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Abstract: In urban canyons, non-line-of-sight (NLOS) 

multipath interferences affect position estimation based on 

Global Navigation Satellite Systems (GNSS). In this paper, the 

effects of NLOS multipath interferences are modeled as mean 

value jumps appearing on the GNSS pseudo-range 

measurements. The Marginalized Likelihood Ratio Test (MLRT) 

is proposed to detect, identify and estimate the NLOS multipath 

biases. However, the MLRT test statistics is generally difficult to 

compute. In this work, we consider a Monte Carlo integration 

technique based on bias magnitude sampling. The Jensen 

inequality allows this Monte Carlo integration to be simplified. 

The interacting multiple model algorithm is also used to update 

the prior information for each bias magnitude sample. Finally, 

some strategies are designed for estimating and correcting the 

NLOS multipath biases. Simulation results show that the 

proposed approach can effectively improve the positioning 

accuracy in the presence of NLOS multipath interferences. 

Keywords: GNSS; multipath mitigation; MLRT; multiple model; 

urban positioning. 

I. INTRODUCTION 

Global Navigation Satellite Systems (GNSS) are widely 
applied for the surveillance of mini unmanned aerial /landing 
vehicles or the search and rescue in urban canyon scenarios. 
In these applications, multipath (MP) interference is one of 
the largest sources of GNSS errors. MP errors are due to the 
fact that a signal emitted from a satellite is very likely to get 
reflected and to follow different paths before arriving to the 
GNSS receiver [1]. MP interferences can be divided into two 
classes: (a) the line-of-sight (LOS) interferences which result 
from the signal composed of the sum of the direct signal and 
of delayed reflections; (b) the non-line-of-sight (NLOS) 
interferences which result from a unique reflected signal 
received and tracked by the GNSS receiver [2]. In urban 
canyons, the direct path of the satellite signal is vulnerable to 
masking or blocking and the GNSS receiver is likely to track 
reflected signals. Therefore, NLOS MP interferences 
frequently happen in urban canyons. 

Different approaches can be found in the literature for 
mitigating MP interference errors. First, the use of high 
quality antennas or antenna arrays has shown to be efficient 
for detecting GNSS measurements affected by MP 
interferences and exclude them from the positioning operation 
[2], [3]. Unfortunately, these antennas are expensive and have 
large dimensions. Second, considering that the GNSS receiver 
has to track the signal composed of the direct signal and of 
delayed reflections in the LOS situation, several MP 
mitigation methods based on the Delay Lock Loop (DLL) 
tracking have been proposed. These methods include the MP 
insensitive delay lock loop [4], the multicorrelator GNSS 
receivers [5] and the adaptive vector-tracking loop [6] et al.. 
In the NLOS situation, the MP interferences can be hardly 
mitigated by these strategies while the direct signal is blocked 
or masked. To overcome these difficulties, one can compare 
visible satellites with a priori knowledge of the shadowed 
satellites [7]. Another possibility is to exploit the geometric 
path model [8] or a 3D model of the environment [9] in order 
to estimate a possible reflection path of NLOS MP 
interferences. The reflected signal due to a MP interference 
can be converted to a bias appearing on the GNSS 
pseudo-range measurement. When prior information for this 
bias can be obtained [10], MP mitigation methods based on 
Bayesian statistical theory for GNSS pseudo-range 
measurements can be considered. For instance, Spangenberg 
considered in [11] two different models for pseudo-range 
measurements depending on the availability of LOS signals. 
Viandier  proposed in [12] different ways of handling 
pseudo-range measurements contaminated by MP biases in 
urban scenarios, and of estimating the position of a vehicle by 
using a particle filter applied to a jump Markov system. 
Giremus proposed in [13] a fixed Rao-Blackwellized particle 
filter to jointly detect and estimate MP biases associated with 
GNSS pseudo-range measurements.  

Some bias detection methods are based on the Generalized 
Likelihood Ratio Test (GLRT) and the Marginalized 
Likelihood Ratio Test (MLRT) [14], [15]. However, the 



marginal likelihood function of the MLRT is generally 
difficult to compute. This problem has been addressed in [16] 
where a numerical solution based on the unscented transform 
was proposed. Accordingly, this paper proposes an 
approximate MLRT to detect, identify and estimate the NLOS 
MP biases affecting GNSS pseudo-range measurements.  

