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ABSTRACT

This paper proposes a new Bayesian strategy for the estima-

tion of smooth parameters from nonlinear models. The ob-

served signal is assumed to be corrupted by an independent

and non identically (colored) Gaussian distribution. A prior

enforcing a smooth temporal evolution of the model parame-

ters is considered. The joint posterior distribution of the un-

known parameter vector is then derived. A Gibbs sampler

coupled with a Hamiltonian Monte Carlo algorithm is pro-

posed which allows samples distributed according to the pos-

terior of interest to be generated and to estimate the unknown

model parameters/hyperparameters. Simulations conducted

with synthetic and real satellite altimetric data show the po-

tential of the proposed Bayesian model and the corresponding

estimation algorithm for nonlinear regression with smooth es-

timated parameters.

Index Terms— Bayesian algorithm, Hamiltonian Monte-

Carlo, MCMC, Parameter estimation, Radar altimetry.

1. INTRODUCTION

In many applications, the observed data are well described by

a nonlinear function of a vector of parameters [1–4]. This

paper aims at estimating these parameters from the observed

data and a non-linear regression model. This can be achieved

by using maximum likelihood based methods [5] or, equiva-

lently, in the case of Gaussian noise, by using nonlinear least

squares algorithms such as the Levenberg-Marquardt algo-

rithm [6] and the natural gradient algorithm [7]. However,

the resulting estimated parameters may be noisy and not con-

venient for physical interpretation. It is particularly true when

the estimation procedure is applied to signals acquired at con-

secutive time instants and when the parameters of these sig-

nals have small variations from one instant to another. In

this case, a lot of effort has been made to propose meth-

ods smoothing the estimated parameters. This smoothing is

generally achieved by adding some time correlation prior re-

sulting in the so-called Bayesian smoothing algorithms [8].

Many kinds of numerical approximations have also been pro-

posed in the literature to handle the model nonlinearity while

smoothing the parameters. For example, we can mention the

extended and unscented Kalman filters [9,10] and the Markov

chain Monte Carlo (MCMC) simulation based methods that

will be considered in this paper (see [8] for more details about

these methods).

The main contribution of this paper is the elaboration of

a hierarchical Bayesian model that allows smooth estimation

of parameters associated with different temporal signals. The

observed signals are assumed to be corrupted by an additive,

independent and colored Gaussian noise. The parameter of

interest are assigned a prior enforcing smooth evolution be-

tween consecutive signals which improves their estimation.

This prior is defined from the discrete Laplacian of the dif-

ferent parameters. It has shown increasing interest for many

problems such as image deconvolution [11, 12], hyperspec-

tral unmixing [13], medical imaging [14] and spectroscopy

applications [15]. An algorithm is then proposed for estimat-

ing the unknown model parameters. However, the minimum

mean square error (MMSE) and maximum a posteriori (MAP)

estimators cannot be easily computed from the obtained joint

posterior. The proposed algorithm alleviates this problem by

generating samples distributed according to this posterior us-

ing Markov chain Monte Carlo (MCMC) methods. More pre-

cisely, we use a Hamiltonian Monte Carlo (HMC) algorithm

since it has shown good mixing property for high-dimensional

vectors [16].

The proposed estimation strategy is validated using syn-

thetic signals as well as real satellite altimetric echoes. Al-

timetric radar echoes are defined as a nonlinear function of

physical parameters [2,4] (the epoch τ related to the distance

satellite-observed scene, the significant wave height SWH

and the signal amplitude Pu). Moreover, the noise corrupt-

ing these echoes is known to have an approximate Gaussian

distribution which has been exploited to derive unweighted

least squares (ULS) techniques [17–19] for parameter esti-

mation. Note finally that the parameters of altimetric signals

are often estimated echo by echo independently. However,

recent works [20, 21] have shown the interest of considering

echo’s correlation which motivates the study of the proposed

Bayesian approach.

The paper is organized as follows. Section 2 presents the

hierarchical Bayesian model for the joint estimation of param-

eters varying smoothly from one observed signal to another

while Section 3 details the proposed estimation algorithm.

Simulation results performed on synthetic and real signals are



presented in Sections 4 and 5. Conclusions and future work

are finally reported in Section 6.

