and long-run 
simulations. 

 

Keywords: Reduced order model, Crash simulation, regression analysis, linear 
programming. 

 

1. Introduction 

Despite the continuous increase in computational power, the speed of the 
numerical simulations does not follow the same trend on account of the 
refinement of the numerical models and algorithms complexity. For instance, a 
crash simulation remains a time-consuming simulation (15h on 72 processors 
for one simulation). During the design phase, numerous crash simulations have 
to be run in order to find innovative designs fulfilling the safety requirements 
as well as improving comfort and performances. Several approaches may be 
investigated to shorten the design phase, and thus improve the time-to-market. 
Their goal is to decrease the simulation time building equivalent models and 
thus to limit the calls to time-consuming models. They may be divided in two 
categories, the reduced order model and the metamodeling techniques. 

The first group gathers the reduced order model techniques also called 
projection-based method. The simulation time is shorten using appropriate 
bases. In the Proper Orthogonal Decomposition (POD) [1], the bases are built 
from the diagonalization of the correlation matrix of snapshots. In this sense, it 
is strongly related to the Principal Component Analysis [2] or to the Singular 
Value Decomposition also called discrete Karhunen-Loève transform. This 
kind of method gave a lot of satisfactory results and extensions. For instance, 
both the Discrete Empirical Interpolation Method (DEIM) [3,4] and the A 
Priori Hyper Reduction (APHR) [5]  proposed methods based on the Gappy 
POD method [6] in order to select appropriate snapshots leading to satisfactory 
reduced basis. These methods allow the use of partial or incomplete data 
(sample mesh in the DEIM and truncated integration domain in the APHR) to 
build a reduced order model. It is proposed in [7,8] to identify the parts having 
a non-linear behaviour and the parts having a linear behaviour using a 
clustering technique and to solve the non-linear problem with the DEIM and 
the linear part with Krylov subspaces [9]. As well as the APHR [10], this 
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recent method has been applied to crash simulation but it seems limited to 
particular parts or small models with a low number of parameters. The Gappy-
POD has been developed originally for image processing but has been 
successfully applied to a number of field [11–13]. The A Priori Reduction 
(APR) [14] is strongly related to the APHR method. It tries to adapt and correct 
the reduced order model according to the quality of the approximation of the 
POD method using an iterative process. Moreover, the APR tries to improve 
the basis by the use of snapshots from alternative simulations. This point is 
very interesting for industrial applications because reduced order model may 
benefit from previous studies rather than keeping them underexploited. Among 
these methods, the Proper Generalized Decomposition [15–17] performs a 
variable separation between the time, the space, and the parameters. The 
advantage of this method is the possibility to perform quasi real time 
approximation of simulations with new sets of parameters once the reduced 
order model is built. Drawback of this method stands in the separability 
hypothesis. It is rarely verified in highly nonlinear models. Crash simulation is 
typically this kind of model because it gathers high displacements, contact and 
material non linearities. Besides, most of these methods require calls to the 
solver to perform the time integration and sometimes modifications of the 
governing equations of the simulation model. Unfortunately, such an intrusive 
method is hardly practical in existing design processes because the 
modifications of the solver are restricted by property and certification 
considerations. 

Contrarily to the projection based techniques, the metamodeling techniques do 
not require calls to the solver of the governing equations to perform an 
interpolation. They make use of the simulations to build statistical response 
surfaces of some quantities of interest. These quantities are often directly 
extracted from the design problem specifications. They come from some post-
processings of the high-fidelity simulations. The statistical responses may be 
interpolation models as the usual kriging or regression models as polynomial 
chaos expansions [18,19], radial basis function [20], or artificial neural 
network [21]. These models has been already applied to the resolution of 
optimisation problems in various physics [22–26] giving satisfactory results. 
Kriging has also been used to mimic some outputs of crash simulations [27]. 
Advantages of such method is that they do not require to call a specific solver 
and thus, they can be easily adapted to alternative kinds of physics. Despite 
they may give very satisfactory solutions for the quantities modelized by the 
surface responses but they may lead to unphysical solution for the rest of the 
system that are not taken into account in the response surfaces. Thus, it may be 
very favourable to be able to approximate the entire crash simulation rather 
than just few post-processed quantities in order to show the approximation of 
the entire simulations to an expert of the emulated physics. To solve the 
optimization problems, the post-processing of the quantities from the 
specifications may be done on the approximation of the entire structure. 
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Moreover, additional specifications may be easily added into the optimisation 
problems without the need of computing another interpolation function. 
Finally, such global metamodels may benefit from the set of the simulations 
done in past studies for its construction, allowing a more efficient management 
of the data. The link between such kind of method and reduced order models 
are the low rank approximations such as Tucker decomposition [28], High 
Order SVD [29], Train Tensor Cross decomposition [30], and CUR or Nystrom 
decomposition [31]. The interpolation of a new numerical experiment will 
indeed be performed using such a reduced order model together with a 
parametric function. In this paper, an approach gathering a low rank 
approximation for the space and time decomposition with a regression model 
for the parametric interpolation will be outlines and applied to crash 
simulation. Once the off-line stage of construction of the reduced order model 
performed, the interpolation for a new parameter set will be done using this 
reduced order model without any call to the finite element solver. In this, this 
work may recall the method used in [32] for solving aerodynamics problem by 
coupling clustering and interpolation on the variety of the orthogonal matrices. 
Hereinafter, they will be called parametrized non-intrusive reduced order 
models. Such parametrized reduced order model are at the crossroads of 
metamodeling, reduced order model, low-rank approximation, and machine 
learning [33]. Beyond optimization studies, such models may be useful for 
sensitivity analysis or control theory that both require a lot of simulation. 

In the following, the first part of the paper will be dedicated to the outline of 
the CUR approximation used in this research. This low rank tensor 
approximation is usually devoted to the reduction of a tensor solely and thus 
the second part will show how to introduce parametric interpolation capability 
into this model. After, the numerical computations of the coefficients of the 
reduced order model will be outlined and some convergence studies will draw 
some properties of the reduced order model. Finally, first numerical results will 
exhibit the potential of the reduced order model in industrial applications. 
These examples are a car rear wheel assembly side hit and a full car crash 
model.  

