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General Relative Entropy in a nonlinear McKendrick model

P. Michel

ABSTRACT. We use the General Relative Entropy Inequality introduced in [12,
13, 14] to analyze the long time convergence in a nonlinear renewal equation,
a PDE that describes age structured populations for instance. More precisely,
we prove that under some assumptions on the nonlinear term in a model of
McKendrick-Von Foerster we deduce easily the global convergence using the
General Relative Entropy (GRE) method of entropy. Then we compare the
local asymptotic results obtained by linearisation and by the GRE principle.

1. Introduction

In the study of populations of cells, animals or humans, one of the most used
model is the McKendrick-Von Foerster model ([9, 16]) where the density of popu-
lation n(t,y) at time t and age y, is described by the master equation

Fn(t,y) + £n(t,y) + d(y)n(t,y) = 0,

(1.1) o
n(t,0) = / B n(t,y)dy'

where B > 0 is the birth rate, d > 0 is the death rate. It is well known that the
long time asymptotic is described by the first eigenvalue A and positive eigenvector
N of the eigenproblem (1.2). Indeed, for a large time, n ~ Cst Ne*, this can be
proved by using Laplace transform ([9, 5]) and more recently by using the General
Relative Entropy (GRE) inequalities ([15, 14, 12, 10]). We recall the GRE results,
if there exist (IV, A, ¢) solution to the following eigenproblem

£N(y) + (d(y) + AN (y) = 0,
(1.2) N(0) = / T BWING)dY, N >0,

—ad(y) + (dly) + No(y) = B(y)e(0), ¢>0, ¢#0,
then for all positive convex function H we have

d

13 G [ H(atn)e NG N oy = ~Dutne/N) <0,
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with the dissipation of entropy —Dpg given by

© ne~ M < pe M
(14)  =Dune ™ /N) = NOoO) (1| "~ [ ).

0 0
where du(y) = B(y)N(y)dy/ fooo B(y')N(y')dy’ is a probability measure. In par-
ticular, for H(x) = z, we obtain the conservation of fooo n(t,y)e *p(y)dy. The
convergence of ne~* to Cst N implies the exponential growth or extinction. This
of course does not take in account the use of resources for instance. In order to

take in account the consumption of nutrient, we can for instance change the linear
birth term in (1.1) by a nonlinear birth term ([2, 9, 17])

Fin(t.y) + Znlt,y) +d(y, P()n(t.y) = 0,

(1.5) n(t.0)= [ Bl POy

P(1) = / U n(ty )y,

where P is related to the population number and the non linearities to the con-
sumption of nutrients. Here we study the following nonlinear problem

Dn(t.y) + Lnlt,y) +dy)n(t,y) =0,

(1.6) N

n(t,0) = f( / BW)nlt,y)dy'),
0

where f describes the nonlinearity and so the change of birth term with the en-
vironment alteration, for example we can choose f(z) = 2% with 0 < w < 1. We
notice that (1.6) is a particular case of the problem (1.5),

B(y', P(t)) = B(y') f(P(t))/P(t),

dly' P(0) =), P = [ " By (. )y

Even though this is not the most biologically relevant situation at least it is sim-
ple enough to classify the type of results we can obtain. There are several some
theorems giving the local asymptotic behavior, i.e., in a neighbourhood of a steady
state [1, 4, 6, 7, 17], in which, one uses the linearisation of (1.6), then checks for
the eigenvector and eigenvalue of the linear system and according to the sign of the
eigenvalue concludes to the local asymptotic convergence or not. Here we analyze
how the GRE method can be used for this class of nonlinear problem and to the
more general case

Inlt,y) + £nlty) + d(y)n(t,y) =0,
(1.7) . .
n(t,0) = f(/0 B(y')n(t, y’)dy’,/o 0(y")n(t,y')dy'),
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or for the following space-age model,

St y,x) + & (Vg x)n(t,y, ) + d(y, 2)n(t,y, z)

~ 2 [W(y.x) &n(t,y,z)] =0,
(1.8)

n(t,0,x) = f(/oOO by, z)n(t,y', x)dy'),

where y is the age and x the space parameter. As, we will see, in several situations
we can arrive at global behaviors.

This paper is organized as follows : in section 2 we extend the definition of (N, A, ¢)
to this nonlinear problem and prove the longtime convergence under some assump-
tions on f, especially we arrive to global pictures for extinction or attraction to a
steady state. Then in section 4 we compare then results obtained by local asymp-
totic method and the GRE results for periodic or oscillating solutions. In section 6
we extend the result to (1.7) and (1.8).

2. Nonlinear McKendrick

First we define the eigenproblem, and in particular, the adjoint eigenproblem
in the nonlinear equation (1.6), then we use the GRE introduce in (1.3) (see [14,
12, 10]). Thus, under global assumptions on f we prove the decay of specific
entropy and the global convergence in long time in (1.6). We notice that (1.6) can
be written in a simpler way. We introduce the following notations that will be used
throughout the paper

(2.1) D(y) := /Oy d(s)ds,

(2.2) 9() = Bf (),

(2.3) du(y) = B(y)e PWdy/ 5,

where, and this is a first assumption,

(2.4) B:= / B(y)e PWdy < co.
0

Notice that du(.) is a probability measure. Then we set

(2.5) m(t,y) := Bn(t,y)e” ™,

and m(t,.) satisfies the master equation in LP ([0, oo[) () L*([0, oo, ¢(y)dy)
Zrmlt,y) + Lmlt,y) =0,

(2.6) rmunzﬂéwmmymmy»

m(0,.) € LE([0, 00[) N LA ([0, 0], ¢(y)dy),
where p > 1. From now, we study the behavior of m and we give assumptions on
g in order to simplify the notations. We prove the existence of a decreasing GRE
and the longtime convergence of m under some assumptions on g. At this stage we
cover two simple cases : global extinction, global attraction to a non zero steady
state.
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3. Eigenproblem in nonlinear case

3.1. Extinction. As for the linear case, the GRE principle is based on the
existence of an adjoint eigenfunction problem, here we focus on the case where the
eigenvalue is zero, i.e., the adjoint steady state. We notice there always exists ¢
uniquely defined up to multiplicative constant, solution to

(3.1) —%¢=¢(0)B(y)e’D(y)/ﬂ, 620, $£0, B(oc)=0.

