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Abstract—Ontologies are core elements of numerous applica-
tions that are based on computer-processable expert knowledge.
They can be used to estimate the Information Content (IC) of the
key concepts of a domain: a central notion on which depend var-
ious ontology-driven analyses, e.g. semantic measures. This paper
proposes new IC models based on the belief function theoretical
framework. These models overcome limitations of existing ICs
that do not consider the inductive inference assumption intuitively
assumed by human operators, i.e. that occurrences of a concept
(e.g. Maths) not only impact the IC of more general concepts
(e.g. Sciences), as considered by traditional IC models, but also
the one of more specific concepts (e.g. Algebra). Interestingly,
empirical evaluations show that, in addition to modelling the
aforementioned assumption, proposed IC models compete with
best state-of-the-art models in several evaluation settings.

I. INTRODUCTION, PROBLEM AND CONTRIBUTIONS

Ontologies are central components of a large variety of
applications that rely on computer-processable domain expert
knowledge, e.g. medical information and clinical decision
support systems [1]. In particular, they provide taxonomies
defining partial orders of the key concepts of a domain
(such as disease classifications). By defining generalization
and specialization relationships (i.e. hypernym-hyponym re-
lationships) between concepts, these taxonomies give access
to consensual human cognitive views of concept hierarchi-
cal relationships. They are therefore of particular interest
for designing Artificial Intelligence systems and are largely
used in Information Retrieval, Computational Linguistics and
Approximate Reasoning to cite a few. An important aspect
of taxonomies is that they give the opportunity to analyse
intrinsic and contextual properties of concepts. Indeed, by
analysing their topologies and additional information about
concept usage, several authors have proposed models which
take advantage of these taxonomies in order to estimate the
informativeness or Information Content (IC) of concepts [2].
IC models are designed to mimic human, generally consensual
and intuitive, appreciation of concept informativeness. As an
example, most people will agree that the concept Algebra is
more informative than the concept Mathematics in the sense
that knowing the fact Lucie studies Algebra is more informative
than knowing that Lucie studies Mathematics – in this case, this
is ensured since the second fact is entailed by the other because
Algebra is a specific topic of Mathematics. Accurate concept
informativeness estimators are central for extending ontology
usage to applications which do not only depend on exact
reasoning. Indeed, various ontology-driven analyses, such as

computing the similarity of concepts, extensively depend on
accurate IC computational models. For instance, these models
play an important role in the definition of semantic measures
widely used in Information Retrieval, Knowledge Inference,
and Natural Language Processing.

The global aim of defining and using an ontology could
be to characterize the topics of interest of users by analysing
their book libraries. In this case, analyses will be based on a
taxonomy that organizes various book topics into a poset, as
specified in Figure 1.

Fig. 1. Taxonomy of book topics.

In this setting, the IC of concepts could be used to
characterize the center of interest of a specific user. Knowing
that a user has a textbook about Maths will be considered
less informative than knowing that he has a textbook about
Algebra. Indeed, due to the transitivity of the taxonomic
predicate, the taxonomy specifies that any book which is
associated to the topic Algebra is also associated to the topics
Maths and Sciences. In other words, when the library of a
specific user will be analysed, any books talking about Algebra
will contribute to increase the consideration that the user has
interest for the topics Algebra, Maths and Sciences. In existing
IC computational models, the informativeness of the concept
Maths is only regarded as a function of the number of its
(i) direct and (ii) indirect instances, i.e. the cardinality of the
set composed of (i) the books explicitly annotated by Maths
and (ii) the books annotated by Algebra and Geometry in this
case. Therefore, when the IC of a concept is computed using
existing models, the information relative to the number of
occurrences of its subsumers will not be taken into account,
e.g. in Figure 1 the number of occurrences of the concept



Maths will not be taken into account for estimating the IC
of the concept Algebra. However, this modelling choice can
lead to undesired results and may therefore not be adapted
to several usage contexts. Let us highlight the core of the
problem using a simple example. Considering an extreme case
in which a user has a library of 100 books among which: 98
are explicitly annotated by the topic Maths, 1 is annotated
by Algebra and 1 is annotated by Antiquity, we will obtain
similar IC values for the two topics Algebra and Antiquity.
Otherwise stated, this means that, in order to characterize a
user profile, knowing that the user is interested in books talking
about Algebra is just as much informative as knowing that
the user is interested in books talking about Antiquity; this,
even if we already knew that the user was extensively inter-
ested about the topic Maths (98 books). In our opinion, this
highlights a limit of existing IC computational models which
only consider partial information about concepts relationships
and observations – in contradiction to what intuition seems to
do. Indeed, in such a case, most people will agree that the
topic Antiquity carries more information than Algebra since it
enables identifying a potential center of interest of the user
that was not suspected considering other observations. This
paper proposes to define and study new IC models considering
the assumption that appraisal of concept informativeness is
contextual and highly impacted by the fact that we, cognitively
speaking, extensively consider inductive inference in daily life.
For instance, telling you that someone likes books of Maths
will tend to reinforce you to think that he may also like books
of Algebra. For convenience, throughout this paper, we will
denote this assumption the inductive inference assumption.

