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Linked Open Data (LOD) become one of the most important sources of information allowing enhancing business analyses based on warehoused data with external data. However, Data Warehouses (DWs) do not directly cooperate with LOD datasets due to the differences between data models. In this paper, we describe a conceptual multidimensional model, named Unified Cube, which is generic enough to include both warehoused data and LOD. Unified Cubes provide a comprehensive representation of useful data and, more importantly, support well-informed decisions by including multiple data sources in one analysis. To demonstrate the feasibility of our proposal, we present an implementation framework for building Unified Cubes based on DWs and LOD datasets.

Introduction

In today's highly dynamic business context, decision-makers should access internal and external sources to obtain an overall perspective over an organization [START_REF] Abelló | Using Semantic Web Technologies for Exploratory OLAP: A Survey[END_REF]. Data Warehouses (DWs) have been widely used as internal sources to support online, interactive analyses, while Linked Open Data (LOD) 1 have become one of the most important external information sources allowing enhancing business analyses on a web scale [START_REF] Zorrilla | Business Intelligence Applications and the Web: Models, Systems and Technologies[END_REF]. However, warehoused data and LOD follow different models in each domain, which makes it difficult to analyze both types of data in a unified way. Moreover, dispersion of related data in different schemas results in repetitive searches for relevant information in different sources, which reduces the efficiency of analysis.

Motivating example. In a company selling home appliances, a decision-maker looks up in an internal R-OLAP DW to assess the performance of sales staff. The DW relates to an analysis subject (i.e. fact), named Sales Analysis, which contains a set of numeric indicators (i.e. measures), namely unit price and quantity. Each measure can be computed according to three analysis axes (i.e. dimensions): salesman, product and time (cf. figure 1(a)). The R-OLAP DW alone does not provide enough information to support effective and well-informed decisions. The decision-maker must search for additional information to obtain other complementary perspectives over the sales activities. Since the sales of some home appliances (e.g., heaters) are strongly influenced by the climate changes, the decision-maker browses in an online dataset denoted LOD1 revealing the monthly average temperature according to countries. The LOD are published in RDF Data Cube Vocabulary (QB) 2 format, which is the current W3C standard to publish multidimensional statistical data. Moreover, since retail sales may compete with the company's promotions in the same catchment area, the decision-maker consults another online dataset denoted LOD2 about the outlet prices offered by rival retailers. The LOD2 dataset is published in QB4OLAP, it involves the retail price for a class (i.e., type) of merchandise offered by a retailers' shop. Extracts of the LOD datasets in tabular form are available in figure 1(b) and (c). Without a comprehensive representation of related data, analyses involving several sources are carried out in a sequential way. Decision-makers must explore all data sources one after another before obtaining an overall vision on an analysis subject. Carrying out such analyses is inefficient and difficult, because all schemas do not include the same information at the same analytical granularities: (a) the same analysis axes present in different sources may include different analytical granularities, e.g., for the temporal analysis axis, the source ROLAP contains three analytical granularities Year-Month-Date, whereas the sources LOD1 only includes one analytical granularity YearMonth; (b) the same data may have different labels in different sources e.g., heater is labeled as products' type in the source ROLAP and merchandises' class in the source LOD2; (c) a same analytical granularity may group several attributes from heterogeneous sources, e.g., since the decision-maker indicates each salesman's team competes with the retailers in one catchment area (cf. figure 1(d)), the attribute named Team from ROLAP and the one named CatchmentArea from LOD2 refer actually to the same analytical granularity; (d) an analytical granularity from one source may belong to a broader one from a different source, e.g., the decision-maker specifies that several salesman's teams are in charge of the sales in one country (cf. figure 1(d)), therefore the analytical granularity about team from ROLAP can be aggregated into the one related to country from LOD1; (e) some indicators from different sources can be analyzed together starting from certain analytical granularities, e.g., figure 2 shows a dashboard including related measures sharing common analytical granularities. This dashboard allows better illustrating the sales' quantity is highly influenced by the price: higher sales quantity of a type of product is due to the lower unit price compared to the retail price in the same catchment area. Contribution. Our aim is to make full use of all relevant data in a decision-making context. To this end, we provide decision-makers with a unified view of both warehoused data and multidimensional LOD. To facilitate decision-making, the unified view should include in a single schema all the indicators along with all available analysis axes as well as all the attributes and hierarchies (coming from the heterogeneous sources). The unified view should be independent of the modeling solutions of the data sources. In the previous example, a unified view would enable decisionmakers to more easily build the dashboard shown in figure 2.

