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a b s t r a c t 

We propose and advocate basic principles for the fusion of incomplete or uncertain information items, 

that should apply regardless of the formalism adopted for representing pieces of information coming 

from several sources. This formalism can be based on sets, logic, partial orders, possibility theory, belief 

functions or imprecise probabilities. We propose a general notion of information item representing in- 

complete or uncertain information about the values of an entity of interest. It is supposed to rank such 

values in terms of relative plausibility, and explicitly point out impossible values. Basic issues affecting 

the results of the fusion process, such as relative information content and consistency of information 

items, as well as their mutual consistency, are discussed. For each representation setting, we present 

fusion rules that obey our principles, and compare them to postulates specific to the representation pro- 

posed in the past. In the crudest (Boolean) representation setting (using a set of possible values), we 

show that the understanding of the set in terms of most plausible values, or in terms of non-impossible 

ones matters for choosing a relevant fusion rule. Especially, in the latter case our principles justify the 

method of maximal consistent subsets, while the former is related to the fusion of logical bases. Then 

we consider several formal settings for incomplete or uncertain information items, where our postulates 

are instantiated: plausibility orderings, qualitative and quantitative possibility distributions, belief func- 

tions and convex sets of probabilities. The aim of this paper is to provide a unified picture of fusion rules 

across various uncertainty representation settings. 

1. Introduction 

Information fusion is a specific aggregation process which aims 

to extract truthful knowledge from incomplete or uncertain infor- 

mation coming from various sources [15] . This topic is relevant in 

many areas: expert opinion fusion in risk analysis [24] , image fu- 

sion in computer vision [13,14] , sensor fusion in robotics [1,61,86] , 

database merging [18,21] , target recognition [78] , logic [67,68] and 

so forth. Historically the problem is very old. It lies at the ori- 

gin of probability theory whose pioneers in the XVIIth century 

were concerned by merging unreliable testimonies at courts of law 

[98] . Then, this problem fell into oblivion with the development 

of statistics in the late XVIIIth century. It was revived in the late 

XXth century in connection with the widespread use of computers, 
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and the necessity of dealing with large amounts of data coming 

from different sources, as well as the renewed interest toward pro- 

cess human-originated information, and the construction of au- 

tonomous artefacts that sense their environment and reason with 

uncertain and inconsistent inputs. 

Information fusion is often related to the issue of uncertainty 

modelling. Indeed, sources often provide incomplete or unreliable 

information, and even if such pieces of information are precise, the 

fact that they come from several sources often results in conflicts 

to be solved, as inconsistency threatens in such an environment. 

The presence of incomplete, unreliable and inconsistent informa- 

tion leads to uncertainty, and the necessity of coping with it, so 

as make the best of what is available, while discarding the wrong. 

This is the role of information fusion. 

There are many approaches and formats to model informa- 

tion, and several uncertainty theories [51] . The fusion problem 

in the presence of uncertain or incomplete information has been 

discussed in each of these settings almost independently of the 



other ones [49,80,83,101] . Sometimes, dedicated principles have 

been stated in order to characterise the specific features of the 

fusion process in the language of each particular formal setting 

[69,73,87,109] . Several fusion strategies exist according to the var- 

ious settings. These strategies share some commonalities but may 

differ from each other in some aspects due to their specific repre- 

sentation formats (for instance, symbolic vs. numerical). 

This paper takes an inclusive view of the current available prop- 

erties from different theories and investigates the common laws 

that must be followed by these fusion strategies 1 . We argue that 

some properties are mandatory and some are facultative only. The 

latter can be useful in certain circumstances, or in order to speed 

up computation time. It is interesting to notice that although each 

requested property looks intuitively reasonable on its own, they 

can be inconsistent when put together. This happens in the prob- 

lem of merging preferences from several individuals modelled by 

complete preorderings (Arrow impossibility theorem, see the dis- 

cussion in [22] ). However, the basic mandatory properties of infor- 

mation fusion we propose are globally consistent. 

