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Abstract

Industrials have an intensive use of numerical &trans in order to avoid
physical testing and to speed up the design stafgeeir products. The
numerical testing is indeed quicker to set-up, eeggensive, and supplies a lot
of information about the system under study. Moegpit can be much closer
to the physical tests as the computation poweeas®s. Despite the rise of this
power, time consuming simulations remain challeggmbe used in design
process, especially in an optimization study. Csastulations belong to this
category. These rapid dynamic computations are ig&@ENAULT during

the sizing of the vehicle structure in order towaghat it meets specifications
set up to reach safety criteria in case of accglértiey are completed using
finite element software such as VPS (Virtual Perfance Solver) developed
by ESI group that will be used in this study. Far manufacturers, the goal of
the optimization study is to minimize the masshef vehicle (and thus its
consumption) by modifying the thicknesses of somgsp(from 20 to 100
variables). Industrials such as RENAULT currentlyfprm optimization
studies based on numerical design of experimehis.nimber of
computations required by this technique is from 2@ times the number of
variables. This is too much in order to be intealiwsed in a design process.

In order to decrease the time-to-market and toceg@lternative technical
solutions, we explore the potential of using a peattized reduced order
model in the optimization studies. The parametrizstiliced order model gives
an estimation of the high-fidelity result for a neet of parameters without
using the solver, by analysing the existing resofifgrevious computations
with various sets of parameters. The developedoetiorder model is called
ReCUR. It is partly based on a CUR approach emlzkoida regression
analysis. The regression statistical model usedatee of a few calculations
made with the solver. Other tools such as cluggeaimd linear programming
are used to get the regression analysis moreeaftici



It is hoped to drastically reduce the number otinexgl simulations of a
standard optimization study. In this paper, thestaetion of the reduced order
model will be presented. Then, the relevancy afigishe reduced order model
into a design process will be exhibited throughtteatment of two industrial
test-cases. Some improvements of the method asawekveral potential uses
will then be outlined. The applications will highhits the promising power of
the method to shorten design process using opfilmmsand long-run
simulations.

Keywords: Reduced order model, Crash simulatiogression analysis, linear
programming.

1. I ntroduction

Despite the continuous increase in computationaigpothe speed of the
numerical simulations does not follow the samedren account of the
refinement of the numerical models and algorithomsglexity. For instance, a
crash simulation remains a time-consuming simutaficoh on 72 processors
for one simulation). During the design phase, naumecrash simulations have
to be run in order to find innovative designs filifg the safety requirements
as well as improving comfort and performances. &dapproaches may be
investigated to shorten the design phase, andripu®ve the time-to-market.
Their goal is to decrease the simulation time ogdaquivalent models and
thus to limit the calls to time-consuming modelkey may be divided in two
categories, the reduced order model and the me&lmgdechniques.

The first group gathers the reduced order modéinigces also called
projection-based method. The simulation time igt&mousing appropriate
bases. In the Proper Orthogonal Decomposition (F@P}he bases are built
from the diagonalization of the correlation matrixsnapshots. In this sense, it
is strongly related to the Principal Component Asesl [2] or to the Singular
Value Decomposition also called discrete Karhuneawe transform. This
kind of method gave a lot of satisfactory resultd axtensions. For instance,
both the Discrete Empirical Interpolation MethodHM) [3,4] and the A

Priori Hyper Reduction (APHR) [5] proposed methbdsed on the Gappy
POD method [6] in order to select appropriate shafssleading to satisfactory
reduced basis. These methods allow the use obpartincomplete data
(sample mesh in the DEIM and truncated integratiomain in the APHR) to
build a reduced order model. It is proposed in][®8dentify the parts having
a non-linear behaviour and the parts having a tibehaviour using a
clustering technique and to solve the non-lineable@m with the DEIM and
the linear part with Krylov subspaces [9]. As waslthe APHR [10], this



recent method has been applied to crash simulhtioit seems limited to
particular parts or small models with a low numbieparameters. The Gappy-
POD has been developed originally for image prangdsut has been
successfully applied to a number of field [11-T3je A Priori Reduction
(APR) [14] is strongly related to the APHR methtidries to adapt and correct
the reduced order model according to the qualityhefapproximation of the
POD method using an iterative process. MoreoverARR tries to improve
the basis by the use of snapshots from alternaimalations. This point is
very interesting for industrial applications beaavsduced order model may
benefit from previous studies rather than keepivagrt underexploited. Among
these methods, the Proper Generalized Decompogltierl 7] performs a
variable separation between the time, the spacktr@nparameters. The
advantage of this method is the possibility to perf quasi real time
approximation of simulations with new sets of paetens once the reduced
order model is built. Drawback of this method st&mdthe separability
hypothesis. It is rarely verified in highly nonlememodels. Crash simulation is
typically this kind of model because it gathershhiisplacements, contact and
material non linearities. Besides, most of thesthouds require calls to the
solver to perform the time integration and sometsm®difications of the
governing equations of the simulation model. Unfodtely, such an intrusive
method is hardly practical in existing design pssas because the
modifications of the solver are restricted by pmypand certification
considerations.

Contrarily to the projection based techniques,nfe¢éamodeling techniques do
not require calls to the solver of the governingaopns to perform an
interpolation. They make use of the simulationbudd statistical response
surfaces of some quantities of interest. Thesetgiemnare often directly
extracted from the design problem specificatiorreylcome from some post-
processings of the high-fidelity simulations. Thatistical responses may be
interpolation models as the usual kriging or regia@s models as polynomial
chaos expansions [18,19], radial basis function, [@Oartificial neural
network [21]. These models has been already apfii¢iie resolution of
optimisation problems in various physics [22—-26jmyy satisfactory results.
Kriging has also been used to mimic some outputsasgh simulations [27].
Advantages of such method is that they do not reduaicall a specific solver
and thus, they can be easily adapted to alternkiines of physics. Despite
they may give very satisfactory solutions for thuagtities modelized by the
surface responses but they may lead to unphysiti#ian for the rest of the
system that are not taken into account in the mspgurfaces. Thus, it may be
very favourable to be able to approximate the emtiash simulation rather
than just few post-processed quantities in ordshtaw the approximation of
the entire simulations to an expert of the emulategsics. To solve the
optimization problems, the post-processing of thangjties from the
specifications may be done on the approximatioimefentire structure.



Moreover, additional specifications may be easilgied into the optimisation
problems without the need of computing anotherpakation function.