2. CUR low rank approximation 

Let ���� (�, �) be the space time function representing the simulation results 
observed on a high-fidelity simulation and for the field 
. This field is a 
physical quantity, for instance in crash simulations, it may be displacements or 
plastic strain. It must be noticed that displacements along the x, y, and z axes 
are three different fields. There is no particular assumptions concerning this 
function. The approximation of the high-fidelity field ���� (�, �) made by the 
reduced order model is denoted ��. The developed reduced order model is 
based on the CUR decomposition [34]. It approximates a field of one 
simulation using separable functions: 
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���� (�, �) ≈ ��(�, �) =��(�)������(�)
��

���

��

���
 (1) 

Where ��(�) are the vectors of the time basis, ��(�) the vectors of the space 
basis, and ����  are the projections of the field 
 on these bases. �� and �� 
denote the size of each basis. If all the rows and columns are selected as basis 
vectors, then the high-fidelity data will be surely perfectly reproduced. Thus 
adding rows and columns to given reduced bases will decrease or at least will 
remain unchanged the gap between the approximations and the references. The 
gap may be measured in several ways depending on the chosen norm. It will be 
unchanged if the supplementary vectors are linear combinations of vectors 
already included in the bases, meaning that the bases are not enriched by these 
vectors. It may append in mechanical simulations because time steps or 
locations may be partly correlated because some simulated phenomena are 
linear and causal. On another side, the size and the shape of the matrix �� 
gathering the coefficients ����  in the equation (1) will characterize the 
efficiency of the reduced order model: a lower number of non-zero elements 
stored in ��will improve the compression rate. Finally �� and �� may be 
chosen as big as allowed by the memory of the computer if the selection of the 
relevant rows and columns ensuring a minimal level of error is done during the 
computation of the coefficients in ��. It is interesting to notice that the 
previous decomposition (1) is similar to Tucker decomposition [28]. 

In the Principal Component Analysis (PCA) [2] these bases are computed as 
the eigenvectors of the correlation function. Whereas, in the CUR approach, 
the bases are built selecting their vectors directly in the high-fidelity results. It 
means that the time basis is composed of snapshots of the entire system at 
some selected instants �� and the space basis is composed of the entire history 
of some selected points ��. Moreover it is possible to choose the basis vectors 
in other fields than the field 
 or simulations � to complete the bases. Then 
each field may be explained by the data from other fields. For instance the 
displacement along the X axis of some nodes may be explained advantageously 
by the displacement according to Y or Z of other nodes. Each coefficient in �� 
is associated with one vector of the time basis and one vector of the space 
basis. Hence, the value of this coefficient will give the importance of this 
combination and then it will supply a skeleton of the crash scenario [35]. It is 
said by Wang and Zhang [31] that another advantage of CUR compared to 
SVD concerns the preservation of the structural properties of the original data 
matrices such that sparsity or non-negativity. One drawback of the CUR 
technique is that the bases are no more orthonormal. Therefore, more vectors 
are required in order to get the same precision than an orthonormal basis and 
numerical issues may arise. 
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The selection of the columns and rows in Eq. (1) may be done using different 
approaches. Traditionally in the CUR decomposition, rows and columns are 
selected randomly according to the distribution of a leverage scores. This 
scores may be based on energetic or correlation considerations for instance 
[35]. Enrichment may be performed using iterative greedy or Tabu algorithms. 
Some of them make a link between the DEIM and the CUR factorization [36]. 
The coefficients in �� are then computed such that the reduced order model 
minimizes a given error between the approximation of the matrix and the high-
fidelity matrix. The iterative approaches may need numerous iterations to 
converge that may limit the industrial applications. That is the reason, we 
choose in the outlined approach to select rows and columns representative of 
the computations with an unsupervised learning approach. The classic k-means 
clustering method [37] is used here in a sake of simplicity of application and 
computational efficiency. The rows or the columns closest to the centers of 
each cluster are selected as a potential vector of the basis. If the numbers of 
row and column are sufficient enough then the selection will be a good 
representation of the high-fidelity data such that the approximation will be 
close to the reference. Moreover the selected rows and columns will be as 
different as possible according to the norm used in the k-means algorithm (�� 
norm), limiting stability problems. 

For illustrative purpose, the results of a clustering of the displacement of the 
structure displayed on figure 1 are shown on figure 2 and 3. This structure 
contains 16878 nodes and 76 instants. The high-fidelity simulation was done 
using Virtual Performance Solution of ESI Group in about 15 minutes. 15 
columns and 5 rows are selected for each field. They will be the points closest 
to the centers of the clusters. They will constitute the vectors of the space and 
time bases. It is interesting to notice that even there are only 15 columns and 5 
rows, they spread on the high-fidelity data quite well. Moreover they represent 
the variety of features of the whole columns and rows. Despite the well-known 
limitation of the k-means algorithm for high-dimensional data [38], it leads to 
satisfactory results. A study of the impact of the number of clusters on the error 
of the approximation will be led in the part 4.3 on the same test-case. 
Nevertheless other clustering and unsupervised learning algorithms of pattern 
recognition should be tried in future works. And an indicator measuring the 
quality of the clustering should also be set-up in order to infer the relevance of 
the bases to build the reduced order model. 
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Figure 1:  View of the impacted structure: It is constituted by 9 deformable bodies and 
2 rigid bodies at the top left (in brown, number 16) and at the bottom (in dark green, 
number 12). The deformable bodies are constituted by 16328 nodes. Left side shows 

the structure not deformed and right structure shows the structure at the end of 
simulation, which is after 60 ms. 

 

Figure 2:  Clustering of the columns: The grey lines denote the trajectories of all the 
nodes, the nodes selected by the clustering being coloured. Abscissa is the time 

indices and ordinates are the displacements normalized according to the maximum 
value. Left frame shows the x displacement, middle frame shows the y displacement, 

and right frame shows the z displacement. 
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Figure 3:  Clustering of the rows: The grey lines denote the spatial values for all the 
instants, the instants selected by the clustering being coloured. Abscissa are the nodes 

indices and ordinates are the normalized displacements. Left frame shows the x 
displacement, middle frame shows the y displacement, and right frame shows the z 

displacement. 

 

As well as the selection of rows and columns, there are several ways to 
compute the coefficients of the low rank approximation. Each of them 
corresponds to the minimization of a dedicated norm of the error between high-
fidelity field and approximated field such that: 

min
!" #$���� % ��$#  

As mentioned previously, it may be wise to couple this minimization problem 
with a penalization problem. It will indeed minimize the number of non-zero 
coefficients and select directly the most important and influent coefficients for 
the minimization of the error. Moreover this property will improve the stability 
of the reduced order model that will be useful for interpolation, avoiding hence 
the well-known overfitting phenomenon. The minimization problem becomes 
then: 

min
!" #$���� % ��$# & '‖��‖ (2) 

Where ' is a scalar defining the trade-off between the minimization of the error 
and the penalization term. As the minimization of the error is more important, 
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it is chosen much lower than 1. The choice of the norm in the problem (2) and 
the resolution scheme will be outlined in the section 4. 

Before, parameters has to be included in equation (1). In this equation, the 
approximation is indeed done for one simulation solely and there is no 
parametric dependency in this formulation. In the next part, the parametric 
reduced order model will be described.  