Indeed, the function
(32) 6w i=0(0) [ B Py 5 =00) [ dutw).
y y

is well defined because we have [;* du(y) = 1 and satisfies (3.1).

THEOREM 3.1. Assume (2.4), m(0,.) € L= L ([0, co[, p(y)dy) for eq. (2.6)
and

(3.3) glx) <z, g wu.s.c,

then N = 0 is a globally attractive steady state. We have

(3.4) /OOO m(t,y)p(y)dy decreases,
(3.5) 0 <m(t,.) <|| m(0,.) ||oos
(3.6) Jim ; m(t, y)du(y) = 0.

PROOF. We prove the convergence (3.6), using the equation (2.6) and (3.2),
we have

oo

B0 g [ meotds = 60)m(t,0) - 60) [ mitnduty)

0

oo

63 g [ mensd=o0[o [ menduw) - [ mendu].

using (3.3), we have,

oo

(3.9) i J, m(t,y)é(y)dy < 0.

We prove the convergence of fooo m(t,y)du(y) to 0 using a method developped in
[14].
Stepl-L> bound. For all C' > 0, we have (as a particular case of a GRE)
d o0
dt Jo

(3.10) = ¢(0)(m(t,0) = C)+ — 6(0) /Ooo(m(t»y) = O)1duly),

(m(t,y) — C)+o(y)dy
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using (3.3) and Jensen inequality, we have,

& [ nten = €00y = 6@ (o [ mlton) — dut) ~ ©)

+
(3.11) - [ ntt) - Chduty)] <o,
Since m(0,.) € L>=([0, 00[) (see (2.6)), we have
(3.12) m(t,y) <m(0,y), Vi,y >0,

and m(t,.) is uniformly bounded in L°°([0, 00[). Therefore, we may choose a se-
quence of times ¢, — oo so that the sequence of functions mg(t,y) = m(t + tx,y)
converges weak—x in L*°([0,7T] x [0, 00]), for any T' > 0, to a function denoted

m(t,y).
Step2-L' bound. From (3.9), we have the decay of [; m(t,y)¢(y)dy and thus
its convergence to a positive number. Now, using (3.8), we obtain

13 [T [ mttdut) - o [ mipdut)]ae< [ mo.nowa,
and thus
(3.14) / / my(t, y)dp(y / my(t, y)dp( ))}dt—>0 as k — oo.

Step3-Compactness. For any smooth function 9 (y), and using equation (2.6),
we have that

d o0
(3.15) &/ my(t,y)Y(y)dy is bounded in L([0, oof).
0
Therefore, after approximating Be~? by smooth functions, we deduce that

Jo° mi(t, y)du(y) converges in C([0,T7]) to [;~ m(t,y)du(y). Now using that g is
u.s.c. and satisfies (3.3), we have

o< [ maane - of [ w*(t,wdﬂ(y))}dt
(3.16) gnminf/ / (4, y)du(y / ma(t, y)du ))]d

k—oo

[ L[ it o [ aut]a=o

but using (3.3), we have

thus

Jim m(t + t, y)dp(y) = / m(t,y)du(y) = 0.

k=0 Jo 0

Using transport equation (2.6) with boundary condition that converges to 0, we
have the global convergence of m(¢,.) to 0 in L ([0, oo]). O

THEOREM 3.2. Assume there exists A\g < 0 such that

p
oo
/ B(y')emPWO2o gy
0

(3.17) g(y) <y, with vy := >0,



6 P. MICHEL

then N = 0 is a stable steady state and there exists ¢, uniquely defined up to a
multiplicative constant, a solution to

B18) o+ hadls) = oOBe W [T Bl P gy
and for this ¢ we have
(3.19) [ mieaotia < [T m.euiy.
PRrROOF. The ¢ are given by the following formula :
3:20) o) = 0(0) [ Bl PNy [T e P00 gy,
y
indeed ¢ is well defined (using fooo du(y) = 1) and satisfies (3.18).

Now we prove the exponential convergence under assumption (3.17), we have, using
¢ defined by the equation (3.18)

d > — Aot
— t 0 d =
dt/o m(t,y)e” " (y)dy
g
/ B(y’)e*D(y’)*Aoy’dy/
0

using that Ao is defined by (3.17), we have,

oo

- [ mty)e M e(y)dy <0,
0

therefore we have (3.19). O

(321)  6(0)e™ [m(t,0) - | mttmant],

(3.22)

3.2. Globally attractive steady state. Next we prove the existence of a
steady state when g has a fixed point and du satisfies

(3.23) | ints) <<,

and there exists p > 1 s.t.

B —D(y)yp/(p—1)
(3.24) / ( (Oyo)e )1/(p_1) dy < oo.
sup Supp B (fy dﬂ(y’))

REMARK 3.3. The condition (3.24) is satisfied for a large class of B and d.
a) If Supp B is compact, max Supp B = yp and B(y) ~y—y, Cr(yp—y)" where 0 <
Cr < o0 and —1 < r < 400 then (3.24) is satisfied for p > max(1, (r +2)/(r + 1)).
b) If B(y)e PW < C,e™™ where 0 < C, < oo and r > 0 then (3.24) is satisfied
for all p > 1.

More precisely we have
LEMMA 3.4. Assume (3.23) and
(3.25) Jzo >0, g(z0) = 20,
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then there exists N > 0 (N # 0) such that N(x¢) = z¢ and
ZN(y) =0,

(3.26) o

NO =g [ N6ut).

And there exists ¢ > 0, ¢ £ 0 that satisfies the following adjoint eigenproblem

(3.27) — 56 = 6(0)Bly)e™ ", AMN@mmwzx
PROOF. Indeed, let

(3.28) N(y) = wo,

(3.29) ¢@w:¢w)/wdmy»

then N satisfies (3.26) and ¢ satisfies (3.27).

O

3.3. GRE and first results. Here we consider the relative entropy introduce
in (1.3) and give assumptions on g that allow us to use it. From now we assume
there exist a strictly positive steady state and adjoint steady state solution (N, ¢)

to (3.26), (3.27).

