
HAL Id: hal-01485037
https://hal.science/hal-01485037v1

Submitted on 8 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bayesian sparse estimation of migrating targets for
wideband radar

Stéphanie Bidon, Jean-Yves Tourneret, Laurent Savy, François Le Chevalier

To cite this version:
Stéphanie Bidon, Jean-Yves Tourneret, Laurent Savy, François Le Chevalier. Bayesian sparse esti-
mation of migrating targets for wideband radar. IEEE Transactions on Aerospace and Electronic
Systems, 2014, vol. 50 (n° 2), pp. 871-886. �10.1109/TAES.2013.120533�. �hal-01485037�

https://hal.science/hal-01485037v1
https://hal.archives-ouvertes.fr


  

 

To link to this article : DOI : 10.1109/TAES.2013.120533 
URL : http://dx.doi.org/10.1109/TAES.2013.120533 

To cite this version : Bidon, Stéphanie and Tourneret, Jean-Yves and Savy, 
Laurent and Le Chevalier, François Bayesian sparse estimation of migrating 
targets for wideband radar. (2014) IEEE Transactions on Aerospace and 
Electronic Systems, vol. 50 (n° 2). pp. 871-886. ISSN 0018-9251 

Open Archive TOULOUSE Archive Ouverte (OATAO)  
OATAO is an open access repository that collects the work of Toulouse researchers and 
makes it freely available over the web where possible.  

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ 
Eprints ID : 17116 

Any correspondence concerning this service should be sent to the repository 

administrator: staff-oatao@listes-diff.inp-toulouse.fr 



Bayesian Sparse Estimation

of Migrating Targets for

Wideband Radar
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FRANÇOIS LE CHEVALIER, Senior Member, IEEE
Delft University of Technology
The Netherlands

Wideband radar systems are highly resolved in range, which is a

desirable feature for mitigating clutter. However, due to a smaller

range resolution cell, moving targets are prone to migrate along the

range during the coherent processing interval (CPI). This range

walk, if ignored, can lead to huge performance degradation in

detection. Even if compensated, conventional processing may lead to

high sidelobes preventing from a proper detection in case of a

multitarget scenario. Turning to a compressed sensing framework,

we present a Bayesian algorithm that gives a sparse representation of

migrating targets in case of a wideband waveform. Particularly, it is

shown that the target signature is the sub-Nyquist version of a

virtually well-sampled two-dimensional (2D)-cisoid. A

sparse-promoting prior allows then this cisoid to be reconstructed

and represented by a single peak without sidelobes. Performance of

the proposed algorithm is finally assessed by numerical simulations

on synthetic and semiexperimental data. Results obtained are very

encouraging and show that a nonambiguous detection mode may be

obtained with a single pulse repetition frequency (PRF).
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I. INTRODUCTION

Radar systems transmitting a train of pulses at constant
pulse repetition frequency (PRF) are subjected to two
types of ambiguities: range ambiguities when the PRF is
too large to ensure that all echoes are received within the
pulse repetition interval (PRI), and velocity ambiguities
when the PRF is less than the Doppler spectrum width of
the echoes [1]. The unambiguous range Ra and velocity va

are linked by the fundamental relation

Ra va = cλc/4

with c the speed of light and λc the radar wavelength. It
shows that one cannot increase the ambiguous range
without decreasing the ambiguous velocity, and
reciprocally, one cannot increase the ambiguous velocity
without decreasing the ambiguous range. Therefore, in
many radar applications, range and velocity of a target
cannot be retrieved simultaneously without ambiguities
[2]. In other words, when choosing the PRF, it is often not
possible to comply with the Nyquist sampling criterion to
measure both range and velocity of a target.

Radar designers have used different techniques to
remove ambiguities and then reconstruct the observed
scenario unambiguously. Most of them consist in
transmitting several bursts with different PRFs and
remove ambiguities via an implementation of the Chinese
remainder theorem, e.g., [3]. Nevertheless, these methods
entail several drawbacks.

On the other hand, wideband radar systems may offer
an alternative and elegant solution to the problem of
ambiguity removal [4]. Indeed, let us assume from now on
that a low PRF (i.e., there are no range ambiguities but
many velocity ambiguities occur) with a wide
instantaneous bandwidth is considered. Due to the
subsequent high range resolution, fast moving targets are
prone to migrate during the coherent processing interval
(CPI) leading to a range-velocity coupling. The received
digitized signal can then be seen as a set of coherent
observations in adjacent narrowband channels whose
analog counterparts would be identical but whose
(slow-time) sampling period would increase with the
subband [5, 6]. Since a low PRF is under consideration,
this means that on each subband the same signal is
observed but with a linearly increasing aliasing
phenomenon. From these undersampled observations, one
may wonder if the signal can be reconstructed
unambiguously. Hence, the problem of target detection in
case of a constant low PRF wideband waveform arises
naturally as a compressed sensing problem.1

Compressed sensing or compressive sampling (CS) is
a recently new signal processing paradigm that states that

1We stress out here that we do not discuss in this paper the problem of
sampling rate in the fast-time. This is also of great concern since for
wideband waveform the number of samples in this dimension may be
very high. Nonetheless, this work is concerned only with the problem
arising when the slow-time domain is undersampled.



a sparse signal can be fully reconstructed from
sub-Nysquist observations [7, 8]. It is generally a
two-part problem where on one hand the undersampling
scheme is studied and on the other hand reconstruction
algorithms are designed to fully recover the low-rate
observed signal. CS constitutes thus a genuine
breakthrough and has been investigated in many domains
of application; radar is obviously one of them [9–14]. In
the case of our low PRF wideband signal, the observed
data are naturally undersampled so that one is left here
with the unambiguous reconstruction of the observed
scenario. Assuming compressibility of the signals of
interest (i.e., the targets), the reconstruction problem
appears then as an ill-posed problem. So far, ℓp>0-norm
minimization approaches have been mostly used to
estimate the target scene in various radar applications:
see [12,15] and references therein. Note also the ℓ1

penalized least squares method applied to wideband signal
in [16]. We propose here to regularize the estimation
problem via a fully Bayesian approach where not only a
sparsity inducing prior is used to describe the signals of
interest but also the estimation process is led via a
Monte-Carlo Markov chain (MCMC). A Bayesian
framework has been favored in this work due to several
advantages it has been offering [17]. Firstly, instead of
providing only an estimate of the radar scenario, other
parameters are also estimated (i.e., thermal noise power,
average target power, level of sparsity). Moreover, not
only point estimates are obtained but full posterior
distributions are estimated which may be of interest to
obtain measures of confidence for the estimates.
Furthermore, in our case, only a few parameters have
to be tuned by the radar operator. As introduced later,
these parameters have a direct physical meaning, which
renders the tuning comprehensible.

The remainder of the paper is organized as follows.
In Section II, the conventional data model for a low
PRF wideband signal is presented. Particularly, the
signature of interest is interpreted as a bidimensional
cisoid whose undersampling increases linearly with the
subband. Then in Section III, assuming a clutter-free
scenario, a hierarchical Bayesian model is presented
where a sparse promoting prior is assumed to favor a
sidelobeless representation of the targets. Minimum
mean square error (MMSE) and maximum a posteriori
(MAP) estimators are derived accordingly. Performance
of the Bayesian estimators is then assessed in Sections IV
and V via synthetic data and experimental data collected
from the PARSAX radar system [18]. Section IV
concludes with a discussion on upcoming extensions to
this work.