 

3. Introduction of the parametric interpolation capability into the CUR 
model 

In order to consider the parametric dependency of the model, functions 
depending on the parametric field denoted by )(�, �) should be introduced in 
equation (1). Note that the parameter is considered as a space and time varying 
field. This modelling will allow to consider the parameters more 
parsimoniously. For instance, all the thicknesses of the model will be 
considered as a unique space varying parameter. It may be space and time 
varying but only scalar parametric field are possible here. For a sake of clarity, 
only the case of a unique parametric field will be studied here but the method is 
easily generalized to multiple parametric field case. In this case, each 
parametric field will correspond to one space time parameter, let say the 
thickness field and the Young modulus field for instance. Then, it is possible to 
perform an expansion of the high-fidelity results over a set of functions 
depending on the parameter. It leads to: 

�� (�, �, )*) = ��(�)��(�)+,()*(�, �))���,�
�-

,��

��

���

��

���
 (3) 

In equation (3), )* (�, �) denotes the value of the parameter µ at a location � 
and an instant � for the simulation indexed by �. �. is the number of parametric 
functions +,. For instance, they can be polynomials or trigonometric functions. 
The choice depends on the system’s behaviour knowledge. In general 
polynomial expansion is a clever first guess if there is no specific knowledge 
about the system and the physic. If frequency simulation instead of crash 
simulation was considered, then trigonometric functions will be surely more 
appropriate. As for the number of rows and columns in the bases, the number 
of parameteric functions must be chosen as large as the memory of the 
computer allows letting the selection be done during the computation of the 
coefficients in ��. Compared to Eq. (1), a supplementary dimension has been 
added to the tensor gathering the coefficients of the reduced order model. 
Because, one coefficient corresponds to one row ��, one column ��, and one 
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parametric function +,. This formulation are typical Hierarchical Tucker tensor 
[39]. It may also be identified to TT-cross decomposition [30]. If several 
parameters are considered, then it will only increase the order of the tensor ��. 

Nevertheless a limitation of the previous reduced order model is that the 
approximation at a location � at an instant � depends only on the value of the 
parameter at the same location and the same instant. In some cases, it may be 
very restrictive. In crash simulation, the displacement of a part may be 
influenced by the thickness at another location. This effect may be considered 
through the introduction of “interactions” into the space and time bases such 
that: 

�� (�, �, )*)

=   �/�,0(�, )*(�, ��))�1�,�2�, )*(��, �)3+,()*(�, �))��,0,�,�,,�
�-

,��

��,�4

�,���

��,�5

�,0��
 

(4) 

Here, �/�2�, )(�, ��)3 is the time basis vector that now depends on the value of 
the parameter at the location �� , that is the location corresponding to the basis 
vector ��. Then, using this kind of interaction, the approximation at a location 
and an instant may depend on the value at other locations but at the same 
instant. The �6 parametric functions may be polynomials or other functions 
according to a priori knowledge such that: 

�/�,02�, )*(�, ��)3 = ��(�)ℎ0()*(�, ��)) 
where ℎ0 is a function depending on the parametric field supplied by the user. 
Accordingly, the parameterized space basis �1� may be decomposed as: 

�1�,� 8�, )*2�� , �39 = ��(�):�()*(�� , �)) 

where :� is a function depending on the parametric field )* supplied by the 
user. �; is the number of time interaction functions. Using this kind of 
interaction will allow to explain the high-fidelity field at a location and an 
instant using the value of the parametric field at the same location but a 
different instant. Obviously if the parametric field is invariant according to the 
time, then it is useless to consider such dependency. It must be noticed that the 
basis vectors �� and �� can be chosen in any fields or simulations. It is recalled 
that they are selected using a clustering approach. In order to take into account 
the interactions efficiently, it may be useful to impose some rows (instants) and 
columns (nodes) as basis vectors if the parametric field is varying at these 
nodes and instants between simulations. Automatic selection of such locations 
and instants may be done by a dedicated clustering approach and will be the 
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subject of ongoing research. Supplementary dimensions had been added to the 
coefficients tensor according to these new parametric dependencies. 

The previous formulation (4) is continuous in space and time. Nevertheless, the 
finite element simulation results are discretized over a 3D mesh with �< nodes 
and a �= temporal grid and are stored in �= × �< matrices. The approximation 
at a given location now indexed by � and instant now indexed by � of a high-
fidelity matrix ?��

*,� ∈ ℝ�B×�C is then: 

D=<*,� =   �/=�0* �1�<�* E=<,* ��0��,�
�-

,��

��,�4

�,���

��,�5

�,0��
  

 

(5) 

We denote by FG* ∈ 	ℝ�B×��×�5 the 3rd order tensor gathering the column 
vectors  FG�,0* ∈ ℝ�B and  IG* ∈ ℝ��×�C×�4 the 3rd order tensor gathering the row 
vectors  IG�,�* ∈ ℝ�C. Then, �/=�0* , (resp �1�<�* ) denotes the i-th (resp j-th) basis 
vector at the instant (resp location) indexed by � (resp �) for the simulation � 
and the parametric function indexed by J (resp n). Similarly, E=<,*  is the value 
of the K-th parametric function at location indexed by � and instant indexed by 
�. All these values of the parameter are gathered into an order 3 tensor L* ∈
ℝ�B×�C×�- where the first dimension is the time, the second dimension is the 
space and the last dimension is the parametric function. If the equation (5) is 
reformulated as: 

D=<*,� = M=<* ∙ O�							, (6) 

, where the dot stands for the usual inner product, then, the modified CUR 
method clearly appears as a multilinear regression of unknown O�  and 

coefficients taken in the vector M=<* = FG*P= ⊗IG*P<R ⊗L*, where P� is the i-
th element of the standard basis. M��*  is a five order tensor extracted from the M* 
tensor that corresponds to the location indexed by � and the instant indexed by 
�. 
The coefficients of the regression are the same for all the instants and locations 
of the high-fidelity computations. The regression aspect of the reduced order 
model obvious in equation (6) leads to the name ReCUR pointing for 
Regression CUR. The O� are computed using the existing high-fidelity 
simulations. The latter may be considered as the training set of the reduced 
order model. When considering several computations, the minimization 
problem (2) becomes, in a matrix form: 
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min
O" #$?��� − ?�$# + '‖O�‖ (7) 

In equation (7), the matrices ?���  and ?� are the concatenations of the matrices 
corresponding to all the computations (respectively high-fidelity and 
approximated) for the field 
. The minimization is thus done considering all 
the computations, it means that the norm is calculated over all the nodes, all the 
instants and all the simulations for each field. Once the coefficients are 
calculated, the reduced order model is ready to be used. 

An estimation for a new parametric field is done simply by building the tensor 
M using any desired parameter’s values ). The reduced order model may be 
considered as a function of the parameter such that: 

D=<� (	)	) = M=<()) ∙ O�  (8) 

Although this computation may be done very efficiently, it must be noticed that 
it can be faster using coarser discretisation grids for the approximation than the 
ones used for the computation of the unknown vector O�. Typically, if the 
mesh is very fine only to ensure the convergence of the high-fidelity 
computation, then it may be useless to use all the points of the mesh for the 
computation of the reduced order model. Similarly it is possible to use the 
reduced order model to compute only some very specific nodes and instants, 
for instance those that are useful in the optimization problem. In the next part, a 
focus on the numerical computation of the coefficients of the reduced order 
model is done. 