This paper proposes and evaluates new IC models that
overcome the limitations of existing models underlined above
by implementing the inductive inference assumption. These
models can be used to estimate new ICs which consider
occurrences of more general concepts when computing the IC
of a concept. This is done by integrating a bring-to-mind model
into the IC model, by considering that a concept occurrence
(Maths) may impact the IC of its descendants (Algebra). To
this end we propose to use well-known contributions made in
the belief function theoretical framework.

The paper is structured as follow. Section II introduces
the formalism and existing works on which is based our
contributions – among others, it presents existing IC compu-
tational models. Section III introduces interesting notions of
the belief function theoretical framework, and presents how we
propose to use them for defining new IC computational models
implementing the inductive inference assumption. Section IV
is dedicated to the evaluation and compares proposed models
to existing works. Evaluation is mainly discussed with regard
to the impact of the new IC proposals on semantic measures
accuracy. Section V summarizes our contributions and con-
cludes this paper.

II. FORMALISM AND EXISTING WORKS

A. Ontologies: Terminology and formalism

We consider an ontology from which can be derived, if
necessary after applying inference procedures, a taxonomy
O = (�, C) partially ordering (�) the concepts it defines
(C) – please refer to Figure 1 for an example. We denote

A(c) = {x ∈ C|c � x} and D(c) = {x ∈ C|x � c}
respectively the inclusive ancestors and inclusive descendants
of the concept c ∈ C. The root is the unique concept without
ancestors (A(root) = {root}) and a concept without descen-
dant is denoted a leaf (D(leaf) = {leaf}) ; leaves ⊆ C is
the set of leaves. We also denote leavesc the set of leaves that
are subsumed by the concept c, i.e. leavesc = D(c)∩ leaves.

A concept can be considered as a class composed of set of
instances, e.g. in Figure 1 the concept Maths can be used to
refer to the set of books which are annotated by the concept
Maths. We denote I the set of instances of our domain (books),
and I∗(c) ⊆ I the instances that are explicitly annotated by the
concept c (without considering any inference procedure based
on the concept partial ordering defined by the taxonomy). We
consider that no annotation associated to an instance can be in-
ferred, i.e. ∀(x, y) ∈ C×C, with x � y, I∗(x)∩I∗(y) = ∅. We
denote I(c) ⊆ I the instances that are associated to the concept
c considering the transitivity of the taxonomic relationship and
concept partial ordering �, e.g. I(Algebra) ⊆ I(Maths). We
therefore obtain ∀c ∈ C, I(c) =

⋃
x∈D(c) I

∗(x). From these
points we can stress that I(root) = I , and that ∀c ∈ leaves,
I(c) = I∗(c).

B. Existing Information Content models

Due to the transitivity of the taxonomic relationship the
instances of a concept x ∈ C are also instances of any
concept subsuming x, i.e. x � y ⇒ I(x) ⊆ I(y). This central
notion is generally used to discuss the specificity of a concept,
i.e. how restrictive a concept is with regard to I . The more
restrictive a concept, the more specific it is considered to be.
In the literature, the specificity of a concept is also regarded
as the Information Content (IC) that is conveyed by a concept;
both notions are synonyms. In this paper we will refer to
the notion of IC defined through a function IC : C → R+.
In accordance to knowledge modelling constraints, any IC
function must monotonically decrease from the leaves to the
root of the ontology such as x � y ⇒ IC(x) ≥ IC(y). Two
main approaches have been proposed to estimate the IC of a
concept, they are presented hereafter.

The Intrinsic approach estimates the IC of a concept by
making a topological analysis of the taxonomy and by studying
the location of its corresponding node in the taxonomy. Among
the earlier estimators that have been taken into account,
researchers have proposed to estimate IC of a concept based on
its depth, its number of ancestors/descendants or the number
of leaves it subsumes. As an example, Seco et al. [3] defined
the IC of a concept as inversely proportional to its number of
descendants:

ICSeco(c) = 1− log |D(c)|
log |C|

(1)

More refined expressions have been proposed. As an example,
Sanchez et al. [4] propose an approach that considers both the
number of leaves a concept subsumes, as well as its number of
ancestors. The rationale is that the less the number of leaves a
concept subsumes, the more informative it will be. In addition,
considering two concepts that subsume the same number of
leaves, the concept with the highest number of ancestors will
probably be more informative. With leavesc the leaves that are



subsumed by the concept c, the authors proposed the following
expression:

ICSanchez(c) = −log
|leavesc\{c}|
|A(c)| + 1

|leaves|+ 1
(2)

Intrinsic ICs are efficient to estimate the informativeness
of concepts by analysing the topological properties of their
taxonomical ordering. Nevertheless, they cannot be used
to take into account concept usage in specific application
contexts. However, in several cases, concept informativeness
can only be estimated with regard to a specific application
context, and must therefore be estimated considering concept
usage in this context. As an example, the concept Fuzzy
logic, unknown by most people, will be considered very
specific/informative in most context. However, it will not be
considered very informative to characterize articles published
at FuzzIEEE since most of them will be related to this topic.
To overcome this limitation of intrinsic approaches, extrinsic
evidence (i.e. that can be found outside the taxonomy) have
been taken into account to estimate concept informativeness.