2. HIERARCHICAL BAYESIAN MODEL

2.1. Observation model

In this work, we consider M successive signals Y = (y1,

· · · ,yM ) defined as noisy nonlinear functions of unknown

parameters Θ = (ΘT
1 , ...,Θ

T
M )T following the model

ym = sm (Θm) + em, with em ∼ N (µm1K ,Σm) (1)

where ym and sm are (K × 1) vectors representing the mth

observed and noiseless signals, Θm = [θ1(m), · · · , θH(m)]
is a 1×H vector containing the H parameters of the mth sig-

nal, em is a Gaussian noise vector with a mean µm1K , where

1K is a (K× 1) vector of 1, and a diagonal covariance matrix

Σm = diag
(

σ2
m

)

with σ2
m =

(

σ2
m1, · · · , σ2

mK

)T
a (K × 1)

vector. The proposed nonlinear regression method aims at

estimating both signal and noise parameters with smothness

constraints using the observation model (1).

2.2. Likelihood

The observation model defined in (1) and the Gaussian prop-

erties of the noise sequence em yield

f(ym|Θm, µm,Σm) ∝ 1
√

∏K
k=1 σ

2
mk

exp

{

−1

2
xT
mΣ

−1
m xm

}

(2)

where ∝ means “proportional to”, xm = ym − sm − µm1K

and sm (Θm) has been denoted by sm for brevity. Assuming

independence between the observations leads to

f(Y |Θ,µ,Λ) ∝
M
∏

m=1

f(ym|Θm, µm,Σm). (3)

The unknown parameters of the observation model (1) in-

clude the noise mean represented by an (M × 1) vector µ =
(µ1, · · · , µM )T , the (K × M ) matrix Λ =

(

σ2
1, · · · ,σ2

M

)

containing the noise variances associated with the considered

M signals, and the (M ×H) matrix Θ = [θ1, · · · ,θH ] gath-

ering the H parameters of the M signals.

2.3. Prior for signal parameters

The prior used for each parameter θi ∈ Θ enforces some

smoothness property for the time evolution of this parame-

ter. This can be done by constraining the derivative of this

parameter to be small. In this paper, we propose to assign a

Gaussian prior distribution to the second derivative of θi as

follows

f(θi|ǫ2i ) ∝
(

1

ǫ2i

)M/2

exp

(

− 1

2ǫ2i
‖Dθi‖2

)

(4)

for i ∈ {1, · · · , H}, where ǫ2i is an hyperparameter, || · || de-

notes the standard l2 norm such that ||x||2 = xTx and D is

the discrete Laplacian operator. This prior has been referred

to as simultaneous autoregression (SAR) or conditional au-

toregression (CAR) models when used for image deconvolu-

tion [11, 12]. It has also been used for the spectral unmixing

of hyperspectral images [13] or for medical imaging applica-

tions [14].

2.4. Prior for the noise parameters

The absence of knowledge about the noise mean can be con-

sidered by choosing the following Jeffreys prior f(µ) ∝ 1M .

Considering the noise variances, one could estimate a diag-

onal matrix Σm for each observed signal. However, for the

sake of simplicity, we assume that r consecutive signals have

the same variances, i.e., σ2
(n−1)r+1,k = · · · = σ2

nr,k for n ∈
{1, · · · , N}, with N = M

r (note that the general case is ob-

tained by considering r = 1). Assuming prior independence

between the noise variances σ2
nr,k, the Jeffreys prior of Λ is

defined as

f (Λ) =
N
∏

n=1

K
∏

k=1

1

σ2
nr,k

IR+

(

σ2
nr,k

)

(5)

where IA(.) is the indicator of the set A.

2.5. Hyperparameter priors

The hyperparameters ǫ2i , i ∈ {1, · · · , H} are assigned a Jef-

freys prior given by

f
(

ǫ2i
)

=
1

ǫ2i
IR+

(

ǫ2i
)

(6)

which reflects the absence of knowledge about these coeffi-

cients [22]. Moreover, these hyperparameters are supposed to

be a priori independent leading to

f
(

ǫ2
)

=

H
∏

i=1

f(ǫ2i ). (7)

with ǫ2 =
(

ǫ21, · · · , ǫ2H
)

.