The aim of the paper is to lay bare the specific nature of the 

information fusion problem. This general analysis yields a better 

understanding of what fusion is about and how an optimal fu- 

sion strategy (operator) can be designed. In particular, informa- 

tion fusion differs from preference aggregation, whose aim is to 

find a good compromise between several parties. Noticeably, while 

the result of information fusion should be consistent with what 

reliable sources bring about, a good compromise in a multiagent 

choice problem may turn out to be some proposal no party pro- 

posed in the first stand. So while they share some properties and 

methods, we claim that information fusion and preference aggre- 

gation do not obey exactly the same principles. 

We also wish to show the deep unity of information fusion 

methods, beyond the particulars of each representation setting. To 

this aim, we look at special characteristics of each theory and what 

becomes of fusion principles, what are the fusion rules in agree- 

ment with these principles. We will check whether known fusion 

rules in each theory comply with general postulates of information 

fusion. We explain how these basic properties can be written in 

different representation settings ranging from set-based and logic- 

based representations to possibility theory, belief function theory 

and imprecise probabilities. These comparisons demonstrate that 

the proposed basic properties truly reflect the nature of fusion in 

different settings. 

The rest of the paper is organised as follows. The next sec- 

tion presents general features of what can be called an informa- 

tion item. Such features can be extracted from information items 

in each representation framework. Section 3 presents basic princi- 

ples of information fusion that apply to information items and dis- 

cuss their relevance. Some additional and facultative principles are 

discussed. The problem of merging information is carefully distin- 

guished from the one of preference aggregation. Section 4 instan- 

tiates our principles on the crudest representation of an informa- 

tion item, as a set of possible values. When such a set basically 

excludes impossible values, we show that our setting characterises 

the method of maximal consistent subsets. The case of merging 

propositional belief bases, for which a set of postulates, due to 

Konieczny and Pino-Perez [68] , exists, is then discussed. We com- 

pare them to our fusion principles, and show that the correspond- 

ing Boolean information items in our sense correspond to subsets 

of most plausible values. The next section discusses the fusion of 

information items represented by plausibility rankings of possible 

values, going from ordinal representations to numerical ones in 

1 Preliminary and partial versions of this paper were presented in two confer- 

ences [37,38] . 

terms of possibility distributions. Again, we compare our instan- 

tiated principles with existing proposals, and provide examples of 

rational fusion rules in our sense. Finally the last section discusses 

representations that blend set-based and probabilistic formalisms, 

and account for incomplete information, such as belief functions 

and imprecise probabilities. We instantiate our principles in each 

setting, and study the property of known rules for merging belief 

functions. We also analyse postulates for merging imprecise prob- 

abilities proposed by Peter Walley [109] in the light of our general 

approach. 

2. A general setting for representing information items 

We call what sources of information provide to an end-user in- 

formation items pertaining to some uncertain entity. An informa- 

tion item is understood as a statement, possibly tainted with un- 

certainty, forwarded by some source, and describing what the cur- 

rent state of affairs is. In order to define a set of requirements that 

make sense in different representation settings ranging from logic 

to imprecise probability, we need to describe several features of an 

information item, that we consider essential. 

Consider a non-empty set of possible worlds or state descrip- 

tions or alternatives, one of which is the true one, denoted by 

W = { w 1 , . . . , w | W | } (it will often be the range of some unknown 
precise entity denoted by x ). For simplicity, we restrict ourselves 

to a finite setting. We assume that there are n agents/sources (sen- 

sors, experts, etc.) and the i th one is denoted by e i . Let T i denote 

the information item provided by agent e i about x . For example T i 
can be a set, a probability or a possibility distribution [42] , or an 

ordinal conditional function [104] or a knowledge base. 

In this paper, we do not discuss the fusion of precise set-valued 

entities, such as multisets [17] , where sets represent complex en- 

tities made of the conjunction of several, possibly identical ele- 

ments, representing hierarchical data structures [19] , or related tu- 

ples in relational databases. Such multiset fusion problems can be 

found when cleaning databases containing duplicate data [18] or 

for the summarisation of documents. On the contrary, sets used in 

the representation of uncertain items of information contain mu- 

tually exclusive values 2 . 

Here, an information item indicates which values or states of 

affairs in W are plausible, and which ones are not, for the uncer- 

tain entity or parameter x , according to a source. In that sense an 

information item is completely attached to the source that sup- 

plies it and is not an objective description of the state of affairs. 