First we prove the existence of a GRE entropy structure in the nonlinear problem
(2.6). Under some assumptions on g, we prove, the decay of entropy, some bounds

on m(t,.) and the convergence of m(t,.) to N(.).

THEOREM 3.5. Under the assumption (2.4), with the notations of section 2,

and these of lemma 3.4, let the entropy defined by

H(t) = /O ~ H(m/N)Nody,

with N and ¢ solution to (3.26), (3.27) and H a convex function. Then we have

S0 = N(0)6(0)
g( Oom(w’)du(y’)) ooH(77“0/1\7)1\7(y)du(y)
(3.30) A ( /0 SN (0)) >_/0 N{0) !

and define equivalently (N(y) = xo)
~Dir(m/N)(t) = SH()
“mty)
g(xo/ Ny W ) o
{H( ; g(zo )_/0 H(N)du(y)]
PRrROOF. Indeed we have

0 < 9
S H() :/0 H' (m/N)¢z-m(t, y)dy

(831) = N(0)$(0)

(3.32) =—AwHWWNw;mmw@,
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F1GURE 1. Condition of convergence.

O /Ooo aay( (m/N)$N dy+/ H(m/N) 2 (ng)dy

(3.33) / H'(m/N)o 105 i 9 Nay,

and finally we obtain

(3.34)(%71@) — (H(m/N)N)(t,y = 0) — /0  H(m/N)N(0)BePWay/ 3,

SH(E) = N(0)6(0)

o[ mteauty /Hm/N ()d(y)

(3.35) (=) N{O) ’

where N(y) = N(0) = 2 and the conclusion follows. O

Under some assumptions on g (and thus on f, see (2.2)) we prove the decay of some
entropy and the convergence of m to N. More precisely,

Jzg >0:  g(x0) = o,
(3.36) z < g(z) <z, Vr <o,

xo < g(x) <z, Vr> 0!

This implies directly the uniqueness of the fixed point of g and thus the unique-
ness of a strictly positive steady state of (1.6).

REMARK 3.6. For instance (3.36) is satisfied for g(z) = 2 with 0 < w < 1 and

more generally if g and so f is an increasing concave function. See Figure 1.

Here we prove some L* a priori bounds, using theorem 3.5 and assumption
(3.36).

LEMMA 3.7. Assume (2.4), (3.36) and 0 < m(0,.) < KN(.) for some K > 1
then

(3.37) 0<m(ty) <KN(y), Vty=0.
PROOF. We have for H(z) = (z — K), using (3.31) with K > 1,
—Du(m/N)(t) = N(0)$(0)

(t,y) /
( =du(y')o) .
A R
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but using (3.36), we have

=Dy (m/N)(t N(0)¢(0)
(3.39) / Nt ) gy ). - | (F-x) awi=<o
Thus, m(0,.) < KN(.), 1mphes J S (m )/ (y) — K)+N(y)p(y)dy =0 for t = 0,

decreases and is positive thus

/ it y) /N @) — K N@)dly)dy = 0, ¥t > 0,

and the conclusion follows. O

LEMMA 3.8. Assume (2.4), (5.86) and m(0,.) > kN(.) for some 1 > k > 0
then

(3.40) m(t,y) > kN(y), Vt,y > 0.
PRrROOF. We have for H(z) = (m — z)4, using (3.31) with 0 < m <1,
—Du(m/N)(t) = N(0 )4(25(0))
q( tg,/ dp(y')zo) .
Gan  [(k- A ), ), - | (k=%) duto
but using (3.36) we have
*DH(m/N N(0)¢(0)
(3.42) / Nt ) gy AN T (k=) dut) <o

Thus, m(0,.) > kN(.), implies fo (k—m t,y)/N Y¥)+N(y)o(y)dy = 0 for t = 0,
decreases and is positive thus

/ " (k= m(t,y) N )+ N@)dly)dy = 0, ¥t > 0,

and the conclusion follows. O

Now we prove the following convergence result,

THEOREM 3.9. Assume (2.4), (3.23), (3.24), (3.56),
(3.43) m(0,.) € L'([0,00[, ¢(y)dy) [ L ([0, 00, $(y)dy), P> p,

with p defined in (3.24) and/ m(0,y")é(y')dy' > 0, then
0

(3.44) I :=inf m(t,y" ) o(y")dy' > 0,
>0 J,

(3.45) I:= sup/ m(t,y")o(y")dy' < .
>0 Jo

Moreover, we have
(3.46) di m(E, ) /N () LY([0,00[, N(y")o(y')dy'").-
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THEOREM 3.10. We make the assumptions of theorem 3.9, for some a > 0,

d _
(3.47) M) Bly)e P /5 2 aolo)/o(0), V0,
(3.48)
g((zxo)) 1 g((zwo)) _
P : _ 9{To . 9(To o
J = min (1 Sup ( z—1 ) mm(lu}§<z<1 ( z—1 ) 1) = O,

1<z<max(1,J)

where

(3.49)  J:= inf/ m(t,y)du(y') >0, J:= sup/ m(t,y )du(y’) < co.
0 0

t>0 >0

Then
/0 |mt,y) - N | 6')dy’ <
(3.50) oo [ T m0.y) — NG | oy )y
0

g(zzq)

REMARK 3.11. We notice that when g is C* % gives the slope of g, and
J > 0 means that the slope of g is strictly less than 1 at the right of the fixed point
xo and strictly greater than 1 at the left of 25. Moreover (3.49) can be replaced by

e By)e Pdy
. = N— >
(3.51) J tlgtfo/o m(t,y") 3 >0,

for some ¢y > 0, the same for (3.49) and then appears a constant C(¢g) in the right
hand side of (3.50).

PrOOF. of theorem 3.9  First we prove (3.45), (3.44) then we prove the
convergence result (3.46).

