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Introduction

Fractional (or non-integer) operator is a modeling tool that enables explaining diffusive phenomena thanks to its long memory character and parametric compacity: thermal diffusive phenomena [START_REF] Oldham | The remplacement of Fick's laws by a formulation involving semi-differentiation[END_REF] [START_REF] Maachou | Nonlinear thermal system identification using fractional Volterra series[END_REF], charge diffusion in acid batteries [START_REF] Rodrigues | A review of state of charge indication of batteries by means of A.C. impedance measurements[END_REF] [START_REF] Sabatier | Lithium-ion batteries modeling involving fractional differentiation[END_REF], in rheology [START_REF] Heymans | Fractal rheological models and fractional differential equations for viscoelastic behavior[END_REF], Foucault currents inside rotor bars in induction machines [START_REF] Benchellal | Identification of a non-integer model of induction machines[END_REF]...

Fractional order system (FOS) identification was initiated in the nineties [START_REF] Cois | Fractional state variable filter for system identification by fractional model[END_REF][4] [START_REF] Gabano | Identification of a thermal system using continuous linear parameter-varying fractional modelling[END_REF]. Refined Instrumental Variables for Continuous system (rivc) [START_REF] Young | Refined instrumental variable methods of time-series analysis: Part III, extensions[END_REF], and its simplified version (srivc) when the additive measurement noise is white [START_REF] Garnier | Identification of continuous-time models from sampled data[END_REF] have been extended for FOS [START_REF] Victor | Parameter and differentiation order estimation in fractional models[END_REF]. In the usual case of rational model system identification, where only coefficients are estimated, the model order remains unchanged, whereas in the fractional model case, estimating the differentiation orders in an iterative algorithm changes the model order at each iteration. Also, the oosrivcf algorithm is recalled for all parameter estimation [START_REF] Victor | Parameter and differentiation order estimation in fractional models[END_REF]. The latest version of the CRONE toolbox proposes a tutorial on fractional system identification (http://cronetoolbox.imsbordeaux.fr).

In motion planning, a suitable approach consists in using the flatness-based trajectory design (see [START_REF] Fliess | Sur les systèmes non linéaires différentiellement plats[END_REF] [START_REF] Lévine | Analysis and Control of Nonlinear Systems A Flatness-based Approach[END_REF] and the references therein) adapted to FOSs [START_REF] Victor | Flatness for linear fractional systems with application to a thermal system[END_REF]. Recall that a system described by ordinary differential equations is said to be differentially flat if and only if there exists an output vector (flat output ) of the same dimension as the control vector, such that all system variables can be expressed as functions of this output and its derivatives. This motion planning is generally carried out in open-loop and robust control may be achieved with a suitable control feedback. Several industrial applications have emerged in control theory, such as H ∞ state feedback control of a bridge seismic response [START_REF] Farges | H ∞ analysis and control of commensurate fractional order systems[END_REF], H ∞ consensus method for a network of nonlinear multiagent system [START_REF] Amini | H ∞ consensus of nonlinear multi-agent systems using dynamic output feedback controller: an LMI approach[END_REF], trajectory tracking control of cooperative multiple mobile cranes [START_REF] Qian | Dynamics and trajectory tracking control of cooperative multiple mobile cranes[END_REF], pollutant reduction of a turbocharged diesel engine [START_REF] Lamara | Pollutant reduction of a turbocharged diesel engine using a decentralized MIMO CRONE controller[END_REF] and so on. Here, a CRONE controller [START_REF] Oustaloup | La commande CRONE[END_REF] is used to guarantee stability degree, path tracking and disturbance rejection.

The contributions are on the heat experiment: -solving the heat equation leads to a fractional model [START_REF] Podlubny | Fractional Differential Equations[END_REF], therefore an optimal estimator is proposed for FOS identification (see §2.3); -open-loop motion control is proposed using flatness; -closed-loop robust path tracking is held through the design of a unique CRONE controller.

After recalling fractional calculus in section 1, section 2 presents the heat system modeling. Robust motion control is developed in section 3. In section 4, the experimental results are given, to finally conclude in section 5.

Fractional derivative

Let γ ∈ R + , n = ⌈γ⌉ = E(γ) + 1 = min{k ∈ N|k > γ},
where ⌈.⌉ (resp. E) is the ceiling operator (resp. the integer part), and ν ∈ [0, 1[ given by ν = n -γ. Let a be a given arbitrary real number and f ∈ C ∞ ([a, +∞[), the set of infinitely continuously differentiable functions from [a, +∞[ to R.