4. Numerical computation of the coefficients of the reduced order 
model 

The core of the method is to compute the coefficients of the regression	O� 
solving the optimization problem (7). In this part, the computation method of 
the coefficients is outlined. 

4.1 Formulation of the linear programs 

The coefficients are computed such that the reduced order model minimizes an 
error between the approximation done by the reduced order model and the 
high-fidelity computation. It is recalled that, in order to avoid stability and 
overfitting problems, it is necessary to have a selection technique of the most 
influential coefficients. It is done by the use of the penalization term in (7). 
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It has been chosen to minimize the infinite norm of the error together with the 
�� norm of the coefficients. It has been chosen for a sake of performance. The 
minimization problem may indeed be formulated as a linear and purely 
continuous problem with a limited number of variable. The first step is to state 
the optimization problem: 

min S0T<� + '$���$
�UV

���
						, 

 �WXℎ	�ℎ��, ∀� ∈ Z1, �*\, � ∈ Z1, �<\, � ∈ Z1, �=\ 

S0T<� 	≥ 0						, 

−S0T<� ≤ D��BC�,* − M=<* ∙ O� ≤ S0T<�  

Here 	�`a = �����.�6�; corresponds to the number of coefficients in O�; 
S0T<�  is the infinite error for the field k and for all the considered computations. 
The first term in the objective function stands for the minimization of the error 
field by field while the second term stands for the minimization of the number 
of non-zero coefficients. It is very close to the Dantzig selector [40]. This 
problem may be written easily as a linear problem by decomposing �� in a 

positive and a negative part such that ��� = b��,c − b��,d. The linear program is 
then: 

min S0T<� + ' b��,c + b��,d
�UV

���
						, 

(9) 
�WXℎ	�ℎ��, ∀� ∈ Z1, �*\, � ∈ Z1, �<\, � ∈ Z1, �=\ 

S0T<� , b��,c, b��,d, ≥ 0						, 

−S0T<� ≤ D��BC�,* − M=<* ∙ O� ≤ S0T<�  
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It is now possible to benefit from the efficiency of linear programming. Here 
the number of variables is equal to 1 + 2�`a for each field 
, and the number 
of constraints is 2 ∗ �<�=�*. The number of variables is much lower than the 
number of constraints because the compression rate �`a is directly 
proportional to the number of rows and columns selected in the clustering step. 

Nevertheless computational issues may arise in the resolution of the problem 
(9). The number of constraints is indeed huge enough such that the memory 
footprint may be very high. To circumvent this issue, a constraint generation 
process has been implemented. The algorithm is the following: first some 
constraints in the entire set of constraints are selected by a dedicated process, 
randomly, uniformly or by a clustering on the values in ?��

�,*  or on the rows of 
M*. This set of constraints is called �g��. It is then possible to solve the 
following linear problem: 

min S0T<� + ' b�c + b�d
�UV

���
						, 

(10) 
�WXℎ	�ℎ��, ∀� ∈ Z1, �*\, {�, �} ∈ �g�� 

S0T<� , b�c, b�d, ≥ 0						, 

−S0T<� ≤ D��BC�,* − M=<* ∙ O� ≤ S0T<�  

The number of constraints in this problem is now 2 times the length of �g��. 
After solving this linear problem, the violations for every constraints may be 
evaluated using (8). It corresponds to the gap between the high-fidelity data 
D��BC�,*  and the approximations made by the current reduced order model M=<* ∙
O�. In the next iteration, the worst predicted values for each field are added to 
the linear program. Few iterations of this process greatly increase the quality of 
the approximation decreasing the infinite error. In this approach, the data 
outside �g�� may be considered as a validation set of the current reduced order 
model. 

 

4.2 Additional constraints 

Moreover, an advantage of this formulation is its flexibility. It is indeed 
possible to introduce other constraints in the linear problem in order to guide 
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the construction of the reduced order model. The only limitation, is that these 
constraints should be linear according to the coefficients of the reduced order 
model. It may be possible to integrate specific behaviour into the reduced order 
model using such constraints. 

For instance, one could integrate welding behaviour into the reduced order 
model. The additional constraints will then be for each displacement field 
, 

−j ≤ 2M=<* − M=<k
* 3 ∙ O� ≤ j					, 

, ∀� ∈ �, �l ∈ �l, � ∈ Z1, �=\, � ∈ Z1, �*\ 
Where j is a small margin in order to guarantee the solvability of the problem 
and � and �′ are two set of nodes (typically the borders of each welded part). 
These set of constraints will ensure that the nodes in the set � and �′ will never 
be further than the distance j in each direction for the simulations in the 
training set. Note that this behaviour will not be ensured for an interpolated 
simulation that is not in the training set but it will help the reduced order model 
to be more relevant according to this behaviour. 

Such kind of linear constraint may also force the reduced order model to 
reproduce exactly the quantity of interest of some nodes or instants known as 
important. The additional constraints will then be for each field involved in the 
quantity of interest: 

−D���,* =< − j ≤ M=<* ∙ O� ≤ D���,* =< + j				, 
	∀� ∈ �, � ∈ n, � ∈ Z1, �*\ 

Where � and n are the sets of the interesting nodes and instants. These 
constraints may in fact be considered as the inclusion of expert judgements into 
the construction of the reduced order model. It must be noticed that if the 
constraints is not directly linear, then a variable change or introduction of a 
new variable may solve this shortcoming, even if it will add a supplementary 
parameter in the reduced order model. 

A last kind of additional constraints may be helpful for the solving of the 
optimisation problem (10). It is indeed possible to impose a constraint on the 
maximal error S0T<� . If so, the coefficients O� will ensure this error for the 
selected constraints in �g�� and the optimization problem will only minimize 
the number of non-zero coefficients. It may improve the quality of the reduced 
order model, it has been indeed noticed that a model with a higher error S0T<�  
on the selected constraints in �g�� has a lower maximal error for the entire set 
of constraints. In a future study, an iterative process will be set-up in order to 
find the optimal value of this impose error while limiting the number of 
constraint generation iteration. 
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In order to have a synthetic view of the workflow, the figure 4 sums up the 
entire process of construction of a reduced order model. The inputs of the 
method are the data coming from the existing simulations and the 
corresponding parameter fields while the output is the reduced order model 
ready to be used for interpolation. The data transformations step in the process 
stands for all the pre-treatments applied to the raw data such as normalization, 
noise smoothing, or sampling for instance. These data transformations may 
improve greatly the quality of the interpolation as well as the computation time 
of the reduced order model. Nevertheless it must be kept in mind that, on 
account of these transformations, corresponding inverse transformations should 
be applied to the interpolation supplied by the reduced order model. 