II. SIGNAL MODEL FOR WIDEBAND RADAR

In this section, the data model for a wideband radar
system is introduced. A particular focus is put on the
scatterer signature that is shown to be the undersampled
version of a virtual but well-sampled signal.

A. Radar System and Received Signals

The system under consideration is a pulsed-Doppler
radar with wideband waveform. The radar sends a series
of M pulses with PRF fr = 1/Tr where Tr is the PRI. By
wideband we mean that the bandwidth B is nonnegligible
compared with the carrier frequency fc = c/λc.
Furthermore, the range migration of each scatterer is
assumed to be negligible within the duration Tp of a single
pulse but may be significant during the whole CPI, viz

vTp ≪ δR and vMTr ≫ δR

where v is the (constant) radial velocity of the scatterer
and δR = c/(2B) is the range resolution. A low PRF is
considered so that no-range ambiguities occur but the
maximal Doppler frequency is aliased, i.e., 2vmax fc/c >

1/(2 Tr) where vmax represents the maximum target
velocity expected for a scatterer.

Usually with narrowband radar, detection is performed
range gate by range gate. Nevertheless, in case of a
wideband waveform, moving targets migrate so that
detection is more conveniently performed on low range
resolution (LRR) segments consisting of the returns
collected on K adjacent range gates [5, 19, 20]. Samples to
be processed can thus be represented by a K × M matrix
where the first and second dimensions refer, respectively,
to the fast- and slow-time. However, the data model can be
more conveniently expressed after applying a range
transform (a simple fast Fourier transform (FFT)) on the
fast-time. Thus, it is assumed in the following that the
samples are expressed in the fast-frequency/slow-time
domain.

In absence of clutter and in case of multiple scatterers
in the scene, the K × M data matrix can finally be
expressed as

Y =
N

∑

t=1

αt At + N (1)

where N is the receiver noise and N, αt, and At represent,
respectively, the number of scatterers, the tth complex
amplitude, and signature. The receiver noise is assumed to
be spectrally white on both dimensions and is modeled by
a white Gaussian random signal with power σ 2. The
signature At is detailed in the next section.

Note that in the remainder of the paper, an equivalent
vector notation is also used for (1), i.e.,

y =
N

∑

t=1

αt at + n (2)

where each KM-length vector involved is the
row-vectorization of its clearly identifiable matrix
counterpart.

B. Scatterer Signature

1) Conventional Expression: The scatterer signature A
involved in (1) has been studied earlier in e.g., [5, 19–21]
and was shown to be the product of a two-dimensional



(2D) cisoid with cross-coupling terms. More precisely, the
(k, m)th element of the matrix A can be expressed by

[A]k,m =exp

{

j2π

(

−τ0

B

K
k+

2vfc

c
Trm

)}

(2D-cisoid)

× exp

{

j2π
2v

c

B

K
Trkm

}

(cross-coupling terms)

(3)

where τ 0 designates the initial round-trip delay of the
scatterer. The 2D-cisoid in (3) is a conventional term that
involves the usual range frequency –τ 0 and the Doppler
frequency 2v fc/c associated, respectively, with the
sampling periods B/K and Tr. The cross-coupling terms are
specific to the wideband waveform and model the range
migration. It is worth noticing that, aside from the system
parameters, these terms depend only on the radial velocity
v. More information may therefore be retrieved about the
scatterer velocity in the case of a wideband waveform
when compared with a narrowband waveform. Moreover,
measuring velocity via range migration is unambiguous
contrary to Doppler frequency measurement.

A simple and straightforward way to exploit this
additional information is to sum coherently the samples of
the target signature (3). The resulting estimated amplitude
vector is given by [5, 22]

α̂CI =
aH y

‖a‖2
2

(4)

and can be implemented efficiently via a Keystone-like
transform [21, 23]. Unlike a conventional Doppler
processing, the coherent integration (4) allows the gain on
the target peak to be preserved [24]. However, high
sidelobes remain at ambiguous velocities rendering the
processing inadequate in case of a multitarget scenario.
We propose hereafter a novel interpretation of (3) to more
deeply exploit the information brought by the range
migration.

2) Towards a Sparse Representation:

a) Interpretation of the scatterer signature: To go one
step further with the expression of the scatterer signature,
we rewrite the expression (3) as follows

[A]k,m = exp

{

j 2π

(

−τ0
B

K
k +

2vfc

c
Tr,km

)}

(5)

where

Tr,k =
(

1 +
B

Kfc

k

)

Tr . (6)

Looking carefully at these two expressions, it appears
that for a given subband k, the scatterer signal is a
1D-cisoid with the same Doppler frequency as in (3) but
with a subband-dependent sampling period Tr,k which
increases linearly with the subband index. As a low PRF
has been previously assumed, this means that aliasing on
the slow-time occurs and increases with the subband index
too. This phenomenon is illustrated in Fig. 1 where a
1D-sine has been represented K times but with a linearly

Fig. 1. Observation and resampling of a cisoid. Solid line represents
analog version of cisoid with frequency 2vfc/c. Circle markers represent

observed data with period Tr,k. Square markers represent samples of
cisoid obtained with thinner period T̄r independent of subband index k.

increasing sampling period (circle markers). As can be
observed, the higher the subband index, the slower the
observed sine.

b) Shannon reconstruction: According to the Shannon
reconstruction theorem [25], each element [A]k,m can be
written via the following interpolation formula

[A]k,m =
+∞
∑

m̄=−∞
[ Ā]k,m̄sinc

{

π

(

m
Tr,k

T̄r

− m̄

)}

(7)

where T̄r is a sampling period that complies with the
sampling theorem, i.e.,

2vmaxfc

c
<

1

2T̄r

(8)

and Ā is the 2D-cisoid with frequency pair (–τ 0, 2vfc/c)
and sampling periods (B/K, T̄r )

[A]k,m̄ = exp

{

j 2π

(

−τ0
B

K
k +

2vfc

c
T̄rm̄

)}

. (9)

For a given subband k, the signal (9) corresponds to
the same 1D-cisoid as in (5) but this time with a constant
sampling rate f̄r = 1/T̄r chosen large enough to avoid
aliasing. Such samples are represented in Fig. 1 with
square markers. Interestingly, the virtual samples [ Ā]k,m̄ in
(9) correspond to data that would be received by a
narrowband radar (no range migration) with virtual
sampling period T̄r . By defining a new sampling period,
one defines also a new ambiguous velocity v̄a = cf0/(2f̄r )
larger than the initial ambiguous velocity va. Thus, if one
had access to samples [ Ā]k,m̄ and taking into account the
condition (8), one would have a nonambiguous mode. In
the remainder of this paper, we are interested in estimating
such samples. However, prior to that, it is worth noticing
that the formula (7) involves for each subband k an infinite
number of samples {[ Ā]k,m̄}m̄∈Z. To make the estimation



possible, we use a truncated version of (7), viz

[ Ā]k,m
1=

M̄−1
∑

m̄=0

[ Ā]k,m̄sinc

{

π

(

m
Tr,k

T̄r

− m̄

)}

(10)

with M̄ the number of virtual pulses considered. It is
chosen to ensure that for each subband, (10) is actually an
interpolation and not an extrapolation formula, namely

M̄ ≥
⌈

M

(

1 +
B

fc

K − 1

K

)

Tr

T̄r

⌉

(11)

where ⌈·⌉ denotes the operator that rounds towards plus
infinity. Note that M̄ could be chosen as a
subband-dependent parameter. However, for the sake of
simplicity this route is not taken here.

