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Reconstruction of Enhanced Ultrasound Images

From Compressed Measurements

Using Simultaneous Direction

Method of Multipliers
Zhouye Chen, Student Member, IEEE, Adrian Basarab, Member, IEEE, and Denis Kouamé, Member, IEEE

Abstract—High-resolution ultrasound (US) image reconstruc-
tion from a reduced number of measurements is of great interest
in US imaging, since it could enhance both frame rate and
image resolution. Compressive deconvolution (CD), combining
compressed sensing and image deconvolution, represents an
interesting possibility to consider this challenging task. The model
of CD includes, in addition to the compressive sampling matrix,
a 2-D convolution operator carrying the information on the
system point spread function. Through this model, the resolution
of reconstructed US images from compressed measurements
mainly depends on three aspects: the acquisition setup, i.e., the
incoherence of the sampling matrix, the image regularization,
i.e., the sparsity prior, and the optimization technique. In this
paper, we mainly focused on the last two aspects. We proposed
a novel simultaneous direction method of multipliers based
optimization scheme to invert the linear model, including two
regularization terms expressing the sparsity of the RF images in
a given basis and the generalized Gaussian statistical assumption
on tissue reflectivity functions. The performance of the method
is evaluated on both simulated and in vivo data.

Index Terms—Compressive deconvolution (CD), simultane-
ous direction method of multipliers (SDMM), ultrasound (US)
imaging.

I. INTRODUCTION

S INCE the applicability of compressive sampling (CS)

to 2-D and 3-D Ultrasound (US) imaging (see [2]–[9])

or to duplex Doppler [10] has been proved, the topic of

CS in the field of US imaging attracted a growing interest

from several research groups. CS is a mathematical frame-

work allowing to recover a compressible image, via nonlin-

ear optimization routines, from a few linear measurements

(below the limit standardly imposed by the Shannon–Nyquist

theorem) [11], [12]. According to the CS theory, this recon-

struction is possible provided that the restricted isometry

property (RIP), characterizing the measurement matrix,

holds [11], [12]. The RIP has been extensively explored in the
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literature for several classes of matrices. The most common

examples that guarantee the respect of RIP for a number

of measurements linearly depending on the sparsity level of

the image to recover include random Gaussian or Bernoulli

matrices or the partial Fourier matrix.

The main objective of CS application in US imaging sys-

tems, as highlighted by the existing works, is to increase the

frame rate and/or to decrease the amount of acquired data

and/or to decrease the computational complexity of beamform-

ing [3], [4], [8]. Despite the promising results, the application

of CS in US imaging still remains challenging, with issues

related to the appropriate acquisition schemes, the sparsifying

transforms, and the reconstruction algorithms that represent

the main objective of this paper. We may remark that the RIP

cannot strictly hold in practical situations, mainly because of

the lack of incoherence between the practical measurement and

sparsity basis or because of the low level of sparsity of US

images. As a consequence, the images reconstructed through

CS are usually less good compared with those reconstructed

through standard acquisitions, especially when the CS ratio

(CS ratio) is low. In this paper, the CS ratio refers to the ratio

between the number of linear measurements and the number of

samples in the image to reconstruct. Second, the resolution of

the reconstructed images is equivalent to those acquired using

standard schemes at most. Nonetheless, it is well known that

the spatial resolution, the signal-to-noise ratio (SNR), and the

contrast of standard US images are affected by the limited

bandwidth of the imaging transducer, the physical phenomena

related to US wave propagation such as diffraction, and the

imaging system.

In order to overcome these issues, we have recently pro-

posed a compressive deconvolution (CD) method aiming to

reconstruct enhanced RF images from compressed linear mea-

surements [13]. The main idea behind CD is to combine CS

and deconvolution reconstructions into a unique framework

leading to the following linear model:

y = 8H x + n (1)

where y ∈ R
M contains M linear measurements obtained by

projecting one RF image H x ∈ R
N onto the CS acquisition

matrix 8 ∈ R
M×N , with M ≪ N . H ∈ R

N×N is a

block circulant with circulant block matrix modeling the

2-D convolution between the 2-D point spread function (PSF)
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of the US system and the tissue reflectivity function (TRF)

x ∈ R
N . In other words, the multiplication of the TRF

by H models the US RF image degradation mentioned

above. Finally, n ∈ R
M stands for a zero-mean addi-

tive white Gaussian noise. We emphasize that all the

images in (1) are expressed in the standard lexicographical

order.