It is a representation of knowledge that is likely to be modified by 

additional information. An information item T will then be charac- 

terised by several features: 

• Its support S(T ) ⊆ W, contains the set of values of x considered 

not impossible according to information T . Namely, w 6∈ S(T ) 

if and only if the value w is considered impossible for the 

source offering T . One may see S(T ) as a kind of integrity con- 

straint attached to T . If S(T ) = ∅ then information T is said to 

be strongly inconsistent. The condition S(T ) 6 = ∅ is a weak form 

of (internal) consistency. 
• Its core C(T ) ⊆ W, contains the set of values considered fully 

plausible according to information T . One may see C(T ) as the 

2 Note that if x is a set-valued attribute, we do not consider the fusion of such 

precise set-values, e.g. x = A . But our approach encompasses the case of incomplete 

information for set-valued attributes [46] . For instance, if x is the precise time in- 

terval when the museum is open, a piece of information like “the museum is open 

from 9 to 12 h” is imprecise in the sense that what we know from it is that [9, 

12] ⊆x . If another source claims that “the museum is open from 14 to 17 h.” we may 

conclude that the museum is open from 9 to 12 h and from 14 to 17 h, which here 

is modelled by [9, 12] ∪ [14, 17] ⊆x . However this disjunction is actually obtained by 

the conjunctive fusion of two sets of time spans, namely { A : [9, 12] ⊆A } ∩ { A : [14, 

17] ⊆A }. 



plausibility set attached to T . The idea is that, by default, if in- 

formation T is taken for granted, a first guess for the value of 

x should be an element of C(T ) . Clearly, it follows that C(T ) ⊆

S(T ) , as the most plausible elements are to be found in the 

support. An information item such that C(T ) 6 = ∅ is said to be 

strongly consistent . This strong form of internal consistency can 

be requested for inputs of a merging process, but not necessar- 

ily so for its result. In the following, we assume each source 

provides strongly consistent information. 
• Its induced plausibility ordering : If consistent, information T in- 

duces a partial preorder ºT (reflexive and transitive) on possi- 

ble values, expressing relative plausibility 3 : wºT w ′ means that 

w is at least as plausible as (or dominates ) w ′ according to T . 

We write w ∼T w ′ if wºT w ′ and w ′ ºT w . The concept of plau- 

sibility ordering corresponds to the idea of potential surprise 

already discussed by Shackle [96] , namely a state of affairs is 

all the more implausible as its presence is more surprising. Of 

course, the plausibility ordering should agree with C and S, i.e., 

if w ∈ S(T ) , w ′ 6∈ S(T ) , then w ≻T w ′ ( w is strictly more plausible 

than w ′ ). Likewise if w ∈ C(T ) , w ′ 6∈ C(T ) . 

The triple (S(T ) , C(T ) , ºT ) is not redundant. Indeed, if only ºT 

is known, we still do not know if the least worlds according to ºT 

are possible or not, nor if the best worlds according to ºT are fully 

plausible or not. So, while ºT provides relative information, the 

sets S(T ) , C(T ) respectively point out impossible and fully plau- 

sible worlds according to each source. 

Let us give a number of examples of formats for representing 

information items: 

• Sets : T is of the form of a non-empty subset E T of W , represent- 

ing all the mutually exclusive possible values for x according 

to the information source. The set E T is often called a disjunc- 

tive set, representing the information possessed by an agent (an 

epistemic state). Then S(T ) = C(T ) = E T . And w 1 ∼T w 2 when 

w 1 , w 2 both belong to E T or both belong to its complement. 

Moreover, w 1 ≻T w 2 , ∀ w 1 ∈ E T , and ∀ w 2 6∈ E T . An alternative 

interpretation of E T is a set of plausible values, and then S(T ) = 

W and C(T ) = E T . This latter view is sometimes used in belief 

revision and the related approaches to fusion, as we shall see. 