Stepl. Bound (3.45). Under the assumptions (3.36) and lemmas 3.7 and 3.8,
the dissipation of entropy associated to H(z) =| 1 — z | satisfies,

—Dp = —Dpzj = =Dz, = Da-z_ <0,

and

o0

352 [ mta) =N [o)dn < [ 1ml0.0) = Nw) | oty < <,
thus using m(0,y) € L*([0, o[, #(y)dy) and (3.23), we obtain,
/Oo (t,y)o(y)dy <

(3.53) / N()$(y)dy + /0°°|m<0,y>zv<y>|¢<y)dy<oo, vt 0.
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Step2. Bound LP. Under the assumptions (3.36) and adapting lemmas 3.7 and
3.8, the dissipation of entropy associated to H(z) =| 1 — z |P satisfies,
—Du ==Dj—.p = =Da-2,7 = Da-2)_y7 =0,

and

o0 _

31 [ (mt) - NG ey < [ (m0.9) - Nw) o)y < o
thus using (3.43), (3.23) and (3.45), we obtain,

(3.55) /0 (ko) < [ /OOO N7(y)é(y)dy) "

(3.56) ([ m0.5) - N0 o)) 7] < e, i zo
Moreover we have the uniform LP([0, co[, ¢(y)dy) bound
(3.57) My = sup/ m(t,y)Pé(y)dy < oo.

t>0Jo

Step3. Bound (3.44). Since Supp B C Supp ¢ and using the Holder inequality
with 1/p+1/g=1,1<p <P and (3.24), we find

/ "t y)duy) = / " (. y)B(y)e "W pdy
0 0

= 1/p2\J)"
/suwm(t’y)d’(y) B e

< ( /O h mi(t, y)%(y)dy) Up( /s wop o (Bﬁ(g;;e(;;(/?qdy) &

a3) <K@ [ mewrowa)

with D(y)yp/(p—1)
o (B(y)e PWw)p/(p=1 (=1)/p
“0=([,,, wrmgren®) <

Now, we use the Holder inequality for 1/p+1/¢ =1, 1 < p <P and we obtain

[ttt < ([ miearowan) ([ owar)"
(3.59) = ([ vau) ([ mtwrot)

Similarly, the Holder inequality with 1/p' +1/¢' =1, ¢’ := p—:} > 1 implies

o0

[ ssotwar= [ oty
0 0 , - 14
< ([ mteaotan) ([T w0 wgpotian)

< </0°° m(ty)qﬁ(y)dy) 1/p/(/oo m(p—1+1/q’)q'(t7y)¢(y)dy) v

0
1/q'

sy < ([ miwseia) ([T nowa)



12 P. MICHEL

Therefore, using (3.57) and (3.23), for all 1 < p < P, we have

¢ [ mioway)™

(3.61) < [T wrememay < T, [ mimotni)

where

and

Thus, using (3.36) and (3.31) for H(z) = z, we have,
d oo

G | mnotds >0, when [T m(eaun) <1.

and so
d [e.¢]
o | mty)ely)dy >0,
0
—1-p r(P—
when [ m(t, y)p(y)dy < Cp " K(p) = C, and (3.44) follows with I >
min(C, [o~ m(0,y)é(y)dy) > 0.
Step4. Convergence. Moreover, for H(z) =| 1 — z [P, Dy = 0 if and only if
m/N is a constant p(t), indeed using (3.58) and (3.61), we have

(3.62) sup/ m(t,y)du(y) < oo,
>0 Jo

and

Do (m/N) () < N(0)6(0)

< m(t,y) Y mo,
(3.63) (1= [ S = [ 1= P dut)]
thus m/N = p independent of y. Moreover if p(t) N satisfies (1.6) and (3.44),
with assumption (3.36) that implies uniqueness of the strictly positive steady state
then p(t) = 1. Using the transport equation with bounds given by lemma 3.8 and
3.7, we have for all ¢, /" oo, m(t + tg,.)/N(.) has a weak L>(]0,00[,du) limit,
by passing to the limit in the dissipation of entropy and in the equation (1.6)
(we refer to [14] of to the proof of lemma 3.1 to the complete proof), we have
limg_ 00 m(t—l—tk,.)/N(.) =1. U

ProOOF. of theorem 3.10 Now, we prove the exponential decay. We recall
that for all H positive convex function we have

;’t/ooo H(m/N)Nédy = N(0)¢(0)

o m(t7 />du(y'):vo)

g( : o o
1 l e )~ [ a5 )auw)]




GENERAL RELATIVE ENTROPY IN A NONLINEAR MCKENDRICK MODEL 13

thus using (3.49) we have

a oo
5 [y =)oy =

*mty) o,
( = dp(y')xo) o0
Vo (DD ey )

Zo
<N [ ([~ R aut) 1) = [T (5 1) autw)]

With 74 = SUD; <\ < ax(1,7) (M) and (3.47) implies

r—1

a o0
&/o (m/N — 1)1 Nody <

alvs =) [~ m/N 1), Nody.

In the same way, using (3.49) we have

> |/ = 1)_ay -

“m(ty)
9( = dp(y')xo) o
(hSE )

9(z0) N 1)_du(y)]
< N0 ([~ 5 ) -1) - [7 (5 -1) autw)]

with y_ = inf g 1)<e<1 (%W) and (3.47) implies

a o0 oo
5 | N = D_Nody <t =) [ m/N ~1)_Noay.

Therefore (3.50) follows from Gronwall lemma. O

This theorem gives results if we have some informations such as the conservation
law given by the linear case for instance or the uniqueness of the steady state in
the nonlinear case.

REMARK 3.12. We notice that the condition

(3.64) 1 < g(zm0)/g(x0) <2 -2, Vz<1,
' 1> g(220)/g(x0) >2— 2, Vz>1,

is satisfied for g(x) = min(z¥,a) with lnlf(;)a) <w<0,0<a<1,and implies the

convergence to N as in the theorem 3.9.
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3.4. Blow-up. Here, we give some conditions on g that imply the blow-up of
m solution to (2.6).

THEOREM 3.13. Assume (2.4) and there exist v > 1, a > 0 such that
(3.65) g(x) > yz,

(3.66) D) — ly)eP 05 2 ad(1)/6(0), Vo0

then we have
(3.67) A m@ww@My>w“*”A m(0,1)6(y)dy.

PRrROOF. We prove the convergence (3.67), using the equation (2.6) and (3.2)
introduced in section 3.1, we have

m@mww@—¢@mwm—mmlwmww@@x

oo

(3.68) i)

3.09) 5 [ mwetndy oo [ mieidut) - [ mie.pautn)]

using (3.3), we have,

o) g [ w606 1) [ )

and finally

oo (oo}

m(t,y)o(y)dy > a(y—1) [ m(t,y)(y)dy.