The Riemann-Liouville derivative of function f at time t of order γ = n -ν is defined as [START_REF] Miller | An introduction to the fractional calculus and fractional differential equations[END_REF]:

D γ a f (t) = D n (I ν a f (t)) d dt n 1 Γ (ν) t a f (τ ) dτ (t -τ ) 1-ν (1) 
where D = d dt is the differentiation operator, I ν a f (t) is called the fractional primitive of f and the Euler's Γ function, defined by:

Γ (x) = ∞ 0 e -t t x-1 dt, ∀x ∈ R * \ N -, (2) 
is the generalized factorial (∀n ∈ N, Γ (n + 1) = n!).

Let be

H a ∆ = {f : R → R|f ∈ C ∞ ([a, +∞[), f(t) = 0, ∀t ≤ a} . (3) 
As a consequence of Propositions 15 of [START_REF] Victor | Flatness for linear fractional systems with application to a thermal system[END_REF] (or e.g. [31, chap, 2, p. 57]), D γ a is an endomorphism from H a to itself and H a may be considered as the domain of D γ a . For simplicity sake, a will be equal to 0, therefore, the notation

D γ is used in place of D γ a Ha . 1.2 D γ -polynomial matrices D γ -polynomials are polynomials of the indeterminate D γ with real coefficients, of the form K k=0 c k D kγ . R [D γ ]
denotes the set of D γ -polynomials; the reader may immediately verify that (R [D γ ] , +, ×) is a (commutative) principal ideal domain 1 .

Interpreting the fractional derivative operator as a Mikusiński's operator as in [START_REF] Battig | On Mikusinski's operators of fractional integration[END_REF], a system theoretic approach has been developed by [START_REF] Fliess | Sur les systèmes linéaires à dérivation non entière[END_REF] where the field of 1 The main properties of R [D γ ] are recalled in [START_REF] Victor | Flatness for linear fractional systems with application to a thermal system[END_REF].

Mikusiński's operators M is defined as the field of fractions of the commutative integral domain C of continuous functions defined over [0, ∞[ endowed with the addition and convolution product [START_REF] Mikusiński | Operational Calculus[END_REF][START_REF] Fliess | Sur les systèmes linéaires à dérivation non entière[END_REF]. M can also be considered as an R [s γ ]-module, where s γ is the Laplace operator associated to

D γ . If p, q ∈ N, call R [D γ ]
p×q the set of D γ -polynomial matrices of size (p × q). When p = q, the group of unimodular D γ -polynomial matrices, GL p (R [D γ ]), defines the set of invertible (square) D γ -polynomial matrices whose inverse is also a D γ -polynomial matrix. I p denotes the p × p identity matrix and by 0 p×q the p × q zero matrix.

Theorem 1 (Smith diagonal decomposition [START_REF] Cohn | Free rings and Their relations[END_REF])

Given A ∈ R [D γ ] p×q , with p ≤ q ( resp. p ≥ q), there exist two matrices S ∈ GL p (R [D γ ]) and T ∈ GL q (R [D γ ]) such that: SAT = [∆ 0 p,q-p ] (resp. = ∆ 0 p-q,q ), (4) 
where

∆ = diag{δ 1 , . . . , δ σ , 0, . . . , 0} ∈ R [D γ ] p×p (resp. R [D γ ] q×q ).
The integer σ ≤ min(p, q) is the rank of A and every non zero D γ -polynomial δ i , for i = 1, . . . , σ, is a divisor of δ j for all σ ≥ j ≥ i.

Definition 1 Hyper-regularity [START_REF] Victor | Flatness for linear fractional systems with application to a thermal system[END_REF]. Given a matrix A ∈ R [D γ ] p×q , it is said that A is hyper-regular if, and only if, in (4), one has ∆ = I min(p,q) .

A straightforward adaptation of [3, Section II.C] to D γ -polynomial matrices reads:

Proposition 1 A matrix A ∈ R [D γ ]
p×q , (i) with p < q is hyper-regular if, and only if, there exists right-inverse T ∈ GL q (R [D γ ]) such that AT = I p 0 p×(q-p) ;

(ii) with p ≥ q is hyper-regular if, and only if, there exists a left-inverse S ∈ GL p (R [D γ ]) such that SA = I q 0 (p-q)×q .