Finally, such global metamodels may benefit from skt of the simulations
done in past studies for its construction, allowaengnore efficient management
of the data. The link between such kind of methodi r@duced order models
are the low rank approximations such as Tuckerm@osition [28], High
Order SVD [29], Train Tensor Cross decompositidd][and CUR or Nystrom
decomposition [31]. The interpolation of a new nuiced experiment will
indeed be performed using such a reduced orderIrtaykther with a
parametric function. In this paper, an approacheyatg a low rank
approximation for the space and time decompositiitin a regression model
for the parametric interpolation will be outlinesdeapplied to crash
simulation. Once the off-line stage of constructidrthe reduced order model
performed, the interpolation for a new parametemnsiébe done using this
reduced order model without any call to the fimtement solver. In this, this
work may recall the method used in [32] for solvaegrodynamics problem by
coupling clustering and interpolation on the variet the orthogonal matrices.
Hereinafter, they will be called parametrized notrtisive reduced order
models. Such parametrized reduced order model &éhhe arossroads of
metamodeling, reduced order model, low-rank appnation, and machine
learning [33]. Beyond optimization studies, suchdelse may be useful for
sensitivity analysis or control theory that bothuie a lot of simulation.

In the following, the first part of the paper wilé dedicated to the outline of
the CUR approximation used in this research. Tdwsrank tensor
approximation is usually devoted to the reductiba tensor solely and thus
the second part will show how to introduce pararmatterpolation capability
into this model. After, the numerical computatiafishe coefficients of the
reduced order model will be outlined and some cayesmce studies will draw
some properties of the reduced order model. Fintatst numerical results will
exhibit the potential of the reduced order modehaustrial applications.
These examples are a car rear wheel assemblyis@aedna full car crash
model.

2. CUR low rank approximation

Let ak-(t, x) be the space time function representing the sionlaesults
observed on a high-fidelity simulation and for fledd k. This field is a
physical quantity, for instance in crash simulasiahmay be displacements or
plastic strain. It must be noticed that displacetmaitong the X, y, and z axes
are three different fields. There is no partic@ssumptions concerning this
function. The approximation of the high-fidelitefil af - (t, x) made by the
reduced order model is denote®tl The developed reduced order model is
based on the CUR decomposition [34]. It approximatéield of one
simulation using separable functions:
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Where(; (t) are the vectors of the time badts(x) the vectors of the space
basis, and]{‘]- are the projections of the fieldon these bases,. andn,

denote the size of each basis. If all the rowsadmns are selected as basis
vectors, then the high-fidelity data will be surplrfectly reproduced. Thus
adding rows and columns to given reduced baseslediiease or at least will
remain unchanged the gap between the approximadimhshe references. The
gap may be measured in several ways dependingeachtisen norm. It will be
unchanged if the supplementary vectors are linearbinations of vectors
already included in the bases, meaning that thesba® not enriched by these
vectors. It may append in mechanical simulatiorcabse time steps or
locations may be partly correlated because somelaied phenomena are
linear and causal. On another side, the size andtthape of the matrix”
gathering the coefficienfs{i""]- in the equation (1) will characterize the
efficiency of the reduced order model: a lower nemiif non-zero elements
stored inU*will improve the compression rate. Finatty andn, may be
chosen as big as allowed by the memory of the ctenfifthe selection of the
relevant rows and columns ensuring a minimal le¥@rror is done during the
computation of the coefficients W*. It is interesting to notice that the
previous decomposition (1) is similar to Tuckera®gposition [28].

In the Principal Component Analysis (PCA) [2] théseses are computed as
the eigenvectors of the correlation function. Whsren the CUR approach,
the bases are built selecting their vectors diyentthe high-fidelity results. It
means that the time basis is composed of snapshtite entire system at
some selected instantsand the space basis is composed of the enti@ist
of some selected points. Moreover it is possible to choose the basis vscto
in other fields than the field or simulations to complete the bases. Then
each field may be explained by the data from dfileéds. For instance the
displacement along the X axis of some nodes maxpkined advantageously
by the displacement according to Y or Z of othelle® Each coefficient iti*
is associated with one vector of the time basisarelvector of the space
basis. Hence, the value of this coefficient willgthe importance of this
combination and then it will supply a skeleton o trash scenario [35]. It is
said by Wang and Zhang [31] that another advamé@¥JR compared to
SVD concerns the preservation of the structuraberives of the original data
matrices such that sparsity or non-negativity. Graavback of the CUR
technique is that the bases are no more orthonofirhatefore, more vectors
are required in order to get the same precision #maorthonormal basis and
numerical issues may arise.



The selection of the columns and rows in Eq. (1y edone using different
approaches. Traditionally in the CUR decompositioms and columns are
selected randomly according to the distributioa téverage scores. This
scores may be based on energetic or correlatiosidenations for instance
[35]. Enrichment may be performed using iterativeegly or Tabu algorithms.
Some of them make a link between the DEIM and tb& @actorization [36].
The coefficients irU* are then computed such that the reduced orderlmode
minimizes a given error between the approximatiotihe matrix and the high-
fidelity matrix. The iterative approaches may neederous iterations to
converge that may limit the industrial applicatiombat is the reason, we
choose in the outlined approach to select rowscahdnns representative of
the computations with an unsupervised learning@ggr. The classic k-means
clustering method [37] is used here in a sakerophcity of application and
computational efficiency. The rows or the columlusest to the centers of
each cluster are selected as a potential vectivedbasis. If the numbers of
row and column are sufficient enough then the seleaevill be a good
representation of the high-fidelity data such thatapproximation will be
close to the reference. Moreover the selected eowscolumns will be as
different as possible according to the norm usetierk-means algorithni.{
norm), limiting stability problems.

For illustrative purpose, the results of a clustgmf the displacement of the
structure displayed on figure 1 are shown on figuead 3. This structure
contains 16878 nodes and 76 instants. The higltfiggmulation was done
using Virtual Performance Solution of ESI Grou@bout 15 minutes. 15
columns and 5 rows are selected for each fieldy Tk be the points closest
to the centers of the clusters. They will constitilite vectors of the space and
time bases. It is interesting to notice that eVemnd are only 15 columns and 5
rows, they spread on the high-fidelity data quitdiwMoreover they represent
the variety of features of the whole columns angiscdespite the well-known
limitation of the k-means algorithm for high-diménsal data [38], it leads to
satisfactory results. A study of the impact of tluenber of clusters on the error
of the approximation will be led in the part 4.3tbe same test-case.
Nevertheless other clustering and unsupervisedilgaalgorithms of pattern
recognition should be tried in future works. Andiadicator measuring the
quality of the clustering should also be set-upriaher to infer the relevance of
the bases to build the reduced order model.



Figurel:  View of theimpacted structure: It is constituted by 9 deformable bodies and
2rigid bodies at the top left (in brown, number 16) and at the bottom (in dark green,
number 12). The deformable bodies are constituted by 16328 nodes. Left side shows

the structure not deformed and right structure shows the structure at the end of
simulation, which is after 60 ms.
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Figure2:  Clustering of the columns: The grey lines denote the trajectories of all the
nodes, the nodes selected by the clustering being coloured. Abscissa isthe time
indices and ordinates are the displacements normalized according to the maximum
value. Left frame shows the x displacement, middle frame shows the y displacement,
and right frame shows the z displacement.
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Figure3:  Clustering of the rows: The grey lines denote the spatial values for all the
instants, the instants selected by the clustering being coloured. Abscissa are the nodes
indices and ordinates are the normalized displacements. Left frame shows the x
displacement, middle frame shows the y displacement, and right frame shows the z
displacement.