.71 —
(3.71) i J, ;

Thus, using Gronwall inequality, we obtain (3.67) and

o0

lim m(t,y)¢(y)dy = oc.

t—oo 0

O

Now, it is interesting to compare this result to the linearisation method in order
to prove the local asymptotic convergence.

4. Local asymptotic convergence

In this section we compare the linearisation and GRE results in the case where
there exists only one z¢ > 0 such that g(xz¢) = =, i.e, there exists one and only
one steady state different from 0. Now we give some assumptions on g such that
the strictly positive steady state N of the equation (1.6) be locally asymptotically
stable. We begin with conditions for the stability (instability) of the linearized
problem then we prove a sharp result on the nonlinear problem.

THEOREM 4.1. (Linearisation method) Assume there exists an unique xog > 0
such that g(xg) = z¢ and

oo
(4.1) / e du(y') < oo, Vr €] — o0, 0],
0
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then the steady state associated to xo, N(y) = xq is a locally asymptotically stable
steady state when

(4.2) 0 <] g'(z0) |< 1,
and N(y) = xo is a locally asymptotically unstable steady state when
(4.3) g'(xo) > 1.

PROOF. In a neighbourhood of the steady state we set m = N + € and
2ety) + Zélty) =0,
(4.4) o0
&(t,0) = ¢/ (z0) / &,y )du(y') + O(sup & (t, ).
0 Y

Therefore m solution to (1.6) converges locally asymptotically to the steady state N
if the eigenvalue associated to the system is strictly negative (see [1, 4, 6, 7, 17]).
Using the General Relative Entropy in the linear case, and the approximation € ~ ¢
where ¢ satisfies the linear problem

Frelt,y) + gre(t,y) =0,

(4.5) .

(t,0) = ¢/ (0) / (b, )du(y),
0

we deduce the asymptotic behavior of e. 7
Stepl. 0 <| ¢'(x0) |< 1. In this case, there exists (A, ¢) solution to

—550(y) +2é(y) = 6(0) | ¢'(x0) | B(y)e™ D(y)/B,

¢(y) =0, Vy=>0.
Indeed, using (4.1), there exists A < 0 s.t.

/0 e du(y') = 1/¢ (z0) |,
and thus, for all ¢(0) > 0, ¢ is uniquely defined and
— — © ,
3(0) =30) [ g wo) | [ 0 Dau(y)
y
Then, we use the GRE and we find

d [* —
T | e(t,y)e ™ | d(y)dy == —Dp(2),
0

(4.6)

where
~Dult) = 6(0) | o (a0) |
[ [ ettne™anto) 1= [ 1ettape™ Laut)] <o,

Therefore A < 0 and using the decay of GRE we have

/0 T elty) | By < / 1 e0,9) | Bw)dy

0
(and thus € converges to 0) when (4.2) is satisfied.
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Step2. ¢/(zo) > 1. In this case, there exists (€, )\, ¢) solution to

a€y) + Ae(y) =0,

wnzywwémdywmy»
(4.7)

Indeed, using (4.1), we have,

/0°° e M du(y') =1/ (z0),

3w) =30 (z0) [ e V().
y
Then, using the GRE, we obtain, for all p €] — 0o, 0],

% h | e(t,y)e ™ — pe(y) | d(y)dy := —Dy(t),
0

where
o0

~Dy () = 9(0)g'(wo) | | /0 (e(t,y)e™" — pe(y)) du(y) |

—/OOO | e(t,y)e N — pe(y) | du(y)} <0.

Therefore A\ > 0 and using the decay of GRE when ¢’ > 1, we obtain the
convergence result

Jimn || e(t, e = pe() [l o et = 0,

where p is given by the conservation law

/0 h e(t,y)e Mo(y)dy = /0 h €(0,y)o(y)dy,

and thus € does not converges to 0. [

THEOREM 4.2. Assume there exist n > 0 and an unique o > 0 such that
g(xz) =z for all x €]xzg—mn, xo+n[ then the steady state associated to xg, N(y) = xo
is locally asymptotically stable.

PROOF. Indeed, in this case m(t,0) = g( [~ m(t,y)du(y)) = xo when m(t,.)
is in a neigborhood of N(.) = xg, therefore N(.) = ¢ is locally asymptotically
stable. (]

REMARK 4.3. Notice that (3.36) or the inequalities given in remark 3.12 give
weaker locally conditions in a neighborhood of the steady state than the condition
(4.2). In other words theorem 4.1 gives a weaker convergence than the theorems
3.9, 3.10 but needs weaker assumptions on g than the theorems 3.9, 3.10.
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Now we prove that under some assumptions on g the conditions (3.36) are
equivalent to the condition (4.2).

LEMMA 4.4.
Assume g belongs to C1([0, 00]) is increasing and strictly concave, and there exists
only one strictly positive solution to g(xo) = xo then condition (3.36) is equivalent
to 0 < ¢'(xg) < 1.

Using the proof of theorem 3.9 we prove there exists some bounds on n(t =
0,.) that gives the local exponential convergence. As we see it in section 5 the
following result is sharp because for 'large variations’ of the initial data, there can
be oscillations.

THEOREM 4.5. Assume (3.66) for a > 0, g belongs to C*([0,c[), and there
exists an xo > 0 such that g(xo) = xo and

(4.8) 0<g'(z0) <1,

then there exists ny,n— > 0 such that

(4.9) z < g(x) <mo, Va€lao(l —n_),x0,

(4.10) zo < g(x) <z, Va v, zo(l+ny)[.

and

(4.11) I:'=min(1— sup ¢'(zz0), inf g¢'(229)—1)>0.
1<z<14n4 1=n-<z<1

Also for all m(0,.) that satisfies

(4.12) | m(0,.)/N(.) = 1 [eo< n :=min(n4,n-),
we have
(4.13) | m(t,.)/N() —1|eo<mn, Vt>D0,

and the local exponential convergence holds,

(4.14) / T it y)—N) | (y)dy < e ToN @90 / (0, 9) N () | $(u)dy.

PrOOF. The inequalities (4.9), (4.10) are just taylor formula. Now, we prove
the L*° bound then we use the proof of theorem 3.9 to conclude.

