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Abstract. In this paper, we try to provide a synthetic and comprehen-
sive state of the art concerning big data management in cloud environ-
ments. In this perspective, data management based on parallel and cloud
(e.g. MapReduce) systems are overviewed, and compared by relying on
meeting software requirements (e.g. data independence, software reuse),
high performance, scalability, elasticity, and data availability. With re-
spect to proposed cloud systems, we discuss evolution of their data ma-
nipulation languages and we try to learn some lessons should be exploited
to ensure the viability of the next generation of large-scale data manage-
ment systems for big data applications.

Keywords: Big Data Management, Data Partitioning, Query Process-
ing and Optimization, Parallel Relational Database Systems, High Per-
formance, Scalability, Cloud Systems, Hadoop, MapReduce, Spark, Elas-
ticity.

1 Introduction

Data management process dates from long ago (i.e. since 4000 BC). Between
4000 BC and 2000 AD, five generations of data management have been distin-
guished by [28]: “Manual processing paper and pencil; Mechanical punched
card; Stored program sequential record processing; On-line navigational set
processing; Nonprocedural- relational; Multimedia internetwork”. In this paper,
we will be interested in the penultimate generation.

A large number of datasets (structured, unstructured and semi-structured
data) are produced by different sources (e.g. scientific observation, simulation,
sensors, logs, social networks, finance). This large number of datasets, often re-
ferred to as Big Data and characterized by 4Vs (Volume, Variety, Velocity, and
Value) [57], are distributed in large scale, heterogeneous, and produced con-
tinuously. The management of such data raises new problems and presents a
real challenge such as: data modeling and storage, query processing and opti-
mization, data replication and caching, cost models, concurrency control and
transaction, data privacy and security, data streaming, monitoring services and
tuning, autonomic data management (e.g. self tuning, self repairing).
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In the landscape of database management systems, data analysis (OLAP) and
transaction processing systems (OLTP) are separately managed. The reasons [2]
for this dichotomy are that both systems have very different functionalities,
characteristics and requirements. This paper will focus only on the first class
(OLAP systems).

Very recently (with respect to reference period 4000 BC), we have seen an
explosion in the volume of data manipulated by applications. This phenomenon
results from, on the one hand, that it is easier to collect information (e.g. log
information) and, on the other hand, lower cost of storage devices. Querying and
analyzing of collected data, with acceptable response time, have become essential
for many companies such as web societies. Furthermore, some applications with
a small amount of data need high availability of data. This is the case, for
example, with data from an online game with great success. In both contexts,
a uniprocessor database server can quickly become a bottleneck or result in
prohibitive response times for certain queries.

To manage a huge amount of data and meet the requirements in terms of
high performance (e.g. minimizing of response time) and resource availability
(e.g. data source), there are two approaches: parallel database systems and cloud
systems. The parallel database systems [20,47,62] have been an important suc-
cess, both in research in the early 90s and now in industry. They have enabled
many applications handling large data volumes to meet their requirements in
terms of high performance and resource availability. It is recognized that par-
allel database systems are very expensive and require having high level skills
within the company to administer the systems and databases. As for cloud sys-
tems, developed by using data processing frameworks (e.g. Hadoop MapReduce,
Apache Spark) [4,18,29], they allow a company to reduce these costs in terms of
infrastructures either by purchasing a server comprised of low-cost commodity
machines or by renting services (Infrastructure-as-a Service TaaS, Platform-as-a
Service PaaS, Software-as-a Service SaaS) in pay-per-use.

Currently, new tools [21,49, 54, 65] allow to make the bridge between both
approaches. These tools allow either to a MapReduce program to load data from
a relational database, either to convert, through a wrapper, a file stored in an
HDFS format into a relational format. This class of systems is called multistore
systems [7].