We should note that similar models have been recently

proposed for general image processing purpose [14]–[18]

including a theoretical derivation of RIP for random mask

imaging [19]. Nevertheless, in contrast to the solutions pro-

vided by these existing works, we showed in [13] that invert-

ing (1) by minimizing the following unconstrained objective

function is well suitable for US imaging:

x̂ = argmin
x

‖9−1H x‖1 + α‖x‖
p
p +

1

2µ
‖y −8H x‖22.

(2)

This objective function is composed of three terms.

1) The l1-norm term that aims at imposing the sparsity of

the RF data H x in a transformed domain 9 .

2) The lp-norm (1 ≤ p ≤ 2) regularizing the TRF x

based on the generalized Gaussian distribution (GGD)

statistical assumption of US images (p is related to the

shape parameter of the GGD) (see [20]–[22]).

3) The data fidelity term. In order to solve the optimization

problem in (2), the solution proposed in [13] was

based on the alternative direction method of multipli-

ers (ADMM) [23].

In this paper, we further improve the US CD scheme in [13]

by proposing a new reconstruction algorithm based on the

simultaneous direction method of multipliers (SDMM) [24].

The results on simulated and experimental images show

improved convergence properties obtained with the proposed

optimization routine, resulting in at least equivalent recon-

struction results and lower computational times compared with

our previous work. Moreover, we extend the CD approach to

nonorthogonal measurement matrices, thus covering a more

general compressed acquisition model.

This paper is organized as follows. We first recall the

general framework of SDMM in Section II. The proposed

SDMM-based optimization scheme able to solve (2) is detailed

in Section III. In Section IV, the simulated and experimental

results are provided to show the effectiveness of the proposed

method and its efficiency in recovering the TRF from com-

pressed US data. Conclusions are drawn in Section V.

II. GENERAL FRAMEWORK OF SIMULTANEOUS

DIRECTION METHOD OF MULTIPLIERS

The algorithm of SDMM [24] generalizes the alternating

split Bregman (ASB) method [25] to a sum of more than

two functions. The ASB was initially proposed to solve

optimization problems that can be expressed in the following

form:

argmin
u∈Rs ,v∈Rt

f (u)+ g(v) s.t . v = Cu (3)

where C ∈ R
t×s is a given matrix and f : R

s → R̄ and

g : Rt → R̄ are convex functions. R̄ is designated for extended

real numbers, i.e., R
⋃

{+∞}.

The iterative ASB method declines as follows:

uk+1 = argmin
u∈Rs

f (u)+
1

2β
‖bk + Cu − vk‖22 (4)

vk+1 = argmin
v∈Rt

g(v)+
1

2β
‖bk + Cuk+1 − v‖22 (5)

bk+1 = bk + Cuk+1 − vk+1 (6)

where b ∈ R
t is the Lagrangian parameter. It has been

proved that the ASB method is equivalent to ADMM when

the constraints are linear [26].

Inspired from ASB, the general optimization problem con-

sidered in the framework of SDMM is

argmin
u∈Rs

m
∑

i=1

fi (Ci u) (7)

where Ci ∈ R
ti ,s and fi : R

ti → R̄ are convex functions.

