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Abstract—In urban canyons, the GNSS satellite signals may
travel an additional distance due to reflection and diffraction
before reaching the receiver antenna. Where no direct path is
available, this is called a non-line of- sight (NLOS) propagation
and adds a positive bias to the geometric measured pseudorange.
In this paper, we address the issue of GNSS positioning in harsh
environments using constructively the NLOS signals. To exploit
these biased signals, we compensate for the NLOS bias using
a 3D GNSS simulation model of the environment. We use the
3D model as a priori information to characterize the additional
NLOS bias. In this work, we propose a deep integration of the
3D model-based signal characterization into an advanced GNSS
receiver architecture called vector tracking loops. The proposed
architecture is a combination of a vector tracking receiver and
a co-processor of external local information to correct the GNSS
measurements. Obtained results with real GPS signals illustrates
the effectiveness of this approach to improve the accuracy and
reliability of the navigation solution in urban canyons.

I. INTRODUCTION

The number of global navigation satellite system (GNSS)
applications has steadily increased over the last decades, in
particular for personal mobility (e.g., GNSS-enabled mobile-
phones, smartphones and services). Intelligent systems of
transportation are also an important segment of the GNSS
market including in-car navigation and road user charging.
However, the urban environment presents significant chal-
lenges for satellite positioning, because of satellite masking,
multipath and NLOS propagation. As a consequence, the
receiver delivers a position that can be biased by an error of
several tens of meters [5], when it is not totally impossible to
calculate a position. This is particularly true in the context of
urban canyons, i.e., when the streets are very narrow and/or
the buildings are very high. Multipath and NLOS propagation
occurs when GNSS signals bounce off buildings and reach the
receiver’s antenna via different paths with a travelling time
longer than that of the LOS path. Multipath and NLOS signals
can be very strong and have small relative delays which makes
them difficult to be distinguished from the desired path signal.
Where no direct path is available, this is called a non-line
of- sight (NLOS) propagation. These signals add a positive
bias to the geometric measured pseudorange and thus are more
challenging to mitigate in absence of the LOS. Existing works
focus on the multipath mitigation problem and on detection and
exclusion of NLOS. Examples of efficient in-receiver multipath
mitigation methods include robust discriminators such as the

narrow correlator, the strobe correlator (see [5] for more
details), and methods of multipath estimation and cancellation
such as multpath estimating delay lock loop (MEDLL), the
multipath elimination technology, the fast iterative maximum-
Likelihood algorithm [13] and Bayesian filtering methods [6].
Most of these solutions can be applied only if the LOS signal is
present. However, in urban canyon environment, the number of
LOS satellites is very low and the position dilution of precision
(PDOP) of these satellites is usually unsatisfactory. We suggest
in this work to investigate the constructive use of multipath and
NLOS signals instead of simply mitigating those reflections as
in most current GNSS receivers.

If the user is in an NLOS context, the receiver will consider
the received GNSS signal as a LOS and will estimate a pseudo-
range from the satellite biased by up to several tens of meters.
It has been recognized that a stand-alone GNSS receiver is
not enough to provide reliable location service in severely
obstructed signal conditions. To deal with these difficulties,
the GNSS receiver can be assisted by several sources of infor-
mation such as inertial navigation sensors, wireless network or
pseudolites retransmitting the GPS signal in constrained areas,
requiring additional infrastructure and complex hybridization
technologies. Another possibility is to exploit all the available
information for improving the positioning performance in these
harsh environments. One solution consists of comparing visible
satellites with an a priori knowledge of the shadowed satellites
[7]. Another solution is to use NLOS constructively rather
than just deleting them. However, the difficulty in using NLOS
signals is the capability of modelling the length of the indirect
paths to characterize the bias. Without this knowledge, it is
difficult to correct the distance error carried by the signal that
has undergone secondary path. In [9] a geometric path model
is used, whose parameters are estimated by a nonlinear filter.
In [15], paths are calculated by laser scanning the environment.
In [2], we have proposed a new navigation strategy based on
the augmentation of GNSS measurements by a 3D model of
the environment to compensate for the pseudoranges errors.
This approach tightly integrates the 3D model information in
the measurements domain at the level of position computation.
However, when not enough GNSS signals are tracked, methods
of processing in the position-domain become insufficient,
because available pseudoranges are not enough. In this context
of GNSS reception with reduced availability, effort has to
be made at the level of signals tracking in order to produce



measurements from very week NLOS signals. Other recent
works used a 3D map to assist the position computation in
GNSS harsh environments [1], [16].