Important special cases of set-valued information are 
• Vacuous information , expressing total ignorance is denoted 

by T ⊤ . Then S(T ⊤ ) = C(T ⊤ ) = W and the plausibility order- 

ing is flat in the sense that w ∼T ⊤ w ′ ∀ w, w ′ ∈ W . 
• Complete knowledge expressing that the actual world is 

known to be w is denoted by T w : then S(T w ) = C(T w ) = 

{ w } . 
Note that T can take the form of a propositional knowledge 

base K [68] ; then W is the set of interpretations of a propo- 

sitional language L . Then E T = [ K] the set of models of K . Alter- 

natively, if T represents information about a numerical parame- 

ter, it may take the form of an interval [ a , b ] on the real line 4 . 

This case is studied in more details in Section 4 
• Plausibility relations : we call an information item ordinal if it 

consists of the triple (S(T ) , C(T ) , ºT ) . If only the plausibility 

ordering is provided, one may accept that by default, the max- 

imal elements according to ºT form the core of T . However, 

we can find examples of information items for which no world 

is fully plausible. For instance, if ºT stems from a probability 

distribution p , the most probable situation may not be very 

probable: it is clear that { w : p(w ) = 1 } = ∅ , generally, since 

3 In some settings, there may exist several candidates for ºT , like the setting of 

belief functions, see Section 7 . In some cases, the plausibility ordering may be par- 

tial. 
4 Then, W is no longer finite; however, our setting can be extended to the infinite 

case. 

∑ 

w ∈ W p(w ) = 1 . Likewise, by default we can assume the sup- 

port of ºT is W itself unless otherwise specified. This case is 

studied in more details in Section 5 . This format encompasses 

the previous one when ºT is complete and induces only two 

levels. 
• A possibility distribution [50] , namely a mapping π T : W → L 

where L is a totally ordered set of plausibility levels, its bottom 

0 encoding impossibility, and its top 1 encoding full plausibility. 

The existence of a scale L is the key difference between this for- 

mat and the one of plausibility relations, where we only have 

ºT , not π T . A possibility distribution π T is then more expres- 

sive than the plausibility ordering it induces, as the use of scale 

L enables the user to say that some situation is fully plausible 

(and not only the most plausible) or some other is impossible 

(and not only the least plausible). More numerical settings for 

possibility distributions can be used. Then S(T ) = { w : π (w ) > 

0 } is the support and C(T ) = { w : π (w ) = 1 } is the core in the 
sense of fuzzy sets, viewing π T as a membership function of a 

fuzzy set. The plausibility ordering ºT is induced by π T . Note 

that the possibility scale L can be numerical or not. In the most 

qualitative situation, it could be a finite chain of symbolic lev- 

els. In contrast, we can let L = [0 , 1] and use numerical degrees 

of possibility (often interpreted as upper probability bounds 

[50] ). Alternatively, (im)possibility levels can be encoded by in- 

tegers, as done by Spohn [104] . However, in that case the scale 

is one of implausibility, namely a mapping κT : W → N such as 

κT (w ) = 0 for normal situations, and w is all the less plausi- 

ble as κT (w ) is greater (then one may let πT (w ) = k −κT (w ) for 

some integer k > 1 [50] ). This case is studied in more details in 

Section 6 . 
• A mass assignment m T that defines belief and plausibility func- 

tions in Shafer’s theory of evidence [97] . A mass assignment is 

formally a random set, i.e., a probability distribution over possi- 

ble choices of epistemic states, m T ( E ) being the probability that 

the best epistemic state representing T is E . This representa- 

tion is more general than a mere probabilistic representation; 

for the latter, m T ( E ) > 0 only if E is a singleton. One choice 

of the induced triple (S(T ) , C(T ) , ºT ) can rely on the so-called 

contour function (plausibility of singletons, understood as the 

probability of hitting them by sets E ). This case is studied in 

more details in Section 7 . 
• A convex set of probability measures [109] : it may represent ei- 

ther a set of possible probabilistic information items (it is a sec- 

ond order 0–1 possibility distribution) or the state of belief of 

an agent described via desirable gambles (see Section 8.1 for 

details). The triple (S(T ) , C(T ) , ºT ) is then for instance derived 

from the upper probability of singletons. This more complex 

case is studied in some details in Section 8 . 

