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Abstract First, heat rod models linking temperature
to heat flux density are obtained from system identi-
fication using fractional order systems. Then, motion
planning of the nominal system is obtained through
an open-loop control stemming from flatness principles.
Usually, each model should have its own control ref-
erence in order to follow a desired output reference.
Thanks to a third generation CRONE controller, the
nominal control reference is sufficient, and robust con-
trol is also guaranteed regarding model uncertainties
and input/output disturbances. Robust motion plan-
ning is held on a real heat experiment and comparison
between CRONE and PID controllers are proposed on
this test bench.

Keywords thermal system · fractional order system ·
system identification · differential flatness · motion
planning · robust control

1 Introduction

Fractional (or non-integer) operator is a modeling tool
that enables explaining diffusive phenomena thanks to
its long memory character and parametric compacity:
thermal diffusive phenomena [29][23], charge diffusion
in acid batteries [34][35], in rheology [17], Foucault cur-
rents inside rotor bars in induction machines [7]...

Fractional order system (FOS) identification was
initiated in the nineties [10][4][15]. Refined Instrumen-
tal Variables for Continuous system (rivc) [38], and

Université de Bordeaux – Bordeaux INP/Enseirb-Matmeca –
IMS, UMR 5218 CNRS
351 cours de la Libération, F 33405 Talence cedex, France
tel : + (33) 5 40 00 36 27 – fax : + (33)5 40 00 66 44
E-mail: surname.name@ims-bordeaux.fr

its simplified version (srivc) when the additive mea-
surement noise is white [16] have been extended for
FOS [36]. In the usual case of rational model system
identification, where only coefficients are estimated, the
model order remains unchanged, whereas in the frac-
tional model case, estimating the differentiation orders
in an iterative algorithm changes the model order at
each iteration. Also, the oosrivcf algorithm is recalled
for all parameter estimation [36]. The latest version
of the CRONE toolbox proposes a tutorial on frac-
tional system identification (http://cronetoolbox.ims-
bordeaux.fr).

In motion planning, a suitable approach consists in
using the flatness-based trajectory design (see [14][20]
and the references therein) adapted to FOSs [37]. Recall
that a system described by ordinary differential equa-
tions is said to be differentially flat if and only if there
exists an output vector (flat output) of the same dimen-
sion as the control vector, such that all system variables
can be expressed as functions of this output and its
derivatives. This motion planning is generally carried
out in open-loop and robust control may be achieved
with a suitable control feedback. Several industrial ap-
plications have emerged in control theory, such as H∞

state feedback control of a bridge seismic response [11],
H∞ consensus method for a network of nonlinear multi-
agent system [1], trajectory tracking control of cooper-
ative multiple mobile cranes [33], pollutant reduction
of a turbocharged diesel engine [19] and so on. Here,
a CRONE controller [30] is used to guarantee stability
degree, path tracking and disturbance rejection.

The contributions are on the heat experiment:

– solving the heat equation leads to a fractional model
[31], therefore an optimal estimator is proposed for
FOS identification (see §2.3);

– open-loop motion control is proposed using flatness;
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– closed-loop robust path tracking is held through the
design of a unique CRONE controller.

After recalling fractional calculus in section 1, sec-
tion 2 presents the heat system modeling. Robust mo-
tion control is developed in section 3. In section 4, the
experimental results are given, to finally conclude in
section 5.

1.1 Fractional derivative

Let γ ∈ R+, n = ⌈γ⌉ = E(γ) + 1 = min{k ∈ N|k > γ},
where ⌈.⌉ (resp. E) is the ceiling operator (resp. the
integer part), and ν ∈ [0, 1[ given by ν = n − γ. Let a

be a given arbitrary real number and f ∈ C∞([a,+∞[),
the set of infinitely continuously differentiable functions
from [a,+∞[ to R.

The Riemann-Liouville derivative of function f at
time t of order γ = n− ν is defined as [28]:

Dγ
a
f(t) = Dn (Iν

a
f(t))

!