In this paper we propose a synthetic and comprehensive state of the art
concerning: (i) big data management in parallel database systems and cloud
systems, and (ii) evolution of data manipulation languages in cloud systems.
There are many synthesis papers about data management in cloud systems [2,
12,25,45,55]. Agrawal et al. [2] and Chaudhuri [12] focus on the future challenges
of clouds systems to meet the needs of applications. As far as the contributions
of Floratou et al. [25] and Stonebraker et al. [55] they propose a performance
comparison of applications with cloud systems and parallel database systems.
They point out the advantages and drawbacks of each system depending on the
application type.



Big Data Management in the Cloud: Evolution or Crossroad? 3

The rest of this paper is structured as follows. In Section 2, data manage-
ment based on parallel and cloud (e.g. MapReduce) systems are over-viewed and
compared by relying on meeting software requirements (e.g. data independence,
software reuse), high performance, scalability, elasticity, and data availability.
Section 3 presents an overview of data manipulation languages proposed in cloud
systems: (i) without relational operators, and (ii) including relational operators
in data manipulation languages. In Section 4, with respect to proposed cloud
systems, we try to learn some lessons and we discuss the evolution of their data
manipulation languages. We conclude in Section 5.

2 Parallel Database Systems versus Cloud Systems

2.1 Parallel Relational Database Systems

This sub-section presents an extended abstract of the paper [33]. Parallel database
systems have been developed for applications processing a large volume of data.
Their main objectives are to obtain high performance and resource availability.
High performance can be obtained by integrating and efficiently exploiting dif-
ferent types of parallelism (partitioned parallelism, independent parallelism and
pipeline parallelism) in relational database systems on parallel architecture mod-
els. More precisely, the objectives of parallel databases are: (i) ensuring the best
cost/performance ratio compared with a mainframe solution, (ii) minimizing
query response times by efficiently exploiting the different forms of parallelism
and data placement approaches, (iii) improving the parallel system throughput
by efficiently managing resources, and (iv) insuring scalability, which consists in
holding the same performance after adding new resources and applications. A
parallel relational database system is a standard relational DBMS implemented
on a MIMD (Multiple Instruction Multiple Data Stream) parallel architecture.
Editors of parallel servers offer three main categories of parallel RDBMS based
on: (i) shared memory multiprocessor architecture, (ii) shared disks multiproces-
sor architecture, and (iii) shared nothing multiprocessor architecture (e.g. DBC
1012 Teradata [8,64], Tandem NonStop SQL [23], DB2 Edition [5], ORACLE
Parallel Query).

Partitioning a relation is defined as distributing the tuples of the relation
among several nodes (attached disks) [20]. In a parallel RDBMS, it becomes
possible to: (i) improve I/O bandwidth by fully exploiting the parallelism of read
operations of one or more relations (ii) apply data locality principle (operators
are performed where/or very close to the data are located), and (iii) facilitate
load balancing to maximize throughput. The key problem with data partitioning,
also called data placement, consists in reaching and holding the best tradeoff
between processing and communication [17]. Two approaches make it possible to
solve the data placement problem of a set of relations in a parallel RDBMS. The
first approach, called full desclustering [46], consists in distributing horizontally
each base relation over all the nodes of the system. It is applied to shared memory
parallel RDBMS. The second approach, called partial desclustering, consists in
distributing each base relation over a subset of nodes. It is mainly found in a
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shared-nothing parallel RDBMS which own a large number of nodes. However,
whatever the advocated data placement approach used, there are many data
partitioning methods. In parallel systems, three methods are generally offered
to the administrator to distribute data over nodes [20,46]: round robin, use of a
hashing function which associates a node number to one or more attribute values
of a relation, and use of range partitioning given by the administrator thanks to
fragmentation predicates. These partitioning methods have great influence and
impact on load balancing.