The Extrinsic approach is based on Shannon’s Information
Theory and proposes to assess the informativeness of a concept
by analysing a corpus of texts. Originally defined by Resnik
[2], the IC of a concept c is defined to be inversely proportional
to p(c), the probability that c occurs in a corpus. Considering
that evidence of concept usage can be obtained by studying
a collection of entities (books) annotated by concepts, the
probability that an instance of I belongs to I(c) can be
defined such as p : C → [0, 1] with p(c) = |I(c)|/|I|. The
informativeness of a concept is next assessed by defining:

IC(c) = −log p(c) (3)

We have introduced intrinsic and extrinsic approaches that
are used to estimate the IC of concepts defined into a taxonomy
– additional examples of IC expressions can be found in [5].
Intrinsic formulations cannot take into account context-specific
specificities about concept usage. In addition, extrinsic models
that overcome this limit only consider information related to
the descendants of a concept to estimate its informativeness.
Therefore, these models do not implement the inductive in-
ference assumption introduced in Section 1: even if a large
number of observations have been made for a concept, this will
not reinforce our confidence to observe one of its descendants,
e.g. Knowing that Lucie has 98 Math books in her library, the
two additional facts (i) Lucie has a book on Algebra and (ii)
Lucie has a book on Antiquity are both equally informative.
Thus, both intrinsic and extrinsic IC models, by design, fail to
implement the inductive inference assumption we would like
to integrate for estimating concept informativeness. The next
section introduces our proposal to overcome this limitation.

III. IC MODELS BASED ON BELIEF FUNCTION
THEORETICAL FRAMEWORK

Let consider the example provided in Section I: knowing
that Lucie studies Algebra is more informative than knowing
that Lucie studies Maths – according to the taxonomy of Figure
1 that shows that Algebra is a leaf while Maths is one of
its parent. The statement Lucie studies Maths means that the

question: What does Lucie study? cannot be answered more
precisely by the informer. However, we can assume that this
statement may only convey an imprecise information about
Lucie because of informer lack of knowledge. And that, a more
precise answer which could only be provided by an informer
with deep knowledge about Lucie, would make clear that Lucie
studies Geometry or Algebra. This is the assumption we will
use to implement the inductive inference assumption using the
belief function theoretical framework.

Prior to introduce our modelling strategy, we stress the
two main implications of considering this assumption. First,
by considering that an annotation or answer (e.g. Maths)
is imprecise if it does not refer to a leaf, we assume (A)
that all annotations/answers could, in the absolute, always be
reduced to a leaf or a set of leaves. This is not always true.
As an example, a book talking about “Ancient Babylonian
mathematics” could refer to the topic mathematics without
explicitly discussing (a) specific discipline(s) – saying that
annotating this book by the concept Maths is imprecise would
be inappropriate. In addition, by considering (B) that an
imprecise annotation/answer refers to a subset of leaves, we
make a closed-world assumption, i.e. we consider that all
precise answers can be expressed using a subset of leaves of
the taxonomy, and that all possible answers are therefore made
explicit into the taxonomy. Otherwise stated, it is considered
that all answers are covered by the ontology – which therefore
is assumed to completely model the domain of interest. This
is in contradiction with the open-world assumption classically
considered in Knowledge Representation and will therefore
not be adapted to all cases, e.g. a book talking about Logics
(a concept not specified into the taxonomy) could not be
annotated by Geometry or Algebra. We have underlined the
implications of considering that annotations that are not leaves
are imprecise for our modelling strategy. However, we defend
that these two implications are intrinsically tied to the inductive
inference assumption we want to model. The first implication
(A) is not contradictory with human cognitive model that relies
on induction, i.e. telling you that Lucie studies Maths will
not prevent you thinking that she may study Geometry or
Algebra. Implication (B) is related to the fact that inductive
inferences made by people are made mostly by considering
their understanding of the world. For these two reasons, the
implications induced by considering that a non-leaf annotation
is imprecise are considered acceptable and mandatory for
modelling the inductive inference assumption considering the
facts: (i) we cannot know which annotation is imprecise and
(ii) only a partial representation of the domain is modelled into
the ontology.

