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Abstract—Summarizing a body of information is a complex
task which mainly depends on the ability to distinguish important
information and to condense notions through abstraction. Con-
sidering a knowledge representation partially ordering concepts
into a directed acyclic graph, this study focuses on the problem of
summarizing several human descriptions expressed through sets
of concepts. We formally define the problem of summarization
in this context and we propose a model mimicking a Human-
like Intelligence for scoring alternatives with regard to a specific
objective. Several interesting theoretical results related to this
problem (e.g. for optimization) are also given. Finally, the evalu-
ation of the proposed approach performed in the domain of odor
analysis highlights the benefits of our proposal and shows how it
could be used to automatize time-consuming expert summarizing
processes. Source code implementing the proposed approach as
well as datasets are made available to the community.1

I. INTRODUCTION

The ability of abstracting specific observations by means of
distinguishing general patterns or concepts is central for the
emergence of complex conceptual processes, e.g. learning. It is
indeed one of the essential abilities defining intelligent agents
that are able to analyze potentially complex and faintly related
situations to acquire knowledge from these analyses [1], [2].
Abstraction is tightly linked to the process of analyzing obser-
vations through the lens of structured categories defined w.r.t.
specific properties of the observations. This ability human
have explains for instance that any child burning himself with
a wood-fired oven will most often extract knowledge from
this experiment and learn that the wood is not the cause of
the unfortunate experiment, but rather the heat caused by its
combustion. Therefore, thanks to this capacity of abstraction,
children will identify similar situations (e.g. a lighter flame) as
potentially harmful and take extra care while being confronted
to them. Similarly, if a person tells you that a specific candy
smells Lemon, and another person that the same candy smells
Orange, you’ll naturally and easily be able to abstract these
two descriptions by summarizing the provided information to
Citrus Fruit. Studying processes related to abstraction is
therefore of major importance for Artificial Intelligence and
has been central to numerous areas of research related to this
domain - machine learning among others [2]. Interestingly, a
growing number of knowledge representations (e.g. ontologies

1Source code and datasets are publicly available at https://github.com/
sharispe/Conceptual-Summary.

or even taxonomies) today formally express specific domain-
knowledge, and provide concept organizations that can be au-
tomatically analyzed. These knowledge representations, based
on the notion of abstraction, therefore offer the opportunity to
design Human-like intelligent procedure taking advantage of
prior knowledge regarding concept organizations [3]. Mimick-
ing Human-like intelligence able to process such knowledge
representations to abstract knowledge in a meaningful way is
however still a complex, important and open challenge.

In this study we focus on the problem of summarizing a
set of conceptual descriptions expressed in the form of sets of
concepts. The notion of concept here refers to the traditional
notion of concept or class used in Knowledge Representation;
concepts are assumed to be partially ordered with regard to
specific properties they share – knowledge representations
are domain-specific. Figure 1 shows an example of concept
ordering for odor evaluation. It specifies for instance that the
concept Rose refers to the concept Floral. Thanks to the
ordering of concepts, intuitively, considering the two following
sets of annotations corresponding to odor sample descriptions
({Rose, Mint}, {Violet, Orange}) several summaries
could be proposed, e.g. {Floral, Fresh}, {F-Class}.

Even if summarizing is an intuitive process in which an
evaluator wants to abstract as much information as possible
while keeping the resulting abstraction meaningful and in-
formative, the relevance of a summary is context-dependent
and no formal consensual definition of best summary can
be given - even if general constraints on the definition of
a summary could be defined, as we will see in Section II.
Indeed, considering aforementioned example, summarizing the
conceptual descriptions by one of both summaries could make
sense depending on how much we want the summary to be
concise and on how much information loss we accept.

The paper is organized as follows: Section II introduces
theoretical notions on which is based our approach as well as
notations; it next formally defines the summarizing problem;
Section III introduces the proposed model for evaluating
summaries; Section III introduces algorithms enabling to use
the model for searching for relevant summaries and discusses
interesting properties of the search space; Section V presents
results related to evaluation; State-of-the-art is proposed in
Section VI. Finally, section VII summarizes our results and
distinguishes perspectives.

https://github.com/sharispe/Conceptual-Summary
https://github.com/sharispe/Conceptual-Summary


Odor

F-Class

Fresh Floral/FreshFruit

Citrus Fruit

Lemon Orange Mint ...

Refreshing Floral ...

RoseViolet

Fig. 1. Exemple of partial ordering of concepts related to odor evaluation

II. PROBLEM SETTING: FORMALIZATION

Prior to discuss the technical aspects of our contribution and
to formally define the notion of summary, we introduce some
notations and notions on which is based our approach.

A. Notations and preliminary notions
In this study we consider an a priori domain knowledge on

the form of a set of concepts C partially ordered into a poset
O = (�, C). ∀(x, y) ∈ C2, x ≺ y means that x implies y, e.g.
in the context of odor evaluation it means that smelling Rose
implies smelling a Floral compound – cf. to Figure 1.