Note that these frameworks are listed in increasing order of ex- 

pressiveness, so that any information item expressible in one set- 

ting can be encoded in the settings further down (possibly adding 

some extra information, for instance if we encode a plausibility re- 

lation in the form of a possibility distribution). 

Finally we must be able to compare two items of information 

in terms of their relative informativeness and their mutual consis- 

tency. 

• Information ordering denoted by ⊑ : it is a partial preorder rela- 

tion (reflexive, transitive) on information items. T ⊑ T ′ expresses 

that T provides at least as much information as T ′ (said oth- 

erwise: is more precise, more specific). In particular, the infor- 

mation ordering is defined such that T ⊑ T ′ implies S(T ) ⊆ S(T ′ ) 

and C(T ) ⊆ C(T ′ ) . It makes full sense if T is strongly consistent 

( C(T ) 6 = ∅ ), and its meaning becomes trival if T is strongly in- 

consistent. In the case of set-based representations, this order- 

ing coincides with set-inclusion, and in possibility theory, fuzzy 



set inclusion. It is less obvious for ordinal plausibility represen- 

tations (see Section 5 ) and belief functions (see Section 7 ) as 

there are several options. The information ordering is also more 

difficult to define between pieces of information having empty 

cores as it denotes some internal inconsistency that may over- 

ride the notion of informativeness. 
• Imprecision index : this is a measure II ( T ) of how much informa- 

tion is contained in an information item T . If T reduces to a set 

of possible values E T , and then it can be the cardinality of E T in 

the finite set setting (or its logarithm). More generally, it could 

be some index of non-specificity for possibility measures or be- 

lief functions [114,115] . 

Note that T ⊑ T ′ conveys more meaning than simply saying that 

T ′ is more imprecise than T . The latter could be expressed by 

comparing imprecision indices as II ( T ′ ) ≥ II ( T ). Actually, T ⊑ T ′ also 

means that T ′ can be derived from T : the relation ⊑ should be 

viewed as a (generalised) entailment relation as well, while if II ( T ′ ) 

≥ II ( T ), nothing forbids T and T ′ from being totally inconsistent 

with each other. 

• Mutual consistency : two items of information T and T ′ will 

be called weakly mutually consistent if their supports overlap 

( S(T ) ∩ S(T ′ ) 6 = ∅ ), and strongly mutually consistent if their cores 

overlap ( C(T ) ∩ C(T ′ ) 6 = ∅ ). However, the latter property is vio- 

lated by information items having empty cores as they already 

display a form of internal inconsistency. 

We can give a number of examples of situations where such 

kinds of information item appear naturally: 

• In the merging of expert opinions, experts provide knowledge 

about parameters of components of a complex system (for in- 

stance, failure rate of a pump in a nuclear power plant), in 

the form of an uncertainty distribution that can be a subjective 

probability distribution [24] , or yet a likelihood function [57] , 

or a possibility distribution [94] . 
• The problem of syntax-independent merging of logical 

databases [69] comes down to merging their sets of mod- 

els. 
• In sensor fusion, information provided is often modelled by 

random sets that account for reliability coefficients [61,86] . 

Namely, sensor readings can be mapped to a set of decision hy- 

potheses modelled by mass functions [97] . 

3. General postulates of information fusion 

Let T be the set of possible information items of a certain for- 

mat. It is assumed that the input information items are strongly in- 

ternally consistent ( C(T i ) 6 = ∅ ). A n -ary fusion operation f n is a map- 

ping from T n to T , that operates the merging process: 

T = f n (T 1 , . . . , T n ) 

denotes the result of the fusion of a set of information items T i . 

Following the terminology in [5] , a fusion operator is a collection 

of fusion operations f n , n ∈ N , n ≥ 1 for all arities. By convention 

f 1 (T ) = T . When this is not ambiguous we shall replace f n by f . 

The process of merging information items, supplied by sources 

whose reliability levels are not known to differ from one another, 

is guided by a few general principles, already proposed in [45,49] 

that we shall formalise in the following: 

• It is a basically symmetric process as the sources play the same 

role and supply information of the same kind; 
• In the fusion process, we consider as many information items 

as possible as reliable, so as to get a result that is as precise 

and useful as possible, however not arbitrarily precise, if there 

is not enough information to be precise. The result should be 

faithful to the level of informativeness of the inputs. 