In this paper, we introduce a new approach of deep fu-
sion that uses constructively non-line-of-sight (NLOS) GNSS
signals jointly with a geometric city model in order to track
enough signals to compute the user’s position. We use the SE-
NAV software to predict the geometric paths of NLOS signals
using a high realistic 3D model of the urban environment [4].
To deal with the problem of signal outage in GNSS signals
positioning, we use the advanced receiver architecture called
vector tracking loops that has attracted much attention in recent
years [8]. Although a vector-based architecture can greatly
improve the tracking performance of the GNSS receiver, it
is too limited if it cannot track enough satellites to compute
a navigation solution, or if it tracks NLOS signals. In the
proposed approach, the measurement model traditionally based
on the trilateration equations is constructed from the received
paths estimated by SE-NAV. The Jacobian of the measurement
model is calculated through knowledge of the objects on
which the reflections have occurred. To use even less reliable
measurements, we use a robust version of the extended Kalman
filter (EKF) in order to reduce the impact of non consistent
measurements (i.e. outliers) [12].

II. SIMULATING GNSS SIGNALS WITH A 3D MODEL

The SE-NAV software has been developed by the company
OKTAL-SE to simulate GNSS signal reception in a urban
environment. SE-NAV simulates the propagation of a GNSS
signal in a 3D virtual scene, using a ray-tracing algorithm to
compute the shadowing effects and the multipath generated by
objects of the environment. It uses geometric optics to calculate
reflected, diffracted and transmitted rays. In this paper, only the
reflected signals are considered for reason of simplicity. Fig. 1
presents a SE-NAV simulation of reflected signals in Toulouse
downtown. Signals in white are LOS signals and signals in
blue or red are multipath and NLOS signals.

3D virtual scenes can be loaded in SE-NAV from the most
classical 3D formats if the environment is represented as plans.
For this paper, we have worked with a scene provided by the
SE-NAV software, which corresponds to Capitole Square in
Toulouse. After the configuration of the 3D virtual scene, SE-
NAV can take as inputs the satellite and receiver positions and
speeds. The software outputs are the geometrical configura-
tions of received signals and Dopplers for all signals. If the
received signal is a multipath/NLOS, SE-NAV provides also
the coordinates of the reflection points and the equations of
the reflection plans.

In summary, the SE-NAV simulator provides deterministic
geometric information for the received GNSS signals at a
certain position and for a given time instant. Note that the
physical aspect of signal propagation is not considered in this
paper as we focus on the geometric bias compensation in the
stage of signal tracking.

III. VECTOR TRACKING GNSS RECEIVER

A. Basics of Vector Tracking Architecture

1) Measurements model: During the tracking loops, gen-
erated replica of code and carrier signals are correlated

Fig. 1. SE-NAV simulation in Toulouse downtown by OKTAL-SE

with incoming signals to generate three correlator pairs
(IE , QE , IP , QP , IL, QL), where I and Q stands for the
inphase and quadrature components of a correlator,

respectively. The subscripts E,P and L represent early,
prompt and late versions of the correlator pairs, respectively.
For a given satellite, the correlator output at time epoch k is
expressed as follow:

Ik = A
√

2
MDk

sin(π∆fdk
Tcoh)

π∆fdk
Tcoh

R(τk + δTc) cos(∆Φk) + nk

Qk = A
√

2
MDk

sin(π∆fdk
Tcoh)

π∆fdk
Tcoh

R(τk + δTc) sin(∆Φk) + nk, (1)

where M is the number of samples by correlation period, Dk

denotes the navigation data bit, Tcoh denotes the coherent inte-
gration time, R(.) is the GPS C/A-code signal autocorrelation
function and ∆Φk is the average of the phase error. The code
chip is denoted by Tc and the correlator early-late spacing by
d. The value of δ = −d/2 corresponds to the early correlation,
δ = −d/2 to the prompt and δ = d/2 corresponds to the late
correlation. The noise term is assumed to be normally with
zero mean and variance σ2

I,Q.