The optimization phase of SQL queries consists basically of three phases: log-
ical optimization, physical optimization and parallelization. The problem raised
at physical optimization, dealing with the choice of a scheduling search strategy
for join operators among enumerative strategies or randomized ones. Each one of
these strategies is more or less adapted depending on the query characteristics. A
query is characterized by the number of relations it refers to (i.e. size), the num-
ber of join predicates and the way they are arranged (i.e. query shape) and its na-
ture (i.e. ad-hoc or repetitive). As far as parallelization strategies, they have been
introduced concerning inter-operation parallelization phase, the key problem of
optimization [13,14, 31,32, 34, 36,52, 58, 68]. Indeed, two inter-operation paral-
lelization approaches have been described in the literature [47]: the one-phase
and the two-phase approaches. In the two-phase approach [13,31,32,34,36], the
first phase consists in generating a query execution plan (without considering
run time resources). The second phase ensures an optimal allocation of resources
(memory and processors) for the previously generated plan. As for the one-phase
approach [14,52,68], plan generation and resource allocation are packed into one
single phase.

Finally, with regard to minimization of communication costs, which repre-
sents the plague of parallelism, the parallel processing of SQL queries requires
the initialization of several processes on different processors with underlying data
communications. The main problem to be solved by parallel execution models
is to find the best processing-communication trade-off in order to maximize the
system throughput and minimize the response time, while maintaining an ac-
ceptable cost optimization. In this objective, several efforts have been conducted
to reduce inter-processor communication costs, and in particular to avoid the re-
distribution of data and minimize message transfers [23, 30, 35].

2.2 Cloud Systems

The rapid development of information technology and the popularity of the In-
ternet allow the emergence of new Web applications (e.g., social networks, log
and profile analysis, online document indexing). These new applications produce
data that are often under the form of continuous streaming (e.g., data from sen-
sors), with very large volume, in heterogeneous formats and distributed in a large
scale. To address these data characteristics, data management community has
recently proposed, with respect to traditional RDBMS, new data management
systems that are more flexible in terms of data models (compared to relational
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model which is operational since 30 years), more cost-efficient in terms of invest-
ment (as most of these systems are open-source) and provide better availability
of resources (i.e. data sources and computing resources (CPU, RAM, I/O and
network bandwidth)) in terms of fault-tolerance. From this perspective, four
classes of data management systems [37,56], depending on the adopted data
structure type, have been designed and developed, mainly, by Google, Amazon,
Microsoft, Yahoo, Facebook, IBM, and Oracle: (i) Key-Value based systems,
(ii) Document based systems, (iii) Column based systems and (iv) Graph based
systems for social networks.

These systems, based on a shared-nothing architecture, have been developed
in Hadoop environment, using the functional programming model MapReduce
and HDFS / GFS (Hadoop Distributed/Google File System). In a cloud environ-
ment, these systems are aimed to achieve high performance, maintain scalability
(because they are based on massively parallel architectures), ensure elasticity
(on-demand service and pay-per-use) and guarantee the fault-tolerance. High
performance is based on the intensive exploitation of intra-operation parallelism
of an operation (in a map or reduce operation) and independent parallelism (be-
tween multiple map or reduce programs). The elasticity paradigm [50] consists in
allocating resources dynamically on demand. It extends the objective function,
combined with dynamic resource allocation models, by integrating the economic
model meeting the “pay-per-use” principle (tenant side), and guaranteeing a
minimum profitability (provider side). Finally, in most of the proposed solutions
in cloud systems fault-tolerance is managed. In fact, when a processor or pro-
cess fails, only a part of the query is executed again. This is very attractive for
applications that have queries that can take up to several hours as, for example,
the analysis of log files.

In addition, to insure a uniform access to heterogeneous, autonomous and
distributed data sources (e.g. RDBMS, NoSQL, HDFS) several mutlistore sys-
tems have been, recently, proposed. These systems, based on Mediator-Wrapper
architecture [63] can be classified in three categories [7]: (i) loosely-coupled multi-
store systems, (ii) tightly-coupled multistore systems, based on a shared-nothing
architecture, whose objective is the high performance. This approach consists in
modifying the SQL engine to make the data access to HDFS transparent. Poly-
base [21] illustrates this approach. And (iii) hybrid/integrated multistore sys-
tems, whose objective is to query indifferently structured and unstructured data
using a SQL-like declarative language. SCOPE system [67] and CoherentPaaS
project [7], illustrate this approach.