 

Figure 4:  Chart of the construction of the reduced order model. o� and o0T<  stand 
respectively for the number of current iterations (initialized to 0) and the maximum 

number of iterations of the constraint generation process. 
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4.3 First results of parametric studies 

To better understand the behavior of the reduced order model according to its 
inner parameters such that the numbers of clusters or the number of 
computations in the training set, some convergence studies have been led. The 
used test-case is the one presented in the section 2. There are 29 computations 
available on which the quality of the interpolation of the reduced order model 
will be evaluated. The first 25 simulations have been chosen according to a 
Latin Hypercube Sampling design of experiments. The last 4 configurations 
correspond to 4 corners of the design space. It is remind that there are 16878 
nodes and 76 instants in the finite element model. For information, the high-
fidelity computations take about 15 minutes using the fast dynamics software 
VPS of ESI Group. The studied parameters are the 9 thicknesses of the 
deformable parts. The following reduced order models are built using Legendre 
polynomials of order 2 for the parametric dependency. Such polynomials are 
very interesting according to their advantageous properties for regression 
models. The reduction had been done on the displacement according to X, Y 
and Z displacements. Each displacement field has been normalized according 
to the maximum displacement of all the computations in the training set. By 
avoiding scale problems between the centers of the clusters of all the fields, it 
will help the resolution of the linear program. It must be hence kept in mind 
that the bases will be constituted by vectors extracted by clustering from all the 
fields (it might be displacements and stresses for instance), and hence may 
have not at all the same scale. The same numbers of row and column clusters 
are chosen in each kind of field. The clustering is performed on each field 
separately but considering all the computations together. The rigid bodies have 
not be considered in the construction of the reduced order model as well as in 
the interpolation. 

To study the influence of the numbers of clusters, reduced order models using 
2 computations were considered. They have the following parameters:  

Part number P. 1 P. 2 P. 3 P. 4 P. 5 P. 6 P. 7 P. 8 P. 9 

Computation 1 0.88 0.72 0.77 1.15 1.03 1.05 0.63 0.89 0.72 

Computation 2 0.7 0.7 0.7 1.4 1.4 1.4 0.7 0.7 0.7 

Table 1:  Thicknesses in mm of the 2 computations in the training set. The part 
number corresponds to the index of the parts on the Figure 1. 

The error between the high-fidelity computations and the interpolations of the 
reduced order model is expressed through the root mean square error of the 
magnitude of the displacements at every points and instants. It is normalized by 
the �� norm of the high-fidelity computation. 
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For the convergence study on the size of the time basis, that is the number of 
column clusters, the number of constraints taken into in the problem (10) is 124 
per field. They are the same for every cases and have been selected with the 
constraints generation approach described in the section 4.1 on the case with 75 
column clusters. Values has been imposed to the errors S0T<�  of the constraints 
in the linear program. These values have been set empirically in order to 
minimize violations on the constraints not taken in the linear program in the 
case number of column clusters equal to 75. It is about 0.23 for the X 
normalized displacement, 0.33 for the Y normalized displacement, and 0.06 for 
the Z normalized displacement. Hence only the number of cluster will vary. 

The figures 5 shows the evolution of the errors according to the number of 
columns in the time bases. The mean of the errors over all the computations 
seems to decrease even if there are some flat areas between 50 and 125 and 
between 150 and 175. It is interesting to note that the computations in the 
training set are the ones with the lowest errors. Besides, the variance of the 
reduced order model seems to be quite steady. In the following the value of 25 
column clusters times the number of computations in the training set will be 
adopted for this test-case. It represents indeed a good tradeoff between the 
computation time, the bias, and the variance. 

 

Figure 5:  Evolution of the RMSE according to the number of column clusters in the 
time base. The number of row cluster is set to 6. Each black cross stands for the error 
of one computation, the red crosses stand for the computations in the training set, and 

the circles stand for the means. 



19 

 

For the study of the impact of the size of the space basis, that corresponds to 
the number of the clusters in the row clustering, reduced order models with 396 
constraints over which a maximal error of 0.21 for constraints regarding X axis 
are allowed, 0.11 regarding the Y axis, and 0.08 according to Z axis. 

After a great fall, the mean values in the figure 6 seems to be quite steady for 
�� > 4. The same behavior is observed for the worst predicted simulation for 
each reduced order model. Thus, despite the randomness of the k-means 
algorithm, it shows that selecting a sufficient number of clusters will lead to a 
robust reduced order model in term of forecast. From �� > 10, the reduced 
order models look very similar. It is interesting to note that the model with 2 
row clusters has a very low variance but high bias and adding members to the 
basis is increasing this variance but decrease the bias. For the following, the 
value �� = 5 row clusters times the number of computations will be adopted. 

 

Figure 6:  Evolution of the RMSE according to the number of row clusters. The number 
of column is set to 20 for every cases. Each black cross stands for the error of a 

computation, the red crosses stand for the computations in the training set, and the 
circles stand for the means. 

After, an analysis of the quality of the interpolation capability of the reduced 
order model according to the number of computations in the training set has 
been led. In order to refine the model, the worst predicted computation is added 
in the training set. It leads to the behavior displayed on the figure 7. 
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Figure 7:  Evolution of the error according to the number of computation used in the 
reduced order model. The black crosses indicate the error on each simulation and the 
empty circles denote the mean of the errors. The red crosses denote the error on the 

computations in the training set of the reduced order model. 

The figure 7 shows that the means of the errors decrease as computations are 
added to the model. The standard deviation decreases also. It is interesting to 
denote that even if the linear program minimizes the infinite error, the 
behaviour of the �� error is also satisfying. The refinement technique used here 
give satisfactory results, but other techniques could be investigate. For instance 
if the reduced order model is used in an optimisation study, then the added 
computations could be decided studying the errors on the quantities of interest 
in the optimisation study. This will be the strategy used in the next section. 

For information, the figure 8 shows the deformed body of an interpolation 
using the reduced order model with 8 computations in the training set. It 
displays the geometry of the final instant of the worst predicted configuration. 
The interpolation and the computation of the output files take less than 1 
minute. There are 111 coefficients according to X, 59 coefficients according to 
Y, and 85 according to the Z direction that is very limited compared to the 
potential number of coefficients in the linear program. The left part of the 
device is very well predicted while the error is higher on the right part. It could 
be possible to add relevant computations or constraints in the construction of 
the reduced order model in order to refine the model in this area. Moreover it 
shows that perhaps the �� error is not always the best choice to select 
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computations to refine the model, and perhaps choosing to add the computation 
with the maximal ���. error would lead to a refinement in this area. 