In this paper, we describe a generic modeling solution for both warehoused data and multidimensional LOD. First, we discuss related work about a unified representation compatible with warehoused data and LOD (cf. section 2). Second, we present the conceptual definitions and graphical notations of Unified Cubes (cf. section 3). At last, we describe an implementation framework for Unified Cubes (cf. section 4).

Related Work

The classical method of analyzing data from multiple sources consists of combining data from several fact tables according to conformed dimensions under a DW Bus Architecture [START_REF] Kimball | The data warehouse lifecycle toolkit: expert methods for designing, developing, and deploying data warehouses[END_REF]. It has very limited practical utility since all dimensions must share the same structure and content across different sources. To overcome this drawback, many state-of-art papers [START_REF] Abelló | Fusion Cubes: Towards Self-Service Business Intelligence[END_REF][START_REF] Abelló | Using Semantic Web Technologies for Exploratory OLAP: A Survey[END_REF][START_REF] Laborie | Combining Business Intelligence with Semantic Web: Overview and Challenges[END_REF] draw a roadmap enabling unified analyses to be carried out based on all kinds of dimensions. A key step towards such analyses consists of a generic multidimensional representation which is compatible with both warehoused data and LOD. Two approaches can be identified from the existing work. The first approach aims at reusing classical DW models. The work [START_REF] Nath | Towards a Programmable Semantic Extract-Transform-Load Framework for Semantic Data Warehouses[END_REF][START_REF] Nebot | Multidimensional Integrated Ontologies: A Framework for Designing Semantic Data Warehouses[END_REF][START_REF] Romero | Automating multidimensional design from ontologies[END_REF] proposes mechanisms to Extract, Transform and Load (ETL) LOD into a local DW. However, warehousing real-time LOD in a stationary data repository is hardly practical [START_REF] Ibragimov | Towards Exploratory OLAP over Linked Open Data-A Case Study[END_REF]. According to the authors of [START_REF] Etcheverry | Modeling and Querying Data Warehouses on the Semantic Web Using QB4OLAP[END_REF], this approach is not recommended, since it collides with the distributed nature and the high volatility of LOD. In terms of analytical uses, the first approach only supports offline analyses of warehoused data with preprocessed LOD, which makes it difficult to guarantee the high freshness of the obtained information.

The second approach aims at publishing LOD according to a multidimensional structure. The RDF Data Cube Vocabulary (QB) is the current W3C standard to publish multidimensional statistical data. In [START_REF] Etcheverry | Modeling and Querying Data Warehouses on the Semantic Web Using QB4OLAP[END_REF], the authors propose the QB4OLAP vocabulary which adds more multidimensional characteristics to QB, like multiple analytical granularities within multiple aggregation paths and the specification of the aggregation functions associated to a measure. [START_REF] Matei | OLAP for Multidimensional Semantic Web Databases[END_REF] proposes IGOLAP vocabulary allowing representing the correlation relationships between two different dimensions. QB, QB4OLAP and IGOLAP are logical models expressed in RDF vocabularies. No conceptual model independent of specific modeling languages has been proposed.

In this paper, we propose a generic multidimensional model which provides a uniform vision of both warehoused data and relevant multidimensional LOD. Unlike approaches involving ETL processes which collide with the dynamic nature of data, our unified data model supports on-the-fly analyses of data in the sources.
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The Unified Cube Model

Unified Cubes provide a single, comprehensive representation of data from one or multiple sources. Within a Unified Cube, data are organized according to analysis axes (i.e., dimensions) and an analysis subject (i.e., fact). Concepts about Unified Cubes will be presented in the following sections.

Unified Cube

In a Unified Cube, a dimension is a union of relevant analytical granularities from several sources concerning the same analysis axis, while the fact includes all measures concerning the analysis subject. Each measure from one source may only be summarizable with regards to the set of analytical granularities from the same source. A generalization of the dimension-measure relationship is needed to associate subset of analytical granularities within a dimension with a measure in a Unified Cube. Definition 1. A Unified Cube is a n-dimensional finite space describing a fact with some dimensions. A Unified Cube is denoted as UC={F; D; LM}, where • F is a fact containing a set of measures;

• D={D 1 ;…; D n } is a finite set of dimensions; • LM: 2 L \l p
´ ´L \l q ®m e is a level-measure mapping which associates a subset of summarizable analytical granularities (i.e., levels) to a measure m e of the fact, such as "iÎ[1.