2 Heat rod model

Plant description

A cylindrical aluminium rod of radius R bar = 1cm and of length 40cm is considered where a heating resistor is glued at one end. To ensure unidirectional heat transfer, the entire surface of the rod is insulated by a foam. The input signal is a heat flux generated by the resistor and the output signal is the temperature measured at a distance ℓ from the heated end using a platinum probe (see Figure 1). Also, the process is constituted of a heating device and therefore, there is no cooling process to lower the temperature of the rod. However, due to heat leakage, the temperature of the thermal process naturally decreases when no heat density flux is injected.

From the heat equation, [START_REF] Podlubny | Fractional Differential Equations[END_REF][START_REF] Battaglia | Heat flux estimation through inverted non integer identification models[END_REF] proved that the exact solution of the heat transfer linking the temperature to the heat flux density is expressed as a fractional model (see §2.2 and §2.4). Moreover, [START_REF] Malti | Thermal modeling and identification of an aluminium rod using fractional calculus[END_REF] showed that a rational model can be less accurate than a fractional model unless having higher number of parameters (as it happens twice the number of parameters).

Data are collected with a sampling period T s set to 0.5s. The number of samples is assumed large enough to guarantee convergence of the estimated parameters to the true ones. By injecting a constant flux density of 5.2kW.m -2 , the system is driven to a steady-state (e.g. temperature of 42.2 • C at ℓ = 10mm). Then, to guarantee convergence of the identification procedure, a sufficiently persistent pseudo random binary sequence is applied with a variation of ±5.2kW.m -2 around that constant flux density of 5.2kW.m -2 . The input density flux and the output temperature data are pretreated to eliminate the steady-state and delay (see Figure 2).

Problem formulation

A fractional differential equation can be written as:

y (t) + a 1 D α1 y (t) + • • • + a N D αN y (t) = b 0 D β0 u (t) + b 1 D β1 u (t) + • • • + b M D βM u (t) , (5) 
where u(t) ∈ H 0 is the input, y(t) ∈ H 0 is the noise-free output, (a j , b i ) ∈ R 2 , and the differentiation orders 0 < It is assumed that the input u(t) and the noise-free output y(t) are related by differential equation ( 5), or also in a compact model form:

ℓ = 10mm ℓ = 5mm ℓ = 20mm ℓ = 40mm
G(D) = B(D) A(D) = M i=0 b i D βi 1 + N j=1 a j D αj , (6) 
B(D) and A(D) are assumed coprime, and the system asymptotically stable.

The quasi-stationary input signal {u(t), 0 ≤ t ≤ T final } applied to the system is persistently exciting, and gives rise to an output signal {y(t), 0 ≤ t ≤ T final }. The noise-free output y is supposed to be corrupted by an additive white measurement noise ξ, normally distributed with zero mean and σ 2 variance. The complete equation can be written as:

y(t) = G(D)u(t) y * (t k ) = y(t k ) + ξ(t k ), (7) 
where y * (t k ) is the sampled value of the unobserved noisy output y(t). Given the discrete-time sampled nature of the data, the usual assumption is that a discretetime noise ξ(t k ) is associated with the sampled data.

When the model ( 6) is used, the parameter vector

θ = ρ γ (8) is composed of a vector of N + M + 1 coefficients, ρ = [b 0 , b 1 , . . . , b M , a 1 , . . . , a N ] T , (9) 
and a vector of

N + M + 1 differentiation orders, γ = [β 0 , . . . , β M , α 1 , . . . , α N ] T . (10) 
N + M + 1 differentiation orders and N + M + 1 coefficients need to be estimated. Moreover, if N and M are high, the number of local minima may increase and the nonlinear optimization algorithms may fail to converge to the global minimum. To reduce the number of parameters, a commensurate model can be chosen:

G (D) = M i=0 b i D iν 1 + N j=1 a j D jν , (11) 
where the parameter vector θ in ( 8) is then reduced to the N + M + 1 coefficients as in ( 9) added to a single commensurate differentiation order:

γ = ν. (12) 
In this case, the searching domain of the commensurate order is held for ν ∈ (0, 2), corresponding to the stability domain (see e.g. Matignon's theorem [START_REF] Matignon | Some results on controllability and observability of finite-dimensional fractional differential systems[END_REF]).