Each period Ta, the discriminator delivers a value of errors.
After averaging L output of discriminator over LTa ms, they
are used by the non-linear discriminator to estimate the code
phase and frequency shift errors. At each time epoch, the early-
minus-late power discriminator output of each satellite number
i = 1, ..., N is given by [10],

D(τi) = (I2E +Q2
E)

2 − (I2L +Q2
L)

2 = A2M2(2− d)τk + ξi (2)

or,

D̃(τi) = D(τi)/A
2M2(2− d) = τi + ξ̃i (3)

It should be noted that the cross product FLL (frequency lock-
loop) discriminator is chosen in this work and computed by
using adjacent pairs of prompt correlator samples at time t1
and t2 as,

D(∆fdi
) = (IP1

QP1
−IP2

QP2
)/(t1−t2) = πA2M2∆fdi

+ςi,
(4)

or

D̃(∆fdi
) = D(∆fdi

)/πA2M2 = ∆fdi
+ ς̃i, (5)

where ∆t is the accumulation interval for early and late
correlators, ξi and ςi are the code and Doppler measurements
noise samples. According to equations (3) and (5), the discrim-
inators output is linear with the code error (i.e. pseudorange
residuals) and frequency errors, respectively, over a region of



small errors. The above equations are also used to estimate the
discriminators noise variances needed for the noise covariance
matrix in the Kalman filter of the VDLL.

2) EKF of the vector tracking loop: In this paper we use
the vector tracking (VDLL) instead of the standard code delay
loops DLLs to track the code phase of satellite collectively
and we use standard scalar FLLs to track the frequency of each
satellite independently as implemented in [18]. In comparison
to conventional tracking loops, the VDLL uses an extended
Kalman filter (EKF) to track all channels together taking
advantage of the spatial correlation between different satellite
signals instead of processing them individually. The VDLL
track the signals but also estimate the user position. By this
combination of tracking and positioning modules the vector
approach is able to predict the code phase from the computed
position to maintain the tracking lock over short outage of a
satellite signal, and to maintain track of weak signals. Thus
the tracking of weak signals is aided by the other strong ones.

The vector loop navigation filter is an EKF which com-
bines information from all satellites to estimate the follow-
ing state vector △Xk = [δx, δy, δz, δb, δVx, δVy, δVz, δd]

T
k ,

where δx, δy, δz are the residuals of the position coordinates,
δVx, δVy, δVz are the residuals of velocity coordinates. The
receiver clock bias is denoted by bk and dk denotes the clock
drift. The estimated position, velocity and clock terms are
predicted over time using the dynamic model according to the
prediction step of the EKF:

X−

k+1
= FX+

k , (6)

where F is the transition matrix corresponding to a constant
velocity motion model [10]. In the non-coherent VDLL, the
used measurements in the EKF are the averaged outputs
of the code phase and carrier frequency discriminators. The
code discriminator output is accumulated over 20 ms and a
number of such outputs are averaged over T sec for smoothing
the measurements updates. Both code and carrier frequency
discriminator outputs are proportional to code and frequency
errors, respectively. Then, they are viewed as pseudorange and
range rate residuals (i.e. δρi and δρ̇i, respectively). To express
the pseudorange in meters, we use the formula:

δρi = −D̃(τi)
c

f0
. (7)

For expressing the range rate in meters/second, we use the
following unit transformation:

δρ̇i = −D̃(∆fdi
)

c

fL1

(8)

The constant c is the speed of light, f0 is the chipping rate
(1.023 MHz for GPS C/A code), and fL1

is the L1 band carrier
frequency (1575.42 MHz for the GPS L1 signal). The code and
frequency discriminators output are used as measurements and
are related to the errors in the position, velocity and clock

parameters as follows,

ek+1 =





























δρ1
.
.
.

δρN
˙δρ1
.
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δρ̇N





























k+1

= Hk+1△Xk+1 + εk+1, (9)

where Hk+1 is the geometric matrix composed of zeros
and LOS vectors [10]. The estimation of position, velocity,
and clock parameters via the VDLL EKF are given by the
correction step of the Kalman filter as follows,

X+

k+1
= X−

k+1
+Kk+1ek+1, (10)

P+

k+1
= (I8 −Kk+1Hk+1)P

−

k+1
(11)

where Kk+1 is the Kalman gain matrix and ek+1 is the vector
of measurements residuals obtained from equation (9). The
required noise statistics R and Q for tuning the EKF of the
VDLL is adopted from existing references [10], [8], [18].

The estimated state vector is used to command the NCO
to generate the code replica inside the receiver. This is done

by predicting the pseudorange δ̃ρi by subtraction between the
VDLL receiver position and the computed satellites positions
plus ionospheric δρI and tropospheric δρT terms obtained
from standard models and clocks compensation. For each time
epoch k as follows:

δ̃ρi = ‖Xrec −Xsat,i‖+ δρT,i + δρI,i + δρsv,i − bk (12)

The receiver clock bias bk is obtained from the VDLL naviga-
tion solution and the satellite clock error δρsv,i is estimated by
the polynomial correction with parameters from the decoded
navigation message. The vector tracking approach gains more
sensitivity than scalar tracking DLLs, because the NCO com-
mand for each channel is computed via the VDLL solution
using information from all channels.