.n], L \l (l s ÎL i ) corresponds to a subset of levels on the dimension D i (D i ÎD) which starts from the level l s .

We propose a graphical notation of Unified Cubes based on the fact-dimension model with minor modifications (cf. figure 3). The graphical notation aims at facilitating data exploitation at the schema level for non-expert users. For readability purposes, concepts involving data instances are not included in the graphical notation. 

Analysis Subject: Fact

A fact models an analysis subject composed of a set of measures. Since the fact of a Unified Cube may include measures from DWs and LOD datasets, we should explicitly indicate how the values of a measure can be accessed from data sources. Definition 2. A Fact corresponds to an analysis subject composed of a set of measures. A fact is denoted as F={n F ; M F } where • n F is the name of the fact; • M F ={m 1 ;…; m p } is a finite set of numeric indicators called measures. Each measure m e (m e ÎM F ) is a pair án m , E m ñ, where n m is the name of the measure, E m is an extraction formula defined through query algebra (e.g., relational algebra and SPARQL algebra 3 ).

Remark. Extraction formulae enable on-the-fly querying of measures' values during analyses. The algebraic representation of extraction formula makes sure its compatibility with specific implementation environments of data source. Note that although the SPARQL algebra is not yet a W3C standard, it has already been integrated within several RDF querying framework. Each algebraic SPARQL expression is translated into one SPARQL query which is generic enough to work with all types of LOD datasets. Table 1 shows the algebraic form of commonly used SPARQL queries. 

Analysis Axis: Dimension

A dimension may include a single analytical granularity (e.g., dimensions in a QB dataset) or multiple analytical granularities. If several analytical granularities are defined, we can find one or several aggregation paths (i.e. hierarchies). Two hierarchies from different sources do not always share a common lowest analytical granularities. Therefore, we remove the constraint of unique root level in the following definition. Definition 3. A dimension corresponds to a one-dimensional space regrouping the analytical granularities related to an analysis axis. A dimension is denoted as D i ={n ; L ; }, where: • n is the dimension name; • L ={l 1 ;…; l k } is a set of levels characterizing the dimension, each level models a distinct analytical granularity; • is a reflexive binary relation which associates a level l a (l a ÎL ) with its parent level l b (l b ÎL ), such as l a l b . The reflexivity means each level can be seen as a parent level of itself, i.e., "l c ÎL , l c l c .

Example. We identify a dimension named Participant which groups all analytical granularities related to the participants of the sales activities (i.e., salesmen of the organization and their rival retailers). The dimension D Participant includes three levels, such as L Participant ={l Shop ; l Team ; l Country }. The binary relation Participant reveals the aggregation paths (i.e., hierarchies) such as l Shop Participant l Team Participant l Counrty . Our definition of dimension is generic enough to model a non-hierarchical dimension as well. A non-hierarchical dimension (e.g. D QB ) is defined with only one level (e.g., L QB ={l 1 }) including all the attributes of the dimension.

Without the constraint of unique root level (i.e., $ =1 l p ÎL , "l q ÎL : l p l q 4 ), a dimension may start at any level. This is an important property of a dimension re-grouping levels from multiple sources, since the measures from one source may only be analyzed according to a subset of levels coming from the same source. We define a sub-dimension as a part of dimension along which a measure can be summarized. Definition 4. A sub-dimension of D i , denoted l ={n l ; L l ; }, corresponds to the part of the dimension starting with the level l s , where • n l is the name of the sub-dimension; • L l is the subset of levels, L l ÍL , "l i ÎL l , l s l i ;

• is the same binary relation of the one on the dimension D i .

Example. A sub-dimension of the dimension named Time may be l named Time-Month with L l Month ={l Month ; l Year }, which represent the subpart of the dimension D Time that measure from the LOD1 dataset can be calculated along. Example. The level l Team on the dimension D Participant contains a finite set of attributes A l ={a Team ; a CatchmentArea } from the ROLAP DW and the LOD2 dataset. To indicate attribute instances in data sources, two extraction formulae are defined within the level l Team : E a = (SalesAnalysis.Salesman) is associated to the attribute a Team , while the attribute a CatchmentArea is connected with an extraction formula:

Analytical Granularity: Level

The correlative mapping C l Team associates the instances of the attribute a Team to its related instances of the attribute a CatchmentArea , e.g., C l Team : {{T1}®{CA1}; {T2}®{CA2}; {T3}® {CA3}}. The rollup mapping R l Team aggregates the instances of a Team and a CatchmentArea at the level l Team to the ones of a Country at the level l Country , such as:R l Team : {{{T1; CA1}; {T2; CA2}}®{Finland}; {T3; CA3} ®{Spain}}.