System identification

The order-optimization-srivcf algorithm (oosrivcf ) uses the srivcf algorithm [START_REF] Malti | Advances in system identification using fractional models[END_REF][START_REF] Victor | Parameter and differentiation order estimation in fractional models[END_REF] for coefficient estimation along with a gradient-based algorithm for differentiation order estimation. Either a commensurate order for model [START_REF] Farges | H ∞ analysis and control of commensurate fractional order systems[END_REF] or all differentiation orders for (6), are estimated. The ℓ 2 -norm estimation problem is:

J = 1 2 ∥ε (t, θ)∥ 2 , (13) 
where the output error ε(t, θ) = y * (t) -G(D, θ)u(t), with respect to the vector γ, as in [START_REF] Cois | Fractional state variable filter for system identification by fractional model[END_REF] or [START_REF] Fliess | Some basic structural properties of generalized linear systems[END_REF]. A Gauss-Newton algorithm [START_REF] Ljung | System identification -Theory for the user[END_REF] is used for differentiation order estimation.

Algorithm 1 oosrivcf algorithm

Inputs: The model G(D, θ 0 ) as in [START_REF] Battig | On Mikusinski's operators of fractional integration[END_REF] or [START_REF] Farges | H ∞ analysis and control of commensurate fractional order systems[END_REF] and the input and output signals (u(t), y * (t)) Outputs: Model Ĝ(D, θ) with covariance matrix Pθ Procedure:

1. Initialization iter = 0 Initialize γ 0 and compute ρ 0 with the srivcf . From θ 0 = [ρ 0 , γ 0 ], compute J(θ 0 ) as in [START_REF] Fliess | Sur les systèmes linéaires à dérivation non entière[END_REF].

2. Gauss-Newton optimization for iter = 1 to convergence Initialize the factor λ = Λ (usually =1) do (i) Refine the order estimate:

γ iter = γ iter-1 -λ H -1 ∂J ∂γ γ=γ iter-1
where the gradient is defined as

∂J ∂γ = ε T ∂ε ∂γ γ=γ iter-1
and the approximated Hessian H as

H = ∂ε ∂γ T γ=γ iter-1 ∂ε ∂γ γ=γ iter-1
(ii) Compute ρ iter using the srivcf .

(iii) Evaluate J(θ iter+1 ) as in [START_REF] Fliess | Sur les systèmes linéaires à dérivation non entière[END_REF].

(iv) λ = λ/2 while J(θ iter+1 ) > J(θ iter ) iter = iter + 1 end for

Parametric error estimation

Estimate the covariance matrix Pθ from [START_REF] Fliess | Sur les systèmes non linéaires différentiellement plats[END_REF].

By assuming that the oosrivcf algorithm converges in the sense that θ → θ, then an estimate of the covariance matrix can be obtained on the basis of the Gauss-Newton algorithm [START_REF] Ljung | System identification -Theory for the user[END_REF]Theorem 9.1] by:

Pθ = σ2 H -1 , ( 14 
)
where σ2 is, as previously, the empirical estimate of noise variance and H is the approximate Hessian computed towards all the estimated parameters:

H = ∂ε ∂θ T ∂ε ∂θ = ∂ε T ∂ [ρ T γ T ] T ∂ε ∂ [ρ T γ T ] T , (15) 
with ∂ε ∂γ defined as

∂ε ∂γ = - ∂ ŷ ∂β 0 , . . . , - ∂ ŷ ∂β M , - ∂ ŷ ∂α 1 , . . . , - ∂ ŷ ∂α N T , (16) 
when all differentiation orders are estimated, or as:

∂ε ∂γ = ∂ε ∂ν = - ∂ ŷ ∂γ , (17) 
when the commensurate order is estimated, and 

∂ε ∂ρ = - ∂ ŷ ∂b 0 , . . . , ∂ ŷ ∂b M , ∂ ŷ ∂a 1 , . . . , ∂ ŷ ∂a N T , (18) 
∂ ŷ ∂a k = - M i=0 bi D βi+ αk 1 + N j=1 âj D αj 2 u(t), ∀k = 1, . . . , N. (19) 

Black box identification

Since the aluminium rod reaches a steady-state temperature, the insulation is flawed: the hypothesis of a commensurate order of 0.5 or an integrator as in the physical model [START_REF] Malti | Thermal modeling and identification of an aluminium rod using fractional calculus[END_REF] are unfit. After trial and error, the selected model is as the following with M = 1 and N = 3:

G(s) = b 1 s ν + b 0 a 3 s 3ν + a 2 s 2ν + a 1 s ν + 1 × e -τ s , (21) 
where a time delay τ is noticed between the heat density flux and the temperature measurement.