Considering vi ∈ R
ti , vi = Ci u, f (u) = 〈0, u〉, and g(v) =

∑m
i=1 fi (vi ), (7) can be reformulated as

argmin
u∈Rs ,vi∈R

t
i

f (u)+

m
∑

i=1

fi (vi ). (8)

Similar to the ASB method, SDMM iteratively solves the

above optimization problem as follows:

uk+1 = argmin
u∈Rs

1

2β
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∥

∥

∥

∥

∥

∥
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III. PROPOSED COMPRESSIVE DECONVOLUTION METHOD

In this paper, we propose an SDMM-based optimization

scheme adapted to solve the problem in (2). First, we remark

that (2) can be reformulated as

argmin
x

f1(v1)+ f2(v2)+ f3(v3) (12)

with







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


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





f1(v1) = α‖v1‖
p
p

f2(v2) = ‖v2‖1

f3(v3) =
1

2µ
‖y −8v3‖

2
2

v1 = C1x, v2 = C2x, v3 = C3x

C1 = IN , C2 = 9−1H, C3 = H.



Using the above parametrization, the SDMM steps given

in (9)–(11) write for our CD problem as follows:

xk+1 = argmin
x∈RN
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In the following, we give the details of solving each of

the above steps. First, we remark that (13) is a classical

l2-norm minimization problem that can be efficiently solved

in the Fourier domain [27].

Equation (14) consists in solving three subproblems,

corresponding to the update of v1, v2, and v3, respectively.

The v1-subproblem can be solved as follows:

v
k+1
1 = argmin

v1

α‖v1‖
p
p +

1

2β

∥

∥bk
1 + xk+1 − v1

∥

∥

2

2

= proxαβ‖·‖
p
p

(

bk
1 + xk+1

)

(16)

where prox represents the proximal operator [28]–[30]. The

proximal operator of ‖x‖
p
p has been given explicitly in [31]

and used in [32]. More details about the proximal operator

can be found in Appendix A.

The v2-subproblem can also be solved using the proximal

operator associated with the ℓ1-norm that corresponds to the

soft thresholding operator [27] (see Appendix A)

v
k+1
2 = argmin

v2

‖v2‖1 +
1

2β

∥

∥bk
2 +9−1H xk+1 − v2

∥

∥

2

2

= proxβ‖·‖1

(

bk
2 +9−1H xk+1

)

. (17)

Finally, the v3-subproblem can be solved as follows:

v
k+1
3 = argmin

v3

1

2µ
‖y −8v3‖

2
2 +

1

2β

∥

∥bk
3 + H xk+1 − v3

∥

∥

2

2

⇔ [β8t8+ µ]vk+1
3 = β8t y + µbk

3 + µH xk+1. (18)

For orthogonal sampling matrices 8, the Sherman–

Morrison–Woodbury inversion matrix lemma [33] allows us to

efficiently find the solution of the above v3-subproblem [32].

However, when the sampling matrix 8 is nonorthogonal, the

solution of v3-subproblem in (18) cannot be computed in

practical situations because of the high-dimensional matrices.

To overcome this issue and make our CD method more gen-

eral and therefore relevant to various compressive acquisition

schemes in US imaging, we propose to use Newton’s method

to approximate its solution.

Let us denote

h(v3) = [β8t8+ µ]v3 − β8t y + µbk
3 + µH xk+1. (19)

At each iteration, we approximate v
k+1
3 by

v
k+1
3 = v

k
3 − stp ∗ h

(

v
k
3

)

(20)

where stp is defined as

stp =
h
(

v
k
3

)t
h
(

v
k
3

)

β
[

8h
(

v
k
3

)]t[
8h

(

v
k
3

)]

+ µh
(

v
k
3

)t
h
(

v
k
3

)
. (21)

To conclude, Algorithm 1 summarizes the SDMM-based

numerical scheme proposed for solving (2).

Algorithm 1 CD SDMM-Based Algorithm

Input: α, µ, β, v
0
i , b0i , i = 1, 2, 3

1: while not converged do

2: xk+1 ← v
k
i , bk

i ⊲ update xk+1 using (13)

3: v
k+1
1 ← bk

1, xk+1 ⊲ update v
k+1
1 using (16)

4: v
k+1
2 ← bk

2, xk+1 ⊲ update v
k+1
2 using (17)

5: v
k+1
3 ← bk

3, xk+1 ⊲ update v
k+1
3 using (18)

6: if 8 is orthogonal then

7: Solve eq.(18) by Sherman-Morrison-Woodbury inver-

sion matrix lemma

8: else

9: Solve eq.(18) by using eq.(20)

10: end if

11: bk+1
i ← v

k+1
i , xk+1 ⊲ update bk+1

i using (15)

12: end while

Output: x

We emphasize that compared to the ADMM-based scheme

that we have recently proposed to solve (2) [13], the method

resumed in Algorithm 1 requires one less hyperparameter.