To further ease the introduction of formal definitions, we
define the following functions D : P(C) → P(C), A :
P(C)→ P(C), with C ′ ⊆ C:

D(C ′) =
⋃
c∈C′

⋃
c′�c

{c′} A(C ′) =
⋃
c∈C′

⋃
c�c′
{c′}

The commonly used notion of Information Content (IC)
of concepts refers to concepts’ degree of specificity; several
models have been proposed. Some of them are based on the
analysis of topological properties of the partial order (intrinsic
models), sometimes mixed with additional prior knowledge
w.r.t. concept usage (extrinsic models) [4]. For any IC function
we have: ∀(x, y) ∈ C2, x ≺ y =⇒ IC(x) > IC(y). An
example of simple intrinsic IC formulation is [5]:

IC(c) = 1− log(|{x|x � c}|)
|C|

(1)

The IC function which is used hereafter refers to this expres-
sion - any intrinsic IC with IC : C → [0, 1] could be used.

When occurrences over concepts are available, we consider
the mass function m : C → [0, 1], satisfying

∑
c∈C m(c) = 1;

m(c) corresponds to the number of observations of c among
the total number of observations. The belief and plausibility
functions bel : C → [0, 1] and pl : C → [0, 1] proposed in the
Dempster–Shafer theory are next defined such as:2

bel(c) =
∑
x�c

m(x) (2)

pl(c) =
∑

x∈C,D(x)∩D(c)6=∅

m(x) (3)

2We adopt the classical formalism used for defining the mass, belief and
plausibility functions w.r.t knowledge representations. Note however that these
definitions are not rigorous and are only used to lighten the formalism; they
should be understood as the rigorous definitions proposed in [6].

B. Problem Formalization
The aim of the study is to summarize the information given

by a set of evaluators (E) providing conceptual evaluations,
such as each evaluator en ∈ E is associated to a set of concepts
Xn ∈ P(C). For convenience, we will always denote the se-
quence of annotations to summarize X̂ = (X1, X2, . . . , Xn),
and X the set of concepts mentioned in the sequence of
annotations X̂ , such as:

X =

n⋃
i=1

Xi

The simplest type of summary function f can be defined
such as f : X̂ → P(C). Nevertheless, in accordance to the
process of summarization in most contexts of use, we want
any summary Y ∈ P(C) of a set of concepts X to respect
specific properties:

1) summarizing |Y | ≤ |X|, with most often |Y | � |X|
2) faithful ∀y ∈ Y,∃x ∈ X such as x � y
3) non-total redundancy ∀(x, y) ∈ Y 2, x ⊀ y ∧ y ⊀ x.

We denote S ⊆ P(C) the subsets of C respecting the non-
total redundancy property. Furthermore we consider SX ⊆ S
the set of summaries of a sequence of annotations X̂ – each
summary respects the properties of being summarizing and
faithful w.r.t. X . Based on these preliminary definitions we
formally define by S the function summarizing a sequence of
n annotations X̂ ∈ P(C)n by a single summary from SX :

S : P(C)n → S, with S(X̂) ∈ SX

We define the problem of summarizing a sequence of
annotations X̂ by finding Y ∈ SX , the best summary for X̂ .
The following section introduces the model we use for defining
function S. Additional properties of interest for characterizing
the solution space SX are given first.

A summary Y ∈ SX is said to be covering a sequence
of annotations X̂ if all the concepts mentioned in X̂ (i.e. all
concepts of X) are abstracted by at least a concept of the
summary: ∀x ∈ X,∃y ∈ Y such as x � y. We denote the
covering summaries of X̂ by SXcov . We also consider SXp−cov =
SX \SXcov the set of summary partially covering X , i.e. ∀Y ∈
SXp−cov,∃X ′ ⊂ X such as Y ∈ SX′cov . Figure 2 illustrates the
studied space exposed so far.

P(C) S SX SXcov .

X ⊆ C

Fig. 2. Graphical representation of the studied space

As we mentioned, the notion of best summary is context-
dependent. We can however distinguish some notions and
quantities that could be used to evaluate the relevance of a
summary and define the function S.



III. AUTOMATIC SUMMARY: PROPOSAL

For studying the problem of finding a summary Y ∈ SX for
any X̂ ∈ P(C)n we define the following objective function:

S(X̂) = arg max
Y ∈SX

(
Ψ(Y, X̂)− L(Y, X̂)

)
(4)

L(Y, X̂) = ∆(Y, X̂) + λ(Y ) + γ(Y, X̂)

Ψ(Y, X̂) models the amount of information from X̂ covered
by Y and L(Y, X̂) the penalty associated to the abstraction,
with:
• ∆(Y, X̂) the penalty induced by abstracting by Y the

information conveyed by X̂ – incorporating penalties
regarding loss, addition and distortion of information.

• λ(Y ) a function evaluating the conciseness of the sum-
mary - w.r.t redundancy of information.

• γ(Y, X̂) a function that can be used to express additional
constraints over Y , e.g. to exclude uncovering summaries.

The specific components of the objective function (eq. 4)
are detailed hereafter.