Stepl. Bound (4.13). Let r(t,y) = m(t,y)/N(y) then using the transport equa-
tion, we have,

(o /Oo r(t—y,y)duy"))
0 _ 1)1y9,
g(fo)
and r(t,y) := L(r)(t,y). But m(0,y)/N(y) € {f :| f — 1 o< n} and

LA f=1]e<nt —Af:| f—1]c<n},
implies that r € {f ;| f — 1 |cc< n} for all £ > 0.

r(t,y) =m(0,y)/N(y)licy + (
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Step2. Convergence. Then we adapt the proof of theorem 3.9, noticing that in
this case J <1+n4, J > 1 —n_ and J defined in (3.48) is equal to

)d )d
(4.15) J =min(l — sup (fl (so) s) (fl (sz0) 5) _1) >0,
1<2< 140, z—1 1-n_<z<1 z—1

thus I < .J and (4.14) follows. O

REMARK 4.6. Notice that when g belongs to C([0,00]), is convex and de-
creasing, and there exists only one strictly positive solution to g(z¢) = xo then the
inequalities given in remark 3.12 are equivalent to —1 < ¢'(xg) < 0.

5. Examples of oscillating solutions

In this part we give some examples where oscillations appear, i.e., there is no
convergence of the solution to a steady state.

5.1. Only unstable steady states. When all the steady states are unstable
and then a bounded solution to (1.6) is bounded then the solution to (1.6) can
oscillate. We see in the proof of theorem 4.1 and theorem 4.2 that, in the neigh-
borhood of the steady state N, the solution behaves as N + ¢ with e(t,.) ~ &(.)e
with A given by

o0
/ e dp(y') = 1/g'(z0) |,
0
when | ¢'(zg) |< 1 or ¢’(x9) > 1. Now, we are interested in the case where
g’ (z9) < —1. The existence of oscillating solution needs more information on dy,

g(x0) = o, ¢'(w0) < —1,
(5.1)
Po = SuPpep{p € C = B(p) =1/g'(z0)}, Re(po) = 0.

LEMMA 5.1. Assume (5.1) then

(5.2) €(t,0) = CePol (1 4+ Q(t)),
where
(5.3) Jlim Q(t) =0,

and xo is an unstable steady state.

PRrROOF. We refer to [5, 7] for the proof of this lemma which is based on the
Laplace Transform. O

We give an example of g such that all its steady states are 'unstable’ and an
example of du satisfying (5.1).

EXAMPLE 5.2. Let g(z) = kz(1—2)4 then the only steady states are {0,1—1/x}
and
§(2) = k(1= 2)s — rsgn, (1 - 2),
and ¢'(0) = &, ¢'(1 —1/k) = 2 — k and all the steady states are 'unstable’ when
K> 3.

The existence of a solution to (5.1) is not automatic. For instance, let du(y) =
110,11(y)dy and g'(x) = —2 then (5.1) is not satisfied and e converges to 0.
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EXAMPLE 5.3. Let du(y) = 1j,17(y)dy and g'(2¢) = —k where £ is large enough
then (5.1) is satisfied and e 0sc1llateb Indeed, it suffices to prove that

(5.4) (1—e)/p=—1/r,
have almost a solution with a strictly positive real part. Let p = a + ib, with
a,b €] — 00, 00[, (a,b) # (0,0), then (5.4) becomes
b
ksin(b)’

e 4 =—

and
1 1 b

e— — (1 Zwm(——2 ).
¢ cos(b) ( P ( ksin(b) )>
For all k > 1, there exists b €]37/2, 27| such that
b 1 1 b
_ - 1— Zln(—- —2
ksin(b) cos(b) ( P ( ksin(b) ))’
y <landa= —In(—

and for k large enough 0 < — ) > 0.

b
nsln(b rsin(b)

THEOREM 5.4. Assume g is bounded and all its fixed points satisfy

| 9'(z0) > 1,

and dp satisfies (5.1) then if m(0,.) & {fized points of g} the solution cannot con-
verge to a steady state.

PROOF. Indeed, the solution of (2.6) exists and is bounded, more precisely we
have

m(t,y) <supg(z), Vt<y,
and m(t,y) = m(y—t), Vt > y. Now, assume that m(t,.) converges in L ([0, o[, du)
to m(.) then T is a fixed point of g. But in a neighborhood of 7, we have | m—m |~
€(.)e*™" with A > 0 and thus || m — 7 || 11 ([0,c0[,d) cannot converge to 0. O

5.2. At most one unstable steady state. We focus on the cases where there
exist almost one unstable steady state, for instance, let d = 0, B(y) = (1/2)1,¢[2,4
and g(z) =21ifx > 1, g(x) =0 if x < 1 then

m(t,y) =2 Z Ly _te[34,3i41]5

satisfies 5 5
t —m(t =0
Gimtw)+ g mlty) =0

in distributional sense and

[ mten By =72 [ meiy
0
Z / Liyesigirndy = Z/ Lye(3i,3i+14Y,

i=—00 i=—00

but )
t—
/ . 1y€[3i73i+1]dy Z 1 iff [t - 4, t— 2] B} [31, 3 + 1],
t—
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FIGURE 2. transport of a periodic m(t,y)

and

o t—2

Z / Lyepizirndy > 1 iff Jig st [t —4,¢ — 2] D [3dg, 3o + 1.
i=—oco /t—4

Thus we have

00 t—2
g( Z/ Lyepizirndy) =2 iff Jig, st [t —4,t — 2] D [3dg, 3ip + 1],
: t—4

1=—00

0 t—2
g( Z / 1y€[3i’3i+1]dy) =0 iff Vig [t—4,¢— 2] not contain [3ig, 3ig + 1],
i=—o0 Y t—4

finally we obtain that

oo t—2 %)
(5.5) g( Z / Lyesizitndy) =2 Z Ljt—4,6-2]>[340,360+1]
i=—oo /174 ig=—00
oo t—2 %)
(5.6) g( Z /4 196[3i,3¢+1]dy) =2 Z 1t€[3i0,3io+1]7
i=—o00 Yt 1g=—00

and
(5.7) g(/ooo m(t,y)B(y)dy) = m(t,0),

is a periodic solution that oscillates between the stable steady states 0 and 2. See
Figure 2.