As well as the selection of rows and columns, tlaeeeseveral ways to
compute the coefficients of the low rank approxioratEach of them

corresponds to the minimization of a dedicated nofthe error between high-
fidelity field and approximated field such that:

min laf — o]

As mentioned previously, it may be wise to coupis tninimization problem
with a penalization problem. It will indeed minimnsithe number of non-zero
coefficients and select directly the most importmd influent coefficients for
the minimization of the error. Moreover this pragewill improve the stability
of the reduced order model that will be usefulifderpolation, avoiding hence

the well-known overfitting phenomenon. The minintiaa problem becomes
then:

min ||afiy — a*|| + 21U%] @

WhereA is a scalar defining the trade-off between theimiation of the error
and the penalization term. As the minimizationhef error is more important,



it is chosen much lower than 1. The choice of thiemin the problem (2) and
the resolution scheme will be outlined in the setd.

Before, parameters has to be included in equalipnr( this equation, the
approximation is indeed done for one simulatiorelychnd there is no
parametric dependency in this formulation. In te&trpart, the parametric
reduced order model will be described.

3. Introduction of the parametric interpolation capability into the CUR
model

In order to consider the parametric dependenchieftodel, functions
depending on the parametric field denotediby x) should be introduced in
eqguation (1). Note that the parameter is considasea space and time varying
field. This modelling will allow to consider the @aneters more
parsimoniously. For instance, all the thicknesgegeemodel will be
considered as a unique space varying parametanyltoe space and time
varying but only scalar parametric field are pokeshiere. For a sake of clarity,
only the case of a unique parametric field willdbedied here but the method is
easily generalized to multiple parametric fieldecds this case, each
parametric field will correspond to one space tpaeameter, let say the
thickness field and the Young modulus field fortamee. Then, it is possible to
perform an expansion of the high-fidelity resuk®oa set of functions
depending on the parameter. It leads to:

ne ny Nf
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In equation (3)i° (t, x) denotes the value of the parametext a locationx
and an instant for the simulation indexed by n; is the number of parametric
functionsf;. For instance, they can be polynomials or trigoawit functions.
The choice depends on the system’s behaviour krgeldn general
polynomial expansion is a clever first guess it¢his no specific knowledge
about the system and the physic. If frequency satrarl instead of crash
simulation was considered, then trigonometric fiomd will be surely more
appropriate. As for the number of rows and columrthe bases, the number
of parameteric functions must be chosen as largleesasiemory of the
computer allows letting the selection be done dutive computation of the
coefficients inU*. Compared to Eq. (1), a supplementary dimensisrbean
added to the tensor gathering the coefficienthefreduced order model.
Because, one coefficient corresponds to oneRgwne columrcC;, and one



parametric functiorf;. This formulation are typical Hierarchical Tuckensor
[39]. It may also be identified to TT-cross decomsition [30]. If several
parameters are considered, then it will only insegthe order of the tensbF.

Nevertheless a limitation of the previous reducettomodel is that the
approximation at a locationat an instant depends only on the value of the
parameter at the same location and the same instasdme cases, it may be
very restrictive. In crash simulation, the displaeat of a part may be
influenced by the thickness at another locations Effect may be considered
through the introduction of “interactions” into tepace and time bases such
that:

a® (t, x, %)

nenp Mg Ny
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im=1jn=11=1

(4)

Here,fi(t,u(t, xi)) is the time basis vector that now depends on ahgevof

the parameter at the locatien, that is the location corresponding to the basis
vector(;. Then, using this kind of interaction, the approation at a location
and an instant may depend on the value at othatitws but at the same
instant. Then, parametric functions may be polynomials or otlwrctions
according ta priori knowledge such that:

Com(t,1°(t, %)) = Ci(O)han (1°(t, %))

whereh,, is a function depending on the parametric fielppdied by the user.
Accordingly, the parameterized space b§§imay be decomposed as:

Rin (005(t5 %)) = Ri()qn(u(t), )

wheregq, is a function depending on the parametric fieldsupplied by the
user.n, is the number of time interaction functions. Usthig kind of
interaction will allow to explain the high-fidelitiyeld at a location and an
instant using the value of the parametric fielthatsame location but a
different instant. Obviously if the parametric fies invariant according to the
time, then it is useless to consider such dependdénmust be noticed that the
basis vectorg§; andR; can be chosen in any fields or simulations. fetsalled
that they are selected using a clustering apprdadarder to take into account
the interactions efficiently, it may be useful togose some rows (instants) and
columns (nodes) as basis vectors if the paramfatctis varying at these
nodes and instants between simulations. Automakecgon of such locations
and instants may be done by a dedicated clustappgpach and will be the
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subject of ongoing research. Supplementary dimasdiad been added to the
coefficients tensor according to these new paracmé#pendencies.

The previous formulation (4) is continuous in spand time. Nevertheless, the
finite element simulation results are discretizedra 3D mesh witlh,, nodes
and an; temporal grid and are storedrp x n, matrices. The approximation
at a given location now indexed lbyand instant now indexed lyof a high-

fidelity matrix A5% € R"*"x is then:

Nenp NrMg Nf

A;ck = Z Z Z C~‘tsimﬁjsants;clUiI;njnl (5)
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We denote by € R™*"<*™ the 39 order tensor gathering the column
vectors Eﬁm € R™ and R® € R™*"*"q the 3 order tensor gathering the row
vectors R}, € R™. Then,(y,,,, (respR;,,) denotes the i-th (resp j-th) basis
vector at the instant (resp location) indexed ijsespx) for the simulatiors

and the parametric function indexeday(resp n). SimilarlyFZ,,; is the value

of thel-th parametric function at location indexedxognd instant indexed by
t. All these values of the parameter are gatherdan order 3 tensd#® €
R™*™X"s where the first dimension is the time, the seadintension is the
space and the last dimension is the parametridibmdf the equation (5) is
reformulated as:

ASF=Xx5, Uk (6)

, Where the dot stands for the usual inner prodhet), the modified CUR
method clearly appears as a multilinear regressiemknownU* and

coefficients taken in the vectd®, = CSe, ® ﬁsexT & F*, wheree; is the i-
th element of the standard bagis; is a five order tensor extracted from fie

tensor that corresponds to the location indexegd a&gd the instant indexed by
t.

The coefficients of the regression are the samalfdhe instants and locations
of the high-fidelity computations. The regressispect of the reduced order
model obvious in equation (6) leads to the nameURR@ointing for
Regression CUR. ThB* are computed using the existing high-fidelity
simulations. The latter may be considered as #iritig set of the reduced
order model. When considering several computatitresiminimization
problem (2) becomes, in a matrix form:

11



min||af; — a*|| + 21U~ ()

In equation (7), the matriceld; andA* are the concatenations of the matrices
corresponding to all the computations (respectibheij-fidelity and
approximated) for the field. The minimization is thus done considering all
the computations, it means that the norm is caledlaver all the nodes, all the
instants and all the simulations for each fieldc®the coefficients are
calculated, the reduced order model is ready tosed.