A. Ψ(Y, X̂) - Amount of abstracted information

We denote Ψ(Y, X̂) the amount of information from X̂
covered by Y . It is used to estimate the amount of conceptual
information conveyed by X̂ which is summarized by Y . We
are therefore interested in studying the coverage of abstract
notions among those mentioned by X̂ and those mentioned
by Y . Intuitively this quantity could be defined as follows:

Ψ(Y, X̂) = f(A(Y ) ∩ A(X))

A specific expression could for instance be:

Ψ(Y, X̂) =
∑

c∈A(Y )∩A(X)

w(c)× IC(c)

with
w(c) =

∑
c′∈X∩D({c})

m(c′)

with w : C → [0, 1] the function used to weigh the importance
given to any concept w.r.t. to its degree of evocation according
to the masses specified by X̂ – recall that the elements of X
are the focal elements, i.e. the concepts that have non null
masses. In this case it corresponds to defining w(c) = bel(c)
with bel the classical belief function (Eq. 2) – this is the case
since the focal elements are the members of X .3 Since the
more abstract a concept will be, the more it will be implicitly
mentioned, and therefore easily summarized whatever the
selected summary is, we regulate the importance given to
any concept c ∈ A(Y ) ∩ A(X) w.r.t its intrinsic information
content.

3Note that we don’t want the weighting function w to behave like an
extrinsic information content, e.g. Resnik like [4]; since we don’t want to
give high importance to concepts that are marginal w.r.t X̂ but very specific
w.r.t any intrinsic IC formula.

Let’s consider the following simple example in which
X̂ = ({Violet,Rose}). In this case, considering the sum-
maries {Rose} (or {Violet}) and {Floral} we would ob-
serve: Ψ({Floral}, X̂) < Ψ({Violet}, X̂). Otherwise stated
the current model will consider that, based on the quantity
of information from X̂ which is abstracted, summarising X̂
by {Rose} is more relevant than using {Floral}. Putting aside
the subjective notion of best summary, and avoiding arguing
on which is the best summary, we want to penalize the
fact that compared to {Floral}, {Rose} only partially covers
X̂ . In the current formulation we have Ψ({Rose}, X̂) =
Ψ({Floral}, X̂) + bel(Rose) × IC(Rose). However, it can
be counter-intuitive to consider that Ψ({Floral}, X̂) will con-
tribute similarly to estimating the quantity of information from
X̂ abstracted by both {Floral} and {Rose}. Otherwise stated,
we would like to lower the contribution of Ψ({Floral}, X̂)
while computing Ψ({Rose}, X̂) considering that not all the
masses coming from specializations of Floral are subsumed by
the summary {Rose}. Indeed reducing X̂ to Rose suppresses
the given information that X̂ also mentioned Violet. This
idea is related to the notion of distortion of information we
will discuss later while defining the penalties associated to
a summary. Nevertheless, we want to integrate this notion
while estimating the quantity of information from X̂ which is
abstracted by a summary. To this end we propose to reconsider
the definition of the weighting function as follows:

belY (c ∈ C) =
∑

c′∈X∩D({c})∩D(Y )

m(c′)

We finally obtain:

Ψ(Y, X̂) =
∑

c∈A(Y )∩A(X)

belY (c)× IC(c) (5)

Note that D(X) ∩ D(Y ) also conveys potentially useful
information since D(X) \ {X} refers to the information not
conveyed by X that are plausible; considering the partial
ordering of concepts defined in Figure 1 someone referring to
Floral could refer to Violet without being able to refer
to this specific odor. It could therefore be interesting to study
this quantity as it could be used to characterize the quantity
of plausible information captured by the summary. Interesting
properties could be achieved analysing this quantity since e.g.
∀(Y, Y ′) ∈ SXcov × SXp−cov,D(Y ′) ∩ D(X) ⊂ D(Y ) ∩ D(X)
could be used to favour covering summaries. Even if this quan-
tity would not be useful for analysing covering summaries, i.e.
per definition ∀Y ∈ SXcov , D(X) ⊆ D(Y ), it could be worth
considering it for discussing partially covering summaries.
Nevertheless, since we consider the rational assumption that
analysing exact information is more important than analysing
plausible information while criticizing a summary, integrating
this quantity in the definition of Ψ is not furthered explored
in this paper; a refinement of the proposed approach could be
Ψ(Y, X̂) = f(A(Y ) ∩ A(X),D(Y ) ∩ D(X)).

Ψ(Y, X̂) models the information conveyed by X̂ which
is conveyed by Y by considering covered masses. We now



introduce how we model the various components of the penalty
factor L(Y, X̂) = ∆(Y, X̂) + λ(Y ) + γ(Y, X̂) (Eq. 4).

B. ∆(Y, X̂) – Penalty of abstraction

In the previous section we have defined a model for estimat-
ing the quantity of exact information conveyed by X̂ which
is conveyed by a summary. For criticizing the relevance of
a summary it is also important to discuss penalties regarding
loss, addition and distortion of information. We define the
penalty of abstraction by:

∆(Y, X̂) = f(∆E−,∆P+,∆P−,∆D)

with
• ∆E− penalty w.r.t to the deletion of exact info
• ∆P+ penalty w.r.t to the addition of plausible info
• ∆P− penalty w.r.t to the deletion of plausible info
• ∆D penalty w.r.t to distortion of information
We define those functions such as for each ∆ function we

have ∆(Y, X̂) ∈ R+.