Moreover, with the proposed optimization scheme, all the

subproblems are solved exactly, while in [13], we have only

obtained an approximation for the v1-subproblem in (16).

This improvement allows the SDMM-based iterative scheme

to converge faster than the ADMM-based algorithm proposed

in [13]. Since this v1-subproblem is critical for the deconvo-

lution process, one may also expect more accurate CD results

with SDMM than with ADMM.

IV. SIMULATION RESULTS

In this section, we provide numerical experiments to evalu-

ate the effectiveness of the proposed CD optimization frame-

work, denoted by SDMM hereafter. Since we have recently

shown in [13] the superiority of the ADMM-based method

(denoted by ADMM in this section) compared with other CD

methods, the technique in [13] is used herein for comparison

purpose.1 Finally, a comparison between the proposed method

used only for deconvolution purpose, i.e., the measurements

represent 100% of the data, and three existing techniques is

shown in Appendix B.

1The code corresponding to the ADMM-based method is available at
ht.tp://ww.w.irit.fr/~Adrian.Basarab/codes.html.



Fig. 1. Results on simulated data (Group 1). (a) TRF. (b)–(d) Reconstruction results using ADMM for CS ratios of 0.6, 0.4, and 0.2. (e) Simulated US
image. (f)–(h) Reconstruction results using SDMM for CS ratios of 0.6, 0.4, and 0.2. (i)–(k) Reconstruction results using nSDMM for CS ratios of 0.6, 0.4,
and 0.2.

A. Results on Simulated Data

Two groups of simulation experiments (named Group 1

and 2) have been conducted to evaluate the performance of

the proposed scheme. The RF images have been generated

following the procedure in [34] using a 2-D convolution

between a US PSF and a map of scatterers, i.e., TRF.

1) Cartoon Phantom Image: For Group 1, the TRF was

generated by assigning the scatterers random amplitudes fol-

lowing a given distribution, weighted by a cartoon image

denoted by mask hereafter. A Laplacian distribution has been

employed and the mask has been hand drawn to simulate

four different regions with different echogenicities. The PSF

was generated using a Field II [35] simulation corresponding

to a 128-element linear probe operating at 3.5 MHz and an

axial sampling frequency of 20 MHz. The resulting TRF

and US image (plotted in B-mode) are shown in Fig. 1(a)

and (e), respectively. The compressed measurements were

obtained by projecting the RF images onto an orthogonal

structurally random matrix (SRM) [36] and were degraded

by an additive Gaussian noise corresponding to an SNR of

40 dB. In order to evaluate the performance of the algorithm

with a nonorthogonal measurement matrix, namely, nSDMM,

we have also projected the RF data onto a random Gaussian

matrix. The corresponding results are provided in Fig. 1(i)–(k).

2) Simulated Kidney Image: The PSF for Group 2 was also

generated with Field II [35] and corresponds to a sectorial

probe with the central frequency of 4 MHz and an axial

sampling frequency of 40 MHz. The TRF follows one of the

examples proposed by the Field II simulator [34], mimicking

a kidney. The sampling matrix considered was an SRM [36]

and the SNR was set at 40 dB. The TRF and the simulated

US image are displayed in Fig. 2(a) and (e), respectively.

3) Discussion of the Results: Figs. 1 and 2 display the CD

reconstruction results obtained with different methods for CS

ratios of 0.6, 0.4, and 0.2. The value of p used to regularize the

TRF estimations was set to 1 for Group 1 and 1.5 for Group 2.