The paper is organized as follows: The system considered 
for GNSS positioning is introduced in Section II. Section III 
studies the MLRT and its approximation based on Jensen’s 
Inequality to detect MP biases in GNSS measurements. 
Section IV investigates the identification, estimation and 
correction of GNSS measurement in the presence of NLOS 
MP biases. Simulation results and conclusions are reported in 
Sections V and VI respectively. 

II. SYSTEM DESCRIPTION 

A. State Model  

We consider a second-order model (i.e., constant velocity 
model) to describe the dynamic of the vehicle in the Earth 
Centered Earth Fixed (ECEF) frame. Moreover, the GNSS 
receiver clock offset and its drift are taken into account. 
Therefore, the state model can be divided into two parts 
containing the position and velocity of the vehicle in the 
ECEF frame, and the receiver clock offset and drift, 
respectively. More precisely, the state vector considered in 
this paper is defined as follows [1] 

 

where 
•  is the vehicle position in the ECEF frame, 
•  is the vehicle velocity, 
•  and  are the GNSS receiver clock offset and its 

drift respectively. 
The velocity can be reasonably modeled as a random walk 
process, e.g.,  where  is a zero mean Gaussian 
noise of variance . For short-term applications in which the 
periodical clock resets of the GNSS receiver are not taken into 
account, the GNSS receiver clock offset  and its drift  
can also be modeled as random walk processes, i.e., 

 and  where  and  are 

zero-mean Gaussian white noises of variance  and . 
Based on the above assumptions, the discrete-time state model 
which describes the propagation of the vehicle state  can 
be formulated as 

 (1) 

where 
•  denotes the sampling time instants. 

•  is the zero mean Gaussian 

white noise vector of covariance matrix . 
Considering a relative independence between the kinematic 
parameters and the GNSS clock parameters, the state matrix 

 is a block-diagonal matrix. The matrices  

and  can be defined as follows 

 and  

where the block matrices , ,  and  are precised 

below 

 with  

 with  

 

and where  represents the time interval between two 
successive sampling time instants.  

B. Measurement Model 

Assuming that the MP bias drift is very slow for the 
considered vehicle, we introduce a mean value jump affecting 
the GNSS pseudo-range measurements in the presence of  
NLOS MP interferences. Consequently, the -th in-view 
satellite pseudo-range measurement model including an 
NLOS MP bias can be defined as 

 

(2) 

where 
•  ( ) is the pseudo-range measurement 

associated with the -th in-view satellite, and  is the 
number of in-view satellites, 

•  and  are the -th satellite 
position and the vehicle position in the ECEF frame 
respectively, 

•  is the GNSS receiver clock offset, 
•  is the magnitude of the NLOS MP bias associated 

with the -th pseudo-range measurement,  represents 
the possible occurrence time of the NLOS MP bias, and 

 for , 
•  is the -th satellite pseudo-range measurement noise 

with , and  represents the Gaussian 
distribution. 

In (2), the pseudo-range measurement related to the 
vehicle position is defined by a non-linear equation. The 
unscented Kalman filter (UKF) and the particle filter (PF) 
could be investigated to estimate the state of this nonlinear 
estimation problem. However, the corresponding 
computational costs can be prohibitive for practical 
applications. Thus, we consider in this paper an extended 
Kalman filter (EKF) which linearizes the non-linear equations 
(2) and provides an efficient and low-cost solution for weakly 
nonlinear systems.  

III. NLOS BIAS DETECTION BASED ON MLRT  

A. Problem Formulation 

In the NLOS situation, we propose to model the MP 
interference as a mean value jump affecting the GNSS 
pseudo-range measurements. According to the hypothesis 
testing theory, the likelihood ratio test (LRT) for detecting the 



presence of a mean value jump is a binary hypothesis test 
which compares two hypotheses associated with the absence 
(H0) and presence (H1) of a mean value jump in the 
measurements. The two hypotheses considered in this paper 
are defined as follows 

H0: no mean value jump up to present time   

H1: a mean value jump (of amplitude ) has occurred at 
time  

The log-likelihood ratio (LLR) for these two hypotheses is 

 (3) 

where  and  is the 

pseudo-range measurement vector sequence up to time , and 
 is the number of in-view satellites. Denote as 

 and  the probability density 

functions (pdfs) of the measurement vector associated with 
the hypotheses H0 and H1 respectively. 