Implementation of Unified Cubes

In this section, we present an implementation framework for Unified Cubes. By building a Unified Cube based on the ROLAP DW and the two LOD datasets of the motivating example, we show the feasibility of our proposal.

Architecture

The implementation framework aims at enabling unified analyses of data from DWs and multidimensional LOD sources. Two modules are defined within the framework, namely Schema and Instance (cf. figure 4). 

Schema Module

The implementation of a conceptual Unified Cube schema can take several forms. Due to the wide use of relational databases in current information management, in this paper we focus on one implementation alternative based on relational views. Within our framework, the Schema module hosts (a) a set of non-materialized views implementing the components of a schema of Unified Cube and (b) a set of queries implementing the extraction formulae of attribute and measure. Specifically, each dimension is transformed into a set of views. Each view represents a level with a synthetic primary key and the set of attributes of the level. The extraction formula of each attribute is translated into an executable query to indicate how attribute instances can be accessed from sources. For a pair of views implementing two levels associated together through a binary relation, the view of the lower level includes a foreign key pointing to the view of the higher level. The fact is also implemented with a set of views: each one regroups a set of measures sharing the same sub-dimensions. A set of foreign keys pointing to the starting levels of the related sub-dimensions is included in each view of fact. We propose the following algorithm to automate the implementation of Unified Cube schema.

Algorithm Unified Cube Schema Implementation

Input: A Unified Cube={F; D; LM}. Output: A set of non-materialized views implementing the Unified Cube schema Begin 1. For each dimension D i ÎD 2.

For each level l d ÎL 3.

Create a view V d named n l with a key id V d ; each attribute a x ÎA l d 4.

Add an attribute named n a in the view V d , associate the attribute with a query Q a x obtained by translating the query algebra of the formula map a ; 5.

End for 6.

End for 7.

For each pair of views V d and V e of the levels l d and l e (l d , l e ÎL Ùl d l e ) 8.

Add a foreign key id V e in the view V d pointing to the view V e ; 9.

End for 10. End for 11. For each subset of measures M sub ÍM F sharing the same related levels, such as "m e ÎM sub , $L \l h ´ ´L \l k ÍL ´…´L , LM: L \l h ´ ´L \l k ®m e (r,tÎ [1..n]Ùr£t) 12. Create a view V sub ; 13. Add a measure named n m (m e ÎM sub ) in V sub , associate the measure with a query Q m e obtained by translating the query algebra of the formula map m ; 14. For each set of levels L \l j (L \l j ÍL \l h ´ ´L \l k ) of the subdimension D \l j

15.

Add a foreign key id V j in V sub pointing to the view V j of the level l j ; 16. End for 17. End for End

Instance Module

Related data are scattered in multiple sources and represented according to different modeling vocabularies. The framework must provide methods identifying related data from DWs and/or LOD datasets. Once identified, related warehoused data and LOD should be kept in a generic, coherent environment to avoid repetitive relevance processing during analyses. To this end, the Instance module (a) pre-processes related attribute instances involved in correlative and rollup mappings before analyses and (b) materializes related data in tables of correspondences for future uses. At the beginning of an analysis process, the framework verifies the last changed date of each source to determine if materialized data in the Instance module should be updated.

Step I: identifying the relevance between data

In the context of Unified Cubes, the relevance between data from multiple sources can be divided into two types, namely direct relevance and deductive relevance. Direct relevance exists between two attribute instances which are already associated together in sources (e.g., the correlative mapping between the instances of a P_Key and those of a P_Name from ROLAP). Deductive relevance, on the other hand, is identified by using some processing methods. The Instance module contains a toolkit implementing some most effective methods to facilitate the identification of related data involved a Unified Cube. We describe three categories of processing methods that can be potentially included in the Instance module to identify related attribute instances.

Automatic processing methods for correlative mappings.