Our modelling strategy to represent the imprecision of
concepts is to associate to each concept a subset of a finite set
that can be used to represent the precise answers/annotations.
This will be illustrated through an example. Each precise
answer corresponds to a precise concept (leaf) defined into the
considered finite set. An imprecise concept will be represented
using the representations of the precise concepts it subsumes.
As an example, the imprecise concept Maths will therefore
be represented by ΩMaths = {ωM1, . . . , ωMk} where k is
the number of Maths descendants that are precise (part of
the set of leaves). In our book taxonomy (Fig. 1) k = 2,
ΩMaths = {ωAlgebra, ωGeometry}. In the following ω will
refer to a leaf that corresponds to a precise concept. Therefore,



by considering this setting, the only information that can be
deduced from the answer Lucie studies Maths to the question
What does Lucie study? is that: ω ∈ ΩMaths.

Let generalize this idea for a taxonomy O = (�, C). We
associate each concept in leaves to an element in a finite set
denoted Ω = {ω1, ω2, . . . , ωn}. For each concept c ∈ C,
Ωc denotes the subset of Ω that only contains the elements
associated to leaves in D(c)∩ leaves. Then we can generalise
the first association between leaves and Ω to an association
between C and 2Ω (the power set of Ω). To each concept c ∈ C
is associated Ωc ∈ 2Ω. To avoid situations where Ωc = Ωc′

with c 6= c′, a fictional element ωc is added to Ω for each
concept c that is not a leaf – the representation of c is therefore
defined such as Ωc =

⋃
x∈D(c)

{ωx}. Otherwise stated, we define

a specific expression of the function ρ defined in the framework
of [6] to characterize the representation of a concept. This
representation will be used to manipulate the information
carried by a concept: ρ is defined as follow ρ : C → 2Ω

with Ω built as specified above; for convenience we consider
ρ(c) = Ωc. Figure 2 illustrates how the representation of a
concept is built.1

Fig. 2. Illustration of concept representations

Recall that we assume that when a document is annotated
by a concept c ∈ C, the annotation is imprecise as soon as
c is not a leaf. Any of the leaves subsumed by c is possibly
mentioned in the document annotated by c, but the available
information is only c. To model this, we reconsider the existing
probability framework with evidence theory (also called theory
of belief functions). This framework is well-suited to our
setting since it introduces a probability distribution defined on
2Ω. We will now introduce how it can be used to model the
inductive inference assumption.

1Note that, for convenience, the figure does not show the elements of Ω
that are added for each non-leaf concept in order to avoid Ωc = Ωc′ with
c 6= c′.

A. Belief functions

The theory of belief functions was introduced by Shafer [7]
to model imprecision and uncertainty. It is applied in several
domains in which information is provided by imprecise sensors
or expert judgements [8]. The most important functions defined
in this model are summarized in the following.

Let Ω represents a finite set of elements. A mass function
m is a probability distribution defined on 2Ω, it is also called
a basic probability assignment (bpa): m : 2Ω −→ [0, 1]. It
satisfies the probability condition

∑
A⊆Ω

m(A) = 1; this reflects

the convention that one’s total belief has measure one. In the
initial definition of Shafer, m obeys m(∅) = 0, i.e. no belief
ought to be committed to the empty set.

Shafer [7] gives the following sense to m(A), A ⊆ Ω:
m(A) is the portion of belief that is committed to A and to
nothing smaller. Dubois [9] explains this by stating: m(A) is
the probability that an agent does not know anything more
than ω ∈ A.

If we try to establish a link with our taxonomy and the
instances of our domain, we can say that Ω is used to represent
the leaves of the taxonomy. In addition, m(Ωc) refers to
|I∗(c)|
|I| and more particularly to the probability of observing

an instance of c – note that by considering I∗(c) the instances
of any descendant of c are excluded.

Elements A ⊆ Ω such that m(A) > 0 are called focal
elements and their set is denoted by F. The quantity m(A)
measures the belief that is exactly committed to A, not the total
belief committed to A. To measure the total belief committed
to A, the quantities m(B) for all proper subsets B of A must
be added to m(A). It is captured by the belief function, Bel :
2Ω −→ [0, 1] which is defined as follow:2

Bel(A) =
∑
B⊆Ω
B⊆A

m(B)

In our taxonomy Bel(Ωc) is the sum of masses of all subsets
of Ωc – these subsets prove Ωc: if an instance of Algebra is
observed this proves that an instance of Maths is observed. On
the other side, in this setting, as well as in frameworks like [2],
observing an instance of Maths does not inform about what
we can say regarding Algebra, i.e. according to the inductive
inference assumption.