Applying the truncated-interpolation formula (10) to
each scatterer involved in the received signal (1) yields

[Y ]k,m =
M̄−1
∑

m̄=0

[3̄]k,m̄sinc

{

π

(

m
Tr,k

T̄r

− m̄

)}

+ [N]k,m

(12)

where 3̄ is a K × M̄ matrix representing the N scatterers
sampled virtually on the slow-time at T̄r , i.e.,

3̄ =
N

∑

t=1

αt Āt .

A row-vectorized version of (12) gives then

y = T λ̄ + n (13)

where λ̄ is the vector notation for 3̄ and T is a

KM × KM̄ block-diagonal matrix

(

T0 0

. . .

0 TK−1

)

whose

block Tk is an M × M̄ interpolation-matrix defined by

[T k]m,m̄ = sinc

{

π

[

m
Tr,k

T̄r

− m̄

]}

.

c) Expression in the fast-time/slow-frequency: In (13),
the KM̄-length vector λ̄ entails the virtual but
well-sampled signatures (9) of the N scatterers present in
the observation. As underlined before, if one could have
access to this vector, targets could be detected
unambiguously. However, estimating λ̄ from (13) is an
ill-posed problem as M ≪ M̄. A common way to
regularize this problem is to enforce sparsity on the
unknown vector λ̄ while minimizing the distance between
the observation y and the model T λ̄. However, this
approach cannot be applied directly as λ̄ does not have a
sparse nature (it is a sum of 2D-cisoids). A solution
consists in expressing λ̄ in the fast-time/slow-frequency
domain where sparsity can be invoked as each scatterer is
then ideally represented in this domain by a single peak
located around (–τ 0,t,2vt fc/c). Reformulating accordingly
the estimation problem leads to

y = H x + n (14)

with

H = TF−1 (15a)

x = Fλ̄ (15b)

where F is the matrix that transforms λ̄ from the
fast-frequency/slow-time domain to the
fast-time/slow-frequency domain. More precisely, the
matrix F is given by

F = F−1
K ⊗ FM̄ (16)

where ⊗ represents the Kronecker tensor product and F1

is the 1 × 1 discrete Fourier transform matrix, i.e.,

F1(δ1, δ2)=
1

√
1

exp

{

−j2π
δ1δ2

1

}

; δ1,2 ∈ {0, . . . , 1−1}.

Note that in the CS literature, T is often referred to as
the measurement or sensing matrix while F−1 is the
sparsifying or representing dictionary (the dictionary is
complete here as F−1 is a square matrix). Nonetheless, the
matrix T involved in (14) is neither a random matrix nor is
optimized to decrease the mutual coherence with the
representation matrix [26]. Instead, T stems from our
reconstruction design and does not claim any optimality.

To illustrate that the vector x in (14) is a good
candidate to give a sparse representation of the targets, it is
interesting to consider a no-basis mismatch case arising
when the scatterer frequencies correspond to the
frequency points defined by the matrix F in (16), i.e.,
when there exists (kt , m̄t ) ∈ {0, . . . , K − 1} × {0, . . . ,

M̄ − 1} such that
(

−τt ,
2vtfc

c

)

=
(

−kt

K
×

K

B
,
m̄t

M̄
× f̄r

)

. (17)

When (17) is verified it is straightforward to show that

x has exactly N non-zero elements with value
√

KM̄αt . In
light of this remark, the regularization principle based on
sparsity can therefore be invoked to solve the problem
(14). As stated earlier in Section I, sparsity on x is
enforced in this work by assigning an appropriate prior
promoting sparsity for each element of the vector. We
present in the next section the whole Bayesian model
adopted for the estimation problem. It is an extension of a
former model used for deconvolution of seismic data [27]
and for magnetic resonance force microscopy imaging
[28] to the case of complex radar data.

III. HIERARCHICAL BAYESIAN MODEL
AND ESTIMATION

A. Hierarchical Bayesian Model

Starting from the observation vector y and the linear
system in (14), a hierarchical Bayesian model is proposed
where prior probability distributions are assigned to the
unknown model parameters. As done conventionally,
these priors are chosen to reflect our degree of knowledge
or uncertainty about the unknowns while ensuring
mathematical tractability when deriving the posterior



Fig. 2. Graphical representation of proposed Bayesian model.

distributions. The whole model is represented in the direct
acyclic graph of Fig. 2 and described hereafter from the
bottom to the top of the graph.

Remark 1 (Notations: vector norm). For p ∈ N
∗

and x ∈ C
m the pth norm of x is defined by ‖x‖p

=
(
∑m

i=1 |xi |p
)1/p

. If p = 0, the norm is defined as the
number of non-zero vector elements, i.e., ‖x‖0 = # {i ∈
{1, . . . , m}|xi 6= 0}.

1) Likelihood: As stated in Section II, the thermal
noise n is assumed to be a white Gaussian noise, denoted
as n ∼ CN(0, σ 2 IKM ) with Iξ the ξ × ξ identity matrix.
In other words, when x and σ 2 are known, the observation
vector is Gaussian distributed, i.e., y|x, σ 2 ∼ CN(H x,

σ 2 IKM ). The likelihood is then given by2

f ( y|x, σ 2) ∝
1

σ 2KM
exp

{

−
‖ y − H x‖2

2

σ 2

}

(18)

where ∝ means proportional to.
2) Parameters: The next level of our model consists in

defining the prior probability density functions (pdfs) of
the thermal noise power σ 2 and the KM̄-length vector x.

a) Prior of σ 2: On the mathematical point of view, a
convenient prior for σ 2 is an inverse-Gamma pdf which
belongs to the family of conjugate priors with respect to
(wrt) (18) [29]. This pdf is denoted by
σ 2|γ0, γ1 ∼ IG(γ0γ1) and is given by

f (σ 2|γ0, γ1) ∝
e−γ1/σ

2

(σ 2)γ0+1
I[0,+∞)(σ

2) (19)

where IA() denotes the indicator function of the set
A (i.e.,IA(x)=1 if x ∈ A and IA(x) = 0 otherwise), γ 0 and
γ 1 represent, respectively, the scale and shape parameters
of the distribution. Then, with an adequate choice for the
values of (γ 0, γ 1), the mean and variance of σ 2|γ 0, γ 1 can
be set in accordance with our degree of prior belief about
the thermal noise level [30]. For instance, in case of finite

2Note that throughout the paper, constant parameters (e.g., the matrix H)
are not systematically written in the conditional terms for notational
convenience.