(

d

dt

)n
(

1

Γ (ν)

∫ t

a

f (τ) dτ

(t− τ)1−ν

)

(1)

where D = d
dt is the differentiation operator, Iν

a
f(t) is

called the fractional primitive of f and the Euler’s Γ
function, defined by:

Γ (x) =

∫

∞

0
e−ttx−1dt, ∀x ∈ R

∗ \ N−, (2)

is the generalized factorial (∀n ∈ N,Γ (n+ 1) = n!).
Let be

Ha

∆
= {f : R !→ R|f ∈ C

∞([a,+∞[), f(t) = 0,∀t ≤ a} . (3)

As a consequence of Propositions 15 of [37] (or e.g.
[31, chap, 2, p. 57]), Dγ

a
is an endomorphism from Ha

to itself and Ha may be considered as the domain of
Dγ

a
. For simplicity sake, a will be equal to 0, therefore,

the notation Dγ is used in place of Dγ
a

∣

∣Ha

.

1.2 Dγ-polynomial matrices

Dγ-polynomials are polynomials of the indeterminate

Dγ with real coefficients, of the form
K
∑

k=0
ckD

kγ . R [Dγ ]

denotes the set of Dγ-polynomials; the reader may im-
mediately verify that (R [Dγ ] ,+,×) is a (commutative)
principal ideal domain1.

Interpreting the fractional derivative operator as a
Mikusiński’s operator as in [6], a system theoretic ap-
proach has been developed by [13] where the field of

1 The main properties of R [Dγ ] are recalled in [37].

Mikusiński’s operators M is defined as the field of frac-
tions of the commutative integral domain C of continu-
ous functions defined over [0,∞[ endowed with the ad-
dition and convolution product [27,13]. M can also be
considered as an R [sγ ]-module, where sγ is the Laplace
operator associated to Dγ .

If p, q ∈ N, call R [Dγ ]p×q the set of Dγ-polynomial
matrices of size (p × q). When p = q, the group of
unimodular Dγ-polynomial matrices, GLp (R [Dγ ]), de-
fines the set of invertible (square) Dγ-polynomial ma-
trices whose inverse is also a Dγ-polynomial matrix. Ip
denotes the p× p identity matrix and by 0p×q the p× q
zero matrix.

Theorem 1 (Smith diagonal decomposition [9])
Given A ∈ R [Dγ ]p×q, with p ≤ q ( resp. p ≥ q),
there exist two matrices S ∈ GLp (R [Dγ ]) and T ∈
GLq (R [Dγ ]) such that:

SAT = [∆ 0p,q−p] (resp. =

[

∆
0p−q,q

]

), (4)

where ∆ = diag{δ1, . . . , δσ, 0, . . . , 0} ∈ R [Dγ ]p×p (resp.
R [Dγ ]q×q). The integer σ ≤ min(p, q) is the rank of A
and every non zero Dγ-polynomial δi, for i = 1, . . . ,σ,
is a divisor of δj for all σ ≥ j ≥ i.

Definition 1 Hyper-regularity [37]. Given a matrix
A ∈ R [Dγ ]p×q, it is said that A is hyper-regular if, and
only if, in (4), one has ∆ = Imin(p,q).

A straightforward adaptation of [3, Section II.C] to
Dγ-polynomial matrices reads:

Proposition 1 A matrix A ∈ R [Dγ ]p×q,
(i) with p < q is hyper-regular if, and only if, there
exists right-inverse T ∈ GLq (R [Dγ ]) such that

AT =
[

Ip 0p×(q−p)

]

;

(ii) with p ≥ q is hyper-regular if, and only if, there
exists a left-inverse S ∈ GLp (R [Dγ ]) such that

SA =

[

Iq
0(p−q)×q

]

.

2 Heat rod model

2.1 Plant description

A cylindrical aluminium rod of radius Rbar = 1cm and
of length 40cm is considered where a heating resistor is
glued at one end. To ensure unidirectional heat trans-
fer, the entire surface of the rod is insulated by a foam.
The input signal is a heat flux generated by the resis-
tor and the output signal is the temperature measured
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Fig. 1 a) Insulated aluminium rod heated by a resistor b)
Measurement slots for sensor positions

at a distance ℓ from the heated end using a platinum
probe (see Figure 1). Also, the process is constituted
of a heating device and therefore, there is no cooling
process to lower the temperature of the rod. However,
due to heat leakage, the temperature of the thermal
process naturally decreases when no heat density flux
is injected.

From the heat equation, [31,5] proved that the exact
solution of the heat transfer linking the temperature to
the heat flux density is expressed as a fractional model
(see §2.2 and §2.4). Moreover, [24] showed that a ratio-
nal model can be less accurate than a fractional model
unless having higher number of parameters (as it hap-
pens twice the number of parameters).