In our approach, we propose to deal with this problem
through the plausibility function as a model of inductive infer-
ence assumption. A plausibility function Pl : 2Ω −→ [0, 1] is
defined as follow:

Pl(A) =
∑
B⊆Ω

B∩A6=∅

m(B)

2As we can see, for a concept c, Bel(Ωc) is the quantity defined by Resnik
[2] as the probability of observing an instance of concept c denoted p(c):
Bel(Ωc) = p(c) =

|I(c)|
|I| . Note that p is not a distribution probability on

C since p(root) = 1 and elements of C are not considered disjoint for
p. Moreover, the distribution bel associated to the measure Bel is neither a
probability distribution on Ω since

∑
ω∈Ω

bel(ω) =
∑

ω∈Ω
Bel({ω}) = 1 does

not generally hold, e.g. as soon as a non singleton element of Ω has a mass
then

∑
ω∈Ω

Bel({ω}) < 1.



where Pl(A) expresses the extent to which one finds A cred-
ible or plausible. As an example, since ΩAlgebra ⊂ ΩMaths,
the mass of ΩMaths is used to compute the plausibility of
ΩAlgebra. Then the higher the probability of observing concept
Maths, the more credible observing an instance of Algebra.

When focal elements are imprecise, the probability of any
event A ⊆ Ω, denoted Pr(A) is imprecise and Bel(A) and
Pl(A) represent, respectively, the lower and upper probabili-
ties of event A, that is, Pr(A) ∈ [Bel(A), P l(A)].

As our aim is to define an IC using our framework, we have
to choose a measure on which the IC will be defined. In the
theory of belief function, the pair (Bel, P l) is the counterpart
of the traditional probability Pr. The judicious use of this
pair in order to replace Pr is to take them together. However,
because the IC is commonly used through an indicator in R, we
consider that summarizing the pair (Bel, P l) by a single value
for each concept is the best alternative. In addition of using the
single value Bel or Pl, others measures can be proposed. For
instance, we could use the probability measure BetP called
pignistic probability measure. BetP was proposed by Smets
[10] via its associated pignistic probability distribution BetPm

which is derived from the mass function m. BetPm describes
the credal state, it is defined as follow, ∀ω ∈ Ω:

BetPm(ω) =
∑
A⊆Ω
A3ω

m(A)

|A|

Thus BetP (A) =
∑
ω∈A

BetPm(ω), ∀A ⊆ Ω. The proba-

bility distribution BetPm can be seen as the weighted sum
of uniform probabilities on each focal element where the
weights are their masses. In our context, BetPm is defined
for ω ∈ Ω, i.e. the elements associated to the leaves. In
the definition of BetPm, it is considered that the probability
of observing a leaf c such that we observed its ancestor c′
is 1
|Ωc′ |

(uniform probability on Ωc′ ). All these probabilities
are summed on all ancestors of c (only focal elements are
considered). Finally, the sum is weighted by the mass of the
ancestors of c: BetPm(ω) =

∑
Ωc′3ω

m(Ωc′ )
|Ωc′ |

.

Like the plausibility measure, the pignistic probability
measure takes advantage of the information we possess about
an ancestor to deduce information about descendants.

B. Belief functions and bottom-up propagation vs top-down
propagation

Let us consider the previous example of a user who owns
a 100 book library: 98 are explicitly annotated by Maths, 1 is
annotated by Algebra and 1 is annotated by Antiquity. In this
case, focal elements are F = {ΩMaths,ΩAlgebra,ΩAntiquity}.
Figure 3 provides bpa results on this part of the taxonomy.

As shown in Figure 3, the belief measure computation
corresponds to a bottom-up propagation of the instances:
if the library contains Algebra books it is obvious that it
contains Maths books (at least Algebra books). It corresponds
to the classical mechanism used by probabilist approaches as
proposed by Resnik. In addition to this bottom-up propagation
of instances, plausibility measure also performs a top-down
propagation of the instances: we have no evidence that the
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Fig. 3. Mass propagation in taxonomy

library of the user contains a book about Geometry, but we
have some evidence that the library contains Maths books.
This makes plausible the existence of Geometry books in the
library and corresponds to the inductive inference assumption
mechanism.

C. Using belief functions to compute IC

Let consider a taxonomy O = (�, C), a mass function
m : 2Ω → [0, 1], and Bel and Pl, respectively the belief
and plausibility functions. As each concept outside leaves can
take a mass e.g. ∃c ∈ C \ leaves, such m(Ωc) > 0, the
probability Pr(Ωc) is imprecise and we obtain Pr(Ωc) ∈
[Bel(Ωc), P l(Ωc)]. Considering this setting, several proposi-
tions can be stated to compute new ICs for all concept c ∈ C:

1) Bottom-up & Top-down approaches using Plausibility
(ICPl):

ICPl(c) = −log P l(Ωc) (4)

2) Bottom-up approach using Belief (ICBel):

ICBel(c) = −log Bel(Ωc) (5)

3) A summarizing convex mean of Bel(Ωc) and Pl(Ωc),
e.g. the arithmetic mean (ICm with α = 1/2):

ICm(c) = −log (αBel(Ωc) + (1− α)Pl(Ωc))

4) Pignistic IC (ICPig):

ICPig(c) = −log
∑
ω∈Ωc

BetPm(ω) (6)