All the other hyperparameters were manually set to their best

possible values by cross validation. We should note that since

both ADMM and SDMM methods aim at solving the same

objective function in (2), the hyperparameters α and µ have

been assigned the same values in order to ensure a fair compar-

ison. For the same reason, both algorithms were assigned the

same convegence criterion, i.e., ‖xk − xk−1‖/‖xk−1‖ < 5e−4,

with k the iteration number and xk the estimated image at

iteration k.

Taking benefit from the fact that the TRF ground truth is

available in simulation experiments, the peak SNR (PSNR)

and the structural similarity (SSIM) are used in this paper to

assess the quality of the reconstruction results. A higher PSNR

or SSIM indicates that the reconstruction is of higher quality.

PSNR is usually expressed in terms of the logarithmic decibel

scale and defined as

PSNR = 10log10
N L2

x − x̂
(22)



Fig. 2. Results on simulated data (Group 2). (a) TRF. (b)–(d) Reconstruction results using ADMM for CS ratios of 0.6, 0.4, and 0.2. (e) Simulated US
image. (f)–(h) Reconstruction results using SDMM for CS ratios of 0.6, 0.4, and 0.2.

where x and x̂ are the original and reconstructed images,

respectively, and the constant L represents the maximum

intensity value in x. SSIM is usually measured in percentage

and defined as

SSIM =
(2µxµx̂ + c1)(2σxx̂ + c2)

(

µ2
x + µ2

x̂
+ c1

)(

σ 2
x + σ 2

x̂
+ c2

) (23)

where x and x̂ are the original and reconstructed images,

respectively, µx and µx̂ and σx and σx̂ are the mean and

variance values of x and x̂, respectively, σxx̂ is the covariance

between x and x̂, and c1 = (k1C)2 and c2 = (k2C)2 are

two variables aiming at stabilizing the division with weak

denominator, C is the dynamic range of the pixel-values, and

k1 and k2 are constants. Herein, C = 1, k1 = 0.01, and

k2 = 0.03.

These quantitative results are regrouped in Table I, where

the reported PSNRs and SSIMs are the mean values of ten

experiments. The bold values stand for the best result obtained

for each experiment. Note that given the more complex

structures in Group 2, the intrinsic values of PSNR and

SSIM are lower for Group 2 than for Group 1. However, the

improvement between SDMM and ADMM is globally higher

for Group 2 than for Group 1.

Both the visual inspection of images in Figs. 1 and 2 and

the quantitative results in Table I show that the proposed

SDMM-based method outperforms the ADMM algorithm for

the two simulated images and all the CS ratios. In addition

to the reconstruction quality gain, the proposed method also

offers better convergence properties compared with ADMM.

This convergence improvement is clearly highlighted by the

plots in Fig. 3. We may thus remark that for all the CS

ratios, the convergence curves, both in terms of objective

function [as (2)] and normalized mean square error (NMSE)

defined in (24), decrease much faster with SDMM than with

ADMM. The computations were performed using a computer

with Intel Xeon CPU E5620 @2.40 GHz, 4.00-GB RAM.

TABLE I

QUANTITATIVE RESULTS FOR CD RECONSTRUCTION

OF SIMULATED US IMAGES

Depending on the stopping criterion, the convergence rate of

SDMM for Group 1 is at least twice faster than the one of

ADMM. We emphasize that the same convergence properties

have been obtained for Group 2. The convergence performance

of nSDMM is also shown in Fig. 3. We may remark that

nSDMM has degraded convergence properties compared with

the SDMM method, caused by the approximation in (20).

However, when the convergence is achieved, both the objective

function value and the NMSE obtained with nSDMM and

SDMM are similar

NMSE =
1

N
‖x − x̂‖22 (24)

where x and x̂ are the normalized original and reconstructed

TRF images, respectively, and N represents the number of

pixels in the image.

As explained previously, the value of the regularization

parameter p has been manually tuned in the two simulated

experiments. However, one may observe the importance of this

parameter on the reconstruction results, as it directly affects the

regularization of the TRF [22]. In order to show its influence

on the results, we regroup in Fig. 4 the PSNR and SSIM results

for both SDMM and ADMM methods for three values of p,



Fig. 3. Convergence performance on simulated data (Group1).