With the pseudo random binary sequence as explained in section §2.1 and with different temperature sensor positions (see Figure 1), all parameter models have been estimated with the oosrivcf algorithm (see algorithm 1): the nominal model is the one at ℓ = 10mm, the other models being estimated at ℓ = 5, 20 and 40mm. After an initial differentiation order set to ν = 0.6, the algorithm converges to ν = 0.73 for the nominal model. The validation data for the nominal model, plotted on Figure 3 The models identified with the oosrivcf algorithm are presented in Table 1. This table shows that there are parametric variations for the coefficients, the commensurate order and the delay. Moreover, the longer the distance ℓ, the higher the delay. The frequency responses of the identified models are plotted on Figure 4, which shows a high range of gain and phase uncertainties.

3 Robust motion control

Linear fractionally flat systems

System [START_REF] Farges | H ∞ analysis and control of commensurate fractional order systems[END_REF] can be put in the following representation n+m) . For system [START_REF] Ljung | System identification -Theory for the user[END_REF], consider (see e.g. [START_REF] Fliess | Some basic structural properties of generalized linear systems[END_REF][START_REF] Polderman | Introduction to Mathematical System Theory: a behavioral approach[END_REF]):

Ax = Bu (22) with state x of dimension n × 1, input u of dimension m × 1, A ∈ R [D γ ] n×n and B ∈ R [D γ ] n×m . B is as- sumed to be of rank m, with 1 ≤ m ≤ n. Let us intro- duce F A -B ∈ R [D γ ] n× ( 
-its behavior ker F , where the kernel is taken w.r.t. the signal space H 0 defined in (3), i.e. the set

x u ∈ (H 0 ) n+m |F x u = 0 ;
-and its system module M F , i.e. the quotient module

M F = R[D γ ] 1×(n+m) /R[D γ ] 1×n F, (23) 
where R[D γ ] 1×(n+m) is the set of row vectors with components in R[D γ ] and where R [D γ ] 1×n F is the module generated by the rows of matrix F .

Assuming that F has full (left) row rank, system (22) reads:

F x u = 0. ( 24 
)
The definition of fractional flatness is detailed in [START_REF] Victor | Flatness for linear fractional systems with application to a thermal system[END_REF] and is based on the notion of defining matrices in the spirit of [START_REF] Lévine | Flat output characterization for linear systems using polynomial matrices[END_REF] and [START_REF] Antritter | On the computation of π-flat outputs for differential-delay linear systems[END_REF].

Definition 2

The system ( 24) is called fractionally flat if, and only if, there exist matrices

P ∈ R [D γ ] m×(n+m) and Q ∈ R [D γ ] (n+m)×m such that Q (H 0 ) m = ker F and P Q = I m . (25) 
In other words, there exists a matrix P with rightinverse Q over the ring R [D γ ] such that, for all (x, u) satisfying F x u = 0, one has y = P x u and x u =

Qy. The variable y, taking its values in (H 0 ) m , is called fractionally flat output and the matrices P and Q are called defining matrices.

Theorem 2 One has the following equivalences [START_REF] Antritter | On the computation of π-flat outputs for differential-delay linear systems[END_REF][START_REF] Victor | Flatness for linear fractional systems with application to a thermal system[END_REF]: (i) system ( 24) is fractionally flat;

(ii) the system module M A,B is free;

(iii) the matrix F is hyper-regular over R [D γ ].
In practice, it may be convenient to distinguish state and input, and for linear controllable time-invariant systems, a set of flat outputs may be obtained via Brunovský's canonical form (see e.g. [START_REF] Brunovský | A classification of linear controllable systems[END_REF][START_REF] Kailath | Linear Systems[END_REF]) and do not depend on the input u. This fractional 0-flatness property reads: there exist

P 1 ∈ R [D γ ] m×n and Q 1 ∈ R [D γ ]
n×m such that y = P 1 x, x = Q 1 y, and

P 1 Q 1 = I m .
Definition 3

-A system is called fractionally k-flat, with k ≥ 1, if and only if the maximal degree of the matrix

P 0 n,m I m is equal to k -1.
In this case, the output y is called fractionally k-flat output.

-It is said fractionally 0-flat if P 0 n,m I m = 0 m , the output y being called fractionally 0-flat output.