Here we prove that under the assumption of linearity of g around the unstable
steady state and a condition over the Fourier transform of Be™P,

o0
f(Be_D) = / Be_D(y)lyzoe_igydy,

—00

the unstable steady state generates a periodic solution to (1.6) (see [14]).

LEMMA 5.5.
Assume g is linear in a neighbourhood of the unstable steady state, i.e., if n = N +¢€
with € small enough then

o / Tty )duty)) = o ( / T NW)du)) / " ey )duty),

and the Fourier transform of ¢'( [, B(y')N(y')dy')B(y)e=PW) /B given by

R(E) = F(g ( / " BW)N( ) Bly)e "W 8)(6),
satisfies

(5.8) o = R(&) =1,
then there exists an oscillating solution in a meighbourhood of the unstable steady
state.
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FiGure 3. Example of g

PrROOF. Let n=N +¢€
Sre(t,y) + Felt.y) =0,
(5.9) o o
(t,0) = g ( / N )du(y)) / (¥ duly),

then let €(t) = é(t — y), we have

&t)=g'( /OOO N(y")dp(y')) /OOO &t —y)Bly)e Py /B,

and
F(€)(E)(1 = R(E)),

thus using (5.8), we obtain that F(€)(§) = nd¢,(§), n small enough, is a periodic
solution. O

5.3. Only one locally stable steady state. The following example gives a
local asymptotic convergence, i.e., a stable steady state in the case when g satisfies
(4.2) and does not satisfy (3.36), and which has oscillating solutions. This proves
that the smallness assumptions, in theorem 4.2 and so, in the Theorem 4.5 is
necessary. We notice that the limit case where B(y) = dy=1 gives the simplest
oscillating solutions, indeed, for all function J such that

J(t) = g(J(t = 1)),
then

m(t,y) = J(t = y),
is a solution to (2.6). Moreover, for all g that satisfies (4.2), g(1) = 1 = o,
g(l+€)=1—eand g(1 —€) = 1+¢, with 0 < € < 1, then one can take for instance

o0
J(t):=1+e¢ Z (_1)k1te]k,k+1[7
k=—oc0
that gives a periodic solution. The following theorem gives an example of peri-
odic solution for a g such that the only strictly positive steady state 1 is locally
asymptotically stable and nevertheless there exists some oscillating solution. Let g
satisfies

(5.10) g(x) =g > 1 +n)/A—-n), Vo<l-n,
(5.11) g(z) =0, Ve>1+mn,
(5.12) glx)=1, 1-n<z<1+n,

THEOREM 5.6. Assume (5.10)-(5.12) for 0 <n < 1/2 and
(5.13) Supp B=K C [a, ],
with co > a, 8 > 0 then for (see Figure 3)
(5.14) 0 =20/,
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(515) ’I”L(O, y) =g 1[07a] (y) + 1[a,a+eo] (y)a y <5,

there exists T > 0 such that

(516) n(T7 y) =g 1[0,04] (y) + 1[a,a+eo](y)7 y < 6

PROOF. The idea of the proof is simple, we use the transport equation and
its boundary condition to prove that after some times t1, t2, t3, t4, T the solution
comes back to the initial state on y € [0, §]. Indeed, consider the initial data (5.15).

For t; = €1, such that,

(517) eo+ge=1-—n,
we have
(5'18) ’I’L(tl, y) =g 1[0,a+61](y) + 1[a+61,a+el+eo] (y)a y < ﬁ

For to = t1 + €3, such that,
(5.19) €+ge+ge=1+n,
we have

(5.20)  n(te,y) = 1[0,62] +9 1[62,a+61+62](y) + 1[a+€1+62,a+60+61+62](y)a y < B.

For t3 = t5 + B — €3, such that,

(5.21) e&2+Ges=1+mn,
we have
(522) n(ti’ny) = 1[5—63—62,6—53] +9 1[[3—63,[3] (y)u Yy < ﬂ

for t4 = t3 + €4, such that,

(5.23) e+ ges—ges=1—mn,
we have
(5.24) n(ts,y) = Ljo,es] + 1p—es—en,8—ca] T 9 Lp—er,g1(¥)s ¥ < 0.

Finally, for T'=t4 + § — €4, we have

(525) n(Tv y) =g 1[07a] (y) + 1[a,a+e4] (y)a y<p.
Using (5.21), (5.23), we have ¢4 = 2n/g and thus using (5.14), we have ¢y = ¢4 and
n(T,y) = n(0,y) for all y < S. O

6. Generalization

In this section we extend the GRE to the problem (1.7) and (1.8), using the
same idea developed in section 4.
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6.1. Generalized age model (1.7). We define

(6.1) By = / " By)N()dy,

(6.2) B = /0 TN )y .

(6.3) dyis(y) y)dy/ / y)dy',
and

(6.4) due(y') y)dy/ /

THEOREM 6.1. Assume there exist a positive steady state to the problem (1.7)
and its dual,

#N(y) +d(y)N(t,y) =0,

(65) NO = ([ BONGy. [ 0N w)
0 0
—550W) +dy)e(y) = 6(0)x(y), ¢ =0,
for some function x > 0. Then for all positive convez function H, we have,
(6. o [ HO ) NNy = ~Da(n/N),
0
with

~Du(n/N) = N(0)6(0)|

f(Bo mﬁduB(y),ﬂl mﬁdue(y’)) o
H( I )/0 - [ G

f(BO,ﬁl

x(y)N(y)
) dy]'

PRroOF. Indeed, we have,

gt/omHnty/va( o (y)dy =
/ H'(n(t,5)/N (9)) oont,)6(0)dy,
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2 / " Hn(t,y)/N )N ()é(y)dy =
- / " H (nlt,y)/N ) d(w)n(t, 5) )y
- / h 82 [H(n(t,y)/N ()N (4)d(y)]dy
0 Yy

n / " Hnlt, )N ()

S

[N(y)o(y)]dy
t

(t.y) 9
N(y)zﬂé(y)any(y)dy,

3

-/ " H (n(t,5)/N ()