2.3 Comparison

In this sub-section, we propose a qualitative comparison between Parallel Rela-
tional Database Systems PRDBMS and cloud systems/MapReduce by pointing
out their advantages and weakness. For a quantitative comparison, we strongly
suggest to authors reading the very good papers [25,38,51,55].
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Advantages and Weakness of PRDBMS. With respect to compilation of
recently published studies and experiences, the advantages of PRDBMS can be,
mainly, summarized as follows: (i) logical data independence, meaning that any
modification of a schema (data structure) have not any impact on application
programs, (ii) regular data structure (relational schema), homogeneity and sta-
bility of parallel infrastructure (shared-nothing architecture) enable to estimate
and deduce relevant annotations (Metadata, and Cost Models are used by an
Optimizer-Parallelizer to generate an efficient parallel execution plan), (iii) par-
titioning degree for each base relation and parallelism degree estimation for each
relational operator can be estimated by analytical models, (iv) declarative lan-
guages and sophisticated query Optimizer-Parallelizer (physical optimization,
exploiting and integrating of partitioned, independent and dependent (pipeline)
parallelisms), and (v) minimizing of communication costs by avoiding the data
redistribution in some favorable cases.

However, their main weakness, in massive parallel environments, can be sum-
marized as follows: (i) PRDBS run only on expensive servers, (ii) require very
high level of skills to manage and administrate these systems, (iii) weak fault-
tolerance in massive PRDBS, and (iv) hard management of Web applications
(Web datasets are unstructured).

Advantages and Weakness of Cloud Systems/MapReduce. The main
advantages of cloud systems/MapReduce are: (i) scaling very well to manage
massive datasets, (ii) support the partitioned and independent parallelisms, (iii)
mechanism to achieve load-balancing, and (iv) strong fault-tolerance because of
HDFS characteristics and used mechanisms to data replication (a file is parti-
tioned into fixed size chunks of 64 MB and each chunk is replicated, by default,
three times).

As far as the weakness of MapReduce (initial version) two levels can be
distinguished: application level and software level. In fact, application side, the
developers : (i) are forced to translate their business logic to MapReduce model,
(ii) have to provide efficient implementation for the map and reduce functions,
and to determine the best scheduling of map and reduce operations. With regard
to software side : (i) data-dependence: so, we lost the propriety of logical data
independence which is a qualitative requirement of software engineering, (ii)
extensive materialization of I/O (Input/Output), because each result of a map
instance is written on the disk.

To avoid this weakness, recently, pipeline parallelism has been implemented
in Tez framework which is used, recently, to improve Hive performance [24]. Also,
Cloudera Impala [15] implements pipeline parallelism for all queries. However,
the consequence is that the fault-tolerance or resource availability will be seri-
ously weakened. For detailed and complete analysis of weakness of MapReduce,
the most relevant work can be found in the recent survey papers [22,44].
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3 Evolution of Data Manipulation Languages in Cloud
Systems

3.1 Introduction

First tools, such as MapReduce [18], Bigtable [10] and PNUTS [16], were pro-
posed to develop cloud applications. These tools allow querying data using pro-
cedural languages without relational operators. Programs written using these
languages introduce a dependency between data structure and programs. Thus,
when you have some modifications on the data structure it is also necessary to
adapt the programs. In addition, these programs are more difficult to optimize
than program writing with a declarative language. Indeed, optimization of func-
tions defined by “users have mever been a central data management challenge
in researches” [12]. Program optimizations and their maintenance due to data
structure evolution lead to important human costs. This is why the first tools
were mainly used for queries which are performed only once, such as applications
on logs and paper collections [26]. Recently, new tools have emerged in order to
avoid the dependency between data structure and programs. Their common goal
is to use the benefits of data independence and implicit (automatic) optimiza-
tion programs of parallel database approaches and the advantages of scalability,
fault tolerance and elasticity of cloud systems. Thus, high level of declarative lan-
guages have emerged HiveQL [60], SCOPE language [67], and CloudMdsQL [7].
This allows an automatic optimization-parallelization of queries. Moreover, new
tools [21,49,54,65], based on integrated approach, allow to make the bridge be-
tween the both approaches. These tools allow either to a MapReduce program
to load data from a relational database, either to convert, through a wrapper, a
file stored in an HDFS format into a relational format.