In the likelihood ratio test, the occurrence time and 
magnitude of the mean value jump denoted as  and  are 
assumed to be known. However, the unknown jump 
magnitude  can be regarded as a nuisance parameter for the 
LRT. According to the literature, there are two classes of 
methods for eliminating the nuisance parameter . The first 
method consists of replacing the nuisance parameter by its 
maximum likelihood estimator (MLE) (maximizing the 

likelihood function) in the pdf  leading to 

the Generalized Likelihood Ratio Test (GLRT). The second 
method marginalizes the LLR with respect to the nuisance 
parameter yielding the Marginalized Likelihood Ratio Test 
(MLRT). The key point of the GLRT based on a state space 
model is that the MLE of parameter  can be obtained by the 
innovation from a Kalman filter. Contrary to the GLRT, the 
nuisance parameter  is eliminated by marginalization of the 
likelihood function under the hypothesis H1 in the MLRT. In 
[15], Gustafsson proposed an MLRT approach based on a 
space state model as an alternative more robust method for 
bias detection. Unfortunately, the marginal likelihood 
function under hypothesis H1 is generally difficult to compute. 
An alternative was proposed by Giremus in [16] where a 
numerical solution of MLRT based on the unscented 
transform was used for bias detection in space state models. 
The method studied in [16] introduced a prior distribution for 
the nuisance parameter  which can be obtained from our 
experience about MP or from previous experiments. This 
paper studies a similar approach which differs from [16] by 
the use of an approximation based on Jensen's inequality, as 
explained below. According to the error envelope of MP 
interferences which is a function of the MP relative delay 
interfering the direct signal for a given GNSS receiver 
configuration [10], a suitable prior distribution for the MP 
bias with magnitude  is a uniform distribution defined by, 

 

where  
•  represents the uniform distribution,  
•  and  are the maximum and minimum 

magnitudes of the MP bias, respectively. 
Using this prior distribution for the nuisance parameter, we 
propose in this paper an approximate MLRT based on 
Jensen’s inequality to detect the occurrence time of NLOS 
MP biases. 

The marginalization of (3) with respect to  leads to 

 (4) 

where 

 (5) 

and where  is the prior distribution of . Considering 
that the integral of (5) is difficult to compute in closed-form, a 
Monte Carlo (MC) integration method can be used to evaluate 
(5). According to the MC integration, (5) is approximated as  

 (6) 

where  ( ) is the i-th sampling value of the MP 
bias magnitude belonging to the interval , and  

is the number of magnitude samples. Thus  is the 
corresponding weight with 

 

As a consequence, the test statistic  in MLRT can be 
approximated as 

 

Since  for ,  can be rewritten with the 
following more compact expression 

 (7) 

The MLE of the occurrence time  is 

 

According to the Neyman-Pearson lemma, the presence of a 
mean value jump is decided using the following MLRT rule 

 

where  is a threshold related to the probability of false 
alarm of the test. In order to reduce the computational 
complexity, the optimization of  is constrained to the last 

 units of time, i.e.,  at any time , and 
 is a finite window length.  

B. An Approximate MLRT Based on Jensen’s Inequality 

According to the Kalman filter theory, the denominator of 
(7) which is the likelihood function associated with the 
hypothesis H0 can be defined as 



 (8) 

with 

 

and where 

•  and  are the filter innovation 

vector and covariance matrix in absence of mean value 
jump at time , 

•  and  are the measurement and predicted 

measurement vector under the hypothesis H0 at time . 
The numerator of (7) is a weighted sum of likelihood 
functions associated with different mean value jump 
hypotheses with magnitudes  ( ). Thus the 
likelihood function under the hypothesis of a mean value 
jump with magnitude sampling  is  

 (9) 

with 

 

 

where 

•  and  are the filter innovation vector 

and covariance matrix in the presence of a mean value 
jump with magnitude  at time , 

•  is the predicted measurement vector under the 

hypothesis H1 of magnitudes  at time . 