Data are collected with a sampling period Ts set to
0.5s. The number of samples is assumed large enough
to guarantee convergence of the estimated parameters
to the true ones. By injecting a constant flux density
of 5.2kW.m−2, the system is driven to a steady-state
(e.g. temperature of 42.2◦C at ℓ = 10mm). Then, to
guarantee convergence of the identification procedure,
a sufficiently persistent pseudo random binary sequence
is applied with a variation of ±5.2kW.m−2 around that
constant flux density of 5.2kW.m−2. The input density
flux and the output temperature data are pretreated to
eliminate the steady-state and delay (see Figure 2).

2.2 Problem formulation

A fractional differential equation can be written as:

y (t) + a1D
α1y (t) + · · ·+ aNDαN y (t) =

b0D
β0u (t) + b1D

β1u (t) + · · ·+ bMDβMu (t) , (5)

where u(t) ∈ H0 is the input, y(t) ∈ H0 is the noise-free
output, (aj , bi) ∈ R2, and the differentiation orders 0 <
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Fig. 2 Input/output signals (after steady state removal
(temperature (e.g. 42.2◦C at ℓ = 10mm) and heat flux den-
sity of 5.20kW.m−2))

α1 < . . . < αN , 0 ≤ β0 < . . . < βM , are ordered non-
integer positive numbers for identifiability purposes.

It is assumed that the input u(t) and the noise-free
output y(t) are related by differential equation (5), or
also in a compact model form:

G(D) =
B(D)

A(D)
=

M
∑

i=0
biD

βi

1 +
N
∑

j=1
ajD

αj

, (6)

B(D) and A(D) are assumed coprime, and the system
asymptotically stable.

The quasi-stationary input signal {u(t), 0 ≤ t ≤
Tfinal} applied to the system is persistently exciting,
and gives rise to an output signal {y(t), 0 ≤ t ≤ Tfinal}.
The noise-free output y is supposed to be corrupted by
an additive white measurement noise ξ, normally dis-
tributed with zero mean and σ2 variance. The complete
equation can be written as:
{

y(t) = G(D)u(t)
y∗(tk) = y(tk) + ξ(tk),

(7)

where y∗(tk) is the sampled value of the unobserved
noisy output y(t). Given the discrete-time sampled na-
ture of the data, the usual assumption is that a discrete-
time noise ξ(tk) is associated with the sampled data.

When the model (6) is used, the parameter vector

θ =

[

ρ
γ

]

(8)

is composed of a vector of N +M + 1 coefficients,

ρ = [b0, b1, . . . , bM , a1, . . . , aN ]T , (9)
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and a vector of N +M + 1 differentiation orders,

γ = [β0, . . . ,βM ,α1, . . . ,αN ]T. (10)

N + M + 1 differentiation orders and N + M + 1 co-
efficients need to be estimated. Moreover, if N and M
are high, the number of local minima may increase and
the nonlinear optimization algorithms may fail to con-
verge to the global minimum. To reduce the number of
parameters, a commensurate model can be chosen:

G (D) =

M
∑

i=0
biD

iν

1 +
N
∑

j=1
ajD

jν

, (11)

where the parameter vector θ in (8) is then reduced to
the N +M + 1 coefficients as in (9) added to a single
commensurate differentiation order:

γ = ν. (12)

In this case, the searching domain of the commensu-
rate order is held for ν ∈ (0, 2), corresponding to the
stability domain (see e.g. Matignon’s theorem [26]).

2.3 System identification

The order-optimization-srivcf algorithm (oosrivcf )
uses the srivcf algorithm [25,36] for coefficient esti-
mation along with a gradient-based algorithm for dif-
ferentiation order estimation. Either a commensurate
order for model (11) or all differentiation orders for (6),
are estimated. The ℓ2-norm estimation problem is:

J =
1

2
∥ε (t, θ)∥2 , (13)

where the output error ε(t, θ) = y∗(t) − G(D, θ)u(t),
with respect to the vector γ, as in (10) or (12).

A Gauss-Newton algorithm [22] is used for diffe-
rentiation order estimation.

Algorithm 1 oosrivcf algorithm

Inputs: The model G(D, θ0) as in (6) or (11) and the
input and output signals (u(t), y∗(t))

Outputs: Model Ĝ(D, θ̂) with covariance matrix P̂θ

Procedure:
1. Initialization

iter = 0
Initialize γ0 and compute ρ0 with the srivcf .
From θ0 = [ρ0, γ0], compute J(θ0) as in (13).