In this section we propose a state of the art concerning the evolution of data
manipulation languages in cloud systems, and we point out why the proposed
languages have evolved. More precisely, we present an overview of data manip-
ulation languages, first, without relational operators, and next, with relational
operators in data manipulation languages.

3.2 Data Manipulation Languages without Relational Operators

The first tools [10,16,18] proposed in the literature allow to manipulate massive
datasets by using procedural languages. Generally, they propose relatively sim-
ple languages which permit only filter or project operation on massive datasets.
These tools were, mainly, designed to serve Web applications which do not need
complex queries. For example, they want to query massive datasets such as logs
and click streams. However, Web applications require scalability, high perfor-
mance (e.g. minimization of response time) and high availability of data.

A very popular framework for processing massive datasets is MapReduce [18].
It allows the programmer to write map and reduce functions which correspond
respectively to perform grouping and reduce functions. The programming model
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provides a good level of abstraction. However, for some applications (e.g. appli-
cations querying a relational model) this programming model is not suitable. It
can make it complex to write some programs. For example, it is not easy for a
programmer to write projection, selection, or join operators over datasets with
map and reduce functions [9]. It also requires valuable expertise from the pro-
grammer since users specify the physical execution plan (i.e. users implement
the operators and the scheduling of operators). This physical execution plan has
many chances to be sub-optimal and there does not exist an automatic opti-
mization process for a user program. We find a first solution to these problems
in Bigtable [10] and Pnuts systems [16].

Bigtable [10] is a distributed storage system which supports a simple data
model that look likes a relational model. For that it relies on the file manage-
ment system GFS (Google File System) [27] which provides fault-tolerance and
data availability [50]. A table is a sparse, distributed, persistent multidimen-
sional sorted map where data is organized into three dimensions: rows, columns
and timestamps. Rows are grouped together to form the unit of distribution
and load balancing. Columns are grouped to form the unit of access control. As
for timestamps, they allow to differentiate different versions of the same data.
Bigtable provides a basic API for creating, deleting and querying a table in a
procedural language such as C++. This API provides only simple operators for
iterates over subsets of data produced by a scan operator. There is no imple-
mentation of complex operators like join and minus operations. In the same way,
PNUTS [16] supports only selection and projection. It presents a simplified re-
lational data model where data are stored in hashed or ordered relation. Pnuts
tables are horizontally partitioned and each partition named tablets is no bigger
than 1Gbyte. Other systems like Dynamo [19] and Cassandra [42] use an even
simpler data access. Dynamo is used only by Amazon’s internal services. Dy-
namo has a simple key/value interface which offers read and write operations to
a data item that is uniquely identified by a key. As far as Cassandra, the data
are also partitioned using a hash function and data are accessed by a key using
an API composed of three methods: insert, get and delete.