We identify two methods allowing automatically computing the deductive relevance between attribute instances involved in a correlative mapping. The first approach is applicable for data from different LOD datasets. It is based on an intermediate ontology with a comprehensive coverage of the common concepts in two LOD datasets (i.e., containing enough matches between equivalent entities). The second approach aims at identifying relevant instances sharing similar labels (e.g., a product's type from the ROLAP DW and a merchandise's class from the LOD2 dataset). This approach consists of calculating the string-based similarity of two related attribute instances s 1 and s 2 , such as (s 1 , s 2 )Î[0..1]. Several amelioration techniques can help improving the obtained similarity, such as case normalization (e.g., converting s 1 and s 2 to lowercase) and synonym matching (e.g., using an external thesaurus to associate "heater" with its synonym "warmer").

Automatic processing methods for rollup mappings.

The DW domain mainly focuses on the multidimensional structure of data (i.e. schema), the rollup mappings between attributes from DWs do not need additional processing methods, since they can be directly derived by referring to the multidimensional schema of data source. In the domain of LOD, a dataset, especially real-world QB datasets, often only includes independent data instances without an explicitly defined schema. Discovering the rollup mapping in previously unknown LOD datasets is not a trivial task. The existence of various proposals in the scientific literature, such as some computer-assisted approaches presented in [START_REF] Ibragimov | Towards Exploratory OLAP over Linked Open Data-A Case Study[END_REF], shows there is no one-size-fits-all method for identifying child-parent relations between all types of LOD. The implementation framework should only include methods applicable to the hosted Unified Cube. With regard to the running example, we implement an automatic reasoning method based on existing correlative and/or direct rollup mappings. This approach is particularly useful to deduce the rollup mapping between an attribute from DWs and another one from LOD dataset, such as: let a iDW , a iLOD ÎA l i , a jDW , a jLOD ÎA l j (l i l j ): (C

l i : dom(a iDW )®dom(a iLOD ))Ù(R l i : dom(a iLOD ) ®dom(a jLOD ))Þ$R l i : dom(a iDW )®dom(a jLOD ), (R l i : dom(a iLOD )®dom(a jLOD ))Ù(C l j : dom(a jLOD )®dom(a jDW )) Þ$R l i :dom(a iLOD )®dom(a jDW ).

Semi-automatic processing methods for correlative mappings and rollup mappings.

Besides the automatic approaches, some semi-automatic approaches should also be adapted, especially for the relevance between attribute instances which holds only in a specific analysis context (e.g., the correlative mapping between a Team and a CatchmentArea in figure 1(d) is valid only if a catchment area of retailer attracts the same clientele of a salesman's team). In this case, decision-makers should explicitly describe the correspondences between relevant attributes instances. Then the system checks the local and overall validity of correlative and rollup mappings in a Unified Cube. Due to limited space, more details can be found in our previous work [START_REF] Ravat | Designing Multidimensional Cubes from Warehoused Data and Linked Open Data[END_REF].

Step II: materializing relevant data.

Direct relevance between attributes is already embedded in the sources thus does not need to be materialized in the Instance module. Deductive relevance between data, on the other hand, is identified after applying appropriate processing methods. To avoid repetitive relevance processing during analyses, correlative mappings and rollup mappings involving deductive relevance are materialized in tables of correspondences (cf. figure 5): the table of correspondences implementing the correlative mappings associates the instances (i.e., instance) of an attribute (i.e., attribute) to the related ones (i.e., cor_ins) of a correlative attribute (i.e., cor_att) within the same level, while the table of correspondences materializing the rollup mappings connects a set of instances (i.e., child_ins) of a child attribute (i.e., child_att) with a corresponding instance (i.e., parent_ins) of a parent attribute (i.e., parent_att). 

Experimental Assessments

The experimental assessments aim at showing the feasibility of our proposal. Specifically, the internal structure of data from DWs and LOD datasets should be correctly managed by the Schema module, while related data from different sources must be identified and materialized within the Instance module within a reasonable time.

Protocol.

The data sources are hosted in a Microsoft Windows 7 work stations (Interl(R) i7-4510U 2GHz CPU, 8GB RAM, SSD 500GB disk). Each source is populated with a reasonable amount of synthetic data to avoid timeout during the experimental assessments: the ROLAP contains about 18 million pre-aggregated data in the fact table, while the LOD1 and LOD2 datasets respectively include 7240 and 840 observation (cf. table 2). 