mean mσ 2 and variance vσ 2, one has

γ0 =
m2

σ 2

vσ 2

+ 2 (20a)

γ1 = mσ 2

(

m2
σ 2

vσ 2

+ 1

)

. (20b)

Particularly for radar applications, the thermal noise
power level is often known with a good accuracy as it
consists mainly of the receiver thermal noise [1, 31]. Thus,
it is reasonable to use (20). Note that the case of a
noninformative prior, i.e., when (γ 0, γ 1) = (0, 0), has
been presented in [6] and it also gave good performance
for the studied scenario.

b) Prior of x: Assigning a prior pdf to x is a critical
step in the design of our model. For complex data and
given the likelihood function (18), a Bernoulli-complex
Gaussian distribution appears to be suitable to enforce
sparsity in the vector x and to ensure simplicity of the
resulting posterior distribution [27, 32, 33]. To be more
specific we have assumed that the elements of x, denoted
by xi = [x]i for i = 0, . . . , KM̄ − 1, are a priori
independent and such that

f (xi |w, σ 2
x ) = (1 − w) δ(|xi |) + w

1

πσ 2
x

exp

{

−
|xi |2

σ 2
x

}

(21)

with w ∈ [0, 1] and σ 2
x > 0. The pdf (21), denoted by

xi |w, σ 2
x ∼ Ber CN

(

w, 0, σ 2
x

)

, is tantamount to assuming
that, at the ith frequency point of analysis, there is no
scatterer in the data with a probability (1 – w), while with
a probability w there is a scatterer with power3 σ 2

x . We
stress here that compared with other sparsity inducing
priors such as a Laplacian prior [34], samples generated
according to (21) can be exactly equal to 0 and that the
probability of having a zero element is controlled by the
value (1 – w). Recalling the assumption of independence
of the xis, the prior distribution of x is given by

f (x|w, σ 2
x ) = (1 − w)n0

(

w

πσ 2
x

)n1

× exp

{

−
‖x‖2

2

σ 2
x

}

∏

i/xi=0

δ(|xi |) (22)

where δ() is the Dirac delta function and

n1 = ‖x‖0 and n0 = KM̄ − ‖x‖0. (23)

As both the occupancy level w and the scatterer power
σ 2

x are not known, another level is defined in the
hierarchical model as detailed hereafter.

3It is observed later that σ 2
x can be indeed seen as the postprocessing

scatterer power.



3) Hyperparameters:

a) Prior of w: A uniform distribution is chosen for the
weight w, denoted as w ∼ U[0,1], i.e.,

f (w) = I[0,1] (w) (24)

reflecting the absence of knowledge about w.
b) Prior of σ 2

x : Concerning the power level σ 2
x and

according to (21), an inverse-Gamma prior is suitable for
further derivation (the same remark was made for the prior
of σ 2). It is denoted as σ 2

x |β0, β1 ∼ IG(β0, β1) and is
given by

f
(

σ 2
x

∣

∣β0, β1

)

∝
e−β1/σ

2
x

σ
2(β0+1)
x

I(0,+∞)

(

σ 2
x

)

(25)

where β0, β1 are, respectively, the shape and scale
parameters. They correspond to the last level of the
hierarchical model and are considered as constants set by
the radar operator. To choose conveniently their values and
thus incorporate adequately prior information about σ 2

x in
the model, the following remarks are appropriate. Firstly,
according to (21), one has

E{|xi |2|xi 6= 0} = σ 2
x (26)

where E{} is the mathematical expectation. In absence of
basis mismatch (17), one also has

E{|xi |2|xi 6= 0} = KM̄ × E{|αt |2} (27)

indicating that σ 2
x /(KM̄) can be seen as the average

scatterer power E{|αt |2} before processing. Furthermore,
since β1 is a scale parameter, it is straightforward to show
that σ 2

x /(KM̄)|β0, β1 ∼ IG(β0, β1/(KM̄)). Hence, when
the radar operator has reliable information about the target
power E{|αt |2}—e.g., via the radar equation [1]—that can
be transposed in terms of finite mean mσ 2

x /(KM̄)(i.e.,β0>1)
and variance vσ 2

x /(KM̄)(i.e.,β0 > 2), the shape and scale
parameters of (25) can be chosen as follows

β0 =
m2

σ 2
x /(KM̄)

vσ 2
x /(KM̄)

+ 2 (28a)

β1 = KM̄ mσ 2
x /(KM̄)

(

m2
σ 2

x /(KM̄)

vσ 2
x /(KM̄)

+ 1

)

. (28b)

When less or no reliable information is available about
the target power, a flat prior can be chosen instead. For
instance, when β0, β1 → 0, the pdf reduces to a
noninformative Jeffrey’s distribution [30]. A moderately
informative prior is considered later for the numerical
simulations allowing for a wide range of target powers.
This completes the description of our hierarchical model.

B. Bayesian Estimation

Given the Bayesian model described by the set of
equations (14), (18), (19), (21), (24), and (25), we propose
to derive two conventional Bayesian estimators for the
parameter of interest x, namely the MMSE and the MAP

estimators [29, 35]. They are respectively defined as the
mean of the posterior distribution and the argument that
maximizes this distribution. For the parameter of interest
x, they are thus defined as follows

x̂MMSE =
∫

xf (x| y)dx (29a)

x̂MAP = arg max
x

f (x| y). (29b)

Both rely on the posterior distribution f(x|y) that,
according to our hierarchical model, is given by (see the
Appendix)

f (x| y) ∝
B(1 + n1, 1 + n0)Ŵ(β0 + n1)

∏

i/xi=0 δ(|xi |)
(

β1 + ‖x‖2
2

)β0+n1
[

‖ y − H x‖2
2 + γ1

]KM+γ0

(30)

where B(.) and Ŵ() are the Beta and Gamma functions,
respectively.

Looking at (30), it seems intractable to derive
analytically the MMSE or MAP estimators (29).
Moreover, the pdf of x|y (30) does not correspond to a
known distribution, making the generation of samples
according to x|y not straightforward. We propose therefore
to use a common simulation method known as MCMC
[29]. More precisely, a multistage Gibbs sampler is
implemented [29]. Given our data model, it consists in
generating iteratively samples (σ 2(n), w(n), σ 2(n)

x , x(n)) that
are distributed according to their respective conditional
posterior distributions. After a burn-in period, denoted as
Nbi samples, each subsequence θ (n)4 is distributed
according to the posterior distribution θ |y. Collecting
enough samples, say a number of Nr, the MMSE and
MAP estimators of x can then be approximated as

xMMSE
1=

1

Nr

Nr
∑

n=1

x(n+Nbi ) (31a)

x̂MAP
1= arg max

{x(n+Nbi )}Nr
n=1

f (x(n)| y). (31b)

Note that while the posterior pdf of x (30) is too
complex to obtain a closed-form expression of the MAP
estimator (29b), its expression is necessary to derive (31b)
with the sampler. The four iterative steps of our MCMC
method are detailed in the next section and summarized in
Fig. 3.

1) Gibbs Sampler: The Gibbs sampler considered in
this work generates iteratively each chain parameter θ

according to its posterior distribution. This distribution
can be easily obtained from the joint posterior pdf of
σ 2, x, w, σ 2

x | y whose expression follows from the Bayes
theorem

4The notation θ designates successively σ 2, w, σ 2
x and x.