2.6. Posterior distribution

The proposed Bayesian model depends on the parameters

Θ,µ,Λ and hyperparameters ǫ2. The joint posterior distri-

bution of the unknown parameters and hyperparameter can

be computed from the following hierarchical structure

f (Θ,µ,Λ|Y ) ∝ f(Y |Θ,µ,Λ)f (Θ,µ,Λ) (8)

with f (Θ,µ,Λ) = f (µ) f (Λ)
∏H

i=1 f(θi|ǫ2i ), after assum-

ing a priori independence between the model parameters. The

MMSE and MAP estimators associated with the posterior (8)

are not easy to determine mainly because of the nonlinear-

ity of the observation model. The next section presents an

MCMC estimation algorithm that can be used to compute

these MMSE and MAP estimators.



3. ESTIMATION ALGORITHM

The principle of the Gibbs sampler is to sample according to

the conditional distributions of the posterior of interest [23].

In this paper, we propose to use this principle to sequen-

tially sample the parameters Θ,µ,Λ and ǫ. When a condi-

tional distribution cannot be sampled directly, sampling tech-

niques such as the HMC algorithm can be applied. This algo-

rithm has shown better mixing properties than independent or

random walk Metropolis-Hasting moves especially for high-

dimensional problems [16, 24]. Therefore, it will be consid-

ered in the present paper since the variable to be sampled are

of size (M × 1). The interested reader is invited to consult

[16, 24] for more details about the HMC algorithm.

3.1. Sampling Θ

Using the likelihood (3) and the prior (4) leads to the follow-

ing conditional distribution

f(θi|Y ,Ω\i) ∝ exp

(

−
M
∑

m=1

xT
mΣ

−1
m xm

2
− ‖Dθi‖2

2ǫ2i

)

(9)

where Ω\i =
{

θ1, · · · ,θi−1,θi+1, · · · ,θH ,µ,Λ, ǫ2i
}

. The

conditional distribution (9) has a complex form mainly be-

cause of the nonlinearity of the theoretical model with respect

to the parameters Θ. This distribution is sampled using a

HMC algorithm.

3.2. Noise parameters

Using (3) and the Jeffreys prior for the noise mean µ defined

in Section 2.4, it can be easily shown that the conditional dis-

tribution of µ is the following Gaussian distribution

µm|ym,Θm,Σm ∼ N
(

µm,
1

∑K
k=1 σ

−2
mk

)

(10)

with µm =

∑K
k=1

ymk−smk

σ2

mk∑
K
k=1

σ−2

mk

. Similarly, using (3) and (5), it

can be shown that

f (Λ|Y ,Θ,µ) =

N
∏

n=1

K
∏

k=1

f
(

σ2
nr,k|Y :k,Θ,µ

)

(11)

and that σ2
nr,k|Y :k,Θ,µ is distributed according to the fol-

lowing inverse-gamma distribution

σ2
nr,k|Y :k,Θ,µ ∼ IG

(r

2
, β

)

(12)

with β =
∑nr

m=(n−1)r+1
x2

mk

2 . Note finally that the distribu-

tions (10) and (12) are easy to sample.

3.3. Hyperparameters

The conditional distribution of the hyperparameters ǫ2i is an

inverse-gamma distribution defined by ǫ2i |θi ∼ IG
(

M
2 ,

‖Dθi‖2

2

)

that is easy to sample.

4. SIMULATION RESULTS

4.1. Altimetric signals

This section first considers synthetic altimetric signals defined

by the physical Brown model [2] defined by

sk =
Pu

2

[

1 + erf

(

kT − τT − ασ2
c√

2σc

)]

× exp

[

−α

(

kT − τT − ασ2
c

2

)]

(13)

where sk = s(kT ) is the kth data sample of the received

signal, σ2
c =

(

SWH
2c

)2
+ σ2

p, erf (t) = 2√
π

∫ t

0
e−z2

dz is the

Gaussian error function, α and σ2
p are two known satellite

parameters, τ is the epoch expressed by samples (1 sample

≈ 46 cm), c is the speed of light and T is the time resolution.

Note that the discrete altimetric echo is gathered in the (K×1)

vector s = (s1, · · · , sK)T , where K = 128 samples.

The altimetric echoes are corrupted by a speckle noise

whose influence is reduced by averaging (on-board the satel-

lite) a sequence of L consecutive echoes. Considering the

central limit theorem and using the fact that the averag-

ing is conducted on a large number of echoes, the result-

ing noise sequence is approximated by a Gaussian distribu-

tion. This approximation is largely adopted in the altimetric

community as shown in [25–27] and in the well known

LS estimation algorithms used in [18, 20, 21, 28]. There-

fore, the observation model (1) and the proposed estimation

strategy are well adapted for the processing of altimetric

echoes. Note that we consider H = 3, M = 500 echoes,

Θm: = [SWH(m), τ(m), Pu(m)] and that the parameters

generally belong to the following intervals of realistic values

SWH ∈ [0, 50] m, τ ∈ [5, 70] and Pu > 0. Note finally that

we consider the same noise covariance for r = 20 successive

echoes. Indeed, after averaging L echoes, the altimeter de-

livers 20 averaged echoes per second that will have the same

noise covariance matrix.