 

Figure 8:  Final state of the crash simulation. The left figure displays the results of the 
high-fidelity simulation and on the right the interpolation of the same configuration 
using the reduced order model built with 8 computations. On the latter, the colour 

scale shows the difference between the high-fidelity simulation and the interpolation, 
red is the biggest error and blue the lowest. The displayed configuration is the worst 

predicted using this reduced order model. 

Comparison to existing reduction methods should be very interesting in a 
future work. Nevertheless there is a lack of such a method that are dedicated to 
many parameters computations, especially in the field of crash simulation. 
Comparisons should be done according to the level of error and to the number 
of computations required to build the reduced order model efficient for its 
dedicated use. It could be very interesting to have a comparison to recent works 
coupling POD and neural network [41], or POD and Radial Basis Function 
[42]. Nevertheless applications of these studies lie in computation fluid 
dynamics. But the method outlined in the present paper could be easily adapted 
to any kind of physics according to the full non intrusiveness of the approach. 

These preliminary results show relevant features and exhibit the interest of the 
method. Nevertheless other convergence or sensitivity studies according to the 
parameters of the method should be led in future works, for instance to have 
the sensitivity according to the order of the polynomials or other refinement 
strategies, or the effect of the randomness in the k-means and in the 
initialization of the linear program. It is indeed necessary to test the robustness 
of the model. To limit these impacts, the number of iteration of constraint 
generation and the numbers of clusters are set to a quite high value in the 
present models. Hence the most penalizing constraints will be most surely 
selected in the linear program. 

The next part will sum-up the results of the method on industrial optimization 
problems. 



22 

 

5 Numerical example 

The developed method was applied to industrial test-cases using code 
developed in Julia 0.4. Two examples are discussed here: a rear wheel 
assembly and a car structure models. In all examples, high-fidelity 
computations were ran using the VPS solver from ESI group. 

5.1 Rear wheel assembly 

The rear wheel assembly model consists of the left wheel, fixations to the 
chassis and crossbar. It simulates a hit by a pendulum on the side of the left 
wheel.  

The design objective in this industrial case is to limit the localisation of 
structural damage to the crossbar while limiting the overall weight of the 
assembly. Three parameters are considered: thicknesses of the yoke holders, 
arm and crossbar (cf. figure 9 and table 2). The assembly is considered as fixed 
to the chassis, as such the simulation have four fixed points located at the two 
fixtures and on the end of the two choc absorbers. 

 

Figure 9:  Rear wheel assembly model 

 

Our objective was to reproduce the overall physical deformation (represented 
by local displacements), localisations of areas of high plastic strain as well as 
its maxima. 
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 Yoke Crossbar Arm 
Minimum thickness (mm) 4.0 2.0 2.0 
Nominal thickness (mm) 6.0 4.5 4.0 

Maximum thickness (mm) 8.0 6.0 6.0 

Table 2:  Parameter ranges for the rear wheel assembly model 

 

The model was constituted of 255,675 nodes of which 41,628 were used for the 
creation of the reduction after removal of the impactor, non-shell parts and 
non-structural parts. This represents a total of 31 parts and 39,704 shells. 41 
instants representing a total simulated time of 200 ms were kept.   

A reduction model was constructed using 5 experiences (see table 3). 4 fields 
were reduced: local displacements (along X, Y and Z) and plastic strain. Shell 
thickness was used as a parameter field. All shell defined fields (plastic strain 
and thickness) were projected on the nodes using standard average when a 
node belongs to several parts. To avoid order of magnitude inconsistency, all 
the fields were normalized according to the absolute maximum of each field for 
all the simulations. A total of 250 clusters on the columns (nodes) and 15 
clusters for the lines (instants) were extracted using k-means method. These 
elements constituted the �� and �� vectors. 0.005% of the total constraints were 
kept and additional constraints on all field at first and last instants for 4 points 
along the crossbar were added. The additional constraints were chosen to 
improve prediction of crossbar bending. They may be considered as 
introduction of expert advice in the reduced order model. After a first 
resolution, a second iteration was made adding worst predictions as constraints. 
This resulted in the use of 4080 constraints. The linear problem was solved 
using CPLEX. Imposed εmax was 0.05. The parametric functions are third order 
Legendre polynomials, normed between ±10% of minimum and maximum of 
the thickness field. The advantage of these polynomials is that they are 
orthonormal between [-1,1]. This improves the efficiency of the regression 
model. The margin allows to benefit of this property also for extrapolation use 
of the reduced order model.    

Experiences (AHF) Yoke thickness 
(mm) 

Crossbar thickness 
(mm) 

Arm thickness (mm) 

1 3 4.0 2.0 6.0 
2 7 4.0 6.0 2.0 
3 15 6.0 4.0 6.0 
4 20 8.0 2.0 4.0 
5 25 8.0 6.0 2.0 
6 28 6.0 4.5 4.0 

Table 3:  Experiences properties for the rear wheel assembly case. In bold 
experiences used for the reduction construction. 
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The reduced order model construction ran in 315 min using slightly above 500 
GB of RAM. In the 240,000 possible coefficients for each field, only 52, 50, 64 
and 21 are non-null for the X,Y,Z displacements and plastic strain fields 
respectively. Using this model, generation of a new estimations takes 39s on 
average using one processor. For sake of comparison calculation of a new 
high-fidelity experience took 24 hours on 8 processors. It is important to note 
that this model is in early development stage. As such memory consumption 
and computation time can be largely improved.  

The general quality of the reduction model was evaluated using a sixth case 
that had been calculated using VPS for comparison. This case was chosen as it 
was not close to any experiences used in reduction’s generation. Criteria used 
to assess model’s quality were both objectives (mean error, localisation of the 
plastic strain maximum) and subjective (general deformation in accordance 
between reduced and high-fidelity models, localisation of areas of high plastic 
strain). 

 

Figure 10:  High-fidelity (VPS) calculation, right, and a reduced order model, left. On 
the reduced order model, nodal projection of the displacement error (%). 

The rear wheel assembly seen from the top for the final instant is presented in 
figure 10. At first glance it appears that model deformation is well predicted. 
The bend observed on the left side of the crossbeam (red arrows) presents the 
same shape and localisation in both cases. This observation is confirmed by the 
displacement error which is limited to less than 15% on the crossbeam and 
25% overall.  