An estimation for a new parametric field is domagly by building the tensor
X using any desired parameter’s valpe3 he reduced order model may be
considered as a function of the parameter such that

AL () =X (u) - U" (8)

Although this computation may be done very effithgnt must be noticed that
it can be faster using coarser discretisation godshe approximation than the
ones used for the computation of the unknown vdétorTypically, if the

mesh is very fine only to ensure the convergendbehigh-fidelity
computation, then it may be useless to use alptinets of the mesh for the
computation of the reduced order model. Similarig possible to use the
reduced order model to compute only some very Bpemdes and instants,
for instance those that are useful in the optinopgproblem. In the next part, a
focus on the numerical computation of the coeffitseof the reduced order
model is done.

4.  Numerical computation of the coefficients of the reduced order
model

The core of the method is to compute the coeffisiefi the regressiobi®
solving the optimization problem (7). In this pahe computation method of
the coefficients is outlined.

4.1 Formulation of the linear programs

The coefficients are computed such that the redooger model minimizes an
error between the approximation done by the redocger model and the
high-fidelity computation. It is recalled that, @nder to avoid stability and
overfitting problems, it is necessary to have ad@n technique of the most
influential coefficients. It is done by the usetioé penalization term in (7).

12



It has been chosen to minimize the infinite nornthef error together with the
L, norm of the coefficients. It has been chosen fealke of performance. The
minimization problem may indeed be formulated &#sear and purely
continuous problem with a limited number of var@ablhe first step is to state
the optimization problem:

nrm

minek . + 1 Z luf| .
=1

such that,Vs € [1,ng],x € [1,n,],t € [1,n;]

k . =0

emax )

k k,s s . qrk k
—€max = AHth — Xix " U™ < €max

Here ngy = n.n,.nenyn, corresponds to the number of coefficient®in

ek .. is the infinite error for the field k and for a@lle considered computations.
The first term in the objective function standsttee minimization of the error
field by field while the second term stands for thi@imization of the number
of non-zero coefficients. It is very close to tharizig selector [40]. This
problem may be written easily as a linear problgnddécomposing/; in a

positive and a negative part such th‘itz a}‘”’ — a}"‘". The linear program is
then:
NRM
min €4, + A Z a}” + oc}"_ )
j=1

such that,Vs € [1,ng],x € [1,n,],t € [1,n;]

9)

k k+ k-
€max A" Q; , =0

k ks s . qrk k
—€Emax < AHth _th U" < €max
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It is now possible to benefit from the efficiendylioear programming. Here
the number of variables is equallta- 2ng,, for each fieldk, and the number
of constraints i€ * n,n;ng. The number of variables is much lower than the
number of constraints because the compressiomgatés directly

proportional to the number of rows and columnsctetéin the clustering step.

Nevertheless computational issues may arise ines@ution of the problem
(9). The number of constraints is indeed huge ehsugh that the memory
footprint may be very high. To circumvent this igsa constraint generation
process has been implemented. The algorithm ifotlosving: first some
constraints in the entire set of constraints alecsed by a dedicated process,
randomly, uniformly or by a clustering on the vaduﬂA,";'i or on the rows of
X®. This set of constraints is calléést. It is then possible to solve the
following linear problem:

NRM

minek . + 1 Z a +a
j=1

such that, Vs € [1,n],{x,t} € List (10)

K + -
€max @, , 20

k ks s . qrk k
—€Emax < AHth - th U" < €max

The number of constraints in this problem is notinies the length ofist.
After solving this linear problem, the violatiors fevery constraints may be
evaluated using (8). It corresponds to the gap éetvthe high-fidelity data
A',‘;'th and the approximations made by the current redaodet modeks, -

U*. In the next iteration, the worst predicted valfmrseach field are added to
the linear program. Few iterations of this proagesatly increase the quality of
the approximation decreasing the infinite errorthiis approach, the data
outsideList may be considered as a validation set of the suregluced order
model.

4.2 Additional constraints

Moreover, an advantage of this formulation is lexibility. It is indeed
possible to introduce other constraints in thedmaoblem in order to guide
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the construction of the reduced order model. THg lamitation, is that these
constraints should be linear according to the adefits of the reduced order
model. It may be possible to integrate specificavabur into the reduced order
model using such constraints.

For instance, one could integrate welding behawiotorthe reduced order
model. The additional constraints will then bedach displacement fielkd

-5 < (X3, —X;,.)-Uk<s
,Vx€eC,x' eC',t e[l,n],s €[1,ng]

Whereé is a small margin in order to guarantee the salityabf the problem
andC andcC' are two set of nodes (typically the borders oheaelded part).
These set of constraints will ensure that the nadése seC andC’ will never
be further than the distanéan each direction for the simulations in the
training set. Note that this behaviour will notdresured for an interpolated
simulation that is not in the training set but itl\lwelp the reduced order model
to be more relevant according to this behaviour.

Such kind of linear constraint may also force #duced order model to
reproduce exactly the quantity of interest of sarades or instants known as
important. The additional constraints will thenfbeeach field involved in the
guantity of interest:

—Alp, — O S X5 UM< A 46,
Vx€eC,teT,s€|[l,n]

WhereC andT are the sets of the interesting nodes and instahese
constraints may in fact be considered as the irausf expert judgements into
the construction of the reduced order model. Itihesnoticed that if the
constraints is not directly linear, then a variath@nge or introduction of a
new variable may solve this shortcoming, evenviiit add a supplementary
parameter in the reduced order model.

A last kind of additional constraints may be helgtw the solving of the
optimisation problem (10). It is indeed possiblenipose a constraint on the
maximal errorek ... If so, the coefficient&* will ensure this error for the
selected constraints st and the optimization problem will only minimize
the number of non-zero coefficients. It may impréve quality of the reduced
order model, it has been indeed noticed that a hwitle a higher erroek .

on the selected constraintsliist has a lower maximal error for the entire set
of constraints. In a future study, an iterativegass will be set-up in order to
find the optimal value of this impose error whilaiting the number of
constraint generation iteration.
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In order to have a synthetic view of the workfldhe figure 4 sums up the
entire process of construction of a reduced ordmsteh The inputs of the
method are the data coming from the existing sitraria and the
corresponding parameter fields while the outptitésreduced order model
ready to be used for interpolation. The data t@msétions step in the process
stands for all the pre-treatments applied to thedata such as normalization,
noise smoothing, or sampling for instance. Thes$a wlansformations may
improve greatly the quality of the interpolationvasll as the computation time
of the reduced order model. Nevertheless it musgepe in mind that, on
account of these transformations, correspondingrse/transformations should
be applied to the interpolation supplied by theucsdl order model.