Modelling ∆E− and ∆P+, ∆P−:

∆E− models the amount of exact information conveyed by X̂
which is not conveyed by Y – deletion of exact information:

∆E−(Y, X̂) = f(A(X) \ A(Y ))

∆P+ models the amount of plausible information conveyed
by Y which is not conveyed by X̂ – addition of plausible
information; ∆P− models the amount of plausible information
conveyed by X̂ which is not conveyed by Y – deletion of
plausible information:

∆P+(Y, X̂) = f(D(Y ) \ {D(X) ∪ A(X)})

∆P−(Y, X̂) = f(D(X) \ D(Y ))

Note that per definition, and due to the property of faithfulness,
a summary cannot (i) add exact information, i.e. provide
information which is not conveyed by X̂ .4 Considering afore-
mentioned operators ∆E− and ∆P+ (resp. ∆P−), specific
expressions can easily be obtained:

∆E−(Y, X̂) =
∑

x∈A(X)\A(Y )

(bel(x) · IC(x))

∆P+(Y, X̂) =
∑

y∈D(Y )\{D(X)∪A(X)}

(pl(y) · IC(y))

∆P−(Y, X̂) =
∑

y∈D(X)\D(Y )

(pl(y) · IC(y))

4 Due to the definition of a summary we have no addition of exact
information ∆E+(Y, X̂) = f(A(Y ) \ A(X) = ∅). It could however be
interesting to consider this quantity in specific contexts of use in which the
definition of a summary would be less constraining than the one considered.

Modelling ∆D Penalty - distortion:5

The aim of ∆D is to penalize the distortion which is
made considering a specific choice among partially-covering
summaries. Considering the previously mentioned simple
example in which X̂ = ({Violet,Rose}) with the sum-
maries {Rose} (or {Violet}) and {Floral} we would have
∆E−({Rose}, X̂) < ∆E−({Floral}, X̂). Even if some adap-
tion of Ψ have been proposed to penalize the bias induced by
the choice of an uncovering summary, an additional penalty
has to be modeled for considering additional potential distor-
tion of information that could be made during summarizing.
This penalty should be a function of X \ D(Y ), i.e., all the
elements of X that have not been summarized, and associated
masses. We propose the following model to estimate the
distortion.

∆D(Y, X̂) = τ
∑

x∈X\D(Y )

∑
x′∈A({x})\A(Y )

(bel{x}(x
′) · IC(x′))

The parameter τ is used to weigh the importance of a specific
uncovering and will be introduced later. For each uncovered
concept in x ∈ X \ D(Y ), the penalty associated to it is a
function of its specificity and the specificity of the concepts
abstracting x that are not covered by Y . We however want this
penalty to be a function of the amount of masses associated to
the concepts mentioned by X̂ that are not covered. We want
to penalize any distortion that is not motivated by very low
masses associated to part that are excluded by the summary. To
model this choice, and considering βY X ∈ [0, 1] the amount
of masses relative to X̂ that are not covered by Y , we use any
f function ensuring f(βY X) = 1 and f(βY X) = ∞ or any
very large value when βY X → 1 and βY X → 0 respectively.
Here we adopt the following function: τ = − ln(1 − βαYX),
with α ∈ N∗:

βY X =

∑
x∈X\D(Y )m(x)∑

x∈X m(x)
=

∑
x∈X\D(Y )

m(x)

Note that we have βY X ∈ [0, 1] for any Y ∈ S\SX , βY X = 0
for any Y ∈ SXcov , as well as βY X ∈]0, 1[ for any Y ∈ SX \
SXcov . The more the distortion will be, the more βY X tends to
1, and the more τ will induce an important penalty. The tuning
parameter α is used to define the penalization ratio according
to the loss of masses we accept – the lower α is, the more the
model will penalize summaries implying mass losses.

We finally simply define:

∆(Y, X̂) = δE−∆E− + δP+∆P+ + δP−∆P− + δD∆D (6)

With δE−, δP+, δP−, δD input parameters used to set the
importance of each abstraction penalty factor.

5Minor corrections have been made in this section (modifying the originally
published version) - details are provided in the erratum section.



C. Additional penalties to improve summarizing

Modelling λ - Conciseness and redundancies penalties:

λ(Y ) ∈ R+ is a penalty used to evaluate the conciseness of
the summary - w.r.t the number of descriptors, by penalizing
redundant information implicitly conveyed by a summary.

λ(Y ) = ε
∑

y′∈A(Y )

((|{y ∈ Y |y′ ∈ A(y)}| − 1)× IC(y′))

Using this expression, by avoiding large redundancies we
favor abstraction and therefore conciseness, i.e. summaries
that do not summarize enough the information carried by X̂
will automatically be penalized. The penalization is designed
such as each abstracted notions that are repeated more than
once will be penalized the number of time the redundant
information appears – taking into account of the intrinsic
information content of concepts since redundancy cannot be
avoided in most cases, and redundancies of very abstract
concepts are of minor concern. Tuning ε can therefore be used
to control the number of descriptors composing a summary.