Instance module.

Identifying relevant data.

As shown in table 3, four correlative mappings are identified. The correlative mapping between a P_Key and a P_Name are obtained by directly referring to the ROLAP DW, while the other correlative mappings require additional processing methods. 4 shows the rollup mappings in the implemented Unified Cube. To identify relevant data involved in rollup mappings, we firstly search for child-parent relations embedded in data sources. Four rollup mappings are found by directly referring to the ROLAP DW and the LOD2 dataset which both have a well-defined multidimensional schema. The other five rollup mappings involving deductive relevance are obtained by (a) executing the declarative operator which associates relevant data together according to users' needs and (b) using reasoning techniques based on existing rollup mappings and correlative mappings.

Remark.

Reasoning is an important means to identify rollup mappings in a Unified Cube, especially for two attributes from different sources without intermediate ontological resource. For instance, the rollup mapping R l Shop : dom(a Shop )® dom(a Team ) is obtained by referring to the rollup mapping R l Shop : dom(a Shop )®dom(a CatchmentArea ) and the correlative mapping C l Team : dom(a Team )®dom(a CatchmentArea ). Automatic: reasoning dom(a Team )®dom(a Country )

Semi-automatic: declarative operator Without any optimization technique (e.g., parallel computing), defining all deductive mappings takes about 200 seconds. The execution time remains reasonable in consideration of the laptop-level configuration of the working station.

Materializing relevant data.

Deductive correlative mappings and rollup mappings are materialized in the Instance module. After the implementation, we obtain two tables of correspondences containing 400 tuples and 480 tuples for correlative mappings and rollup mappings respectively. Comparing to the large volume of data in the sources (cf. table 2), a Unified Cube only materializes a relatively small amount of data from different sources. Advantage of the partial materialization is twofold: it (a) avoids repetitive computing of deductive relevance during analyses and (b) minimizes the cost of updating the materialized data at the beginning of an analysis process.

Conclusion

Our aim is to make full use of all relevant data to support effective and well-informed decisions. To this end, we define a generic conceptual multidimensional model, named Unified Cube, which includes data coming from DW and LOD domains.

A Unified Cube organizes data coming from different sources according to analysis axes (i.e., dimensions) and an analysis subject (i.e., fact). A dimension is composed of levels which are associated together through a reflexive binary relation. The definition of dimension is generic enough to model several aggregation paths (i.e., hierarchies) sharing no common lowest level as well as a non-hierarchical dimension composed of only one level. A level groups a set of attributes from multiple sources. Each attribute is associated with an extraction formula, so that attribute instances that can be directly obtained from data sources are not materialized in a Unified Cube. Correlative mappings are defined between related attributes, while rollup mappings manage child-parent relations among attributes. A fact represents the analysis subject containing numeric indicators (i.e., measures). Through a level-measure mapping, a measure can be associated with its related dimensions starting from any level. We also propose an implementation framework compatible with Unified Cubes. By describing how a Unified Cube is built from the DW and the LOD datasets of the motivating example, we show the feasibility of our proposal.

In the future, we intend to build Unified Cubes from other LOD formats (e.g. RDF) that do not necessarily have a multidimensional structure. The scalability of the proposed implementation framework and the precision of the obtained mapping will also be studied with real-world data. A more long-term objective is to study the influences of the materialization of source data over analysis efficiency in Unified Cubes.
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 1 Fig. 1. Extracts of a ROLAP DW and two LOD datasets.
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 2 Fig. 2. A dashboard built on a unified view.
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 3 Fig. 3. Graphical notation of Unified Cubes.

  FILTER (?o1 < 5) OPTIONAL {?s ?p2 ?o2 . FILTER ( ?o2 > 10 ) }} (PROJECT(?o1 ?o2) (FILTER (< ?o1 5) (LEFTJOIN(BGP (TRIPLE ?s ?p ?o1)) (BGP (TRIPLE ?s ?p2 ?o2)) (> ?o2 10)))) SELECT ?s (COUNT(?o) as ?nb) WHERE {?s ?p ?o} GROUP BY ?s HAVING (COUNT(?o) > 10) (PROJECT(?s ?nb) (FILTER (> ?.0 10) (EXTEND((?nb ?.0)) (GROUP (?s) ((?.0 (COUNT ?o))) (BGP (TRIPLE ?s ?p ?o)))))) Example. The fact named Sales contains four measures, namely m RetailPrice , m Quantity , m UnitPrice and m Temperature . The measure m Quantity has an extraction formula E m Quantity = P_Key, D_Key, Team F sum (SalesAnalysis.Quantity). The extraction formula of the measure m RetailPrice is defined upon SPARQL algebra, such as:

A

  level includes a set of attributes describing a distinct analytical granularity. We present the definition of a level which (a) indicates the source of each attribute, (b) manages heterogeneous representations of attribute instances referring to the same concepts and (c) implements the binary relation at the attribute instance level. Definition 5. A level represents a distinct analytical granularity on a dimension. A level is denoted as l d = {n l ; A l d ; C l d ; R l d }, where:• n l is the name of level; • A l d ={a 1 ;…; a e } is a finite set of attributes. Each attribute a x (a x ÎA l d ) is a pair án a , E a ñ, where n a is the name of the attribute and E a is an extraction formula indicating the instances of a x . The domain of an attribute is denoted as dom(a x ). • C l d : dom(a x )® dom(ay) (a x Î A l d , a y Î A l d \a x ) is a symmetric correlative mapping which associates an attribute a x with its related ones at the same level. • R l d : dom(ay) ®dom(a z ) (a x ÎA l d , a z ÎA l e and l d l e .) is a rollup mapping implementing the binary relation between two levels. It connects the instances of child attributes with the instances of a parent attribute at an adjacent level.

  The first module named Schema aims at revealing the internal structure of data from multiple sources. It includes a nonmaterialized Unified Cube schema with a set of extraction formulae allowing querying sources on-the-fly. The second module, named Instance, is devoted to managing related attribute instances scattered in different sources. It contains (a) a toolkit identifying the correlative and rollup relations between attribute instances and (b) a set of tables of correspondences materializing the identified relations.
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 4 Fig. 4. Implementation framework for Unified Cubes
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 5 Fig. 5. Extract of tables of correspondences

  ´ 40 products (20 types) ´ 7300 days (360 months, 20 years) LOD1 20 countries ´360 months LOD2 40 shops (20 catchment area) ´20 merchandise classes Schema module. We firstly implement the schema of the Unified Cube and the extraction formulae in the Schema module. After applying the algorithm described in section 4.2, we obtain (a) 8 views implementing the dimensions, (b) 3 views implementing the fact and (c) 16 queries translated from extraction formulae.

Fig. 6 .

 6 Fig. 6. Content of the Schema module after implementation The non-materialized Unified Cube schema along with extraction queries enables on-the-fly analyses of warehoused data and LOD to be carried out in a unified way. Details and examples of such analyses are presented in our previous work [10].

Table 1 .

 1 SPARQL queries and their algebraic representation

	SPARQL query	SPARQL Algebra
	SELECT * WHERE { ?s ?p ?o}	(BGP (TRIPLE ?s ?p ?o))
	3 https://www.w3.org/2001/sw/DataAccess/rq23/rq24-algebra.html

(PROJECT(?s ?p) (BGP (TRIPLE ?s ?p ?o))) SELECT ?o1 ?o2 WHERE{?s ?p ?o1.

Table 2 .

 2 Data Collection

Table 3 .

 3 List of correlative mappings

	Type	Mapping	Processing method
	direct	dom(a P_Key )®dom(a P_Name )	n/a
		dom(a Type )®dom(a Class )	Automatic: string-based similarity
	deductive	dom(a Type )®dom(a CatchmentArea ) Semi-automatic: declarative operator
		dom(a Month )®dom(a YearMont )	Automatic: string-based similarity
	Table		

Table 4 .

 4 List of rollup mappings

	Type	Mapping	Processing methods
		dom(a P_Key )®dom(a Type )	n/a
	direct	dom(a D_Key )®dom(a Month ) dom(a Month )®dom(a Year )	n/a n/a
		dom(a Shop )®dom(a CatchmentArea )	n/a
		dom(a P_Key )®dom(a Class )	Automatic: reasoning
		dom(a Shop )®dom(a Team )	Automatic: reasoning
	deductive	dom(a CatchmentArea )®dom(a Country ) Automatic: reasoning
		dom(a YearMonth )®dom(a Year )	

http://linkeddata.org

http://www.w3.org/TR/vocab-data-cube

$ =1 represents the unique existential quantification meaning "there exists only one