According to the above equations, the performance of the
state estimation and then the performance of signal tracking via
the NCO corrections depend on the geometry of used satellites
via matrix Hk, the signal quality via the discriminators output
used as measurements and the user dynamics through the
residuals of Doppler frequency.

B. Performance of vector tracking in NLOS

In the tracking of NLOS, the geometric range will have
an additional path, or equivalently the code delay will have a
bias term bnlos. Produced by the discriminator, this bias will be
injected in the state estimation during the step of measurements
update in the Kalman filter. If we consider only the position
components of the state vector Xk,p, we can write:

X+

p,k+1
= X−

p,k+1
+Kp,k+1(ek+1 +Bk+1,nlos), (13)

= X−

p,k+1
+Kp,k+1ek+1 +Kp,k+1vk+1,nlos



where Kp,k+1 the Kalman gain corresponding to the position
part of the state and Bk+1,nlos denotes the bias introduced in
the pseudorange residuals. This results in the state correction
being corrupted by a factor of Kp,k+1Bk+1,nlos related to the
NLOS bias, which is not taken into account in the design
of the optimal Kalman gain matrix. Accordingly, this bias
will be propagated into the tracking loops via the generated
code replica from the estimated position introducing a bias of
Hk+1Kp,k+1Bk+1,nlos. Therefore, statistical techniques (e.g.
test based on innovation) are not effective in the case of
NLOS, because the predicted measurements are biased then the
comparison with received measurements from the biased dis-
criminator output is useless. Because the NLOS effect depends
on the varying receiver environment, to mitigate its effect we
need geometric information about the signal reflections.

Where the user position is known a priori within hundreds
of meters, one can use a 3D model to predict the signal
geometric configuration via a GNSS simulator such as SE-
NAV [2], [11]. We propose to integrate this bias information in
the vector tracking loops to prevent the position from deviating
from the true value, then affecting the VDLL. Vice versa the
tracking loops will help the EKF/3D model to track weak
NLOS signals and then improve availability of the navigation
solution. To achieve a more accurate positioning solution and
better predict the satellite signal characteristics, we use a 3D
model to predict the bias related to NLOS. More precisely, we
propose a new version of the vector tracking GNSS receiver
augmented by the information provided by SE-NAV, for GNSS
navigation in a NLOS context.

IV. DEEP FUSION OF VDLL GNSS AND 3D MODEL

Currently a major trend in the field of navigation of
automotive systems is the use of mapping and Geographic
Information Systems (GIS) to integrate a timeliness and ac-
curate geospatial data in the process of perception and navi-
gation. Mobile mapping and positioning systems can exploit
this geospatial information to achieve greater efficiency over
traditional GPS/inertial systems.

A. Proposed approach and measurements model

Using a 3D urban model to forecast satellite visibility
in urban contexts to improve availability and reliability of
GNSS positioning is the main contribution of this article. In
this section, we explain how we compensate for the NLOS
bias using a 3D model of the environment, which is better
adapted for the bias estimation of NLOS measurements than
statistical methods that are based only on the received signals.
Using SE-NAV we obtain the estimation of the reflector objects
(e.g. walls) on which the reflections occur. In the case of
two successive reflections of the signal, we can express the
equation of pseudorange as,

ρi = ‖Xrec − I1‖+ ‖I1 − I2‖+ ‖I2 −Xsat‖+ ei (14)

where Xrec denotes the receiver position, Xsat is the satellite
position and ei denotes the error budget (noise, tropospheric
and ionospheric delays, receiver and satellite clock errors).
In the above equation of biased measurement, I1 and I2 are
the reflection points on walls 1 and 2 respectively. The walls
are defined by their normal vectors N1 and N2 and their

LOS 
vectors 

1δ ρ

1δ ρ

P, V, t

SE-NAV: 3D model

NLOS 
measurements 

model

GNSS IF 
signal

P,V, t

N
δ ρ

Fig. 2. The architecture of the proposed VDLL assisted by the SE-NAV
simulator (a 3D environment model).