Note that ICs based on Bel, Pl, their mean or BetPm

satisfy the monotony constraint, x � y ⇒ IC(x) > IC(y).
Table I summarizes the results of IC computations for the
example provided in Figure 3 – for each previous proposition
ICM (c) is applied only for measures M with M(c) 6= 0.
Recall that among the approaches shown in this table only
ICBel does not implement the inductive inference assumption.
As an example, we can see that ICPl and ICPig enable to
obtain IC(Algebra) < IC(Antiquity), according to what we
wanted to obtain by modelling the aforementioned assumption.



c ICPl ICBel [Bel, P l] ICPig

Geometry 0.0087 0.31
Algebra 0.004 2 [0.004, 2] 0.3
Maths 0.004 0.004 0.004 0.004

Antiquity 2 2 2 2
Topics 0 0 0 0

TABLE I. IC COMPUTATIONS

IV. EVALUATIONS

The aim of our proposal is to define a new IC model
that respects the assumption that occurrences of an event
must (i) impact the informativeness of both the event and
its generalization, but also (ii) expectations of more specific
events – this assumption has been detailed through the name
inductive inference assumption. The fact that ICPl (Eq. 4)
and ICPig (Eq. 6) correctly model this assumption has been
illustrated mathematically in Section III. We have also stressed
that existing proposals do not model this assumption and we
have underlined that this can be an issue in some specific
usage contexts, e.g. to estimate the informativeness of a
specific fact – please refer to the example provided in Section
II. We therefore consider that integrating this assumption in
IC models helps better estimating concept informativeness
considering that the usage context agrees with the inductive
inference assumption. This is not something that has to, or
even can, be validated since it is a modelling choice to agree
or not with this assumption. Note that, as we did in this paper
in order to stress the need of our proposal, because human
way of thinking is intuitively tight to inductive procedures,
it is easy to build examples for which good IC models will
require to take into account this assumption.

Nevertheless, even if the benefits of our proposals com-
pared to existing models have been stressed for several sit-
uations, we want to ensure that proposed models do not
negatively impact the accuracy of systems that extensively
rely on IC models, and that achieve good performances with
existing IC models. To this end, we propose to evaluate the
impact of the new IC models on the performance of semantic
similarity measures. This will be our first evaluation setting.
Secondly, we also propose to study the correlations of the IC
values estimated by existing and proposed models in a real
application setting. This will help us to analyse the effect of
considering the inductive inference assumption in estimating
concept informativeness.

Ideally, we would like to test the performance of our
proposals in modelling the inductive inference assumption.
However, this is something difficult to do since it would
require defining a procedure (e.g. metric) that could be used to
compare models implementing this assumption. Nevertheless,
since (i) we have stressed both the application and the added-
value of our proposal – the consideration of the inductive
inference assumption in IC models –, (ii) no prior model
considering this assumption has been proposed in the literature,
and (iii) no test exists to evaluate how well this assumption
is modelled, this paper will focus on the two aforementioned
experiments, that is to say, evaluating the impact of proposed
IC modelling on semantic measure accuracy, and studying
correlations of existing and proposed IC models. Results can
be reproduced using source code and datasets published at
https://github.com/sharispe/published xp.

A. Effect on semantic measure accuracy

A large variety of semantic measures have been proposed
to estimate the semantic similarity or relatedness between pairs
of words or pairs of concepts. They are largely used in Infor-
mation Retrieval, Computational linguistics and approximate
reasoning to cite a few. Among the best accurate semantic
measure models, several proposals extensively depend on
accurate IC estimators – existing IC models such as Resnik’s,
Seco’s and Sanchez et al. models have been introduced in
Section II. We briefly present two measures that are extensively
used in the literature; we will consider them in this experiment.
Resnik [2] proposed to estimate the similarity of two concepts
c1 and c2 defined into a taxonomy using the IC of their
Most Informative Common Ancestor MICA(c1, c2), i.e. the
concept that subsumes both c1 and c2 that has the higher IC:

simResnik(c1, c2) = IC(MICA(c1, c2))

= max
a∈A(c1)∩A(c2)

IC(a)

One of the drawbacks of Resnik’s proposal is that it does
not take into account the specificity of compared concepts.
To solve this issue, Lin’s measure [11] is frequently used:

simLin(c1, c2) =
IC(MICA(c1, c2))

IC(c1) + IC(c2)

These two measures can be tuned choosing a specific IC model
including the ones that are proposed in this paper, e.g. ICBel,
ICPl, ICPig .