After replacing (8) and (9) in (7), the MLRT test statistic 
based on MC integration can be expressed as follows 

 

(10) 

According to (10), it is clear that the multiplication of several 
normal pdfs in the denominator can be easily handled by the 
logarithm function. Conversely, the numerator of (10) is a 
weighted sum of normal pdfs and thus is not easily tractable 
after the logarithm operation. Since the natural logarithm is a 
concave function over its range, Jensen’s inequality [17] can 
be advocated leading to 

 (11) 

where  is any functional,  and . 
After computing the numerator of (10), (11) leads to 

 

(12) 

After replacing (12) in (10), the test statistic  can be 
rewritten as follows 

 

 

 (13) 

i.e., 

 

(14) 

where 

 

is independent of the measurements. According to (14), in 
order to obtain filter innovations based on  measurement 
equations, several measurement equations (as many 
measurement equations as the number of bias magnitude 
samples) have to be processed in parallel and the 
contributions of all these measurement equations are weighted 

by . In such case, each sample  corresponds to one 
measurement equation, and the weight of each measurement 
equation actually depends on how close the magnitude sample 

 is to the exact magnitude . Thus, the weight associated 
with each measurement equation is time-varying (hidden 

Markov chain) which will be denoted as  (weight of the 

i-th measurement equation at time ). After replacing  by 

 in (14), the following result can be obtained 

 

(15) 

where 

 

Finally, using the previous derivations, the presence of a mean 
value jump is accepted or rejected using the following rule 

 

where  is a threshold related to the probability of false 

alarm of the test, and  is the MLE of the occurrence time . 

Thus  can be defined as 

 



The rest of this section discusses the way of adjusting the 

weights  defining . Considering that several 

measurement equations need to be processed in parallel,  

can be computed based on the IMM algorithm [18]. A set of 
measurement models associated with the jump magnitude 
samples  ( ) is denoted as  

 

and the corresponding model probability  can be obtained 

based on the current measurement  and the predicted 

model probability, leading to 

 

 

where  and  is the normalization constant. 

IV. IDENTIFICATION/ESTIMATION/CORRECTION OF 

NLOS MP BIASES 

According to the test statistic  resulting from the 
approximate MLRT derived in section III, the occurrence time 
of the NLOS MP bias can be estimated. In order to determine 
which pseudo-range measurements are affected by NLOS MP 
bias, we study in this section a simultaneous detection and 
identification procedure. Note that the pseudo-range 
measurements associated with a mean value jump are usually 
isolated after the presence of an MP interference has been 
confirmed by standard integrity checks, such as the Receiver 
Autonomous Integrity Monitoring (RAIM) method [1]. 
However, considering that the number of in-view satellites is 
limited in urban scenarios, the exclusion of pseudo-range 
measurements may weaken the observability and impair the 
accuracy of positioning solution based on GNSS. In order to 
implement the positioning solution with a maximum of 
pseudo-range measurements, we propose in this paper to 
estimate the NLOS MP biases and to correct this presence of 
bias in the measurements. All these operations referred to as 
identification, estimation and correction are detailed below. 

A. Identification of NLOS MP Biases 

In order to make identification possible, a possible method 
is to compute one MLRT test statistic for each in-view 
satellite pseudo-range measurement. In this case, two 
hypotheses for detecting the presence of NLOS MP bias on 
the -th ( ) in-view satellite pseudo-range 
measurement can be defined as follows 

: no mean value jump for the -th measurement up to 
present time   

: a mean value jump (of amplitude ) has occurred 
for the -th measurement at time  

The detection and identification of NLOS MP biases can be 
converted into a group of hypothesis tests for all pseudo-range 

measurements. The corresponding test statistic  
( ) associated with the hypothesis of an NLOS MP 
bias affecting the -th in-view satellite pseudo-range 
measurement from time  to , can be obtained based on the 
approximate MLRT theory presented in Section III. The MLE 
of the occurrence time  associated with the -th 

measurement is 

 

For detecting the presence of an NLOS MP bias at a possible 

occurrence time , the decision rule can be defined as 

 

where  is the -th hypothesis threshold related to a given 
probability of false alarm. In order to simplify the 
computation, a set of possible amplitudes (for the NLOS MP 
biases)  ( ) can be uniformly sampled in the 
interval , and used for each calculation of the 

test statistic . Finally, it is important for the 
simultaneous detection and identification to ensure that the 
proposed approximate MLRT can handle several NLOS MP 
biases occurring at the same time instant. 

B. Estimation and Correction of NLOS MP Biases 

The optimization of  is constrained to the data 

belonging to a finite window ( ). In order to 
reduce the influence of false alarms, the NLOS MP bias in the 
presence of the -th pseudo-range measurement will be 

confirmed when . Thus the choice of  
results from a tradeoff between fast bias detection and 
accurate bias estimation. Since the bias detection has to be 
performed in real time, the value of  is set to a relatively 
small value, i.e.,  5 in [13] or  11 in [14]. Note 
that a larger threshold could be chosen to control the false 
alarm probability. 