coefficients d1 and d2, which are determined thanks to SE-
NAV information (see [3] for more details). When a multipath
or NLOS is predicted by SE-NAV, we compute the Jacobian
matrix of measurements Hk of equation (9) using the above
complex equation instead of the classic root square function
linking the pseudorange to receiver and satellite positions plus
errors. In this case, we propose to use the 3D city model &
GNSS simulator to determine the true geometric path traveled
by the signal at the correction step of the Kalman filter of the
vector tracking, as sketched in diagram 2. More precisely, the
compensation of the NLOS bias is performed in two steps:

1) 3D model Bias correction:

ρmeas,k = ρk,los + ek +Bk,nlos

then δρk = ek +Bk,nlos (15)

The bias term Bk,nlos is provided by the 3D city
model-dependent GNSS simulator, then subtracted
from the measured pseudorange ρmeas,k at the output
of the vector tracking discriminator. Two different
methods may be used to estimate the bias from
the simulator information; either use directly the
additional geometrical distance provided by SE-NAV
(using ray-tracing geometric optics of waves prop-
agation) as in [3] or reconstruct the correlator and
code discriminator output from the signal parameters
predicted by SE-NAV as in [4].

2) Covariance adaptation: the Kalman filter perfor-
mance is very sensitive to the prior information on
the measurements uncertainty given by the covariance
matrix R. In this work, we use R = diag[σ2

1 , ..., σ
2
N ],

where

σ2
k = (σk,0 +Bk,nlos)

2, (16)

and σk,0 corresponds to the computed variance of the
code discriminator in the presence of white Gausian
noise given in many references [10].

As SE-NAV requires an input position, we use the pre-
dicted position in the Kalman filter via the motion model. To



robustify the proposed method, we generate a set of 20 position
candidates around the predicted one, we apply a robust Kalman
filter version [12], then we select the most probable solution
using the well known Mahanalobis distance.

B. Integrity and robustness of the 3D augmented VDLL GNSS

The objective of this section is to assess the performance
of the VDLL augmented by a 3D model.

• Monitoring of the efficiency of the 3D model as-
sistance: The first 3x3 bloc of the state covari-
ance matrix corresponds to the VDLL uncertainty on
the position solution noted by P+

pos,k+1
. To moni-

tor the impact of degraded 3D model input to the
Kalman filter we propose to use a test of consis-
tency checking between the pseudorange residuals
and position uncertainty. The residual covariance is
given by Hk+1P

+

pos,k+1
HT

k+1
, then it depends on both

geometry (of satellites and 3D model) via Hk+1 and
the position accuracy via Ppos,k+1. We propose to
compute a maximum position uncertainty indicator by
applying techniques of principal component analysis
(PCA). The position covariance matrix can be decom-
posed as follows:

P+

pos,k+1
=

3
∑

n=1

λnunuT
n . (17)

When the 3D model prediction is degraded the resid-
ual data still contain NLOS terms instead of white
noise in the case of a good estimation. This fact
motivates us to use a statistical test to check the
spreading of the covariance spectrum via the following
test [14]:

T2 =
1

3
Trace[P+

pos,k+1
]

[det(P+

pos,k+1
)]

1

3

=
1

3
Σ3

n=1λn

[
∏3

n=1
λn]

1

3

(18)

In the presence of only white Gaussian noise, the diag-
onal elements of the position error covariance matrix
have identical values, which implies that the statistic
satisfies T2 ≤ 1. Then, when T2 is significantly larger
than 1, we decide that there is a contribution from
multipath and NLOS signals in the input data that is
mismodeled by SE-NAV and we compute again the
PVT without the predicted information from the 3D
model. In that case, we increase the covariance of the
measurements noise and we apply a pre-processing of
data whitening before the EKF [8].

• Integrity monitoring of the VDLL inputs: output
of discriminators. One distinct issue of the vector
tracking is that one fault or large error in one channel
will affect all other pseudoranges via the collective
processing of satellite in the navigation filter. To pre-
vent this side effect on the VDLL, we introduce a new
technique to monitor the vector tracking integrity by
checking and validating the discriminators output de-
pending to each situation. We apply the same concept
of RAIM (receiver autonomous integrity monitoring)
but using the output of discriminators rather than
pseudorange residuals of VDLL. The reason is that

in vector VDLL architecture, δ̃ρi include already the
impact of the PVT. Therefore, we use the following

metric as input to RAIM processing instead of δ̃ρi:

zk =
1

L

L
∑

k=1

δρi ∝
1

L

L
∑

k=1

Di(τi,k), (19)

where Di(τi,k) is the early-late power code
discriminator output accumulated over Td.