2. Gauss-Newton optimization

for iter = 1 to convergence
Initialize the factor λ = Λ (usually =1)
do

(i) Refine the order estimate:

γiter = γiter−1 − λ

[

H−1 ∂J

∂γ

]
∣

∣

∣

∣

γ=γiter−1

where the gradient is defined as

∂J

∂γ
= εT

[

∂ε

∂γ

]
∣

∣

∣

∣

γ=γiter−1

and the approximated Hessian H as

H =

[

∂ε

∂γ

]T
∣

∣

∣

∣

∣

γ=γiter−1

[

∂ε

∂γ

]
∣

∣

∣

∣

γ=γiter−1

(ii) Compute ρiter using the srivcf .
(iii) Evaluate J(θiter+1) as in (13).
(iv) λ = λ/2

while J(θiter+1) > J(θiter)
iter = iter + 1
end for

3. Parametric error estimation

Estimate the covariance matrix P̂θ from (14).

By assuming that the oosrivcf algorithm converges
in the sense that θ̂ → θ, then an estimate of the co-
variance matrix can be obtained on the basis of the
Gauss-Newton algorithm [22, Theorem 9.1] by:

P̂θ = σ̂2H−1, (14)

where σ̂2 is, as previously, the empirical estimate of
noise variance and H is the approximate Hessian com-
puted towards all the estimated parameters:

H =
∂ε

∂θ

T ∂ε

∂θ
=

∂εT

∂ [ρTγT]T
∂ε

∂ [ρTγT]T
, (15)

with ∂ε
∂γ defined as

∂ε

∂γ
=

[

−
∂ŷ

∂β0
, . . . ,−

∂ŷ

∂βM
,−

∂ŷ

∂α1
, . . . ,−

∂ŷ

∂αN

]T

, (16)

when all differentiation orders are estimated, or as:

∂ε

∂γ
=

∂ε

∂ν
= −

∂ŷ

∂γ
, (17)

when the commensurate order is estimated, and

∂ε

∂ρ
= −

[

∂ŷ

∂b0
, . . . ,

∂ŷ

∂bM
,
∂ŷ

∂a1
, . . . ,

∂ŷ

∂aN

]T

, (18)
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Fig. 3 Time responses of the estimated and true temperature
outputs on validation data

where

∂ŷ

∂bi
=

D̂
β̂i

1 +
N
∑

j=1
âjD

α̂j

u(t), ∀i = 0, . . . ,M, (19)

∂ŷ

∂ak
= −

M
∑

i=0
b̂iD

β̂i+α̂k

(

1 +
N
∑

j=1
âjD

α̂j

)2u(t), ∀k = 1, . . . , N. (20)

2.4 Black box identification

Since the aluminium rod reaches a steady-state tem-
perature, the insulation is flawed: the hypothesis of a
commensurate order of 0.5 or an integrator as in the
physical model [24] are unfit. After trial and error, the
selected model is as the following with M = 1 and
N = 3:

G(s) =
b1sν + b0

a3s3ν + a2s2ν + a1sν + 1
× e−τs, (21)

where a time delay τ is noticed between the heat density
flux and the temperature measurement.

With the pseudo random binary sequence as ex-
plained in section §2.1 and with different temperature
sensor positions (see Figure 1), all parameter models
have been estimated with the oosrivcf algorithm (see
algorithm 1): the nominal model is the one at ℓ =
10mm, the other models being estimated at ℓ = 5, 20
and 40mm. After an initial differentiation order set to
ν = 0.6, the algorithm converges to ν = 0.73 for the
nominal model. The validation data for the nominal
model, plotted on Figure 3, enable us to validate the
model.

ℓ model G(sν , ℓ) ν τ

5 7.20 10−4sν+5.40 10−3

431.51s3ν+159.41s2ν+113.70sν+1
e−s 0.53 1

10 2.92 10−1sν+6.11 10−3

25940.2s3ν+13038.7s2ν+561.66sν+1
e−2s 0.73 2

20 −1.96 10−2sν+2.03 10−2

1102.74s2ν+367.21sν+1
e−3.5s 0.50 3.5

40
−2.29 10−2sν+3.88 10−2

6953.97s2ν+1172.5sν+1
e−10s 0.57 10

Table 1 Identified models with different sensor positions (ℓ
in mm and τ in s)
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Fig. 4 Black-Nichols diagram of the nominal model (–) with
uncertainties (")

The models identified with the oosrivcf algorithm
are presented in Table 1. This table shows that there
are parametric variations for the coefficients, the com-
mensurate order and the delay. Moreover, the longer
the distance ℓ, the higher the delay. The frequency res-
ponses of the identified models are plotted on Figure 4,
which shows a high range of gain and phase uncertain-
ties.