3.3 Data Manipulation Languages using Relational Operators

The use of low level languages, like MapReduce, forces the users to write repet-
itively the same code for standard operations, like relational operators (e.g. join
operator), for all new datasets. This is expensive in terms of development. Fur-
thermore, the programs are complex to read. The bug probability is increased
and an optimization process is complex. Based on these observations, the Pig
Latin [26,48] and Jaql [6] languages have been proposed. These languages allow
developers to work at a higher level of abstraction than MapReduce language.
With Pig Latin a user can write without knowing the physical organization
of the data and it introduces new operators like join. Pig Latin programs en-
code explicit dataflow graphs which interleave relational-style operators like join
and filter with user-provided executables. A Pig Latin program is compiled in
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MapReduce program after four steps of transformation. Two of these steps con-
cern the optimization process. A classical logical optimization step, where filter
and project operators pushdown on the graph in order to reduce the processed
data volume. With regard to the second optimization step, it optimizes the
MapReduce program generated by a MapReduce compiler step. This optimiza-
tion step consists in break distributive and algebraic aggregation functions into
a series of map, combine and reduce operators. The authors [3,26] use the Com-
biner/Intermediate Reduce as often as possible in order to (i) reduces the volume
of data handled by the shuffle and merge operators and (ii) balance the amount
of data associated for each key in order to limit the data skew for the Reduce
operator. Jaqgl is also a procedural language where the functions are combined
using ->’ operator inspired from Unix pipes. A Jaql script [6] is transformed
in a MapReduce program by a compiler following approximately the same op-
timization step as in Pig system. A difference with Pig Latin language is that
the users have access to the internal system. This allows to users to develop a
specific feature to solve performance problems.

A program written with Pig Latin or Jaql is complex to optimize. Indeed,
the user determines a scheduling of relational operators. For an optimizer, it
is difficult to determine a new optimal scheduling like in physical optimization
of relational systems [43]. Furthermore, the alternative which suggests writing
a program with low level languages requires a high expertise level from the
user. For these reasons, Hive [59,60], SCOPE [67] systems, and CoherentPaaS
project [7] propose to use declarative languages close to SQL language. These
languages allow a user to define a relation compounded of several typed columns.
Each of these languages can load data from external data sources and insert
query results in formats defined by users. For example, SCOPE language has
been enriched by extractor operators in order to parse and construct rows from
any kind of data sources and outputter operators to format the final result of a
query. As for HiveQL language, the formats of an external data source or result
is defined in data definition language (i.e. during create table order).

With regard to the optimization process, in Hive system, it comprises four
steps: (i) a logical optimization step, (ii) a simplification step which prunes par-
titions and buckets that are not needed by the query, (iii) a combiner step which
groups multiple joins sharing the same join attribute in order to be executed in
a single MapReduce join, and (iv) a step which adds repartition operators for
join, group-by and custom MapReduce operators. As for SCOPE system [67],
the optimization process includes a logical optimization and chooses for each
operator the best algorithm to process it (e.g. hash join or sort-merge join) and
determines the scheduling of operators. With regard to avoid data reshuffling,
which deteriorates the performance, a top-down approach is proposed in order
that a parent operator imposes its requirements to the child operators [3,66,67].
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4 Discussion

To manage a huge amount of data there are two approaches: parallel database
servers and tools proposed by cloud servers. The parallel database servers have
been an important success, whether in research in the early 90s and now in
industry. They have enabled many applications handling large data volumes to
meet their requirements in terms of high performance and resource availability.
However, the use of a parallel database server is expensive for a company. Indeed,
it requires the purchase of an expensive server and requires having high level
skills within the company to administer servers and databases.

An alternative approach is to use tools proposed by cloud servers to manip-
ulate massive datasets. This allows a company to reduce these costs in terms of
infrastructures (Iaas) either by purchasing a server comprised of low-cost com-
modity machines or by renting services (PaaS and/or SaaS) in pay-per-use. An
important characteristic of cloud systems is to provide a mechanism for inte-
grated fault tolerance. This feature is important because it avoids restarting,
from the beginning, a program in case of processor or process failure. As data
volumes grow every day, this feature has become a critical requirement for ap-
plications. In addition, more and more applications querying only one time a
dataset. For this kind of application, the loading cost of the dataset in a database
server becomes prohibitive for a single query. Hence, this kind of application is
not suitable for a database server, and many applications have turned to use
cloud systems.