We average the pseudorange residuals or equivalently
the non-linear signals to improve the signal to noise
ratio (SNR) before applying the integrity monitoring
method weighted RAIM [17]. In the processed GPS
signals, satellite N16 was detected as faulty then
excluded from the set of satellites in visibility.

V. RESULTS WITH REAL GPS SIGNALS IN URBAN

CANYONS

In this work, we processed real RF GPS L1 C/A signals
collected by a bittgrabber and a reference system as well (a
high grade GPS/IMU system). The trajectory was recorded in
the old downtwon of the city of Toulouse in France, close to
”Place du Capitole” characterized by narrow streets as pre-
sented in Fig. 3. The Novatel antenna was fixed on the roof of
the car in a medium dynamic scenario. The used CRISTALINA
bit-grabber provides the baseband measurements I and Q
signals, at a frequency of 25 MHz.

Fig. 3. Trajectory of the measurements campaign in the city of Toulouse.

The satellites in visibility during this trajectory are plotted
in the sky plot of figure 4. We can observe that satellites N3,
N6, N16 and N25 are very low and close to the horizon.

Applying the proposed technique of using weighted RAIM
to monitor vector tracking channels, we excluded satellite N16
which was in a restricted visibility. Actually, the chi-square test
related to RAIM was observed to exceed the threshold most
of the time, because of large residuals due to high attenuation
and large NLOS bias.

To compare the results of a standard DLL tracking module
and a VDLL one, we plot the visibility of satellite N25 to the
receiver in Fig. 5. Clearly, the VDLL tracks this weak satellite
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Fig. 4. Positions of satellites in visibility to the receiver antenna during the
period of data collection in Toulouse.

signal over a longer period of time, because the weak channels
benefit from the strong ones in the collaborative processing of
vector tracking.

Fig. 5. Visibility of satellite number 25 to the DLL -based receiver (in blue)
and to the VDLL-assisted by the 3D model (in red).
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Fig. 6. Trajectories estimated by the robust EKF with the standard VDLL
(in blue) and the robust EKF with the VDLL assisted by a 3D model (in red).
The reference trajectory is plotted in green.

Figures 6 and 7 illustrates position error and the 3σ bounds
for both robust EKF with a standard VDLL and for the
robust EKF with VDLL assisted by 3D. For all satellites,
the computed positions with the VDLL augmented with a 3D
model & GNSS simulator outperforms the standard VDLL
after 130s providing more accurate navigation solution than
the existing vector tracking. In degraded situations, a better

ime

σ
฀

Fig. 7. Position error (solid lines) and the 3σ bounds in dashed lines for
both robust EKF with a standard VDLL (in blue) and for the robust EKF with
VDLL assisted by 3D (in red).

prediction of code delays improves the tracking results and
then the PVT final solution. This is a promising scheme for
positioning in deep urban canyons, motivated by the growth
of connected receivers able to use information from external
resources.

VI. CONCLUSION AND PERSPECTIVES

In this work, we proposed a new architecture of a vector
tracking GNSS receiver augmented by a 3D city model and
a GNSS propagation simulator. We take into account the
uncertainty on the required initial position to the 3D model
coupled with the GNSS simulator by considering a refinement
step for better selection among several results when using
a grid of initial inputs. To select the best solution, a map-
matching algorithm with a 2D map could help in solving this
problem. Indeed, if the candidate positions are fed to SE-
NAV then different solutions will be computed and projected
in the 2D map to consider only those on the correct road
segment before applying innovations and Mahanalobis distance
to discriminate against outliers.

To overcome the limitation of the realism of the 3D
model & GNSS simulator, we proposed also three statistical
techniques for robustness and integrity monitoring in presence
of errors related to non modeled bias in the predicted measure-
ments. The obtained results permit us to conclude that assisting
the vector tracking receiver by predicting signals reception in
urban areas by a GNSS simulator and a 3D mapping model,
the receiver could uses constructively the weak NLOS signals
to improve the accuracy and integrity of its solution. Other
methods could be proposed to use the 3D model information
jointly with the predicted propagation of signals from the
GNSS simulator, also to deal with the gap between simulation
and real world.

The SE-NAV 3D simulation model is highly computation-
ally intensive and demanding in terms of a priori information.
However, according to our exchange with industrial partners
this approach is still interesting and has promising applications,
because the heavy computation could be done on a server or
on a computation center for the case of a connected receiver,



which is the case of most of future GNSS utilizations including
intelligent transportation systems and personal devices.
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