3 Robust motion control

3.1 Linear fractionally flat systems

System (11) can be put in the following representation

Ax = Bu (22)

with state x of dimension n × 1, input u of dimension
m × 1, A ∈ R [Dγ ]n×n and B ∈ R [Dγ ]n×m. B is as-
sumed to be of rank m, with 1 ≤ m ≤ n. Let us intro-
duce F !

[

A −B
]

∈ R [Dγ ]n×(n+m). For system (22),
consider (see e.g. [12,32]):
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– its behavior kerF , where the kernel is taken w.r.t.
the signal space H0 defined in (3), i.e. the set
{[

x
u

]

∈ (H0)
n+m |F

[

x
u

]

= 0

}

;

– and its system module MF , i.e. the quotient module

MF = R[Dγ ]1×(n+m)/R[Dγ ]1×nF, (23)

where R[Dγ ]1×(n+m) is the set of row vectors with
components in R[Dγ ] and where R [Dγ ]1×n F is the
module generated by the rows of matrix F .

Assuming that F has full (left) row rank, system
(22) reads:

F

[

x
u

]

= 0. (24)

The definition of fractional flatness is detailed in [37]
and is based on the notion of defining matrices in the
spirit of [21] and [2].

Definition 2 The system (24) is called fractionally flat

if, and only if, there exist matrices P ∈ R [Dγ ]m×(n+m)

and Q ∈ R [Dγ ](n+m)×m such that

Q (H0)
m = kerF and PQ = Im. (25)

In other words, there exists a matrix P with right-
inverse Q over the ring R [Dγ ] such that, for all (x, u)

satisfying F

[

x
u

]

= 0, one has y = P

[

x
u

]

and

[

x
u

]

=

Qy. The variable y, taking its values in (H0)
m, is called

fractionally flat output and the matrices P and Q are
called defining matrices.

Theorem 2 One has the following equivalences [2,37]:

(i) system (24) is fractionally flat;
(ii) the system module MA,B is free;
(iii) the matrix F is hyper-regular over R [Dγ ].

In practice, it may be convenient to distinguish state
and input, and for linear controllable time-invariant
systems, a set of flat outputs may be obtained via Bru-
novský’s canonical form (see e.g. [8,18]) and do not de-
pend on the input u. This fractional 0-flatness property
reads: there exist P1 ∈ R [Dγ ]m×n and Q1 ∈ R [Dγ ]n×m

such that y = P1x, x = Q1y, and P1Q1 = Im.

Definition 3

– A system is called fractionally k-flat, with k ≥ 1,
if and only if the maximal degree of the matrix

P

[

0n,m
Im

]

is equal to k − 1. In this case, the out-

put y is called fractionally k-flat output.

– It is said fractionally 0-flat if P

[

0n,m
Im

]

= 0m, the

output y being called fractionally 0-flat output.

Fractional 0-flatness is equivalent to the existence of P
and Q such that P =

[

P1 0m
]

with P1 ∈ R [Dγ ]m×n

and P1Q1 = Im where Q1 !
[

In 0n,m
]

Q.

Lemma 1 (Elimination [37]) If B is hyper-regular,
there exists a unimodular matrix M ∈ R [Dγ ]n×n such

that MB =

[

Im
0(n−m)×m

]

. Moreover, there exist matri-

ces F̃ ∈ R [Dγ ](n−m)×n and R ∈ R [Dγ ]m×n such that
System (22) is equivalent to Rx = u, F̃ x = 0.

Theorem 3 If B is hyper-regular, the following state-
ments are equivalent [37]:

(i) System (22) is fractionally 0-flat;
(ii) The system module

MF̃ ! R [Dγ ]1×n /R [Dγ ]1×(n−m) F̃

is free, with F̃ defined in Lemma 1;
(iii) F̃ is hyper-regular over R [Dγ ](n−m)×n.

Algorithm 2 Fractionally 0-flat output computation

Input: The matrices A and B of System (22) with B
hyper-regular.

Output: Defining matrices P and Q satisfying (25).
Procedure:

1. Using row-reduction, check if B is hyper-regular.
If not, return “fail”.

2. Else, find M ∈ GLn (R [Dγ ]) such that MB =
[

Im
0(n−m)×m

]

.