Fig. 3. Multi-stage Gibbs sampler. Initialization step given as example:
convergence of sampler can be reached independently of initial

conditions [29].
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(
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x

)

f (σ 2)

∝
e−[‖ y−H x‖2

2+γ1]/σ 2

σ 2(KM+γ0+1)
I(0,+∞)(σ

2)

×
e−[β1+‖x‖2

2]/σ 2
x

(

σ 2
x

)β0+n1+1
I(0,+∞)(σ

2
x )

× (1 − w)n0 wn1 I[0,1](w)

×
∏

i/xi=0

δ(|xi |). (32)

Since (19), (21), (24), and (25) have been carefully
selected among a family of conjugate priors, the Gibbs
moves associated with (32) are simple to implement.

a) First move: Using (32), the conditional posterior
distribution of σ 2|x, w, σ 2

x , y is given by

f (σ 2| y, w, x, σ 2
x ) ∝

e−[‖ y−H x‖2
2+γ1]/σ 2

σ 2(KM+γ0+1)
I(0,+∞)(σ

2)

where one recognizes the following inverse-Gamma
distribution

σ 2| y, w, x, σ 2
x

∼ IG
(

KM + γ0, ‖ y − H x‖2
2 + γ1

) / ∗ step 1 ∗ /.

b) Second move: Looking at (32), it is straightforward
to show that

f
(

w
∣

∣ y, x, σ 2
x , σ 2

)

∝ (1 − w)n0 wn1I[0,1](w).

One recognizes a Beta distribution with parameters
(1 + n1, 1 + n0), i.e.,

w| y, x, σ 2
x , σ 2 ∼ Be(1 + n1, 1 + n0) /∗ step 2 ∗/

according to which it is easy to sample.

c) Third move: According to (32), the conditional
distribution of σ 2

x | y, x, σ 2, w is

f
(

σ 2
x

∣

∣ y, x, σ 2, w
)

∝
e−[β1+‖x‖2

2]/σ 2
x

(

σ 2
x

)β0+n1+1
I[0,+∞)

(

σ 2
x

)

from which one recognizes an inverse-Gamma
distribution, i.e.,

σ 2
x | y, x, σ 2, w ∼ IG

(

β0+n1, β1+‖x‖2
2

)

/∗ step 3 ∗/.

d) Fourth move: The last move of the Gibbs sampler
consists of generating samples according the conditional
distribution of the KM̄-length vector x| y, σ 2, w, σ 2

x given
by

f
(

x
∣

∣ y, σ 2, w, σ 2
x

)

∝ exp

{

−
‖ y − H x‖2

2

σ 2
−

‖x‖2
2

σ 2
x

}

× (1 − w)n0

(

w

σ 2
x

)n1

×
∏

i/xi=0

δ(|xi |)

where n1 = ‖x‖0. We proceed as in [27, 28] where the
Gibbs move is decomposed into univariate simulations
which is tantamount to generating the vector x
element-by-element. Following the same path as in [27,
28], one can show that the ith element of x is distributed
according to a Bernoulli-complex Gaussian distribution
with parameters (wi, µi, η

2
i ), i.e., for i ∈ {0, . . . , KM̄−1}

f
(

xi

∣

∣ y, σ 2, w, x−i, σ
2
x

)

= (1−wi)δ(|xi |)+wi8
(

xi

∣

∣µi, η
2
i

)

(33)

where x–i is the vector x whose ith element has been
removed and the function 8(.|µi, η

2
i ) denotes the

univariate complex Gaussian pdf with mean µi and
variance η2

i , i.e.,

8
(

xi

∣

∣µi, η
2
i

)

=
1

πσ 2
x

exp

{

−
|xi − µi |2

η2
i

}

.

The variance and mean involved in (33) are given by


















η2
i =

{

1

σ 2
x

+
‖hi‖2

2

σ 2

}−1

µi =
η2

i

σ 2
hH

i ei

where hi is the ith column of H and ei is equal to

ei = y −
∑

j 6=i

xj hj .

The weight wi in (33) is defined so that the equality
sign holds in (33), i.e.,

wi =
w

η2
i

σ 2
x

exp

{

|µi |2

η2
i

}

(1 − w) + w
η2

i

σ 2
x

exp

{

|µi |2

η2
i

}
.



To summarize, the fourth Gibbs move is defined as
follows

∀i∈{0, . . . , KM̄ − 1},
xi | y, σ 2, w, x−1, σ

2
x ∼BerCN

(

wi, µi, η
2
i

)

.
/∗ step 4 ∗/

Remark 2 (Details of implementation). Note that to
update efficiently the coordinate xi at the nth iteration of
the Gibbs sampler, we proceed as in [28, Appendix B]. By
doing so, the computationally intensive matrix product Hx
is derived only once at the initialization of the sampler
(n = 0). Also given the particular nature of H = TF−1

(15a), the product F−1x(0) is firstly performed via an FFT
and an inverse FFT on, respectively, K and M̄ points.
Then, the block-diagonal nature of the matrix T is taken
into account to avoid unnecessary null-products when
computing T × [F−1x(0)].

IV. NUMERICAL SIMULATIONS

The performance of the proposed estimators x̂MAP and
x̂MMSE defined in (31) is firstly assessed with synthetic
radar data generated according to (1). Results are
compared with that of an ℓ1 penalized least squares
approach which is more conventional when dealing with
sparse recovery. More specifically, the ACAMP (adaptive
complex approximate message passing) method has been
chosen [14, 36, 37]. ACAMP is an iterative thresholding
technique that uses a few computations per iteration and
offers an adaptive way to optimally set its threshold
parameter [14].

A. Simulation Parameters

1) Reference Scenario: The received signal entails
N = 10 scatterers whose velocities and initial positions
satisfy the no-basis mismatch assumption (17). The
scatterers actually represent five targets since three of
them are extended in range. For each scatterer, the
signal-to-noise ratio (SNR) prior to processing is defined
as

SNRt =
E{|αt |2}

σ 2

‖at‖2
2

KM
.

Location and SNR of each scatterer is represented in
Fig. 4. Note that the considered SNRs are below the
thermal noise level and that the gain of integration is
10 log10(KM) ≈ 24 dB. Also, the argument of the
amplitude αt for t = 1, . . . , N is drawn from a uniform
distribution in [0, 2π). Other parameters of interest
describing the radar scenario are depicted in Table I.

2) Processing Parameters: To process the wideband
radar signal with our Bayesian method several parameters
need to be adjusted. The virtual sampling frequency fr is
chosen 1) high enough to ensure that a target with
maximum velocity vmax can be estimated without aliasing,
and 2) not too high to limit the computational load that is
related directly to the length of the vector x to be
estimated. A good compromise it thus to set fr equal to the
Nyquist rate [38] which is tantamount to considering that

Fig. 4. Locations and SNRs of synthetic targets. Range resolution
is δR = 15 cm and ambiguous velocity is va = 15 m/s.