After it is confirmed that the -th satellite pseudo-range 
measurement has been affected by the NLOS MP interference, 
we propose to estimate the magnitude of the NLOS MP bias. 
Since the IMM algorithm is used to update the measurement 
model probabilities associated with the magnitude samples 
used in the proposed approximate MLRT, the model 

probability  depends on how close the magnitude sample 

 is to the exact magnitude  and can adaptively adjust for 
each magnitude sample  ( ). The bias magnitude 

estimation  for the -th in-view satellite pseudo-range 

measurement can be defined as 

 (16) 

with 

 

and 

 

where  
•  is the number of bias magnitude samples, 

•  is the -th sampling value of NLOS multipath bias 

magnitude, 

•  is the filter innovation under 



hypothesis  with bias sampling magnitude , 

•  and  are the -th in-view satellite 

pseudo-range and predicted pseudo-range measurements 
under hypothesis  with a jump magnitude  at 

time , respectively. 

Once the NLOS MP bias and its magnitude have been 
confirmed and estimated, we propose to correct the 
corresponding filter innovation and to use it for the 
positioning solution based on the standard EKF algorithm. For 
the -th pseudo-range measurement which is affected by the 
NLOS MP bias, the corresponding filter innovation can be 
corrected as follows 

 (17) 

where 

• , 
•  is the corrected filter innovation which will be used 

in EKF algorithm at time , 

•  is the filter innovation under 

hypothesis  at time , 

•  is the predicted pseudo-range measurement of 

the -th in-view satellite under hypothesis  at time . 
Note that the objective of correcting the filter innovation 
rather than the pseudo-range measurement is to enable the 
detection of NLOS MP bias during its whole duration. 

V. SIMULATION RESULTS 

Several simulations have been implemented to validate the 
proposed approximate MLRT approach. The state space 
model has been simulated with the parameters reported in Tab. 
I. The fault-free GNSS measurements have been computed 
based on an almanac file including all useful satellite orbit 
data. In theory, the pseudo-range MP error can reach 
magnitudes close to 0.5 of a code chip [10], i.e., 150m in the 
C/A case, depending on the receiver correlation technology; 
We have assumed that the prior distribution of the MP bias 
magnitude  is a uniform distribution in the interval [-75, 75], 
i.e., (-75, 75). Due to the excessive competition 
between unnecessary models, the performance of the IMM 
algorithm decreases when too many models are considered. 
The number of bias magnitude samples used in our 
simulations has been set to 5.  

TABLE I.  SIMULATION PARAMETERS 

Process noise (velocity)  
Clock offset noise a  
Clock drift noise a 

 
GNSS measurement noise  

a  denotes the velocity of light             

According to the hypothesis testing theory, the rejected 
region associated with absence of NLOS MP bias needs to be 
determined based on the distribution function of test statistic 
under hypothesis  and significance level  (false alarm 
rate). Based on the aforementioned derivations, the expression 

of the test statistic  in the proposed approximate MLRT 
under hypothesis  has not a closed-form expression and 

thus the explicit distribution function of the test statistic  
under hypothesis  cannot be determined. Therefore, the 

empirical cumulative distribution function (cdf) of the test 

statistic  under hypothesis  has been computed 
using MC simulations performed using an appropriate GNSS 
pseudo-range measurement noise. Based on the above 
simulation parameters, the cdfs associated with different data 
window lengths for one satellite pseudo-range measurement 
are depicted in Fig. 1. The thresholds corresponding to 
different false alarm ratios are presented in Tab. II. In order to 
reduce the influence of false alarms, the threshold has been set 
to ensure a false alarm rate of 0.05. It is assumed that there are 
4 in-view satellite pseudo-range measurements and that the 
NLOS MP biases affecting the satellite pseudo-range 
measurements have been generated according to the 
measurement model (2) as follows 

• The first satellite pseudo-range measurement (satellite 
#1) is affected by a mean value jump of 40m during the 
time interval [40s, 70s], and an NLOS MP bias of -40m 
appears during the time interval [120s, 140s], 

• The second satellite pseudo-range measurement (satellite 
#2) is affected by an NLOS MP bias of 55m occurring 
during the time interval [100s, 150s]. 