Fractional 0-flatness is equivalent to the existence of P and Q such that

P = P 1 0 m with P 1 ∈ R [D γ ] m×n and P 1 Q 1 = I m where Q 1 I n 0 n,m Q.
Lemma 1 (Elimination [START_REF] Victor | Flatness for linear fractional systems with application to a thermal system[END_REF]) If B is hyper-regular, there exists a unimodular matrix

M ∈ R [D γ ] n×n such that M B = I m 0 (n-m)×m
. Moreover, there exist matri-

ces F ∈ R [D γ ] (n-m)×n and R ∈ R [D γ ] m×n such that System (22) is equivalent to Rx = u, F x = 0.
Theorem 3 If B is hyper-regular, the following statements are equivalent [START_REF] Victor | Flatness for linear fractional systems with application to a thermal system[END_REF]:

(i) System ( 22) is fractionally 0-flat;

(ii) The system module

M F R [D γ ] 1×n /R [D γ ] 1×(n-m) F is free, with F defined in Lemma 1; (iii) F is hyper-regular over R [D γ ] (n-m)×n .
Algorithm 2 Fractionally 0-flat output computation Input: The matrices A and B of System ( 22) with B hyper-regular. Output: Defining matrices P and Q satisfying [START_REF] Malti | Advances in system identification using fractional models[END_REF]. Procedure:

1. Using row-reduction, check if B is hyper-regular.

If not, return "fail".

Else, find

M ∈ GL n (R [D γ ]) such that M B = I m 0 (n-m)×m . 3. Obtain R ∈ R [D γ ] m×n and F ∈ R [D γ ] (n-m)×n , according to Lemma 1, by: M A = R F . 4. Find W ∈ GL n (R [D γ ]) according to Proposi- tion 1 (i), such that F W = I n-m , 0 (n-m)×m .
We therefore get

Q 1 = W I n-m 0 m×(n-m)
and

P 1 = I n-m, 0 (n-m)×m W -1 .

Set P

= P 1 , 0 m and Q = Q 1 RQ 1 .
Algorithm 2 gives a fractionally 0-flat output y = P 1 x. x = Q 1 y and u = RQ 1 y identically satisfy [START_REF] Ljung | System identification -Theory for the user[END_REF].

Motion planning

The nominal transfer function for ℓ = 10mm, as given in Table 1, is normalized as (1.12 10 -5 s 0.73 + 2.35 10 -7 )e -2s s 2.19 + 0.50s 1.46 + 2.16 10 -2 s 0.73 + 3.85 10 -5 , and put under a state-space form:

A ν X = Bϕ, T (x 10mm , s) = CX, (26) 
where

A ν (s) = ⎡ ⎣ s ν + 0.50 2.16 10 -2 3.85 10 -5 -1 s ν 0 0 -1 s ν ⎤ ⎦ , D = 0, B = 1 0 0 T , C = 0 1.12 10 -5 2.35 10 -7 . ( 27 
)

Flat output computation

Now apply Algorithm 2. As B is already in its Smith form, introduce

R ∈ R[s ν ] 1×3 and F ∈ R[s ν ] 2×3 such that : A ν = R F with R = s ν + 0.50 2.16 10 -2 3.85 10 -5 , F = -1 s ν 0 0 -1 s ν .
To get the required implicit form, consider the uni-

modular matrix M = M R M F
with M R = 1 0 0 and M F = 0 2×1 I 2 and it can be verified that M A ν = R F , F being hyper-regular and thus system ( 26)-( 27) is 0-flat. Let us compute the upper triangular matrix

W ∈ GL 3 (R[s ν ]) satisfying F W = I 3 0 2×1 , with W = ⎡ ⎣ -1 -s ν -s 2ν 0 -1 -s ν 0 0 -1 ⎤ ⎦ ,
and its inverse, also upper-triangular,

W -1 = ⎡ ⎣ -1 -s ν 0 0 -1 -s ν 0 0 -1 ⎤ ⎦ .
Therefore,

Q 1 = W ⎡ ⎣ 0 0 1 ⎤ ⎦ = ⎡ ⎣ -s 2ν -s ν -1 ⎤ ⎦ , P 1 = 0 0 1 W -1 = 0 0 -1 ,
and one indeed has:

P 1 Q 1 = 1.
Finally, the defining matrices P and Q read:

P = P 1 0 , Q = Q 1 RQ 1 ,
which proves that system ( 26)-( 27) is fractionally 0-flat and that a flat output Y is given by

Y = P 1 X = X 3 ϕ = RQ 1 Y T (ℓ = 10mm, s) = CX = CQ 1 Y.

Trajectory planning

For a reference temperature trajectory defined for the nominal plant, flatness principles are applied to determine the reference input that generates the reference trajectory. This temperature motion planning is defined with an interpolation polynomial of degree 5: first and second derivatives are nil at the beginning and at the end of the experiment and the temperature should rise from 20 • C above the ambiant temperature in 1250s and stabilize for the same duration:

T ref (t) = T i + 80 (T f -T i ) t 3 t 3 f -240 (T f -T i ) t 4 t 4 f + 192 (T f -T i ) t 5 t 5 f , (28) 
with 

T i = 0 • C, T f =
with X = Q 1 Y . CQ 1 = 1.12 10 -5 s ν + 2.35 10 -7 being a polynomial in s ν , its left inverse is not a polynomial :

(CQ 1 ) -1 = 1 CQ 1 . (30) 
Therefore Y = 1 CQ1 T ref and the reference input heat density As expected, the measured temperature follows the desired temperature and the output error is less than 2% (less than 0.4 • for a global variation of 20 • ). 