γ - Additional constraints

γ(Y, X̂) is a function that can be used to express additional
constraints over Y . This constraints can be used to apply
specific restrictions on the type of solution we are interested
in, e.g. in particular if we relax the definition of a summary:

γ(Y, X̂) =

{
0 if valid(Y,X)
+∞ otherwise

with valid : P(C)×P(C)→ {true, false}. As an example,
exploring the covering summaries corresponds to defining the
following valid function:

valid(Y,X) = ∀x ∈ X,∃y ∈ Y such as x � y

Additional/Other constraints can naturally be defined, for
instance, on the size of the summary we would like to generate
or on the degree of specificity of the concepts it contains, i.e.
by avoiding too abstract concepts.

Note that defining the γ function corresponds to reduce the
solution space without explicitly defining a specially designed
solution search algorithm. Indeed, by defining γ, restrictions
on the solutions can be expressed while using the general
search algorithm introduced in the following section.

The model proposed so far (Eq. 4) can be used to eval-
uate the relevance of a summary and rank several summary
alternatives. By providing a summary Y ∈ SX summarizing
a sequence of annotation X̂ , knowing the importance of each
concept of Y , i.e. how many sets of X̂ (evaluators) evoke
each concept, is of great importance for further data analysis.
Therefore, considering the proposed setting, we can define the
weight of any concept y ∈ Y as a function of its belief.
The next sections discusses details related to search space
construction and analysis.

IV. SUMMARY GENERATION

In the previous section, we have introduced a framework for
searching for relevant summaries considering X̂ a sequence
of conceptual annotations. This section now discusses algo-
rithmic implications and discusses elements of information to
practically define a strategy for exploring the search space SX .
First let’s recall some information related to the search space;
the number of partitions of C is 2|C| and in the worst case,
considering that any knowledge representation always has an
abstract concept generalizing all the others (a root), we have
the following theoretical bound ∀X ⊂ C, |SX | ≤ 2|C−1| + 1.
6 However in practice, the theoretical bound is always far
from the size of real search spaces thanks to the constraints
defining a summary, in particular the faithfulness and the
non-total redundancy. The size of SX is nevertheless to be
taken with high consideration since it largely impacts the
computational time of the approach. Indeed, for any sequence
of annotations X̂ mentioning a large number of concepts (big
|X|) applying a naive iterative search over SX is not feasible.
In this section we first propose an algorithm to construct SX .
We then propose restrictions that can be applied on SX to
deal with sequence of annotations mentioning a large number
of concepts.

A. Building SX

Considering a set of concepts X ⊂ C, Algorithm 1 defines
how to generate SX , the set of summaries for X̂ . First recall
that SX = SXcov ∪ SXp−cov . Note also that:

SXp−cov =
⋃

X′∈P(X)\X

SX
′

cov

This enables to reformulate the problem of building SX as
finding the set SX =

⋃
X′∈P(X) SX

′

cov . Given a sequence of an-
notations X̂ , Algorithm 1 computes SX . The algorithm uses a
classical directed acyclic graph representation of O = (�, C),
named G = (E,C) with E ⊂ C ×C and (c1, c2) ∈ E means
c2 generalizes c1, i.e. which corresponds to c1 ≺ c2. For
optimization reasons, G is expected to be reduced according
to the transitivity of the relationships defining O (line 1) –
otherwise stated there is no relationship in G that can be
inferred according to the transitive relationships composing
G. Thus for each subset X ′ ∈ P(X) the set SX used to
compute SX is extended by adding the summaries covering
X ′ that have not been found (line 4). Conceptually, this steps
corresponds to SX = SX ∪ SX′cov , except that we don’t want
to cover any subset of SX′cov that have already been covered.
Finally the algorithm returns SX as SX (line 6).

Given a set of concepts X , and a set of summaries Sr ⊂ S
respecting the property that ∀Y ∈ Sr,SYcov ⊂ Sr, Algorithm 2
defines how to compute the subset of SXcov that have not been
covered considering Sr. The constraint on Sr enables to use
a greedy algorithm while computing SXcov . Note that for a set

6The bound is reached when O = (�, C) is weakly structured and all the
pairs composed of the other concepts except the root only refer to non-ordered
concepts – with |C| = 100 it means that the worst case is |SX | = 6.3×1029.