4.2. Results on synthetic data

The proposed strategy (denoted by SBMC for smooth Bayesian

MC) is first studied when considering 500 correlated altimet-

ric echoes. This correlation is introduced by considering a

smooth evolution of the altimetric parameters. More pre-

cisely, the synthetic parameters have been chosen as follows

SWH(m) = 2.5 + 2 cos(0.07m), τ(m) = 27 + 0.02m
if m < 250 and τ(m) = 32 − 0.02m if m ≥ 250, and

Pu(m) = 158 + 0.05 sin(0.1m), where m denotes the echo

number. The synthetic echoes are corrupted by a speckle

noise resulting from the averaging of L = 90 echoes. The

SBMC is compared to the state of the art ULS algorithm

described in [17, 18]. Fig. 1 shows the actual parameter

values and the estimated ones by considering the ULS and

the SBMC algorithms for 100 echoes. SBMC provides better



results than ULS due to the smoothness constraints enforced

by the prior (4). Table 1 confirms this result since we ob-

tain better standard-deviations (STDs) with the proposed

approach. Note finally that the SBMC shows reduced bias

(except for Pu) mainly because it exploits the fact that the

noise is colored contrary to ULS.

Fig. 1. Comparison of the actual parameters (black dashed

line) with the estimated ones using the ULS algorithm (red

line) and the proposed SBMC algorithm (blue line).

Table 1. Parameter biases and STDs on synthetic data (500
echoes).

SWH (cm) τ (cm) Pu

Bias
ULS 3.18 1.11 -0.01

SBMC -0.02 -0.13 -0.19

STD
ULS 44.7 6.1 1.91

SBMC 5.74 1.8 0.52

5. RESULTS ON REAL JASON-2 DATA

This section illustrates the performance of the proposed

SBMC algorithm when applied to a real Jason-2 dataset.

The considered data lasts 36 minutes and consists of 43000
real echoes. Fig. 2 shows 500 estimated parameters when

considering the ULS and SBMC algorithms. The ULS es-

timates suffers from the noise corrupting the echoes while

SBMC provides smoother estimates that are physically more

consistent. Moreover, SBMC appears to be more robust to

outliers as illustrated for the estimate #390 of Pu. Note that

the estimated SWH is slightly larger for SBMC when com-

pared to ULS. This difference is mainly due to the i.i.d. noise

assumption used in ULS that is not in adequation with noise

correlations as already discussed in [21, 27]. Table 2 shows a

good adequation between the means of the estimated param-

eters for both ULS and SBMC (except for SWH). Moreover,

the estimated STDs obtained with SBMS are smaller than

for ULS which is of great importance for many practical

applications related to oceanography such as bathymetry.

Fig. 2. Estimated parameters using the ULS (red line) and

SBMC algorithms (blue line).

Table 2. Parameter means and STDs for real Jason-2 data

(43000 echoes).
SWH (cm) τ (cm) Pu

Mean
ULS 237 14.67 167.81

SBMC 270 14.69 167.53

STD
ULS 53.4 10.41 5.9

SBMC 4.3 5.22 4.82

6. CONCLUSIONS

This paper introduced a Bayesian model for smooth estima-

tion of parameters associated with nonlinear models. The

proposed model considers an appropriate prior distribution

enforcing a smooth temporal evolution of the parameters of

interest. Due to the complexity of the resulting joint pos-

terior distribution, an MCMC procedure (based on a hybrid

Gibbs sampler) was investigated to sample the posterior of

interest and to approximate the Bayesian estimators of the

unknown parameters using the generated samples. The pro-

posed SBMC algorithm showed good performance and im-

proved the quality of the estimated parameters when applied

to both synthetic and real altimetric signals. It was also shown

to be robust to parameter outliers. Future work includes the

consideration of optimization algorithms for solving the pro-

posed nonlinear regression problem with a reduced computa-

tional cost.
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