TABLE I
Scenario Parameters for Synthetic Data

carrier fc = 10 GHz
bandwidth B = 1 GHz
PRF fr = 1 kHz
# pulses M = 32
LRR segment K = 8
noise power σ 2 = 1

TABLE II
Processing Parameters for Synthetic Data

σ 2 prior (γ 0, γ 1) = (3, 2)

σ 2
x prior (β0, β1/(K M̄)) ≈ (2.33, 1.33)

max. velocity vmax = 22.5 m/s
virtual PRF f̄r = 3 kHz
virtual # pulses M̄ = 106
burn-in Nbi = 50
Gibbs-iterations Nr = 200

an equality sign holds in (8), i.e., f̄r = 4vmaxfc/c. Then,
the number of virtual pulses M̄ is chosen 1) high enough to
ensure that (10) corresponds to an interpolation formula,
and 2) not too high to limit the length of the vector x.
Again, a good compromise is to consider that an equality
sign holds in (11), i.e., M̄ ≈ ⌈M (1 + B/fc)⌉ f̄r/fr . This
way, the observation times of both the received and
reconstructed signals are identical. Since the values of
f̄r and M̄ are now fixed, the interpolation-transform
matrix H (15a) is completely defined. Turning then to the
values of the hyperparameters (γ 0, γ 1) and (β0, β1)
involved in the priors of σ 2 (19) and σ 2

x (25), we use the
relations (20) and (28) with (mσ 2, vσ 2 ) = σ 2(1, 1) and
(mσ 2

x /(KM̄), vσ 2
x /(KM̄)) = σ 2(1, 3). The resulting numerical

values correspond to a rather informative prior for the
thermal noise level (which is reasonable for most radar
applications) and a moderately informative prior for the
average scatterer power (allowing for a wide range of
SNRs). Parameters of interest for the processing are
gathered in Table II.



B. Performance

1) Range-Velocity Maps and Histograms: Fig. 5
depicts range-velocity maps of the amplitudes estimated
from our Bayesian estimators, the ACAMP algorithm, and
a simple coherent integration previously defined in (4).
Note that, for a given estimator x̂, the amplitude vector is

defined here by â = x̂/
√

KM̄. Fig. 5(a) shows the limit of
using a coherent integration in case of a multitarget
scenario since velocity sidelobes are quite high. For
instance, though the isolated scatterer around range bin 4
can be well inferred, the target located at range bins 1-2
cannot be clearly distinguished from the sidelobes of the
other targets. On the other hand, Figs. 5(b) to 5(d)
highlight the interest of using a sparse recovery approach
in that case. Indeed, the three CS estimators (MMSE,
MAP, ACAMP) of x give a satisfying sparse
representation of the target scene. In particular, no false
alarm occurs at the location where sidelobes are expected
for a conventional coherent integration. As can be
observed (and confirmed by intensive simulations in
Section IV-B.2) the MMSE estimator tends to better
estimate the target amplitude followed successively by the
MAP estimator and the ACAMP method (which mostly
underestimates5 the target amplitude). Moreover, for all of
these methods, a small amount of non-zero elements that
do not correspond to a true scatterer are present. These
false alarms are very low for the MMSE (they are even not
visible here given the lowerbound of the colorbar), a little
bit higher for the ACAMP, and finally more pronounced
for the MAP estimator. These preliminary remarks are in
favor with the MMSE estimator that better estimates the
migrating targets with a few and low false alarms.

As underlined before, our Bayesian algorithm not only
provides a point estimate of x but gives additional
information. In particular, histograms and MMSE
estimates for σ 2, w, σ 2

x can be estimated. They are
represented in Fig. 6 and are in accordance with the
scenario parameters. Note, that even when the prior is flat,
the posterior distribution is clearly tightened around a
reliable MMSE estimate. In particular, the estimated level
of occupancy is ŵMMSE = 1.45% while the true level of
occupancy is N/(KM̄) = 1.18%. In the same vein, the
average power of the scatterers present in the scene is
N−1

∑

t σ 2SNRt ≈ –5.3 dB while the estimated one is
σ̂ 2

x,MMSE/(KM̄) ≈ −4.5dB. Note also, the accurate

estimation of the thermal noise level σ̂ 2
MMSE ≈ 0.97.

2) Error of Estimation and Computational Complexity:

The performance of our Bayesian estimators (29) is
further investigated by means of Monte-Carlo simulations.
Herein, moduli of the target amplitude are kept fixed while
their argument as well as the noise are drawn randomly.
The performance metric under consideration is the mean
absolute error (MAE) defined for an L-length vector θ and

5This is not unconventional for ℓ1-type solver using a soft thresholding
function. Note in particular that no debiasing technique has been applied
to the ACAMP method [39].

Fig. 5. Range-velocity map (modulus of complex amplitude only, in
decibels). (a) Coherent integration. (b) MMSE estimation. (c) MAP

estimation. (d) ACAMP estimation.



Fig. 6. Prior and empirical posterior pdfs. Circle markers represent
prior pdfs. Dashed lines represent MMSE estimates. (a) Prior and

posterior pdfs of σ 2. Plain line represents true value for σ 2. (b) Prior and
posterior pdfs of σ 2

x . (c) Prior and posterior pdfs of w.

Fig. 7. Performance estimation of studied CS estimators. (a) MAE of x̂
(in decibels). (b) Simulation time per Monte-Carlo run. (c) MAE of
target-subvector of x̂ (in decibels). (d) MAE of zero-subvector of x̂

(in decibels).



its estimator θ̂ by

MAE =
1

L
E{‖θ − θ̂‖1}.

Since the no-basis mismatch hypothesis is assumed
(17), the vector x can be split into a zero-subvector and a
target-subvector. The MAEs of x̂ and its two subvectors
are depicted in Fig. 7 wrt the unfolding parameter vmax. A
general trend can be observed from these three CS
estimators: the zero-subvector is slightly better estimated
when increasing unfolding, while the contrary is observed
for the target amplitude estimation. Then, considering a
fixed vmax and the whole vector x̂, the lowest MAE is
given by the MMSE estimator, followed successively by
the MAP and the ACAMP methods. Considering now the
subvectors, it is worth noticing that 1) the MMSE
estimator has always the lowest MAE, 2) the MAP
estimator better restitutes the target-subvector than the
ACAMP method, and 3) an opposite behavior is observed
for the zero-subvector: the ℓ1-norm error of the ACAMP
method is lower than that of the MAP estimator and is
near to that of the MMSE estimator. Finally, Fig. 7(b)
compares the simulation time of both Bayesian and
deterministic approaches (for an unoptimized Matlab
code). As expected, the greater the unfolding parameter
vmax, the longer the simulation time of each method.
Besides, the good performance of the MMSE technique
has to be counterbalanced by its increased computational
complexity compared with the ACAMP method.