Algorithm 1 Generate summaries SX ⊆ S for X ⊂ C
1: transitive reduction G – graph of O = (�, C)
2: SX ← ∅
3: for X ′ in P(X) do
4: SX = SX ∪ extendcov(G,X ′, SX)
5: end for
6: return SX as SX

of concepts X , defining Sr = ∅, Algorithm 2 computes SXcov ,
i.e. SXcov = extendcov(G,X, ∅). The idea of the algorithm is
simple; given a set of concepts X , it will recursively compute
the covering summaries for each summary of X that can be
obtained by substituting an element x ∈ X by one of its
parents – or any subset of its parents. Line 2 iterates over
the element of X . Line 3 computes the parents of the current
element c – recall that a transitive reduction has been applied
on the graph. Next, the aim is to generate a summary of X
by substituting c by one of its abstract representation (subset
of parents) – line 3. Line 5 builds a summary of X by adding
P ′c the selected subset of parents of x and by removing any
concept from X that are generalized by a member of P ′c, e.g.
x. This ensures to obtain a set of concepts respecting the non-
redundancy property. The faithfulness property is ensured by
the fact that any concept that is replaced is only replaced by
one of its abstract representation. The summarizing property
which ensures that we are processing a summary will next be
tested in line 6. Before considering any summary we check if
it hasn’t been already processed (already in sXcov) and if it’s not
in the set of restricted summaries (in Sr). If this is not the case
we add the current summary into the set of summaries, and,
by applying a recursive procedure, we also add all summaries
covering it by excluding any summary already encountered
(line 7). Considering that the set A(c) is finite for each concept
c ∈ C and that in line 5, the set X ′ obtained is necessarily
covering X , it ensures that the algorithm terminates.

Algorithm 2 extendcov: Given a set of concepts X , a set of
summaries Sr ⊂ S such as ∀Y ∈ Sr,SYcov ⊂ Sr it generates
sXcov = SXcov \Sr with sXcov ⊆ SXcov ⊆ SX . By defining Sr = ∅,
the alorithm generates SXcov .

1: sXcov ← ∅
2: for c in X do
3: Pc = {p|∃(c, p) ∈ E} // parents of c
4: for P ′c in P(Pc) do
5: X ′ = X \ {x ∈ X|P ′c ∩ A({x}) 6= ∅} ∪ P ′c
6: if |X ′| < |X| ∧X ′ 6∈ Sr ∧X ′ 6∈ sXcov then
7: sXcov = sXcov ∪ {X ′} ∪ extendcov(G,X ′, sXcov ∪ Sr)
8: end if
9: end for

10: end for
11: return sXcov

Considering the ordering of concepts introduced in Figure
3, Figure 4 presents the summaries SX for X = {a, b, c, e}
as well as the partial ordering of SX ∪ {X}. This ordering
is built such as two groups of concepts (Y, Y ′) ∈ SX , are
ordered such as Y �SX Y ′ if D(Y ) ⊆ D(Y ′).

r

d e

a b c

Fig. 3. O = (�, C) example of ordering of concepts

{r}

{a, b, c}X−

{a, b, e}X+

{a, b, c, e}X

{a, e} {b, e}

{d, c}

{d, e}

{d}

{e}{a, b} {b, c}{a, c}

{a} {b} {c}

Fig. 4. Considering the set of concepts ordered in Figure 3, ordering of the
set of summaries SX that could be evaluated to summarize any sequence of
annotations X̂ , with X = {a, b, c, e}, X+ = {a, b, e}, X− = {a, b, c}; the
ordering also includes X .

Indeed, in addition to be the basis for computing SXcov and
SX , note also that Algorithm 2 can be used to compute �SX

the partial order of summaries of any X ⊆ P(C), i.e. the
structure presented in Figure 4 for a specific example. Indeed,
in line 5, each X ′ respecting the summarizing property refers
to an ordering X �SX X ′.7

For convenience, we denote X− ⊆ X and X+ ⊆ X , the
two largest subsets of X respecting the non-total redundancy
such as ∀x ∈ X− (resp. X+), @x′ ∈ X,x′ 6= x such as
x′ ≺ x (resp. x ≺ x′). Considering Figure 3 and defining
X = {a, b, c, e} we would have X− = {a, b, c} and X+ =
{a, b, e}. We also use notations such as SX′ = SX′cov ∪SX

′

p−cov ,
for any subset X ′ ⊆ X , e.g. X−, X+.

Interesting properties helping to better understand SX :
Property 1 - If X respects the non-total redundancy we have X− =
X+ = X . More particularly we have X− 6= X ⇔ X+ 6= X and
X− = X ⇔ X+ = X – this is easily proved using the respect or
violation of non-total redundancy.
Property 2 - (Y, Y ′) ∈ SX

cov × SX
cov, Y �S Y ′ =⇒ SY ′ ⊆ SY .

By definition of �S , Y ≺S Y ′ =⇒ D(Y ) ⊂ D(Y ′). It implies
that A(Y ′) ⊂ A(Y ). Knowing that Y ′ ∈ S we have Y ′ ∈ SY and
therefore SY ′ ⊆ SY .
Property 3 - SX+

⊆ SX− – according to property 2.
Property 4 - SX+

cov ⊆ SX−
cov – according to property 2.

Property 5 - SX
cov = SX+

cov .
Property 6 - SX

p−cov = SX− \ SX+

cov .

7We denote �Z the ordering relation over Z ⊆ P(C) according to the
same rule.



These properties are of interest for defining efficient algo-
rithms and heuristics for searching relevant summaries, i.e. dis-
tinguishing best summaries w.r.t the defined objective function
(Eq. 4). Due to space restriction, algorithmic optimization for
searching SX considering a given set of annotations X̂ are
not further discussed. Some details regarding the reduction
of SX that can be applied without introducing additional
technical notions are nevertheless introduced in the following
subsection.