5 | HOC NN G =
- [ H )Nt oy
(0N O)N0)00) ~ [ H(nlt. )N ) [N @O0y
+ [T H ) /NS iy
Thus we have

7 /O oty B )dy . /0 ot )0)dy)
U N By [ N0 dy)
> n x(y)N(y)

and using (6.1)-(6.2) we conclude the proof of the theorem. O

~Dir(n/N) = N(0)$(0) | H(

Now, we return to the longtime asymptotic. Assumption (3.36) is modified as

Hag, ) + 1= Le2owwo) gy gy aoztory g

f(zo,y0) ap+ai ’
f(zz0,yy0) apztany . oorto1y
(6.7) 1< f(frz,yo;) < 30+041 A 30+a1 > 1,

aprtory f(zzo,yy0) . aprtony
ag+tar < f(zo,y0) <1 V(x,y) o aoton <1

and we have the following theorem.
THEOREM 6.2. Assume (6.7) and let

xN(y)
N(0)

(6.8) dy = (aodpp(y) + ardpug(y))/ (o + 1) > 0,

then the entropy associated to H(z) =| z — 1| is decreasing and n(t,.) — N(.) in
L([0, 00[x[0, co[, N (2, y)é(x, y)dxdy).
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PRrROOF. Using the theorem 6.1 and the equation (6.7), with H, () = (z — 1)+

and H_(z) = (z — 1)_, we obtain
P [ (.50 [ oty

f(Bo, Br) +

—Dp, (n/N) = N(0)

Using (6.7), we find

— Dy, (n/N) < N(0

but (6.8) implies that
—Dp. (n/N) < N(0)$(0)
(] oo -1) - [7(5-1), g ]

Proceeding analogously, we find that

~Dy_(n/N) < N(0)4(0)
([ sxoa -1) = [" (5 -1) X52a)

The proof follows that of the theorem 3.9 and we do not reproduce it here. O

REMARK 6.3. Assume there exist ag, By such that

Hag, 1) 1= f(@z0,yy0) V(z,y) : Qortoiy

f(zo,y0) aoton
f(zx0,YY0) +a1y . prtoary
(6‘9) 1< f(acg,yt);) <2- a3i+31 ’ V(l‘, y) : ﬁ <1

9 _ aoztany f(zzo,yy0) <1, Y(z,y) : aoztony 1,

aptaq f(zo,y0) @oton
with
N
xN(g;) dy = (aodps(y) + ardpug(y)) /(o +a1) = 0,

then the entropy associated to H(z) =| 1 — z | decreases and we have the global
convergence of n to N.

REMARK 6.4. The function f(z,y) = (z + y)¥ with 0 < w < 1 satisfies (6.7)
with a = /(2o + yo) and 8 = yo/(zo + yo)-
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6.2. Space and age structured model. Now we consider the following
space age model (1.8). We define

B(y,z)N(y, )

(6.10) du(y, z) = —= ,
/y/_o B(y',z)N(y', z)dy

and

(6.11) mofa) = [ Oj B(y,2)N(/, 2)dy .

where age y € [0, 00[ and space z €] — 00, 00[.

THEOREM 6.5. Assume there exist a positive steady state to the problem (1.8)
and its dual

2VN + d(y, 2)N(y, @) — Lv(y,2) ZN(y,2) =0,
V(0,2)N(0,2) = f( / By, 2)N(y, z)dy'),

0
(6.12) ¢ ZN |jzj=00=N [jz=00= 0,

—V(y, )6+ d(y, 2)d(y, v) — =v(y, ) Loy, x) =

6(0)B(y.2)f( / "B o) N 2)dy) / "B o) N( 2)dy

Then for all positive convex function H, we define,

H(#) = / / H(n/N)Ndydz,
0 —00
and we have

< n(ty', o) ’
P S Ny e 2mofa)

il BT L Fmo(@) )

- /OOO H(%)du(y,x)}dm

y=

[ N @0 ) N, 0l )y
y=0 Jr=—00

where U(0,z) = N(0,2)V(0,2)6(0, z).
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PROOF. Indeed, proceeding analogously to the theorem 6.1, we have

C‘i/z /OOO H(n/N)Nquyd:v/:o N(0,2)V(0,2)¢(0, )

=—00

[ (f( TOOB@’,x)n(t,y',m)dy’)) [~ /N B )N >dy}
H Y= = dx
f(/ By, x)N(y',z)dy’) /y/_OB Yy, 2Ny, z)dy

- N @ ety )N G )
then using (6.10), (6.11), we easily complete the proof. O

Assumption (3.36) becomes

Ve >0, Vz>1, 1< f(zmo(x))/f(mo(z)) <=z
(6.13)
Ve >0, YO<z<l1, 1> f(zmo(x))/f(mo(z)) >z

Then we have the following property, here we only use the dissipation term associ-
ated to the age.

THEOREM 6.6. Assume (6.13) and/ / n(0,y',2")o(y', 2" )dy' dz’ > 0, if
—o0 JO

there exists a solution to (6. 12), then

6.14 Je €]0,00[ : inf n(t,y 2oy, 2" )dy'dz’ > c.
>0

Moreover, if n(0,.,.)/N(.,.) € L?([0 oo[ [—o0, 00, N(v', 2" )o(y', x")dy'dx") for
some p > 1 then we have

(6.15)  Jim n(t,)/N() =1, LP([0, 00[x[~o00, 00, N(y/,2")o(y/,2')dy'da).

THEOREM 6.7. If additionally, we assume that for some pu > 0, we have
B(y,z) 2 a¢(y,z)/¢(0,z), Vy,z =0,

and
flzmo(@)) 4

. fmo(x))
I =min |1 - su —_— ),
[ z€] p[z>1 ( z—1 )
[Gmo() _ 4
inf (L) ] >0,
z€] [[2<1 z—1

Moreover, if r = Iainf;>o N(0,x) then we obtain
/ / n(t,y',2') — N, 2') | ¢(y/,2")dy' dx’ <
/ / n(0,y",2") = N(y',2") | (', 2')dy'da’.

The proof of this theorem follows that of theorems 3.9 and 3.10 and we leave it
to the reader. The existence proof of (N, A, ¢) solution to (6.12) can be performed
using Schauder’s fixed point theorem (see [8, 3, 11]).
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