3) Robustness Towards Grid Mismatch: Before closing
this section, a robustness analysis is finally conducted.
Grid mismatch is introduced for the Doppler frequency of
each simulated scatterer. More specifically, a constant shift
δm̄ is applied for t = 1, . . . , N as follows

2vtfc

c
=

m̄t + δm̄

M̄
f̄r

so that the no-basis mismatch assumption (17) is no longer
verified. We follow then the path of [40] and estimate the
MAE between the estimate x̂ and the vector x which is
now incompressible in the dictionary F−1 defined in (16).
As can be noticed from Fig. 8, the greater the frequency
mismatch, the greater the MAE of the three CS estimators.
The MMSE estimator is the most sensitive and its worst
MAE is equivalent to that of the ACAMP method.
However, this result has to be taken cautiously. Indeed,
due to the incompressibility of x, CS estimators split the
target power over the vector indices surrounding the true
target location. A metric based on a norm error between x
and x̂ might not reflect then properly the inherent
detection capability of a given method. This short analysis
emphasizes essentially the need for CS approaches (either
Bayesian or deterministic) to robustify the estimation
towards mismatch grid and/or to design a postprocessing
technique to recover the target gain in case of mismatch.

Fig. 8. MAE of CS estimators (MMSE, MAP, ACAMP) wrt Doppler
frequency mismatch.

TABLE III
Scenario Parameters for PARSAX Data

carrier fc = 3.315 GHz
bandwidth B = 100 MHz
PRF fr = 1 kHz
# pulses M = 64
LRR segment K = 16
noise power σ 2 ≈ 1

V. SEMIEXPERIMENTAL RADAR DATA

A. Experimental Setup and Processing Parameters

Performance of the Bayesian estimators (31) is now
assessed on experimental data collected at the Delft
University of Technology (TU-Delft). Indeed, the
International Research Centre for Telecommunications
and Radar (IRCTR) at TU-Delft has been developing over
the last years the polarimetric agile radar in S- and X-band
(PARSAX) [18]. This system situated on the rooftop of a
100m-high building is continuously upgraded. Recently,
data acquired via an S-band linearly frequency modulated
continuous waveform (LFMCW) with a bandwidth of
B = 100 MHz has been showing a good dynamic range.
Though the associated range resolution (δR ≈ 1.5 m) is not
as high as thought previously in this paper, fast ground
moving targets still may migrate of a few range cells
during the CPI.

Since no cooperative targets are available in the data, a
semiexperimental scenario is under consideration here,
i.e., synthetic targets are injected under condition (17) in a
presumed free-target region of the PARSAX data. As our
Bayesian model assumes that the noise n is white, an
ad-hoc prefiltering operation is performed to filter the
clutter after target incorporation. It consists of a simple
projection on the noise subspace assuming that the clutter
has a Gaussian-shape spectrum with adequate bandwidth.
The same reasoning as in Section IV-A is then followed to
fix the processing parameters of our Bayesian estimators
albeit



TABLE IV
Processing Parameters for PARSAX Data

σ 2 prior (γ 0, γ 1) = (3,2)
σ 2

x prior (β0, β1/(KM̄)) ≈ (2.2,1.2)
max. velocity vmax = 55 m/s
virtual PRF f̄r ≈ 2.4 kHz
virtual # pulses M̄ = 161
burn-in Nbi = 50
Gibbs-iterations Nr = 200

Fig. 9. Semiexperimental data. Range resolution is δR ≈ 1.5m and
ambiguous velocity is va ≈ 45.25 m/s. (a) Coherent integration prior to
target injection and clutter filtering (in decibels). (b) True target map.

1) the expected maximum velocity is fixed to vmax

= 55 m/s to ensure that it is clearly larger than the
ambiguous velocity va ≈ 42.25 m/s;

2) the variance of σ 2
x |β0, β1 has been increased to

vσ 2
x /(KM̄) = 5 as it leads to better performance estimation.

Note also that prior to target injection, the experimental
data have been normalized so that the thermal noise level
is approximately equal to σ 2 ≈ 1. Parameters of interest
for the simulation can be seen in Tables III, IV. A
representation of the semiexperimental scenario is also
depicted in Fig. 9. In particular, location and density of

Fig. 10. Range-velocity map (modulus of complex amplitude only, in
decibels). (a) Coherent integration. (b) MMSE estimation. (c) MAP

estimation. (d) ACAMP estimation.



Fig. 11. Prior and empirical posterior pdfs. Circle markers
represent prior pdfs. Dashed lines represent MMSE estimates.

(a) Prior and posterior pdfs of σ 2. Plain line represents a priori mean
value of σ 2. (b) Prior and posterior pdfs of σ 2

x . (c) Prior and posterior
pdfs of w.

scatterers in the scenario have been chosen to represent
vehicles on a freeway during a heavy traffic time.

B. Results

Range-velocity maps obtained from the Bayesian
estimators (29) are depicted in Fig. 10 and compared as in
the previous section to the amplitude map estimated with
the ACAMP method [14]. The target scene recovered by a
simple coherent integration (4) is also depicted. The later
is clearly highly challenged in dense target environments
so that it is hard to tell where the targets are. Note
furthermore in Fig. 10(a) the deep notches located not
only at the zero-velocity but also at the ambiguous
velocities ± va. They indeed have been created by the
clutter prefiltering operation. This ad-hoc filter does not
allow—at least for now given the current bandwidth of the
PARSAX system—target at the ambiguous velocities to be
detected. Concerning the CS estimators, same comments
can be made as for the purely synthetic data. The MMSE,
MAP, and ACAMP estimates of x give an adequate sparse
representation of each scatterer: the MMSE technique
gives the best target scene representation; a few false
alarms can still be observed for the MAP estimator; the
ACAMP method tends again to underestimate target
amplitudes.

Histograms and MMSE estimates in Fig. 11 show
that the estimation of the thermal noise level, i.e.,
σ̂ 2

MMSE ≈ 1.23, may have been slightly erroneous while
normalizing the experimental data. This might explain
why a better estimation of x is obtained when the prior of
the scatterer power σ 2

x /(KM̄) has a larger variance (recall
that its mean has been adjusted to σ 2 = 1 in the
simulation). Note that the estimated level of occupancy is
ŵMMSE ≈ 0.74% which seems reasonable given that the
true level is now N/(KM̄) = 0.66%. Finally, the average
power of the scatterers present in the scene is N−1

∑

t

σ 2SNRt ≈ –7.8 dB while the estimated value is
σ̂ 2

x,MMSE/(KM̄) ≈ −6.8dB.

VI. CONCLUSION AND PERSPECTIVES

In case of a low PRF wideband waveform, we have
interpreted the target signature as the undersampled
version of a virtual but nonaliased bidimensional cisoid.
Within a compressive sensing framework, we have
proposed accordingly a new Bayesian algorithm able to
give an adequate representation of multiple scatterer
echoes. By adequate, we mean that each scatterer is
represented by a single peak without sidelobe (under the
no-basis mismatch assumption). Furthermore, this peak is
localized unambiguously in velocity and range at the true
velocity and initial round-trip delay of the scatterer.
Ambiguity is actually removed thanks to the additional
information brought by the range migration. Performance
of the Bayesian method (especially, the MMSE
estimation) obtained with synthetic and semiexperimental
data is very encouraging.



The price to pay with the proposed method is its
computational complexity, which might be reduced using
other MCMC methods or variational Bayes algorithms.
Upcoming work may also include an extension of our
hierarchical Bayesian model to handle grid mismatch
(e.g., via the introduction of small perturbations on the
dictionary matrix) and colored noise. Modeling colored
noise could be an alternative to the ad-hoc filtering
technique proposed in this paper to remove clutter from
the experimental data. Finally, the proposed Bayesian
estimators would deserve to be fully integrated in a whole
compressed sensing detection scheme.