ϕ ref = RQ 1 Y .

Open-loop tests on the test bench

Temperature robust path tracking

The system considered being fractional and commensurate, a controller adapted to FOS is considered. Openloop tests have been carried out with different sensor positions by applying the reference heat density control. This reference input is only suited for the nominal process (see Figure 6). Also, this open-loop reference control is not adapted for a process other than the nominal one. It is therefore necessary to synthesize a closed-loop control in order to maintain stability degree and the robust path tracking towards parameter uncertainties, modeling errors ans input/output disturbances.

The unit gain frequency ω u is fixed to 0.12rad/s knowing that the sampling frequency is 12.5 rad/s. The controllers should guarantee a phase margin of 50 • .

CRONE synthesis

The CRONE controller is defined in the frequency band [ω A , ω B ] = [0.01, 1] rad/s around ω u . The third generation CRONE controller should ensure the stability degree robustness towards model parameter variations knowing that at ω u , these variations lead to [1 -9] dB gain variations and to [6.5 • -90 • ] phase variations. For security reasons, the density flux control must not exceed 66348W.m -2 (10V for the resistor).

The generalized open-loop template is defined as a complex non integer order integrator n whose real part defines the phase position at ω u , namely Re /i (n) π 2 , and whose imaginary part defines the angle towards the vertical axis (see Figure 7). The CRONE control methodology is well described in [START_REF] Oustaloup | La commande CRONE[END_REF].

The open-loop transfer function β 0 (s), including the complex non integer order integration is written as: [START_REF] Podlubny | Fractional Differential Equations[END_REF] with n = a + ib, C g = The open-loop β (s) must tangent an iso-contour in the Nichols chart in order to maintain a low variation of the system stability degree in closed-loop. The optimization of the diagonal open-loop transfer matrix β(s) leads to an optimal open-loop in the Nichols chart (see Figure 8) where ω l = 0.07rad/s, ω h = 1.4rad/s, n h = 2.46, n l = 1, a = 1.64 and b = -1.27.

β 0 (s) = C sign(b) 1+s/ω h 1+s/ω l a Re /i C g 1+s/ω h 1+s/ω l ib -sign(b)
β(s) = β l (s) β 0 (s) β h (s) × e -τ s , (32) 
From the nominal open-loop transfer, the fractional controller C F (s) is defined by its frequency response:

C F (jω) = β (jω) G(jω, ℓ = 10)
,

where G(jω, ℓ = 10) is the frequency response of the nominal model. The transfer function of the CRONE third generation controller is then defined by:

C F (s) = β(s)G -1 (s ν , ℓ = 10). ( 33 
)
The synthesis of the rational controller C R (s) is obtained by fitting the frequency response C F (jω) with the "Control System Design" module of the CRONE toolbox, whose expression is : 

C R (s) = 6.
C P ID (s) = C 0 1 + s ωi s ωi 1 + s ωa 1 + s ω b 1 1 + s ω f
, where C 0 = 22081, ω i = 0.01rad/s, ω a = 0.220rad/s, ω b = 0.045rad/s and ω f = 1rad/s.

Experimental closed-loop tests

The control scheme is presented in Figure 9: ϕ ref is the nominal reference control which was obtained through the flatness principles by using the reference temperature trajectory T ref . A control disturbance ∆ϕ is applied at 625 s: the cork on the resistor is removed so that a part of the density flux part is dissipated in the air instead of flowing into the rod and a fan is activated to improve the dissipation. Another output disturbance ∆T is applied at 1875s in steady-state: a heating resistor generating 12W power (corresponding to variations of 2 • C) is glued alongside the rod. This disturbance scenario is held for different sensor positions and for each PID and CRONE controller: on Figure 10 for G(s ν , ℓ = 5mm), on Figure 11 for G(s ν , ℓ = 10mm), on Figure 12 for G(s ν , ℓ = 20mm) and on Figure 13 for G(s ν , ℓ = 40mm).