B. Thought on complexity reduction

Additional properties that can be used to reduce the com-
plexity, e.g. by reducing the set SX , are proposed. Computa-
tional time reductions can first be obtained while constructing
SX by applying reduction on X . Two reductions of X are
proposed. (1) Remove redundant concepts from X . It can
easily be proved that, with X ′ �P(C) X , SX ⊆ SX′ . X can
therefore be substituted by the smaller subset X ′ ⊆ X such
as A(X ′) = A(X) and X ′ respects the non-total redundancy
property – this is indeed the more specific covering summary.
Thanks to this construction we ensure that SX = SX′ , with the
interesting property |P(X ′)| ≤ |P(X)| – with most often in
practice |P(X ′)| << |P(X)|. This approach does not reduce
SX . (2) Abstract lower outliers. Any concept x ∈ X that has
been observed a significantly lower amount of time (e.g. only
once) can be substituted by the more specific abstraction of x
(element of A(x) \ {x}) which has the lower mass increasing
the one of x. Even if this strategy may reduce SX for any
cut-off greater that one, considering a cut-off equals to 1 will
distinguish all summaries corresponding the abstraction of at
least two concepts – these summaries are the ones of interest
in most practical applications. This idea can be extended to
reduce the number of summaries to evaluate by considering
the assumption that any interesting summary should factorize
information in order to be meaningful. In accordance to this
assumption we can exclude any summary Y ∈ SX for which
∃Y ′ ∈ SX with Y ′ �SX Y , |Y ′| = |Y |.8 This restriction
can easily be computed by removing useless concept from
G prior to applying Algorithm 1 – this is related to the
hypernym closure. Other strategies could be to remove too
abstract concepts and to consider specific concepts w.r.t the
analysis of specific topological properties – e.g. concepts that
are deep but have a large number of descendants are interesting
candidate for summarization. Those optimizations techniques
are context dependent and must be chosen in agreement with
the defined objective function.

V. EVALUATION & DISCUSSION

Evaluating automatic summarization systems is a complex
task as well as an open research topic – and no gold-
standard dataset exists for evaluating the type of models we
are studying. In this section we discuss preliminary results
on the evaluation of the performance of the proposed model.
This evaluation is based on human defined summaries of

8which means that ∀y ∈ Y , ∃y′ ∈ Y ′ with m(y′) = m(y).

Fig. 5. Example of a radar chart used for sensorial analyses. The weight of
each dimension (concept defined in the poset) corresponds to the number of
(implicit) occurrences. Here, expected summary is Fruit, Vegetal and Floral.

conceptual annotations provided by domain experts related
to odor evaluation. Considering a domain ontology, several
experts have, for several products, provided conceptual anno-
tations in the form of sets of concepts. To a specific product,
the sequence of annotations X̂ has been analysed applying
techniques experts use while performing sensorial analyses.
Using this protocol we obtained radar charts corresponding
to horizontal cuts of the poset, which forms a group of
concepts that are homogeneous in term of concept specificity
- this is the approach used by domain experts to analyse
such data; Figure 5 provides an example. Domain experts
finally build a summary by applying a subjective selection
of concepts analysing such radar charts. For each product,
3 radar charts of different degrees of specificity have been
provided - summaries are further generated by selecting a
subset of the most frequently observed concepts. Note that
the model studied in this paper can be used to generate
more refined summaries composed of concepts having various
degrees of specificity. The preliminary analyses we performed
have shown that considering specific concepts of interest
(those corresponding to the different degrees of specificity)
the proposed model was able to find expected summaries, i.e.
to rank relevant summaries according to the importance given
to each concept in the radar view. Based on the analyses of
the model that have been performed, without applying any
constraints on the degree of specificity of the concepts to
consider, we have also shown that such an approach could be
used to automatize the summarizing process by, interestingly,
generating more informative summaries.

VI. RELATED WORK

Automatic summarization is a broad research topic related
to several domains including Machine Learning, Data Mining,
Natural Language Processing, and Information Retrieval. Two
main types of fully automatic summarization approaches ex-
ist: extraction-based and abstraction-based. Extraction-based
methods try to find the most informative elements (e.g.
sentences) and to remove repetitive elements (e.g. scenes in
videos). Abstraction-based methods first build a representation
of the dataset to further analyze this representation to generate
a summary - in this case the summary may information that
are not explicitly in the original dataset.