In figure 11 the plastic strain nodal projection at the final instant on high-
fidelity (right) and reduced order model (left) are presented. To be usable for 

Impact Impact 
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industrial developments two aspects need to be respected in this field: 
localisation of areas of high plastic strain (which would indicate plastic 
deformation and thus when damage occurs to parts) and localisation of the 
maximum of the plastic strain field (which shows the localisation of the 
concentration of forces during the impact). The second criteria is well 
respected in this case with a distance of 5.3 mm between high-fidelity and 
reduction. Localisations of areas of high plastic strain (1-5 on figure 11) is 
generally well predicted. Area 1 and 2 are correctly predicted both on 
localisations and scales. Area 3 appears to be over-predicted with a larger area 
and higher values. Area 4 and 5 are predicted while not existing on the high-
fidelity model. However those areas have a significantly lower value than the 
main deformation zone (area 1), 0.04 versus 0.09. The reduced order model 
also predicted negative values for the plastic strain (minimum -0.008) due to 
interpolation, while those are not physical they can be assimilated to 0 
indicating the absence of plastic deformation at those points. 
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Figure 11:  Nodal projection of the plastic strain for a high-fidelity (VPS) calculation, 
right, and a reduced order model, left. Areas of high plastic deformation are 

indicated. 

Finding a representative metric to evaluate the quality of a model is 
challenging and a subject of research in itself. A try to provide such metric for 
this test-case is made here by calculating the average nodal error of normalized 
values of a field: 
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Where �< is the total number of nodes and ?./��	 is the field being evaluated 
by reduction or high-fidelity models. Using this error for the plastic strain field 
allows to take into account the error on the location on the maximum value 
more than its predicted value. The location of the maximum value is in this 
case the value of interest. 

 

Experiences s�,*=� (%) 
1 3 0.35 
2 7 2.58 

3 15 0.77 
4 20 0.76 
5 25 3.40 
6 28 1.08 

Table 4:  Mean normalized nodal plastic strain error at the last instant for the 
rear wheel assembly model. In bold, the experiments used for the construction of 

the reduced order model. 

It appears that the model prediction is sufficiently accurate to provide a 
valuable and usable surrogate to the high-fidelity counterpart during the 
exploratory phase of design (table 4). The low cost associated with the 
estimation after the creation of the model (39s for the evaluation of a full 
model) introduce the possibility for the design team to evaluate considerably 
more options than with a high-fidelity approach. Moreover, it is possible to use 
the reduced order model to estimate only few nodal or time data. Estimation 
time is then much lower. It may be useful in an optimization study. 
Specifications are evaluated using the reduced order model only for the nodes 
and instants useful for the computations of these quantities. This allows the use 
of the reduced order model in an iterative process, at each iteration an 
approximate reduction model is used to evaluate large amounts of design 
options with relative accuracy. From these, some good candidates can be 
selected and evaluated using high-fidelity models. Then those candidates can 
be used as reference for a new reduction more tailored to the target zone. This 
approach is expected to considerably reduce the overall number of high-fidelity 
calculations required, leading to more innovative design phase. The second 
example consists of a proof of concept of this approach. 

5.2 Car model 

This model consists of a full car structure impacting a barrier type obstacle on 
the front left side at a speed of 70 km/h. The full vehicle model comprises 2848 
parts for a total of 4,250,821 nodes. After removal of non-shell parts and 
barrier, 1481 parts representing 2,835,289 nodes were left. 19 instants were 
taken for a total duration of 90 ms.  
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The goal in this test-case was to use the method with resource constraints to 
conduct a prototype of carry-over (CO) study. It was conducted using 37 
variables corresponding to the thicknesses of 51 parts (including 14 
symmetrical ones) representing a total mass of 77.8 kg. The parameters varying 
between 0.6 and 1.4 mm.  The aim being to reduce the overall mass of the 
vehicle while keeping safety parameters in the same range as the existing 
vehicle.  

The existing computations were the nominal model (commercialized car) and 
two selected points (1 and 2, table 5) presenting reduction in mass of 5 and 7.3 
kg. Those points were chosen based on mass reduction compared to the 
nominal case and variables spread which would increase learning possibilities 
for the reduction. The resulting reduction model was then used to calculate 
specific objectives values on 10,000 experiences (generated in the parametrized 
domain). Safety objectives were the shortening of the left front girder 
(compression) and maximum displacement of the pedal floor (intrusion). 
Profiting from the possibility to evaluate the reduction model at specific nodes 
and times, calculation of the 10,000 experiences values took 5 hours on 85 
processors. From those, two “best candidates” were chosen using both results 
evaluations and parameters spreads between them (again to maximize learning 
possibilities). Those candidates were then calculated in high-fidelity which 
took 15 hours per experiment on 88 processors, compared to 17 min for the 
evaluation of an entire vehicle using the reduction model on a single processor. 
Using those two experiences and one from the original model a new reduction 
was created. Then evaluation of the 10,000 points was repeated leading to the 
identification of 3 candidates points that, according to the reduction model, 
would fulfil safety criteria while minimizing mass and carry-over rate. Those 
three candidates were then calculated in high-fidelity and a final “winner” 
configuration identified (experience 7, table 5).  

Experience 
(AHF) 

Mass  
(kg) 

CO  
(%) 

Intrusion (mm) Compression (mm) Error (%) 

HF ROM-
1 

ROM-
2 

HF ROM-
1 

ROM-
2 

ROM-
1 

ROM-
2 

Nominal 77.8 1 116.9 137.9 128.9 188.39 151.3 157.8 18.8 13.3 

1 72.8 38 151.9 164.4 130.4 199.2 147.2 165.8 17.2 15.5 

2 70.5 27 132.3 95.5 131.3 181.1 157.7 154.1 20.4 7.8 

3 71.2 49 128.6 86.7 127 209.2 133 166.3 34.5 10.9 

4 70.9 43 143.3 84.6 129.9 189.8 129.8 167.6 36.3 10.5 

5 70.8 49 137.4 129.2 126.8 173.3 154.6 153.9 8.4 9.5 

6 72.8 51 129.8 128.6 130.4 163.6 157.2 150.6 2.4 4.2 

7 72.3 51 125.3 128.6 128.9 186.2 154.4 152.3 9.9 10.5 
        

Mean 18.5 10.3 

Table 5:  Experiences properties for the vehicle case. CO stands for Carry Over 
and ROM for Reduced Order Model. 
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This procedure led in 7 calculations to a configuration with similar safety 
measures (see table 5) than the nominal case but with a reduction of 4.9kg in 
mass. While this is a proof of concept study and obviously more constraints are 
considered in car design than those related to front crash, this clearly shows the 
potential and efficacy of this reduction method. Using a classical optimisation 
method would require around 10 high-fidelity calculations per variable this 
would have amounted to 370 experiences or 488,400 processor hours.  Using 
ReCUR for this problem limited this requirement to 9,240 processor hours for 
high-fidelity calculations, 25 for the model construction and 860 for the model 
evaluations, or a total of 10,125 processor hours. This represents 2.1% of a 
standard optimisation study. 