Finally the length of the data window is 4 and the filter 
period equals 1Hz in all simulations. We propose to compare 
the positioning and bias magnitude estimation accuracy of the 
proposed bias detection/estimation approach with those 
obtained using a standard EKF. M = 50 MC simulations have 
been run to compute the estimation mean value and root mean 

square errors (RMSE) denoted by  and 

, where  is the -th run result, and 

 denotes the sampling time instant. 

 

Figure 1. Empirical cdf associated with different data window lengths. 
4 (dotted line). 7 (dashed line). 11 (solid line). 
 

TABLE II. THRESHOLDS FOR DIFFERENT FALSE ALARM RATIOS 

Length of Data Window  False Alarm Rate  

 0.025 0.05 0.1 

4 2.531 1.602 0.880 
7 3.628 2.431 1.472 

11 4.811 3.402 2.163 

 
Fig. 2 shows the magnitude estimations of NLOS MP 

biases for pseudo-range measurements #1 and #2 versus 
simulation time. The corresponding bias RMSEs are depicted 
in Fig. 3. Since the prior information about the bias magnitude 



is taken into account, the proposed approach can track the 
biases with good accuracy. Note that a switching between the 
different measurement models is considered in the IMM 
algorithm. Thus, when the NLOS MP bias occurs, peak errors 
due to bias estimation can be clearly observed. After the 
measurement model has been determined, the bias estimations 
become stable and the bias RMSEs decrease to less than 10m 
in the presence of a mean value jump. In addition, there are 
some false alarms leading to bias estimation errors in the 
absence of mean value jump as shown in Fig. 3.  
 

Pseudo-range 1              Pseudo-range 2 

 
Figure 2. Magnitude estimated of NLOS MP biases for the pseudo-range 
measurements #1 and #2 (50 MC runs). Actual bias magnitude (solid line). 
Estimated bias magnitude (dashed line). 

 

Pseudo-range 1             Pseudo-range 2 

 
Figure 3. RMSEs of bias magnitudes (50 MC runs). 

 

(1)                        (2) 

 
   (3) 

 
Figure 4. Change probabilities of different models versus simulation time 
provided by the IMM algorithm. (1) Bias magnitude 30.36m for model 
#2 (2) Bias magnitude -45.83m for model #4. (3) Bias magnitude 
65.98m for model #1. 

Fig. 4 shows the change probabilities of the different 
models used for the pseudo-range measurements #1 and #2 in 
the IMM algorithm (a high probability indicates a very likely 
presence of a mean value jump whereas a small probability 
corresponds to a measurement non affected by NLOS MP). It 
is clear that the corresponding change of model probability is 
in good agreement with the occurrence of the NLOS MP bias. 
The advantage of using the IMM algorithm is to adaptively 
update the prior information about the bias magnitude based 
on the filter innovation. 

The RMSEs of the positioning estimations based on the 
standard EKF in three directions are depicted in Fig. 5. The 
positioning accuracy obtained with the standard EKF is 
reduced because the MP biases are not mitigated. Conversely, 
the positioning accuracy significantly improves when using 
the proposed approach. Since the estimation of the bias 
magnitude is affected by some error, the positioning accuracy 
in the presence of NLOS MP bias is smaller than that obtained 
in absence of NLOS MP bias. 

X-direction 

 

Y-direction 

 
Z-direction 

 
Figure 5. RMSEs of positioning estimations in three directions (50 MC runs). 
The proposed approach (soild line). The standard EKF (dotted line). 

VI. CONCLUSION 

This paper proposed an approximate marginalized 
likelihood ratio test based on Jensen’s inequality to detect, 
identify and estimate the non-line-of-sight multipath biases 
affecting GNSS pseudo-range measurements in urban 
canyons. Moreover, the interacting multiple model algorithm 
was introduced to update the prior information of each bias 
magnitude sample to improve its estimation. The theoretical 



results were validated by simulations, showing the interest of 
the proposed approach.  

The number of bias magnitude samples used in the 
algorithm can be large in some cases to ensure an accurate 
Monte Carlo integration. Moreover, the performance of the 
IMM algorithm can decrease when too many models are 
considered (it is due to the excessive competition between 
unnecessary models). Future work will be devoted to the 
study of as variable structure multiple model as the one 
developed in [19] which might bypass these difficulties.  
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