Regarding to the state of the art and previous quantitative and qualitative
studies and comparisons [25, 38, 55] between PRDBMS and cloud systems, we
can point out the following statements:

1. Functional Complementarity between cloud systems and parallel DB sys-
tems: in fact, the cloud systems are not intended to replace traditional
RDBMS but rather to provide them with the missing features, particularly,
for Web applications and Internet services. Moreover, these systems provide
scalability in terms of loads adapted for Web applications. In [55], the au-
thors have conducted a benchmark study by comparing Hadoop/MapReduce
and two parallel RDBMSs. “The results show that the DBMSs are substan-
tially faster than the MapReduce system once the data is loaded”. Their main
conclusion of [55] is that: “MapReduce complement DBMSs since databases
are not designed for ETL (Extract-Transform-Load) tasks, a MapReduce spe-
cialty”.

2. Maturity: Compared to traditional RDBMS, the cloud systems lack maturity
and standardization/normalization (e.g., query languages). These systems
require more experimentation and benchmarking (e.g. TPC - H, and TPC
- DS) [24] with full-scale big data applications while taking into maximum
consideration simultaneously their Vs which characterize them.

As far as the evolution of data manipulation languages in cloud systems, the
first proposed languages allow manipulation of data stored in a cloud system,
either with functional languages like MapReduce or with imperative languages
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like C++. These languages force the developer to: (i) modify the program if
the data structure changes, and (ii) often rewrite the very similar code on dif-
ferent datasets. In addition, in case of performance problems, these programs
are very difficult to optimize due, in particular, to their understanding which is
complex. Thus, new languages like Pig Latin [26] and Jaql [6] have been pro-
posed using relational operators such as join. As a result, user programs are
more readable. Using these high level languages, the automatic optimization
process has been introduced as the logic optimization, conventionally used by
a RDBMS. However, these languages are still procedural and classical physical
optimization process cannot be applied like in RDBMS. Therefore, Hive [60],
Clydesdale [40] and SCOPE [67] systems and CoherentPaas project [7] use non-
procedural (i.e. declarative) languages close to the SQL language. This helped to
adapt the automatic relational optimization process proposed in the context of
RDBMS (e.g. parallel RDBMS). The major drawback of this optimization pro-
cess, compared to those used in RDBMS, is the scarcity of statistics stored in
the meta-base. Indeed, in a cloud system, at compile time, there is no statistics
on datasets (e.g. cardinality). This blinds the optimization process and impacts
the choice of the optimal execution plan. Hence, a dynamic optimization pro-
cess becomes necessary in order to react to sub-optimal execution plans. In this
objective, [1] proposes to collect statistics at runtime, and adapts the execution
plan at runtime by interfacing with a query optimizer. This proposal can be
seen as an elegant adaptation of [39], proposed in a parallel database system,
to a cloud system. More generally, with respect to the issue of query optimiza-
tion in cloud environments, the most recent and relevant proposals are described
in [11,41,53,61].

5 Conclusion

In this paper, we provided a synthetic and highlight state of the art concerning
big data management in cloud environments. In this objective, we have tack-
led two major issues: (i) data management based on parallel and cloud (e.g.
MapReduce) systems are over-viewed and compared by relying on meeting soft-
ware requirements (e.g. data independence, software reuse), high performance,
scalability, elasticity, and data availability and (ii) we mainly focused on the evo-
lution of data manipulation languages in cloud systems. Initially, these languages
were low level procedural languages as for example MapReduce. For software en-
gineering requirements these languages evolved by introducing relational algebra
operators while remaining procedural. It also allowed introducing some optimiza-
tion processes used classically in RDBMS. Then, they continued their evolution
for optimization needs. They became declarative to increase the opportunities
of automatic optimization for user queries. The various optimization steps are
very close to those used in parallel RDBMS. The main difference is due to the
quasi-absence of statistics used by cost models. This blinds the optimization
process and an efficient dynamic optimization becomes essential and necessary,
to correct sub-optimality of sub-execution plans.
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