Raw data and parameter fields

i

‘ Data transformations ‘

Y

Clustering

»
d

v
‘ Constraints selection ‘

Y
Coefficients calculation
by linear programming

J Ni=Ni+1

Interpolation

‘ Error evaluation ‘

Nl > Nmax
Or E1Tor < &target

Reduced order model

Figure4:  Chart of the construction of the reduced order model. N; and N,,,,,, stand
respectively for the number of current iterations (initialized to 0) and the maximum
number of iterations of the constraint generation process.
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4.3 First results of parametric studies

To better understand the behavior of the reducddranodel according to its
inner parameters such that the numbers of clustetsee number of
computations in the training set, some convergshagies have been led. The
used test-case is the one presented in the séctiimere are 29 computations
available on which the quality of the interpolatiminthe reduced order model
will be evaluated. The first 25 simulations haverbehosen according to a
Latin Hypercube Sampling design of experiments. [ake4 configurations
correspond to 4 corners of the design spaceréinsnd that there are 16878
nodes and 76 instants in the finite element mdeaiinformation, the high-
fidelity computations take about 15 minutes usimgfist dynamics software
VPS of ESI Group. The studied parameters are the&knesses of the
deformable parts. The following reduced order me@eé built using Legendre
polynomials of order 2 for the parametric depengeB8cich polynomials are
very interesting according to their advantageoog@ities for regression
models. The reduction had been done on the dispkaeaccording to X, Y
and Z displacements. Each displacement field has bermalized according
to the maximum displacement of all the computatiortfe training set. By
avoiding scale problems between the centers ofltisters of all the fields, it
will help the resolution of the linear programmitst be hence kept in mind
that the bases will be constituted by vectors ekthby clustering from all the
fields (it might be displacements and stressemf&iance), and hence may
have not at all the same scale. The same numbeosvaind column clusters
are chosen in each kind of field. The clusteringeggormed on each field
separately but considering all the computationsttogy. The rigid bodies have
not be considered in the construction of the redweder model as well as in
the interpolation.

To study the influence of the numbers of clustexduced order models using
2 computations were considered. They have thevimilp parameters:

Partnumber | P.1| P.2| P.3 P.4 P.5 P/6 P/7 BR8 P.9

Computation1| 0.88 | 0.72| 0.777 1.1% 108 105 0.63 089 0.72

Computation2| 0.7 | 0.7 | 0.7 14 1.4 14 0.y O 047

Table 1: Thicknessesin mm of the 2 computationsin the training set. The part
number correspondsto the index of the partson the Figure 1.

The error between the high-fidelity computationd #re interpolations of the
reduced order model is expressed through the reahmaquare error of the
magnitude of the displacements at every pointsmstdnts. It is normalized by
the L, norm of the high-fidelity computation.
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For the convergence study on the size of the tiasesbthat is the number of
column clusters, the number of constraints takémimthe problem (10) is 124
per field. They are the same for every cases and been selected with the
constraints generation approach described in tttgosed.1 on the case with 75
column clusters. Values has been imposed to tloesetf,,, of the constraints
in the linear program. These values have beemsgirieally in order to
minimize violations on the constraints not takethie linear program in the
case number of column clusters equal to 75. Ibaia0.23 for the X
normalized displacement, 0.33 for the Y normalidesgplacement, and 0.06 for
the Z normalized displacement. Hence only the nurabeluster will vary.

The figures 5 shows the evolution of the erroroadiag to the number of
columns in the time bases. The mean of the ernesall the computations
seems to decrease even if there are some flat laeémsen 50 and 125 and
between 150 and 175. It is interesting to notetiiricomputations in the
training set are the ones with the lowest erroesides, the variance of the
reduced order model seems to be quite steadyelfotlowing the value o25
column clusters times the number of computatiortbentraining set will be
adopted for this test-case. It represents indegubd tradeoff between the
computation time, the bias, and the variance.
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Figure5:  Evolution of the RMSE according to the number of column clustersin the
time base. The number of row cluster is set to 6. Each black cross stands for the error
of one computation, the red crosses stand for the computations in the training set, and

the circles stand for the means.
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For the study of the impact of the size of the sdaasis, that corresponds to
the number of the clusters in the row clusterieguced order models with 396
constraints over which a maximal error of 0.21donstraints regarding X axis
are allowed, 0.11 regarding the Y axis, and 0.@®ting to Z axis.

After a great fall, the mean values in the figuree@ms to be quite steady for
n, > 4. The same behavior is observed for the worst ptedisimulation for
each reduced order model. Thus, despite the ranelesrof the k-means
algorithm, it shows that selecting a sufficient fuemnof clusters will lead to a
robust reduced order model in term of forecastnf > 10, the reduced
order models look very similar. It is interestimgriote that the model with 2
row clusters has a very low variance but high biad adding members to the
basis is increasing this variance but decreasbi#ise For the following, the
valuen,. = 5 row clusters times the number of computations balladopted.
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o
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I

Number of rows

Figure6:  Evolution of the RMSE according to the number of row clusters. The number
of column is set to 20 for every cases. Each black cross stands for the error of a
computation, the red crosses stand for the computations in the training set, and the
circles stand for the means.

After, an analysis of the quality of the interpadatcapability of the reduced
order model according to the number of computatiorike training set has
been led. In order to refine the model, the worstgted computation is added
in the training set. It leads to the behavior digpd on the figure 7.
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Figure7:  Evolution of the error according to the number of computation used in the
reduced order model. The black crosses indicate the error on each simulation and the
empty circles denote the mean of the errors. The red crosses denote the error on the
computations in the training set of the reduced order model.

The figure 7 shows that the means of the errorsedse as computations are
added to the model. The standard deviation decsedse. It is interesting to
denote that even if the linear program minimizesittfinite error, the
behaviour of thd., error is also satisfying. The refinement technigsed here
give satisfactory results, but other techniqueddacba investigate. For instance
if the reduced order model is used in an optimsasitudy, then the added
computations could be decided studying the errorthe quantities of interest
in the optimisation study. This will be the strataged in the next section.

For information, the figure 8 shows the deformedybof an interpolation
using the reduced order model with 8 computatiartbe training set. It
displays the geometry of the final instant of tharst predicted configuration.
The interpolation and the computation of the oufpes take less than 1
minute. There are 111 coefficients according t&Xgcoefficients according to
Y, and 85 according to the Z direction that is viamjted compared to the
potential number of coefficients in the linear marg. The left part of the
device is very well predicted while the error igter on the right part. It could
be possible to add relevant computations or canssran the construction of
the reduced order model in order to refine the rhivdéhis area. Moreover it
shows that perhaps tlig error is not always the best choice to select
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computations to refine the model, and perhaps ¢hgas add the computation
with the maximalL;,, error would lead to a refinement in this area.