Automatic summarization is also intricately linked to clus-
tering and indexing tasks. Literature related to document
representation (e.g. vector and probabilistic models), clustering
and indexing is of interest [8]–[10]. As an example, LDA
[11] clusters the documents and produces a set of topics
into which the documents are clustered. Extensions taking
account of topic hierarchies and correlation between topics
have also been proposed [12], [13]. Approaches for clustering
and labeling a collection of resources indexed by concepts
of a taxonomy have also been studied [14]. Nevertheless,
they remain inspired from information retrieval approaches;
the required objective function of the labeling optimization
problem is reminiscent of the clustering and diversification
processes in information retrieval: the similarity between the
inner items of a cluster is maximized while the outer distance
between items of two distinct clusters is maximized. The
labeling process of clusters is then seen as a continuous
optimization problem of distances whereas the feasible so-
lutions are intrinsically discrete since they are related to a
specificity level of the taxonomic hierarchy. HSLDA [15] also
introduces a hierarchically supervised LDA model to infer
hierarchical labels for a document. It assumes an existing
label hierarchy in the form of a tree (e.g. multiple inheritance
considered in our model is not allowed). The model infers one
or more labels such that, if a label is inferred as relevant to a
document, then all the labels from to the root of the tree are
also inferred as relevant to the document. [16] highlights that
applying the proposed inference rule, it is likely that many
abstract labels will be classified as relevant without control
on the specificity of the labels selected for summarization.
To tackle this issue, they introduces a family of submodular
functions to identify an appropriate set of topics from a
DAG of topics for a group of documents. They characterize
topic appropriateness through a set of desirable properties
such as coverage, diversity, specificity, clarity, and relevance.
Submodular functions are associated to these properties and
mixed through a weighted average mean defining the objective
function of the optimization problem the best summary results
from. The coverage property is central in this approach.
Indeed, in [16], unlike Human-like reasoning, no approximate
reasoning is allowed over this property since it does not deal
with frequency of occurrences, e.g. topics cannot be excluded
from a summary even when they are poorly represented, as
it is the case in our approach. Their axiomatic approach of
the expected properties for summarization is close to our
proposal but their related indicators and their management
differ from ours: our indicators explicitly integrate masses or
beliefs related to concepts; they also allow introducing control
rules in the summarization process.

VII. CONCLUSION

Defining mathematical models enabling to automatically
abstract and summarize bodies of information in a Human-like
manner is a key challenge for Artificial Intelligence. We have
proposed a general model to automatically summarize several
conceptual annotations by considering knowledge representa-

tions providing a priori knowledge in the form of a poset for-
malizing the underlying structure of the concepts composing
the annotations to analyze. A rigorous definition of the prob-
lem and a formal definition of a summary have been proposed;
in addition, several interesting theoretical aspects highlighting
the complexity of the challenge, as well as important properties
of the search space have been discussed. Applications for
data analysis and definition of intelligent agents are numerous
considering the growing number of knowledge representations
today available for a diversity of domains – e.g., gene analyses,
information retrieval, and sensorial analyses. As an example,
the evaluation of the proposed model performed in the domain
of odor analysis, highlights the benefits of our proposal and
shows how it could be used to automatize complex and time-
consuming expert summarizing processes. Interestingly for the
community, source code implementing the proposed approach
as well as datasets are made available.

Additional large-scale experiments in several domains are
currently performed to further criticize the model and discuss
parameters tuning for specific use cases. Extended theoretical
works are also performed to reduce the algorithmic complexity
of finding the best summary w.r.t the proposed model. This
aspect is of major concern to ensure method efficiency and
practicality when applied to large knowledge representations.
Interesting results based on the properties of the search space
highlighted in this paper are currently studied.
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ERRATUM

Two minor corrections of the original paper have been
made in this version - section III-B of the published paper.
These corrections, related to the introduction of βY X and to
its bounds, are minor and do not impact the soundness of
the proposal. Both Erratum have been proposed by Jeremy
Bressand.

Erratum A

In the orginal version it has been asserted that βY X = 1
for any Y ∈ S \ SX . However, the best we can say is
βY X ∈ [0, 1] for any Y ∈ S \ SX . Indeed, considering the
ordering of concepts introduced in Figure 3, let’s define
summaries Y1, Y2 for X = {a, b}:

• Y1 = {d, e}
We have Y1 ∈ P(C) and Y1 respects the non-total
redundancy property : d 6≺ e ∧ e 6≺ d, so we have
Y1 ∈ S . However Y1 doesn’t respect the faithful prop-
erty : e ∈ Y1 ∧ (∀x ∈ X,x 6� e), so we have Y1 6∈ SX .
However, despite Y1 ∈ S \ SX , we have βY1X :

βY1X =
∑

x∈X\{a,b,c,d,e}

m(x) = 0

• Y2 = {e}
We have Y2 ∈ P(C) and Y2 respects the non-total
redundancy property : e 6≺ e, so we have Y2 ∈ S.
However Y2 doesn’t respect the faithful property : e ∈
Y2 ∧ (∀x ∈ X,x 6� e), so we have Y2 6∈ SX .
In this case, with Y2 ∈ S \ SX , we do have βY2X :

βY2X =
∑

x∈X\{c,e}

m(x) =
∑
x∈X

m(x) = 1

Therefore, it demonstrates that the best we can say is βY X ∈
[0, 1] for any Y ∈ S \ SX .

Erratum B

This version also corrects the illustration of expected penalty
function behavior w.r.t. to βY X - cf. we use any f function
ensuring f(βY X) = 1 and f(βY X) = ∞ or any very large
value when βY X → 1 and βY X → 0 respectively.