3. Obtain R ∈ R [Dγ ]m×n and F̃ ∈ R [Dγ ](n−m)×n,

according to Lemma 1, by: MA =

[

R
F̃

]

.

4. Find W ∈ GLn (R [Dγ ]) according to Proposi-
tion 1 (i), such that F̃W =

[

In−m, 0(n−m)×m

]

.
We therefore get

Q1 = W

[

In−m

0m×(n−m)

]

and

P1 =
[

In−m, 0(n−m)×m

]

W−1.

5. Set P =
[

P1, 0m
]

and Q =

[

Q1

RQ1

]

.

Algorithm 2 gives a fractionally 0-flat output y =
P1x. x = Q1y and u = RQ1y identically satisfy (22).
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3.2 Motion planning

The nominal transfer function for ℓ = 10mm, as given
in Table 1, is normalized as

(1.12 10−5s0.73 + 2.35 10−7)e−2s

s2.19 + 0.50s1.46 + 2.16 10−2s0.73 + 3.85 10−5
,

and put under a state-space form:

AνX = Bϕ, T (x10mm, s) = CX, (26)

where

Aν(s) =

⎡

⎣

sν + 0.50 2.16 10−2 3.85 10−5

−1 sν 0
0 −1 sν

⎤

⎦ ,D = 0,

B =
[

1 0 0
]T

,C =
[

0 1.12 10−5 2.35 10−7
]

. (27)

Flat output computation

Now apply Algorithm 2. As B is already in its Smith
form, introduce R ∈ R[sν ]1×3 and F̃ ∈ R[sν ]2×3 such

that : Aν =

[

R
F̃

]

with

R =
[

sν + 0.50 2.16 10−2 3.85 10−5
]

,

F̃ =

[

−1 sν 0
0 −1 sν

]

.

To get the required implicit form, consider the uni-

modular matrix M =

[

MR

MF̃

]

with MR =
[

1 0 0
]

and

MF̃ =
[

02×1 I2
]

and it can be verified that MAν =
[

R
F̃

]

, F̃ being hyper-regular and thus system (26)-(27)

is 0-flat. Let us compute the upper triangular matrix
W ∈ GL3(R[sν ]) satisfying F̃W =

[

I3 02×1

]

, with

W =

⎡

⎣

−1 −sν −s2ν

0 −1 −sν

0 0 −1

⎤

⎦ ,

and its inverse, also upper-triangular,

W−1 =

⎡

⎣

−1 −sν 0
0 −1 −sν

0 0 −1

⎤

⎦ .

Therefore,

Q1 = W

⎡

⎣

0
0
1

⎤

⎦ =

⎡

⎣

−s2ν

−sν

−1

⎤

⎦ ,

P1 =
[

0 0 1
]

W−1 =
[

0 0 −1
]

,

and one indeed has: P1Q1 = 1.

Finally, the defining matrices P and Q read:

P =
[

P1 0
]

, Q =

[

Q1

RQ1

]

,

which proves that system (26)-(27) is fractionally 0-flat
and that a flat output Y is given by

Y = P1X = X3

ϕ = RQ1Y

T (ℓ = 10mm, s) = CX = CQ1Y.

Trajectory planning

For a reference temperature trajectory defined for the
nominal plant, flatness principles are applied to deter-
mine the reference input that generates the reference
trajectory. This temperature motion planning is defined
with an interpolation polynomial of degree 5: first and
second derivatives are nil at the beginning and at the
end of the experiment and the temperature should rise
from 20◦C above the ambiant temperature in 1250s and
stabilize for the same duration:

Tref (t) = Ti + 80 (Tf − Ti)
t3

t3f

−240 (Tf − Ti)
t4

t4f
+ 192 (Tf − Ti)

t5

t5f
, (28)

with Ti = 0◦C, Tf = 20◦C, and tf = 2500s.

The reference output T̃ref(s), Laplace transform of
Tref(t), can be expressed from the fractionally flat out-
put Y :

T̃ref = CX, (29)

with X = Q1Y .
CQ1 = 1.12 10−5sν + 2.35 10−7 being a polynomial

in sν , its left inverse is not a polynomial :

(CQ1)
−1 =

1

CQ1
. (30)

Therefore Y = 1
CQ1

Tref and the reference input heat
density ϕref = RQ1Y .