Figure8:  Final state of the crash simulation. The left figure displays the results of the
high-fidelity simulation and on the right the interpolation of the same configuration
using the reduced order model built with 8 computations. On the latter, the colour
scal e shows the difference between the high-fidelity simulation and the interpolation,
red isthe biggest error and blue the lowest. The displayed configuration is the worst
predicted using this reduced order model.

Comparison to existing reduction methods shoulddrg interesting in a

future work. Nevertheless there is a lack of suaethod that are dedicated to
many parameters computations, especially in theé éiecrash simulation.
Comparisons should be done according to the levelror and to the number
of computations required to build the reduced ordedel efficient for its
dedicated use. It could be very interesting to lmeemparison to recent works
coupling POD and neural network [41], or POD andiRlaBasis Function

[42]. Nevertheless applications of these stude@licomputation fluid
dynamics. But the method outlined in the presepepaould be easily adapted
to any kind of physics according to the full notrusiveness of the approach.

These preliminary results show relevant featureseahibit the interest of the
method. Nevertheless other convergence or semgisitidies according to the
parameters of the method should be led in futunksydor instance to have

the sensitivity according to the order of the polymals or other refinement
strategies, or the effect of the randomness ikihnans and in the

initialization of the linear program. It is indeadcessary to test the robustness
of the model. To limit these impacts, the numbeteration of constraint
generation and the numbers of clusters are setjtit@ high value in the
present models. Hence the most penalizing congtraiil be most surely
selected in the linear program.

The next part will sum-up the results of the metbhadndustrial optimization
problems.
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5 Numerical example

The developed method was applied to industrialdases using code
developed in Julia 0.4. Two examples are discuseegt a rear wheel
assembly and a car structure models. In all examplgh-fidelity
computations were ran using the VPS solver fromde&lip.

5.1 Rear wheel assembly

The rear wheel assembly model consists of theMietel, fixations to the
chassis and crossbar. It simulates a hit by a pendan the side of the left
wheel.

The design objective in this industrial case iBrtot the localisation of
structural damage to the crossbar while limiting thverall weight of the
assembly. Three parameters are considered: thisgseds the yoke holders,
arm and crossbar (cf. figure 9 and table 2). Tisema®ly is considered as fixed
to the chassis, as such the simulation have faadfpoints located at the two
fixtures and on the end of the two choc absorbers.

1/ 0.000000

Impactor

Right yoke

Figure9:  Rear wheel assembly model

Our objective was to reproduce the overall physiedibrmation (represented
by local displacements), localisations of areasigh plastic strain as well as
its maxima.
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Yoke Crossbar Arm
Minimum thickness (mm) 4.0 2.0 2.0
Nominal thickness (mm) 6.0 4.5 4.0
Maximum thickness (mm) 8.0 6.0 6.0

Table 2: Parameter rangesfor therear wheel assembly model

The model was constituted of 255,675 nodes of whicb28 were used for the
creation of the reduction after removal of the igtpg non-shell parts and
non-structural parts. This represents a total gh@&is and 39,704 shells. 41
instants representing a total simulated time of @80wvere kept.

A reduction model was constructed using 5 expeesiisee table 3). 4 fields
were reduced: local displacements (along X, Y andrd plastic strain. Shell
thickness was used as a parameter field. All slefihed fields (plastic strain
and thickness) were projected on the nodes usamglatd average when a
node belongs to several parts. To avoid order @nitade inconsistency, all
the fields were normalized according to the absaligximum of each field for
all the simulations. A total of 250 clusters on dodumns (nodes) and 15
clusters for the lines (instants) were extractedgik-means method. These
elements constituted tlg andR; vectors. 0.005% of the total constraints were
kept and additional constraints on all field astfiand last instants for 4 points
along the crossbar were added. The additional @ntt were chosen to
improve prediction of crossbar bending. They magdeasidered as
introduction of expert advice in the reduced omtedel. After a first
resolution, a second iteration was made addingtvpoeslictions as constraints.
This resulted in the use of 4080 constraints. Tiesal problem was solved
using CPLEX. Imposeehaxwas 0.05. The parametric functions are third order
Legendre polynomials, normed between +10% of mimmand maximum of
the thickness field. The advantage of these polyalsits that they are
orthonormal between [-1,1]. This improves the &ficy of the regression
model. The margin allows to benefit of this propetso for extrapolation use
of the reduced order model.

Experiences (A¢) Yoke thickness Crossbar thickness Arm thickness (mm)
(mm) (mm)

13 4.0 2.0 6.0

27 4.0 6.0 2.0

315 6.0 4.0 6.0

420 8.0 2.0 4.0

525 8.0 6.0 2.0

6 28 6.0 4.5 4.0

Table 3: Experiences propertiesfor therear wheel assembly case. In bold
experiences used for the reduction construction.
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The reduced order model construction ran in 315umsing slightly above 500
GB of RAM. In the 240,000 possible coefficients &arch field, only 52, 50, 64
and 21 are non-null for the X,Y,Z displacements pladtic strain fields
respectively. Using this model, generation of a estumations takes 39s on
average using one processor. For sake of compar@éoulation of a new
high-fidelity experience took 24 hours on 8 prooessit is important to note
that this model is in early development stage. #dhsnemory consumption
and computation time can be largely improved.

The general quality of the reduction model was @at&ld using a sixth case
that had been calculated using VPS for compariBbis. case was chosen as it
was not close to any experiences used in redustiggneration. Criteria used
to assess model’s quality were both objectives (negeor, localisation of the
plastic strain maximum) and subjective (generabaeation in accordance
between reduced and high-fidelity models, localgabf areas of high plastic
strain).

MODE : Translational_Displaceme rit_ERR NORM
Min = 0.0273251 at Mode £4801480
Max = 262076 &t Node 53128833

41/ 200.000000 41/ 200.000000

25.000
= 20000
= 15000
. 10000

5.000

iO

ilmpac *Irnpac

Figure10: High-fidelity (VPS) calculation, right, and a reduced order model, left. On
the reduced order model, nodal projection of the displacement error (%).

The rear wheel assembly seen from the top foritta instant is presented in
figure 10. At first glance it appears that moddbdaation is well predicted.
The bend observed on the left side of the crossl{ezararrows) presents the
same shape and localisation in both cases. Thendison is confirmed by the
displacement error which is limited to less thafoldn the crossbeam and
25% overall.