• Information fusion should solve conflicts between sources, 

while neither dismissing nor favouring any of them without a 

reason. 

A prototypical example of a fusion situation can be the follow- 

ing. Suppose we have three witnesses i , each of whom provides 

a piece of information T i . Suppose that T 2 and T 3 are compatible, 

but that the truth of T 1 is incompatible with T 2 and T 3 . In case 

all sources inform on the same issue, and are considered equally 

relevant, an intuitively natural way of making the best of such in- 

formation is to consider the true situation to be in agreement with 

either the part of the information common to witnesses 2 and 3, 

or with the information provided by witness 1. This is achieved 

by a conjunctive combination of information items T 2 and T 3 fol- 

lowed by a disjunctive merging of the result with information item 

T 1 . It respects symmetry, does not dismiss any of the witnesses, 

and it is the most precise conclusion one may legitimately draw. 

The purpose of this paper is to provide postulates embodying the 

above principles underlying the fusion process at work in such a 

kind of situation, and to instantiate them in different formal set- 

tings where the pieces of information T i can take various formats 

recalled in the previous section. In each case, we lay bare what is 

the main fusion operation that respects these principles. 

A fusion operation with such an agenda was called arbitration 

by Revesz [93] and taken over by Liberatore and Schaerf [73] , in 

the set-theoretic or logical framework. These principles are im- 

plemented in the postulates listed below, called basic properties , 

which are meant to be natural minimal requirements, independent 

of the actual representation framework. 

3.1. Basic properties 

The postulates we consider essential and that any information 

fusion process should satisfy are as follows: 

Property 1: Unanimity 

The result of the fusion should propose values on which all 

sources agree and reject those values rejected by all sources. 

Formally it reads: 

(a) Possibility preservation : if all sources consider some 

world is possible, then so should the result of the fu- 

sion. It means in particular that 

n 
⋂ 

i =1 

S(T i ) ⊆ S( f (T 1 , . . . , T n )) . 

(b) Impossibility preservation : if all sources believe that 

some world is impossible, then this world is consid- 

ered impossible after fusion. Mathematically, this can 

be expressed as 

S( f (T 1 , . . . , T n )) ⊆ S(T 1 ) ∪ · · · ∪ S(T n ) . 

Property 2: Information monotonicity 

When a set of agents provides less information than another 

set of non-disagreeing agents, then fusing the former set of 

information items should not produce a result that is more 

informative than fusing the latter set of information items. 

Formally, it reads: 

If ∀ i, T i ⊑ T ′ 
i , then f (T 1 , . . . , T n ) ⊑ f (T ′ 1 , . . . , T 

′ 
n ) , provided that 

inputs are globally strongly consistent ( C(T 1 ) ∩ · · · ∩ C(T n ) 6 = 

∅ ). 

Property 3: Consistency enforcement 

This property requires that fusing individually consistent in- 

puts should give a consistent result. In particular, at the very 

least one should require that 

S( f (T 1 , . . . , T n )) 6 = ∅ . 



Property 4: Optimism 

In the absence of specific information about source relia- 

bility, one should assume that as many sources as possible 

are reliable, in agreement with their observed mutual con- 

sistency. In particular, 

• If all the inputs are mutually consistent, then the fusion 

should preserve the information supported by every in- 

put: 

If 
⋂ 

i C(T i ) 6 = ∅ then f (T 1 , . . . , T n ) ⊑ T i , ∀ i = 1 , . . . ,n . 
• If all the inputs are mutually inconsistent, it should be 

assumed that at least one source is reliable. 

More generally, this basic property comes down to assuming 

that any group of consistent sources is potentially reliable, 

and at least one of this group is truthful. 

Property 5: Fairness 

The result of the fusion process should keep something from 

each input, i.e., ∀ i = 1 , . . . ,n, S( f (T 1 , . . . ,T n )) ∩ S(T i ) 6 = ∅ . 