Fig. 4. Results of all the methods with different p on simulated data (Group1).

versus the CS ratio. In addition to the superiority of SDMM

compared with ADMM, one may remark that the choice of

p is more important for low CS ratios. This observation can

be explained by the further importance of the regularization

when only a small amount of data is available.

B. Results on In Vivo Data

In this section, we evaluate the results of the proposed

SDMM-based CD method on two in vivo US images, denoted

by Group 3 and Group 4. Group 3 corresponds to a mouse

bladder shown in Fig. 5(a), while Group 4 represents a mouse

kidney [see Fig. 6(a)]. Both images were acquired with a

20-MHz single-element US probe. Since the PSF is unknown

in practical situations, it has been initially estimated from the

data, as a preprocessing step, following the PSF estimation

procedure presented in [37]. The CD results obtained with

ADMM and SDMM are shown in Figs. 5(b)–(g) and 6(b)–(g)

for CS ratios of 0.8, 0.6, and 0.4. Given the sparse appearance

of the mouse bladder caused by the weak amount of scatterers

in the liquid, the value of p was set to 1 for Group 3 and

to 1.5 for Group 4.

For the in vivo data, the true TRFs are obviously not avail-

able, making thus impossible the computation of quantitative

results such as the PSNR or the SSIM. As a consequence, the

quality of the CD results is evaluated in this section according

to the standard contrast-to-noise ratio (CNR) and the resolution

gain (RG) proposed in [38]. Moreover, CPU times for both

ADMM and SDMM reconstructions are shown in Table II.

The CNR values were computed for the regions highlighted by



Fig. 5. Results on in vivo data (Group 3). (a) Original US image. (b)–(d) Reconstruction results using ADMM for CS ratios of 0.8, 0.6, and 0.4, obtained
for p = 1. (e)–(g) Reconstruction results using SDMM for CS ratios of 0.8, 0.6, and 0.4, obtained for p = 1.

Fig. 6. Results on in vivo data (Group 4). (a) Original US image. (b)–(d) Reconstruction results using ADMM for CS ratios of 0.8, 0.6, and 0.4, obtained
for p = 1.5. (e)–(g) Reconstruction results using SDMM for CS ratios of 0.8, 0.6, and 0.4, obtained for p = 1.5.

the red or orange rectangles in Figs. 5 and 6. For instance, two

CNRs have been calculated for Group 3, between one region in

the bladder cavity and two regions extracted from the bladder

wall, respectively. The numbers in Table II, averaged over ten

experiments (the results were consistent for each try), show

equivalent results between ADMM and SDMM. Nevertheless,

SDMM was roughly two to six times faster than ADMM, due

to its better convergence properties discussed in the previous

section. The contrast of the reconstructed images is shown to

be better, in terms of CNR, than the one of the original B-mode

images. Moreover, the RG computed between the estimated

TRFs and the original images is always larger than 1. This

demonstrates the ability of our CD method to improve the

spatial resolution.

The visual inspection of the results highlights better denois-

ing achievements with SDMM compared with ADMM, as, for

example, in weak scatterer regions such as the bladder cavity.

Fig. 7. Proximal operator of | x |p for different values of p.

We emphasize that the reconstructed TRF in Figs. 5 and 6 are

shown after envelope detection and log compression, in order

to be comparable to the standard B-mode images. However,

the deconvolution process results in TRFs that, contrary to RF



TABLE II

QUANTITATIVE RESULTS FOR THE In Vivo DATA

Fig. 8. Results on simulated data (Group 1). (a) TRF. (b) Simulated US image. (c) SDMM. (d) Wiener filtering. (e) Yall1. (f) EM.

images, are not longer modulated in the axial direction. Indeed,

the carrier information is included in the PSF that is eliminated

during the deconvolution process. For this reason, the standard

procedure of envelope detection based on the amplitude of the

complex analytic signal is not adapted to the TRF. Instead, we

have used an envelope estimator based on the detection and

interpolation of local maximum, classically used in empirical

mode decomposition techniques [39].