In figure 11 the plastic strain nodal projectiortta final instant on high-
fidelity (right) and reduced order model (left) gn@sented. To be usable for
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industrial developments two aspects need to beeocdsg in this field:
localisation of areas of high plastic strain (whiebuld indicate plastic
deformation and thus when damage occurs to partsiogalisation of the
maximum of the plastic strain field (which shows thcalisation of the
concentration of forces during the impact). Theoséccriteria is well
respected in this case with a distance of 5.3 minvden high-fidelity and
reduction. Localisations of areas of high plastiaia (1-5 on figure 11) is
generally well predicted. Area 1 and 2 are coryeatédicted both on
localisations and scales. Area 3 appears to bepmreelicted with a larger area
and higher values. Area 4 and 5 are predicted winteexisting on the high-
fidelity model. However those areas have a sigaifily lower value than the
main deformation zone (area 1), 0.04 versus 0.86.réduced order model
also predicted negative values for the plastidrs{rainimum -0.008) due to
interpolation, while those are not physical thely ba assimilated to 0
indicating the absence of plastic deformation as¢éhpoints.
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MODE : Transkational_shell_plstr_ROM x
Min = -0.0101236 &t Mode 53152502
Max = 015166 at Mode 63107552
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41§ 200.000000

MODE : Transkational_shell_plstr_ROM x
Min = -0.0101236 &t Mode B3152502
hax = 015166 at Mode 63107552

0.080
0.084
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Figure 11:
right, and a reduced order model, left. Areas of high plastic deformation are
indicated.
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Nodal projection of the plastic strain for a high-fidelity (VPS) calculation,

Finding a representative metric to evaluate theityuzf a model is
challenging and a subject of research in itseliryXo provide such metric for
this test-case is made here by calculating theageenodal error of normalized

values of a field:

n
iy

(A /max(IAI) (AHF /max(lAHF|)>|

Ny

26



Wheren, is the total number of nodes aAdy is the field being evaluated
by reduction or high-fidelity models. Using thigarfor the plastic strain field
allows to take into account the error on the laratn the maximum value
more than its predicted value. The location ofrtteximum value is in this
case the value of interest.

Experiences epistr (%)
13 0.35
27 2.58
315 0.77
420 0.76
525 3.40
6 28 1.08

Table 4: M ean normalized nodal plastic strain error at thelast instant for the
rear wheel assembly model. In bold, the experiments used for the construction of
thereduced order model.

It appears that the model prediction is sufficig@itcurate to provide a
valuable and usable surrogate to the high-fideltynterpart during the
exploratory phase of design (table 4). The low essbciated with the
estimation after the creation of the model (394lferevaluation of a full
model) introduce the possibility for the desigmtei@ evaluate considerably
more options than with a high-fidelity approach.iglover, it is possible to use
the reduced order model to estimate only few nodéime data. Estimation
time is then much lower. It may be useful in anmoation study.
Specifications are evaluated using the reduced ondelel only for the nodes
and instants useful for the computations of thesmtties. This allows the use
of the reduced order model in an iterative procassach iteration an
approximate reduction model is used to evaluatgelamounts of design
options with relative accuracy. From these, sonmdgmndidates can be
selected and evaluated using high-fidelity modBhen those candidates can
be used as reference for a new reduction moregedilim the target zone. This
approach is expected to considerably reduce thelbveimber of high-fidelity
calculations required, leading to more innovatiesign phase. The second
example consists of a proof of concept of this appin.

5.2 Car mod€

This model consists of a full car structure impagta barrier type obstacle on
the front left side at a speed of 70 km/h. The yehicle model comprises 2848
parts for a total of 4,250,821 nodes. After remmfailon-shell parts and
barrier, 1481 parts representing 2,835,289 nodes le#. 19 instants were
taken for a total duration of 90 ms.
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The goal in this test-case was to use the methtdresource constraints to
conduct a prototype of carry-over (CO) study. Iswanducted using 37
variables corresponding to the thicknesses of 5tk iacluding 14
symmetrical ones) representing a total mass of Kg..8he parameters varying
between 0.6 and 1.4 mm. The aim being to reduzevbrall mass of the
vehicle while keeping safety parameters in the saange as the existing

vehicle.

The existing computations were the nominal modeinfmercialized car) and
two selected points (1 and 2, table 5) presengdgection in mass of 5 and 7.3
kg. Those points were chosen based on mass redwctiopared to the
nominal case and variables spread which would aserdearning possibilities
for the reduction. The resulting reduction modes$wlaen used to calculate
specific objectives values on 10,000 experiencesdmted in the parametrized
domain). Safety objectives were the shortenindnefi¢ft front girder
(compression) and maximum displacement of the piéatad (intrusion).
Profiting from the possibility to evaluate the retian model at specific nodes
and times, calculation of the 10,000 experiencésegaook 5 hours on 85
processors. From those, two “best candidates” wiensen using both results
evaluations and parameters spreads between tham (agnaximize learning
possibilities). Those candidates were then caledlat high-fidelity which
took 15 hours per experiment on 88 processors, aggddo 17 min for the
evaluation of an entire vehicle using the reductimdel on a single processor.
Using those two experiences and one from the @ignmodel a new reduction
was created. Then evaluation of the 10,000 poiats nepeated leading to the
identification of 3 candidates points that, accogdio the reduction model,
would fulfil safety criteria while minimizing massd carry-over rate. Those
three candidates were then calculated in highifidaehd a final “winner”
configuration identified (experience 7, table 5).

Experience| Mass | CO Intrusion (mm) Compression (mm) Error (%)
(AnF) (kg) | (%) [THF | ROM- | ROM- | HF | ROM- | ROM- | ROM- | ROM-
1 2 1 2 1 2
Nominal 77.8 1 116.9 137.9 128.9 188.39 151.3 15).818.8 13.3
1 72.8 38 151.9 164.4 130.4 1992 147.2 165.8 17.215.5
2 70.5 27 132.3 95.5 131.3 1811 1577 154.1 20.4 .8 1
3 71.2 49 | 128.4 86.7 127 209.p 133 166.3 34.5 10.9
4 70.9 43 143.3 84.6 129.9 189.8 1298 167.6 36.3 051
5 70.8 49 | 137.4 129.2 126.8 1733 154.6 153.9 84 5 ¢
6 72.8 51 129.8 128.6 130.4 163]6 157.2 150.6 24 2 4
7 72.3 51 125.3 128.6 128.9 1862 154.4 152.3 99 051
Mean 18.5 10.3
Table5: Experiences propertiesfor the vehicle case. CO standsfor Carry Over
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This procedure led in 7 calculations to a configjorawith similar safety
measures (see table 5) than the nominal case tuaweduction of 4.9kg in
mass. While this is a proof of concept study andalisly more constraints are
considered in car design than those related td tn@sh, this clearly shows the
potential and efficacy of this reduction methodirdsa classical optimisation
method would require around 10 high-fidelity caétidns per variable this
would have amounted to 370 experiences or 488,4fepsor hours. Using
ReCUR for this problem limited this requiremen®t@40 processor hours for
high-fidelity calculations, 25 for the model consition and 860 for the model
evaluations, or a total of 10,125 processor hols represents 2.1% of a
standard optimisation study.