Open-loop tests on the test bench

Figure 5 presents the results obtained for the nominal
model, namely the input reference ϕref , the fractionally
flat output Y , and the effective output compared to the
reference trajectory.

As expected, the measured temperature follows the
desired temperature and the output error is less than
2% (less than 0.4◦ for a global variation of 20◦).
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Fig. 5 Open-loop test for the nominal plant : heat flux con-
trol ϕref , reference (−−) and measured (−−) outputs, and
output error

3.3 Temperature robust path tracking

The system considered being fractional and commensu-
rate, a controller adapted to FOS is considered. Open-
loop tests have been carried out with different sensor
positions by applying the reference heat density control.
This reference input is only suited for the nominal pro-
cess (see Figure 6). Also, this open-loop reference con-
trol is not adapted for a process other than the nominal
one. It is therefore necessary to synthesize a closed-loop
control in order to maintain stability degree and the
robust path tracking towards parameter uncertainties,
modeling errors ans input/output disturbances.

The unit gain frequency ωu is fixed to 0.12rad/s
knowing that the sampling frequency is 12.5 rad/s. The
controllers should guarantee a phase margin of 50◦.

CRONE synthesis The CRONE controller is defined in
the frequency band [ωA,ωB] = [0.01, 1] rad/s around
ωu. The third generation CRONE controller should en-
sure the stability degree robustness towards model pa-
rameter variations knowing that at ωu, these variations
lead to [1 − 9] dB gain variations and to [6.5◦ − 90◦]
phase variations. For security reasons, the density flux
control must not exceed 66348W.m−2 (10V for the re-
sistor).

The generalized open-loop template is defined as a
complex non integer order integrator n whose real part
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Fig. 6 Time responses of the different models in open-loop

0−π −aπ/2 −π/2
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ωB

ωu

f(b, a)

arg β0i

| β0i | dB

Fig. 7 Generalized template in the Black-Nichols diagram

defines the phase position at ωu, namely Re/i(n)
π
2 , and

whose imaginary part defines the angle towards the ver-
tical axis (see Figure 7). The CRONE control method-
ology is well described in [30].

The open-loop transfer function β0(s), including the
complex non integer order integration is written as:

β0 (s) = Csign(b)
(

1+s/ωh

1+s/ωl

)a
Re/i

{

(

Cg
1+s/ωh

1+s/ωl

)ib
}

−sign(b)

(31)

with n = a + ib, Cg =

(

1+
(

ωu
ωl

)2

1+
(

ωu
ωh

)2

)1/2

and C =

cosh
[

b
(

arctan
(

ωu
ωl

)

− arctan
(

ωu
ωh

))]

.
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Fig. 8 Nichols chart of the open-loop nominal model (–) and
the uncertainties (#)

The nominal model has a delay τ that must be taken
into account in the open-loop transfer function β(s) :

β(s) = βl (s) β0 (s)βh (s)× e−τs, (32)

with τ = 2, ν = 0.53, βl (s) = Cl

(

ωl
s + 1

)nl the or-
der nl fixing the precision in closed-loop, and βh (s) =

Ch
(

s
ωh

+1
)nh the order nh enabling the controller to be

proper.
The open-loop β (s) must tangent an iso-contour in

the Nichols chart in order to maintain a low variation
of the system stability degree in closed-loop. The op-
timization of the diagonal open-loop transfer matrix
β(s) leads to an optimal open-loop in the Nichols chart
(see Figure 8) where ωl = 0.07rad/s, ωh = 1.4rad/s,
nh = 2.46, nl = 1, a = 1.64 and b = −1.27.

From the nominal open-loop transfer, the fractional
controller CF (s) is defined by its frequency response:

CF (jω) =
β (jω)

G(jω, ℓ = 10)
,

where G(jω, ℓ = 10) is the frequency response of the
nominal model.

The transfer function of the CRONE third genera-
tion controller is then defined by:

CF (s) = β(s)G−1(sν , ℓ = 10). (33)

The synthesis of the rational controller CR(s) is ob-
tained by fitting the frequency response CF (jω) with
the “Control System Design” module of the CRONE
toolbox, whose expression is :

CR(s) =
6.43 109s6 + 7.16 1010s5 + 2.01 1011s4...

1.24 107s8 + 4.18 108s7 + 4.72 108s6...