V. CONCLUSION

Reconstructing enhanced US images from compressed mea-

surements is a very recent paradigm that regroups CS and

deconvolution into a sole framework. The main objective

of this paper was to propose an SDMM-based algorithm

dedicated to solve the CD problem in US imaging. Compared

with an ADMM-based method that we have recently published

in [13], the proposed algorithm requires one less hyperpara-

meter since one of the optimization subproblems can be solved

without any approximation. Moreover, the proposed variable

splitting scheme made possible by SDMM is shown to allow

faster convergence compared with ADMM. Finally, an alterna-

tive to compressed measurements obtained with nonorthogonal

matrices is provided, thus extending the practical interest of the

CD approach. Our future work will include the consideration

of blind deconvolution techniques able to jointly estimate the

PSF and TRF, through statistical regularization techniques

or parametric models. Moreover, an automatic choice of the

optimal value of the regularization parameter p would be

of great interest in practice. This optimal choice may be

considered through statistical assumptions on the US images,

such as the heavy-tailed distributions discussed in [22]. While

in this paper we focused on p values larger than or equal

to 1, the case p < 1 may be of interest in practical situations

involving sparse US images. To handle both situations, we will

mainly focus on an automatic selection of p embedded into

both convex and nonconvex optimization routines. Finally, we

will consider evaluating our reconstruction method with other

existing setups for generating the compressed measurements,

having a practical interest in decreasing the acquisition time.

As an example, an interesting future research track will be

to evaluate the CD with specific compressed measurements,

such as those obtained by Xampling [4] or with optimized

sparse arrays [40].

APPENDIX A

PROXIMAL OPERATOR

The proximal operator (or proximal mapping) of a

function f , denoted by prox f , is defined by

prox f (x) = argmin
u∈RN

f (u)+
1

2
‖u − x‖22. (25)



TABLE III

QUANTITATIVE COMPARISON WITH DECONVOLUTION METHODS

When f (u) = K | u |p , (25) becomes

proxK |·|p(x) = argmin
u

K | u |p +
1

2
‖u − x‖22 (26)

or

proxK |·|p(x) = argmin
u

| u |p +
1

2K
‖u − x‖22. (27)

The unique solution to the above minimization problem

given by [29] is

proxK |·|p(x) = sign(x)q (28)

where q ≥ 0 and

q + pK q p−1 =| x | . (29)

For the case p = 1, the proximal operator of K | x | is the

well-known thresholding. For the case p 6= 1, the numerical

solution to the above equation, i.e., the value of q , can

be obtained using Newton’s method. The resulting proximal

operators for different values of p are plotted in Fig. 7.

APPENDIX B

COMPARISON WITH CLASSICAL

DECONVOLUTION METHODS

Our reconstruction framework can be used as a decon-

volution method if the full data is considered, i.e., without

randomly decreasing the number of measurements. In this

case, the results can be compared with the ones provided by

existing deconvolution techniques. We considered herein, for

comparison purpose, three deconvolution methods: the Wiener

filter, the ℓ1-norm constrained optimization solution obtained

by Yall1 [41], and the expectation maximization (EM) algo-

rithm in [42]. For the last two methods, the same stopping

criterion as the one used for the proposed method has been

employed. The experiments were conducted on the simulated

image named Group 1 shown in Fig. 1. Fig. 8 regroups

the deconvolution results of the proposed SDMM method,

for p equal to 1, and the three comparative methods. The

corresponding quantitative results reported in Table III show

the superiority of the proposed method over the three other

deconvolution techniques. While the use of the ℓ1-norm

may explain the superiority over the Wiener filter, based on

ℓ2-norm regularization, our method performs better than EM

and ℓ1 due to the additional regularization term expressed

in (2) Thus, the proposed SDMM method can also find an

interest in deconvolving US images, in addition to its main

objective of recovering enhanced images from compressed

measurements.
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