The first model was made using two experiencesi(fl2ain table 5). As such
first order Legendre polynomials were used. The@séanodel used three
experiences (2, 3 and 4 in table 5) and second aetgendre polynomials
were used. 3 fields were reduced: local displacésnaong X, Y and Z. Shell
thickness was used as parameter field. Thicknegsesprojected on the
nodes. 200 clusters along the columns (nodes) @mtligters along the lines
(instants) per fields were chosen using k-meansodetA proportion of 5E-6
of the total constraints were kept. In total 306@straints were used in the
second model. Also, hard constraints on 7 pointatefest (along known
structural position or used for the calculatiorobfectives functions) were
imposed for each field at initial and final inst&nthe imposedmaxwas 0.05.
The data were normalized as in the previous test:ca

The second reduction (ROM-2) ran in 12 hours u8id@ GB of RAM. The
regression found 21, 38 and 32 non-null coeffiddat the X,Y and Z
respectively among the 291,600 possible coeffisidhis interesting to notice
that the all the non-zero coefficients correspandrtler 2 polynomials for the
column interaction.

The second reduction model appeared more pre@setiie first (ROM-1) in
predicting objective values on points of interd$i.8 vs 18.5 % error). This
appears logical considering that with an increasedber of experiences to
learn, ROM-2 offers a broader coverage of the rarigmrameters.

The case presented here corresponds to the fiaat
during the study. It was evaluated using ROM-2.

bonfiguration found
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Figure12: Sructural view of the model at final instant made using ROM-2 (left) and
VPS (right). On the left model, nodal projection of normalized displacement error (%)

In figure 12 the vehicle front structural partsatefiation at final instant are
presented. The general shape of the deformatiosaappvell predicted by the
reduction model. The maximum normalized differebeeveen the two models
is below 26% with most of the structural parts hgva deformation under 13%
(figure 12). Considering the size of the modelgéaamount of variable
involved and early stage of developments for tldeicéon model, this is a
promising result.
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Figure13: Comparisons of reduced order model (left column) and high-fidelity (right
column) with the nodal projection of displacement error on the reduced order model.
Only the parts used as parameters are shown.

On figure 13 the projection of the displacemenvebetween the VPS and
reduced order model for the parts used as parasnatére study are shown.
For those parts the error on the norm of the despteent is limited to 10%.
This indicates that the model can be used withivelly good accuracy to
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predict specifications. Errors on the predicteccgmations were less than
18% with an average of 10.5%. This indicates tivatle this study was made
as a proof of concept, using a non-optimized edelelopment model, results
could be used in industrial development. The meatklsuffers from infancy
issues, such as a large memory footprint rendiagiie of large amounts of
high-fidelity cases for the generation of reductiimpractical. Another issue is
the long computation time required to generatertbdel (12 hours in this
case), while this still reduced tremendously thet o a study compared to the
use of high-fidelity model this prevents the us¢haf model in a truly
interactive setting. Finally, in the current versiequal weights are given to all
constraints in the model, meaning that most ofptheer of the model is spent
in predicting the rigid body motion rather tharerent deformation. This will
be solved in the future by filtering rigid body nwot before the creation of the
model.

6 Conclusion

In this article, construction of a reduced ordedeiacalled ReCUR has been
outlined as well as its use to estimate new teethisiclutions. It consists in a
regression model coupled with a low rank tensor@amation method. The
two application examples show the potential ofrtirethod in the context of the
fast dynamic simulations. It allows, indeed, to makaluation in a few
minutes for industrial test-cases, with still lagential for code optimization
and parallelization to improve efficiency. The dameaf application is crash
simulation, however the method is not limited tis gphysic. The method may
be useful as soon as time consuming high-fidebtygutations are required in
a design process. Potential domain can then bewstioh simulations or fluid
mechanics among others. These preliminary resudtsVery promising for
use in optimization study knowing that the ReCUBuee order model is
newly developed and a lot of improvement tracksteXine number of
simulations required to improve the existing systdra full car model is
indeed much lower than for the current approacyinglon the design of
experiment and surface responses.

One asset of the method is the use of the datangpimam all the existing
computations while keeping the dimension of thébfem tractable. It might
allow industrials to shorten and improve their cgpton stages as well as
having a better data employment. Another advantgiee method is its
flexibility thanks the possibility of introducingspert’s judgments directly into
the construction of the reduced order model. Thssgbility enhances greatly
the capability of the reduced order model.

Among all the clues of improvement spread in thx¢, @ first lead would be
improvement of the resolution by the linear progmang. Algorithms may be
set up to avoid fixing the value of the desireaerit may find the one
minimizing the error for constraints not takentie tinear problem, using a
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Lagrangian for instance or another iterative prech®reover, adding a
computation in the training set of the reduced prdedel lead with the actual
process to the construction of a new reduced omelel from scratch. It may
be very useful to start from the previous reduaeltomodel with a lower
number of computations and to directly refined ithvextra clusters and
constraints in the linear programming.

The use of transformed data in the constructicthefeduced order model
must be also investigated. It may allow to focugh@most relevant
phenomena featured in the high-fidelity simulatidn.example may be
filtering nodes having no deformation and repladimgm with a rigid body
motion or removing the temporal motions inducedMaye propagation. This
method may be inspired by the technique used inRBHDEIM.

Works must be done concerning the estimation ofitgyua the reduced order
models. A systematic pertinent error indicator naesbuilt to compare
estimations of reduced order model to high-fidediiga. This point is not
straightforward because there are a lot of wayh&vacterize the relevance of
a reduced order model. It may involve a global easothel., or L, error and
some patrticular errors on the values of intereshore likely a combination of
the both. Having such error may allow to have avaht and systematic
refinement strategies. Moreover, a benchmark tstiexj approaches such as
PGD, or DEIM may be useful to compare the methabbng to the state of
art, even if there is a lack of such method for ynaawrameters and non-
intrusive case. Some recent works combining the R@dmachine learning
techniques such as neural network [41] or radisidbfanctions [42] exist and
may be use for comparison. Moreover the results 0 optimization study
using the reduced order model from ReCUR may bepened to alternative
approach lying on the use of design and experimettesponse surfaces [27].

Last, it lacks a tool to assist in the analysisoois and columns selected by the
clustering as well as the value of the correspandion-zero coefficients. Such
analysis will be indeed very useful to understarmictv nodes and parts are
influential and which instants are critical durioiashes. Analysis of the results
given by the reduced order model may be aided éylénivation of sensitivity
indices. It may help to quantify the influence loé tparameters on some
objective functions or specifications of the requients. Derivation of local
sensitivity indices may be directly done using gnadient of the reduced order
model according to the parameters. Global sensitindices such as Sobol
indices [43] require more advance computationgy still be done using the
reduced order model. As the reduced order modeahamalytical form, these
derivations may be done very efficiently.

Nevertheless, ReCUR could already be used in dekiads of processes. For

instance, the link with the optimization study abbk investigated more
deeply, especially for optimization with discregmeters [44]. ReCUR
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method may also be useful to help numerical moal#mation according to
experimental data. It may also be useful to exphog reduced order model for
sensitivity analysis or control problem.
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