Semantic similarity measures are commonly evaluated re-
garding their capacity to mimic human appreciation of word
or concept similarity. To this end, the accuracy of measures
is evaluated regarding Pearson’s and Spearman’s correlations
between estimated and expected scores of similarity for a set
of pairs of words or concepts. Benchmarks that are used to
evaluate semantic measures are therefore composed of pairs
of words/concepts for which expected similarity scores are
provided – the expected score for a specific pair is generally the
averaged value of the several scores of similarity that have been
provided by a set of participants for this specific pair. Here
we propose to discuss the accuracy of measures considering
different IC settings based on existing and proposed models.
Three datasets have been used: (i) Rubenstein & Goodenough
(RG) [12], 65 pairs of words, (ii) Miller & Charles (MC) [13],
28 pairs of concepts and (iii) SimLex999 (SL) [14], we focused
on the 666 pairs of nouns provided by this dataset.

In the experiment, WordNet version 3.1 has been used to
obtain the partial order of the concepts we want to compare
[15] – only concepts associated to nouns were considered.
Aforementioned datasets (RG, ML and SL) provide pairs of
words with expected similarity scores. These words are not
disambiguated and have to be mapped into WordNet – a same
word may refer to several concepts. We used an existing
word-to-concept mapping to disambiguate pairs of words that
compose RG dataset. For both MC and SL datasets, for
each pair, we consider all possible comparisons considering
the sets of concepts associated to the two words. In these
cases, according to what it is generally done in the literature,
only the best similarity score of each pair was considered
to compute the correlations. Resnik’s IC model, as well as
proposed models depend on concept usage analysis. To obtain



statistics about WordNet concept usage we used the Princeton
WordNet Gloss Corpus3. In this experiment, we used both the
measures and IC implementations provided by the Semantic
Measures Library4 [16]. IC models introduced in this paper
have also been implemented using this library.

Table II presents the results obtained with each
dataset/measures. It shows the Pearson and Spearman correla-
tions for each measure configuration for the three datasets (RG,
MC and SL). Results are provided for the proposed IC models
(Belief, Pignistic and Plausibility) and best state-of-the-art IC
models – Seco (Eq. 1), Sanchez (Eq. 2) and Resnik (Eq. 3).
We also considered an intrinsic formulation of Resnik IC. This
IC is similar to classical Resnik IC by considering a single
occurrence of each concept; in the following it is denoted
Resnik (i.), i. stands for intrinsic. ICs based on plausibility
and pignistic probabilities implement the inductive inference
assumption, they are associated to the symbol * in the table.

Pearson Spearman
Resnik Lin Resnik Lin

Rubenstein & Goodenough
IC Belief 0.478 0.478 0.455 0.432
IC Pignistic* 0.481 0.480 0.455 0.424
IC Plausibility* 0.498 0.498 0.454 0.423
IC Resnik 0.477 0.477 0.468 0.439
IC Resnik (i.) 0.339 0.339 0.320 0.320
IC Seco 0.482 0.480 0.455 0.443
IC Sanchez 0.516 0.514 0.451 0.435

Miller & Charles
IC Belief 0.761 0.833 0.756 0.797
IC Pignistic* 0.774 0.843 0.758 0.794
IC Plausibility* 0.827 0.836 0.769 0.791
IC Resnik 0.809 0.838 0.793 0.804
IC Resnik (i.) 0.280 0.281 0.266 0.266
IC Seco 0.808 0.841 0.760 0.808
IC Sanchez 0.836 0.847 0.775 0.795

SimLex 666
IC Belief 0.528 0.597 0.531 0.582
IC Pignistic* 0.534 0.594 0.533 0.583
IC Plausibility* 0.527 0.564 0.521 0.565
IC Resnik (i.) 0.114 0.114 0.108 0.108
IC Resnik 0.538 0.601 0.527 0.588
IC Seco 0.482 0.480 0.525 0.592
IC Sanchez 0.541 0.583 0.527 0.583

TABLE II. ACCURACY OF RESNIK’S AND LIN’S SEMANTIC
SIMILARITY MEASURES CONSIDERING DIFFERENT IC MODELS

The results that have been obtained on each dataset using
Resnik’s and Lin’s measures are similar. They highlight that
proposed IC models (Belief, Pignistic, Plausibility) compete
with best state-of-the-art models when evaluated through their
effect on semantic measure accuracy. This is not surprising for
the IC model based on the Belief function since it is a variant
of Resnik’s extrinsic IC formulation. However, interestingly,
these results show that, in addition to modelling the inductive
inference assumption, both pignistic and plausibility IC models
lead to semantic measure accuracies that are comparable to
best efficient state-of-the-art IC models. Since this result could
be explained by the fact that these IC behave similarly to
accurate state-of-the-art IC models, we propose to evaluate

3http://wordnet.princeton.edu/glosstag.shtml
4http://www.semantic-measures-library.org

the correlations between the different IC models. Note that,
because of the poor accuracies obtained by measures based on
Resnik (i.), these results cannot be explained by the fact that
IC model selection would have no effect on semantic measure
accuracy.

B. Correlation between IC models

We have analysed the correlations between the estimations
made by the IC models best performing in the previous exper-
iment. To this end, we have computed the IC of each WordNet
concept using all models. Table III shows the correlations that
have been obtained between pairs of models.