The comparison between PID and CRONE controllers on the nominal model show similar responses (see Figure 11). For the other sensor positions, the PID controller is not robust and the path tracking is not efficient. The precision is poorer as the sensor is farther from the heated end. Contrary to a PID controller, a robust path tracking is achieved with a CRONE controller despite the input/output disturbances and the model parametric variations.

Conclusion

The originality of this paper is in applying system identification, open-loop motion planning and robust con- trol to a real heat experiment: the system considered is the model linking the heat transfer throughout an aluminium rod. Temperature sensor positions produce parameter uncertainties. Also, in motion planning, fractionally flat outputs enable to design a reference input in order to follow a desired reference temperature trajectory. Generally, a reference input should be generated for each model. Thanks to a third generation ro- bust CRONE controller, it is sufficient to synthesize a unique controller to follow a reference temperature trajectory with the help of the nominal reference control. Moreover, this controller keeps the degree of stability, ensuring robust motion planning by flatness principles and input/output disturbance rejection. A comparison with a PID controller has been carried out and results have been really convincing.
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 1 Fig. 1 a) Insulated aluminium rod heated by a resistor b) Measurement slots for sensor positions

Fig. 2

 2 Fig. 2 Input/output signals (after steady state removal (temperature (e.g. 42.2 • C at ℓ = 10mm) and heat flux density of 5.20kW.m -2 ))

Fig. 3

 3 Fig. 3 Time responses of the estimated and true temperature outputs on validation data

Fig. 4

 4 Fig. 4 Black-Nichols diagram of the nominal model (-) with uncertainties ( )

  20 • C, and tf = 2500s. The reference output Tref (s), Laplace transform of T ref (t), can be expressed from the fractionally flat output Y : Tref = CX,

Figure 5

 5 Figure 5 presents the results obtained for the nominal model, namely the input reference ϕ ref , the fractionally flat output Y , and the effective output compared to the reference trajectory.As expected, the measured temperature follows the desired temperature and the output error is less than 2% (less than 0.4 • for a global variation of 20 • ).
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 5 Fig. 5 Open-loop test for the nominal plant : heat flux control ϕ ref , reference (--) and measured (--) outputs, and output error

Fig. 6 Fig. 7

 67 Fig. 6 Time responses of the different models in open-loop

Fig. 8

 8 Fig. 8 Nichols chart of the open-loop nominal model (-) and the uncertainties ( )

with τ = 2 ,

 2 ν = 0.53, β l (s) = C l ω l s + 1n l the order n l fixing the precision in closed-loop, andβ h (s) = C h s ω h+1n h the order n h enabling the controller to be proper.

Fig. 9

 9 Fig. 9 Closed-loop control scheme

Fig. 10 Fig. 11

 1011 Fig. 10 Measures with disturbances on G(s ν , ℓ = 5) : measured temperatures T CRONE (-), T P ID (-.-) and the reference T ref (--), output errors T CRONE -T ref (-) and T P ID -T ref (-.-), and flux density control ϕ CRONE (-) and ϕ P ID (-.-)

Fig. 12 Fig. 13

 1213 Fig. 12 Measures with disturbances on G(s ν , ℓ = 20) : measured temperatures T CRONE (-), T P ID (-.-) and the reference T ref (--), output errors T CRONE -T ref (-) et T P ID -T ref (-.-), and flux density control ϕ CRONE (-) and ϕ P ID (-.-)

Table 1

 1 , enable us to validate the model. Identified models with different sensor positions (ℓ in mm and τ in s)

	ℓ	model G(s ν , ℓ)	ν	τ
	5	7.20 10 -4 s ν +5.40 10 -3 431.51s 3ν +159.41s 2ν +113.70s ν +1 e -s	0.53	1
	10	2.92 10 -1 s ν +6.11 10 -3 25940.2s 3ν +13038.7s 2ν +561.66s ν +1 e -2s	0.73	2
	20	-1.96 10 -2 s ν +2.03 10 -2 1102.74s 2ν +367.21s ν +1 e -3.5s	0.50	3.5
	40	-2.29 10 -2 s ν +3.88 10 -2 6953.97s 2ν +1172.5s ν +1 e -10s	0.57	10

  43 10 9 s 6 + 7.16 10 10 s 5 + 2.01 10 11 s 4 ... 1.24 10 7 s 8 + 4.18 10 8 s 7 + 4.72 10 8 s 6 ... ... + 1.36 10 10 s 3 + 1.45 10 8 s 2 + 1.11 10 5 s + 10 ... + 1.89 10 8 s 5 + 3.03 10 7 s 4 + 1.47 10 6 s 3 + 4738s 2 + s