The first model was made using two experiences (1 and 2 in table 5). As such 
first order Legendre polynomials were used. The second model used three 
experiences (2, 3 and 4 in table 5) and second order Legendre polynomials 
were used. 3 fields were reduced: local displacements along X, Y and Z. Shell 
thickness was used as parameter field.  Thicknesses were projected on the 
nodes. 200 clusters along the columns (nodes) and 20 clusters along the lines 
(instants) per fields were chosen using k-means method. A proportion of 5E-6 
of the total constraints were kept. In total 3060 constraints were used in the 
second model. Also, hard constraints on 7 points of interest (along known 
structural position or used for the calculation of objectives functions) were 
imposed for each field at initial and final instants. The imposed εmax was 0.05. 
The data were normalized as in the previous test-case. 

The second reduction (ROM-2) ran in 12 hours using 300 GB of RAM. The 
regression found 21, 38 and 32 non-null coefficients for the X,Y and Z 
respectively among the 291,600 possible coefficients. It is interesting to notice 
that the all the non-zero coefficients correspond to order 2 polynomials for the 
column interaction. 

The second reduction model appeared more precise than the first (ROM-1) in 
predicting objective values on points of interest (10.3 vs 18.5 % error). This 
appears logical considering that with an increased number of experiences to 
learn, ROM-2 offers a broader coverage of the range of parameters. 

The case presented here corresponds to the final “best” configuration found 
during the study. It was evaluated using ROM-2. 
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Figure 12:  Structural view of the model at final instant made using ROM-2 (left) and 
VPS (right). On the left model, nodal projection of normalized displacement error (%) 

In figure 12 the vehicle front structural parts deformation at final instant are 
presented. The general shape of the deformation appears well predicted by the 
reduction model. The maximum normalized difference between the two models 
is below 26% with most of the structural parts having a deformation under 13% 
(figure 12). Considering the size of the model, large amount of variable 
involved and early stage of developments for the reduction model, this is a 
promising result.  
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Figure 13:  Comparisons of reduced order model (left column) and high-fidelity (right 
column) with the nodal projection of displacement error on the reduced order model. 

Only the parts used as parameters are shown. 

On figure 13 the projection of the displacement error between the VPS and 
reduced order model for the parts used as parameters in the study are shown. 
For those parts the error on the norm of the displacement is limited to 10%. 
This indicates that the model can be used with relatively good accuracy to 
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predict specifications. Errors on the predicted specifications were less than 
18% with an average of 10.5%. This indicates that, while this study was made 
as a proof of concept, using a non-optimized early development model, results 
could be used in industrial development. The model still suffers from infancy 
issues, such as a large memory footprint rending the use of large amounts of 
high-fidelity cases for the generation of reduction impractical. Another issue is 
the long computation time required to generate the model (12 hours in this 
case), while this still reduced tremendously the cost of a study compared to the 
use of high-fidelity model this prevents the use of the model in a truly 
interactive setting. Finally, in the current version equal weights are given to all 
constraints in the model, meaning that most of the power of the model is spent 
in predicting the rigid body motion rather than relevant deformation. This will 
be solved in the future by filtering rigid body motion before the creation of the 
model. 

6 Conclusion 

In this article, construction of a reduced order model called ReCUR has been 
outlined as well as its use to estimate new technical solutions. It consists in a 
regression model coupled with a low rank tensor approximation method. The 
two application examples show the potential of the method in the context of the 
fast dynamic simulations. It allows, indeed, to make evaluation in a few 
minutes for industrial test-cases, with still large potential for code optimization 
and parallelization to improve efficiency. The domain of application is crash 
simulation, however the method is not limited to this physic. The method may 
be useful as soon as time consuming high-fidelity computations are required in 
a design process. Potential domain can then be combustion simulations or fluid 
mechanics among others. These preliminary results look very promising for 
use in optimization study knowing that the ReCUR reduce order model is 
newly developed and a lot of improvement tracks exist. The number of 
simulations required to improve the existing system of a full car model is 
indeed much lower than for the current approach relying on the design of 
experiment and surface responses.  

One asset of the method is the use of the data coming from all the existing 
computations while keeping the dimension of the problem tractable. It might 
allow industrials to shorten and improve their conception stages as well as 
having a better data employment. Another advantage of the method is its 
flexibility thanks the possibility of introducing expert’s judgments directly into 
the construction of the reduced order model. This possibility enhances greatly 
the capability of the reduced order model. 

Among all the clues of improvement spread in the text, a first lead would be 
improvement of the resolution by the linear programming. Algorithms may be 
set up to avoid fixing the value of the desired error. It may find the one 
minimizing the error for constraints not taken in the linear problem, using a 
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Lagrangian for instance or another iterative process. Moreover, adding a 
computation in the training set of the reduced order model lead with the actual 
process to the construction of a new reduced order model from scratch. It may 
be very useful to start from the previous reduced order model with a lower 
number of computations and to directly refined it with extra clusters and 
constraints in the linear programming. 

The use of transformed data in the construction of the reduced order model 
must be also investigated. It may allow to focus on the most relevant 
phenomena featured in the high-fidelity simulation. An example may be 
filtering nodes having no deformation and replacing them with a rigid body 
motion or removing the temporal motions induced by wave propagation. This 
method may be inspired by the technique used in APHR or DEIM. 

Works must be done concerning the estimation of quality of the reduced order 
models. A systematic pertinent error indicator must be built to compare 
estimations of reduced order model to high-fidelity data. This point is not 
straightforward because there are a lot of ways to characterize the relevance of 
a reduced order model. It may involve a global error as the �� or �� error and 
some particular errors on the values of interest or more likely a combination of 
the both. Having such error may allow to have a relevant and systematic 
refinement strategies. Moreover, a benchmark to existing approaches such as 
PGD, or DEIM may be useful to compare the method according to the state of 
art, even if there is a lack of such method for many parameters and non-
intrusive case. Some recent works combining the POD and machine learning 
techniques such as neural network [41] or radial basis functions [42] exist and 
may be use for comparison. Moreover the results from an optimization study 
using the reduced order model from ReCUR may be compared to alternative 
approach lying on the use of design and experiment and response surfaces [27]. 

Last, it lacks a tool to assist in the analysis of rows and columns selected by the 
clustering as well as the value of the corresponding non-zero coefficients. Such 
analysis will be indeed very useful to understand which nodes and parts are 
influential and which instants are critical during crashes. Analysis of the results 
given by the reduced order model may be aided by the derivation of sensitivity 
indices. It may help to quantify the influence of the parameters on some 
objective functions or specifications of the requirements. Derivation of local 
sensitivity indices may be directly done using the gradient of the reduced order 
model according to the parameters. Global sensitivity indices such as Sobol 
indices [43] require more advance computations but may still be done using the 
reduced order model. As the reduced order model has an analytical form, these 
derivations may be done very efficiently. 

Nevertheless, ReCUR could already be used in several kinds of processes. For 
instance, the link with the optimization study could be investigated more 
deeply, especially for optimization with discrete parameters [44]. ReCUR 
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method may also be useful to help numerical model calibration according to 
experimental data. It may also be useful to exploit this reduced order model for 
sensitivity analysis or control problem. 
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