Property 6: Insensitivity to vacuous information 

Sources that provide vacuous information should not affect 

the result of fusion. That is, f n (T 1 , . . . , T i −1 , T 
⊤ , T i +1 , . . . , T n ) = 

f n −1 (T 1 , . . . , T i −1 , T i +1 , . . . , T n ) . 

Property 7: Commutativity 

Inputs from multiple sources are treated on a par, and the 

combination should be symmetric. This is represented as 

f (T 1 , . . . , T n ) = f (T i 1 , . . . , T i n ) for any permutations of indices. 

Property 8. Minimal commitment 

The result of the fusion should be as little informative as 

possible (in the sense of ⊑ ) among possible results that sat- 

isfy the other basic properties. 

The basic properties proposed here in generality have counter- 

parts in properties considered in some particular settings; see es- 

pecially [109] for imprecise probability, [87] for possibility theory 

and [68] for knowledge bases. We shall compare their proposals 

with the above more general one in the sections devoted to these 

specific frameworks. 

Besides, note that some of the above principles are expressed 

using the supports of information items, and some others use their 

cores. The choice was guided by the concern to make each prop- 

erty as little demanding as possible, while still meaningful. This 

choice can of course be debated, and some of these postulates can 

be written using cores only, but their strength and possibly their 

intuitive nature are then altered. However, some of these axioms 

as stated above (1, 3, 5) trivialise when merging information items 

whose support is W . This is discussed below. 

3.2. Arguing for the basic postulates and some variants 

In the following we provide the rationale of the above postu- 

lates and discuss possible variants for them. 

3.2.1. Unanimity 

The corresponding basic postulate is the weakest form of una- 

nimity one may require: accepting what is unanimously possible, 

and rejecting what is unanimously impossible. This property ad- 

mits of variants of various strength. First, one might replace sup- 

ports by cores. Then, Property 1a means that the result should con- 

sider as fully plausible at least all worlds judged fully plausible 

by all sources (plausibility preservation). The core-based counter- 

part to Property 1b is rather demanding and more debatable, as 

the most plausible worlds after fusion could well be among worlds 

that are not considered fully plausible by some source. 

A natural, often found, form of unanimity is: 

Idempotence : ∀ i, T i = T , f (T 1 , . . . , T n ) = T , 

However, adopting it in all situations forbids reinforcement ef- 

fects to take place in case sources can be assumed to be indepen- 

dent. Idempotence could be adopted if it is not known whether 

the sources are independent or not [49] . If sources are indepen- 

dent, one expects possible worlds judged somewhat implausible by 

many sources to be more implausible globally. 

The basic postulate takes a form that leaves room to reinforce- 

ment effects, while minimally respecting the agreement between 

sources. It trivially implies that if all sources supply empty infor- 

mation, the result of the fusion will be empty as well. Likewise if 

all information item supports are the same, the result of the fu- 

sion will have the same support. For instance, if all sources claim 

the only possible world is w, then so is the global result. 

Somewhat stronger than our postulate, yet weaker than idem- 

potence is the following axiom that is used in social choice: 

Ordinal unanimity If ∀ i, ºT i 
= ºT , then º f (T 1 , ... ,T n ) 

= ºT . 

Ordinal unanimity can be restricted to each pair of worlds 

(w, w ′ ) : 

Local ordinal unanimity 

∀ w, w ′ , if ∀ i, w ºT i 
w ′ , then w º f (T 1 , ... ,T n ) 

w ′ . 

Ordinal unanimity is a global notion that is weaker than local 

ordinal unanimity since the global form only constrains the result 

when all information items T i generate the same plausibility order- 

ings, while the latter property only applies to the part of W × W 

where all ordering relations coincide. Local Ordinal Unanimity is a 

special case of the so-called Arbitration property used in knowl- 

edge base merging [69] 5 , a variant of which can be written here in 

the case of n sources: 

Arbitration if ∀ i = 1 , . . . , n, w ºT i 
w i , and ∀ i, j = 1 , . . . , n, 

w i ∼ f (T 1 , ... ,T n ) 
w j , then ∀ i = 1 , . . . , n, w º f (T 1 , ... ,T n ) 

w i . 