...+ 1.36 1010s3 + 1.45 108s2 + 1.11 105s+ 10

...+ 1.89 108s5 + 3.03 107s4 + 1.47 106s3 + 4738s2 + s

+
+ + +-

-
ϕref

ϕ

∆ϕ ∆T

T

Tref

Thermal system

Controller

Fig. 9 Closed-loop control scheme

PID controller design The CRONE controller is com-
pared with a PID controller. The specifications of the
nominal processG(sν , ℓ = 10mm) lead to a filtered PID
controller synthesized at the same unit gain frequency
ωu = 0.12rad/s as:

CPID(s) = C0

1 + s
ωi

s
ωi

1 + s
ωa

1 + s
ωb

1

1 + s
ωf

,

where C0 = 22081, ωi = 0.01rad/s, ωa = 0.220rad/s,
ωb = 0.045rad/s and ωf = 1rad/s.

4 Experimental closed-loop tests

The control scheme is presented in Figure 9: ϕref is the
nominal reference control which was obtained through
the flatness principles by using the reference tempera-
ture trajectory Tref . A control disturbance ∆ϕ is ap-
plied at 625 s: the cork on the resistor is removed so
that a part of the density flux part is dissipated in the
air instead of flowing into the rod and a fan is activated
to improve the dissipation. Another output disturbance
∆T is applied at 1875s in steady-state: a heating resis-
tor generating 12W power (corresponding to variations
of 2◦C) is glued alongside the rod.

This disturbance scenario is held for different sen-
sor positions and for each PID and CRONE controller:
on Figure 10 for G(sν , ℓ = 5mm), on Figure 11 for
G(sν , ℓ = 10mm), on Figure 12 for G(sν , ℓ = 20mm)
and on Figure 13 for G(sν , ℓ = 40mm).

The comparison between PID and CRONE control-
lers on the nominal model show similar responses (see
Figure 11). For the other sensor positions, the PID con-
troller is not robust and the path tracking is not effi-
cient. The precision is poorer as the sensor is farther
from the heated end. Contrary to a PID controller, a
robust path tracking is achieved with a CRONE con-
troller despite the input/output disturbances and the
model parametric variations.

5 Conclusion

The originality of this paper is in applying system iden-
tification, open-loop motion planning and robust con-
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Fig. 10 Measures with disturbances on G(sν , ℓ = 5) : mea-
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erence Tref (- -), output errors TCRONE − Tref (–) and
TPID − Tref (-.-), and flux density control ϕCRONE (–)
and ϕPID (-.-)
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Fig. 11 Measures with disturbances on G(sν , ℓ = 10) : mea-
sured temperatures TCRONE (–), TPID (-.-) and the ref-
erence Tref (- -), output errors TCRONE − Tdes (–) and
TPID − Tref (-.-), and flux density control ϕCRONE (–)
and ϕPID (-.-)

trol to a real heat experiment: the system considered
is the model linking the heat transfer throughout an
aluminium rod. Temperature sensor positions produce
parameter uncertainties. Also, in motion planning, frac-
tionally flat outputs enable to design a reference input
in order to follow a desired reference temperature tra-
jectory. Generally, a reference input should be gener-
ated for each model. Thanks to a third generation ro-
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Fig. 12 Measures with disturbances on G(sν , ℓ = 20) : mea-
sured temperatures TCRONE (–), TPID (-.-) and the ref-
erence Tref (- -), output errors TCRONE − Tref (–) et
TPID − Tref (-.-), and flux density control ϕCRONE (–)
and ϕPID (-.-)
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Fig. 13 Measures with disturbances on G(sν , ℓ = 40) : mea-
sured temperatures TCRONE (–), TPID (-.-) and the ref-
erence Tref (- -), output errors TCRONE − Tref (–) et
TPID − Tref (-.-), and flux density control ϕCRONE (–)
and ϕPID (-.-)

bust CRONE controller, it is sufficient to synthesize a
unique controller to follow a reference temperature tra-
jectory with the help of the nominal reference control.
Moreover, this controller keeps the degree of stability,
ensuring robust motion planning by flatness principles
and input/output disturbance rejection. A comparison
with a PID controller has been carried out and results
have been really convincing.



Robust motion planning for a heat rod process 11

References

1. Amini, A., Azarbahram, A., Sojoodi, M.: H∞ consensus of
nonlinear multi-agent systems using dynamic output feed-
back controller: an LMI approach. Nonlinear Dynamics pp.
1–22 (2016). DOI 10.1007/s11071-016-2801-6

2. Antritter, F., Cazaurang, F., Lévine, J., Middeke, J.: On
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