APPENDIX. POSTERIOR DISTRIBUTION OF x|y

We derive in this Appendix the posterior distribution
of x given the observation y. First, note that according to
the Bayes theorem, the posterior pdf can be rewritten as

f (x| y) ∝ f ( y|x)f (x). (34)

Then integrating the likelihood (18) over σ 2 given the
prior (19) yields

f ( y|x) =
∫

f ( y|x, σ 2)f (σ 2) dσ 2

∝
∫

e−[‖ y−H x‖2
2+γ1]/σ 2

(σ 2)KM+γ0+1
dσ 2

∝
[

‖ y − H x‖2
2 + γ1

]−(KM+γ0)
(35)

Furthermore, the marginal distribution of x is given by

f (x) =
∫ ∫

f
(

x
∣

∣w, σ 2
x

)

f (w)f
(

σ 2
x

)

dw dσ 2
x

∝
∫

(1 − w)n0wn1I[0,1](w) dw

×
∫

e−[‖x‖2
2+β1]/σ 2

x

(σ 2
x )n1+β0+1

I[0,+∞]

(

σ 2
x

)

dσ 2
x ×

∏

i/xi=0

δ(|xi |)

∝
B(1 + n1, 1 + n0)Ŵ(β0 + n1)

(

β1 + ‖x‖2
2

)β0+n1

∏

i/xi=0

δ(|xi |) (36)

Finally plugging (35) and (36) in (34) yields the
expression (30) of the posterior distribution of x|y.
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d’un radar large bande.
In Proceedings of GRETSI, Vannes, France, Sept. 1999, pp.
531–534.

[17] Ji, S., Xue, Y., and Carin, L.
Bayesian compressive sensing.
IEEE Transactions on Signal Processing, 56, 6 (June 2008),
2346–2356.

[18] Krasnov, O. A., Babur, G. P., Wang, Z., Ligthart, L. P., and van
der Zwan, F.
Basics and first experiments demonstrating isolation
improvements in the agile polarimetric FM-CW radar –
PARSAX.
International Journal of Microwave and Wireless

Technologies (special issue), 2, 3–4 (Aug. 2010), 419–428.
[19] Jiang, N., Wu, R., and Li, J.

Super resolution feature extraction of moving targets.
IEEE Transactions on Aerospace and Electronic Systems, 37,
3 (July 2001), 781–793.



[20] Jiang, N., and Li, J.,
Multiple moving target feature extraction for airborne HRR
radar.
IEEE Transactions on Aerospace and Electronic Systems, 37,
4 (Oct. 2001), 1254–1266.

[21] Bidon, S., Savy, L., and Deudon, F.
Fast coherent integration for migrating targets with velocity
ambiguity.
In Proceedings of IEEE Radar Conference, Kansas City, MO,
May 23–27, 2011.

[22] Iverson, D. E.
Coherent processing of ultra-wideband radar signals.
Proceedings of IEE - Radar, Sonar and Navigation, 141, 3
(June 1994), 171–179.

[23] Perry, R. P., DiPietro, R. C., and Fante, R. L.
SAR imaging of moving targets.
IEEE Transactions on Aerospace and Electronic Systems, 35,
1 (Jan. 1999), 188–200.

[24] Lush, D. C., and Hudson, D. A.
Ambiguity function analysis of wideband radars.
In Proceedings of 1991 IEEE National Radar Conference, Los
Angeles, CA, Mar. 12–13, 1991, pp. 16–20.

[25] Shannon, C. E.
Communications in the presence of noise.
Proceedings of the IRE, 37 (Jan. 1949), 10–21

[26] Abolghasemi, V., Ferdowsi, S., and Sanei, S.
A gradient-based alternating minimization approach for
optimization of the measurement matrix in compressive
sensing.
Signal Processing, 92, 4 (Apr. 2012), 999–1009.

[27] Cheng, Q., Chen, R., and Li, T.-H.
Simultaneous wavelet estimation and deconvolution of
reflection seismic signals.
IEEE Transactions on Geoscience and Remote Sensing, 34, 2
(Mar. 1996), 377–384.

[28] Dobigeon, N., Hero, A. O., and Tourneret, J.-Y.
Hierarchical Bayesian sparse image reconstruction with
application to MRFM.
IEEE Transactions on Image Processing, 18, 9 (Sept. 2009),
2059–2070.

[29] Robert, C. P., and Casella, G.
Monte Carlo Statistical Methods (Springer Texts in Statistics).
New York: Springer, 2004.

[30] Godsill, S. J., and Rayner, P. J. W.
Statistical reconstruction and analysis of autoregressive
signals in impulsive noise using the Gibbs sampler.

IEEE Transactions on Speech and Audio Processing, 6, 4
(July 1998), 352–372.

[31] Steiner,M. J., and Gerlach, K.
Fast converging adaptive canceller for a structured covariance
matrix.
IEEE Transactions on Aerospace and Electronic Systems, 36,
4 (Oct. 2000), 1115–1126.

[32] Dai, G.-Z., and Mendel, J. M.
Maximum a posteriori estimation of multichannel
Bernoulli-Gaussian sequences.
IEEE Transactions on Information Theory, 35, 1 (Jan. 1989),
181–183.

[33] Kormylo, J. J., and Mendel, J. M.
Maximum likelihood detection and estimation of
Bernoulli-Gaussian processes.
IEEE Transactions on Information Theory, 28, 3 (May 1982),
482–488.

[34] Tibshirani, R.
Regression shrinkage and selection via the Lasso.
Journal of the Royal Statistical Society, Series B

(Methodological), 58, 1 (1996), 267–288.
[35] Kay, S. M.

Fundamentals of Statistical Signal Processing: Estimation

Theory. Englewood Cliffs, NJ: Prentice-Hall, 1993.
[36] Donoho, D. L., Maleki, A., and Montanari, A.

Message-passing algorithms for compressed sensing.
Proceedings of National Academy of Sciences of the United

States of America, 106, 45 (2009), 18914–18919.
[37] Maleki, A., Anitori, L., Yang, Z., and Baraniuk, R.

Asymptotic analysis of complex LASSO via complex
approximate message passing (CAMP).
IEEE Transactions on Information Theory, 59, 7 (2013),
4290–4308.

[38] Oppenheim, A. V., and Schafer, R. W.
Discrete-Time Signal Processing (Prentice-Hall Signal
Processing Series). Upper Saddle River, NJ: Prentice-Hall,
1989.

[39] Moghaddam, B., Weiss, Y., and Avidan, S.
Spectral bounds for sparse PCA: Exact and greedy algorithms.
In
Advances in Neural Information Processing Systems.
Cambridge, MA: MIT Press, 2006, pp. 915–922.

[40] Chi, Y., Scharf, L. L., Pezeshki, A., and Calderbank, A. R.
Sensitivity to basis mismatch in compressed sensing.
IEEE Transactions on Signal Processing, 59, 5 (May 2011),
2182–2195.
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