The results underline that existing extrinsic models, i.e.
proposed by Sanchez et al. and Seco, have very similar
behaviours in the setting of this experiment. We also observe
important differences between the IC estimations made by
IC models that implement the inductive inference assumption
(IC Pignistic and Plausibility) and traditional IC models.
This result is important since it stresses that, as expected,
these two types of IC models indeed behave differently. It
therefore means that the good accuracies obtained in the
previous experiment were due to the fact that IC models
implementing the inductive inference assumption can also be
used as good IC estimators – at least in the context of semantic
similarity assessment. We also observe that the IC based on
the pignistic probability has a behaviour that is more similar
to the IC belief model than the IC Plausibility model. These
results suggest that, according to the theory which ensures that
∀c ∈ C, ICPl(c) ≤ ICPig(c) ≤ ICBel(c), the IC based on
pignistic probabilities is an interesting solution for designing
accurate ICs that model the inductive inference assumption,
while obtaining IC estimations that are not radically different
to those made by traditional models.

We stress that the empirical results that have been obtained
for both intrinsic (ICSeco, ICSanchez , ICResnik(i.)) and ex-
trinsic ICs (i.e. ICResnik, ICPl, ICPig , ICBel) depend on
multiple experimental setting variables, e.g. topology of the
taxonomy and annotation distribution. Indeed, as an example,
if the annotations considered mostly refer to specific/precise
concepts, the variations between ICPig and ICResnik are
expected to be low – because the variations due to the
consideration of imprecisions (i.e. top-down propagation of
masses) will be low. More experiments have to be performed
and analysed in order to critic the degree of generality of the
conclusions driven by the results obtained in the experiments
presented in this paper. This is a work in progress, addi-
tional experiments are currently made to better understand and
complete the interesting results obtained in these experiments
about new IC models implementing the inductive inference
assumption

V. CONCLUSION

We have presented new IC models based on the belief
function framework; they can be used to estimate the informa-
tiveness of concepts defined into a taxonomy by taking into
account both topological ordering of concepts and statistics
about their usage (e.g. in texts). In particular, through the
definition of two extrinsic IC models based on the plausibility
function and the pignistic probability, we have presented



IC A IC B Pearson Spearman
Sanchez Seco 0.903 0.999
Sanchez Resnik 0.842 0.670
Seco Resnik 0.900 0.672
Belief Sanchez 0.547 0.733
Belief Seco 0.638 0.734
Belief Resnik 0.860 0.939
Plausibility* Sanchez 0.195 0.060
Plausibility* Seco 0.163 0.069
Plausibility* Resnik 0.227 0.147
Pignistic* Sanchez 0.462 0.402
Pignistic* Seco 0.522 0.406
Pignistic* Resnik 0.697 0.667
Belief Plausibility* 0.209 0.133
Belief Pignistic* 0.777 0.661
Plausibility* Pignistic* 0.424 0.430

TABLE III. CORRELATIONS BETWEEN IC MODELS

innovative IC models implementing the inductive inference as-
sumption, i.e. that occurrences of a concept must (i) impact the
informativeness of both the concept and its generalization, but
also (ii) expectations of the concepts it subsumes. The rationale
of considering such a bring-to-mind model is that, intuitively,
a statement increases the credal state of the statement it entails,
e.g. telling you that someone likes books of Maths will tend to
reinforce you to think that he may like books of Algebra. These
models have the interesting property to overcome the inability
of existing ICs to model this behaviour, despite the fact that it
seems to play a central role in human cognition. In addition,
by regarding some concepts as imprecise expressions of other
concepts, these new IC models propose an original view of the
information conveyed by concept occurrences in consideration
of concept partial ordering. They also propose solutions to take
advantage of pieces of information that were simply excluded
by existing models. First empirical analyses based on the study
of the impact of IC models on semantic measure accuracy have
shown that proposed models compete with best accurate state-
of-the-art IC models. For these reasons, we are convinced that
expressions of IC modelling the inductive inference assumption
are relevant for defining models in several settings, e.g. rec-
ommendation, information retrieval, computational linguistics.
Nevertheless, we stress that the semantics associated to the
implementation of the inductive inference assumption may not
been adapted to all usage contexts – further experiments as
well as extensive analyses of IC performances under specific
usage contexts (e.g. other that semantic similarity assessment)
are therefore required in order to fully understand the benefit
of each IC modelling approach; the assumption as well as
the implications of proposed IC modelling have been detailed
in the paper. Interestingly, our study makes the link between
the contributions between areas of research that had, so far,
only few connections. Indeed, by underlying the connections
between the belief function and Resnik IC, as well as the
suitability of plausibility function and pignistic probability for
implementing the inductive inference assumption, we highlight
the interesting impact that the belief function framework may
have for areas of research related to IC estimation, semantic
measures, and more generally approximate search based on
ontologies.
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