3.2.2. Information monotonicity 

This basic property should be restricted to when information 

items supplied by sources do not contradict each other. Indeed, if 

conflicting, it is always possible to make these information items 

less informative in such a way that they become mutually consis- 

tent. In that case the result of the fusion may become artificially 

very precise, by virtue of the Optimism postulate, and in particular, 

more precise than the union of the supports of original conflicting 

items of information (as the intersection of enlarged supports is 

performed). 

One can strengthen this postulate by requesting the preserva- 

tion of strict relations: 

Strict information monotonicity If ∀ i, T i ⊑ T ′ 
i , and ∃ j, T j ⊏ T ′ 

j then 

f (T 1 , . . . , T n ) ⊏ f (T ′ 1 , . . . , T 
′ 
n ) , whenever C(T 1 ) ∩ · · · ∩ C(T n ) 6 = 

∅ . 

This is generally too demanding in purely Boolean representa- 

tion settings. Even set-intersection and set-union violate it. How- 

ever, it makes more sense in numerical representation settings. 

3.2.3. Consistency enforcement 

This postulate is instrumental if the result of the fusion is to 

be useful in practice: one must extract something meaningful and 

non-trivial, even if tentative, from the available information, even 

if sources contradict one another. However, when the representa- 

tion framework is sufficiently refined, there are gradations in con- 

sistency requirements, and this property can be interpreted in a 

5 This name is borrowed from [93] , and [73] , but the Arbitration property here 

seems to be only loosely related to the notion of arbitration operation in the sense 

of [73] . 



more flexible way. For instance, re-normalisation of belief functions 

or possibility distributions obtained by fusion is not always com- 

pulsory [99] , even if sub-normalisation expresses a form of incon- 

sistency. Likewise, in the symbolic setting, where knowledge is ex- 

pressed by means of logical formulas, one may relax this assump- 

tion by adopting a paraconsistent approach whereby each formula 

is either supported, denied, unknown or conflicting with respect to 

a set of sources (as for instance in the approach by Belnap [6] ). 

A more demanding variant of this postulate is obtained replac- 

ing support by core. Then the enforcement of weak consistency is 

replaced by a requirement of strong consistency of the result. 

3.2.4. Optimism 

This postulate underlies the idea of making the best of the 

available information. If items of information are consistent and 

no other information is otherwise available, there is no reason to 

question the reliability of the sources. This means that if all the in- 

puts are globally consistent with one another, then the information 

provided by each source should be preserved, i.e., f (T 1 , . . . , T n )) ⊑ 

T i , ∀ i = 1 , . . . , n, or at least S( f (T 1 , . . . , T n )) ⊆ S(T i ) , ∀ i = 1 , . . . , n . In 

that case, we assume that they all supply correct information, so 

that the result should be more informative than, and in agreement 

with each original information item, which is clearly an optimistic 

attitude. This postulate is implicitly at work in belief revision [56] 

as well, since in the AGM axioms 6 it is assumed that when the 

new information does not contradict the prior one, the revision 

comes down to an expansion [2] , which is, in our sense, an op- 

timistic fusion operation [32] . 

In case of inconsistent sources, this formal requirement is no 

longer sustainable. Note when inputs are globally inconsistent 

(in particular, strongly so: 
⋂ 

i S(T i ) = ∅ ), and we accept Impos- 

sibility Preservation property 1b, then the support of the result 

should be contained in the union of the supports of inputs, i.e., 

S( f (T 1 , . . . , T n )) ⊆ S(T 1 ) ∪ · · · ∪ S(T n ) . This makes sense provided 

that at least one source is supposed to be reliable (still a form 

of optimism). Requiring equality in the latter inclusion would be 

a very cautious requirement (assuming that only one source is re- 

liable). It sounds natural for two sources only, but may be found 

overcautious in the case of many sources [45] . So one usually ex- 

pects a strict inclusion S( f (T 1 , . . . , T n )) ⊂ S(T 1 ) ∪ · · · ∪ S(T n ) . More 

specifically, one may expect that for each subset I of mutually con- 

sistent sources, there is a piece of information T I ⊑ T i , ∀ i ∈ I such 

that T I ⊑ f (T 1 , . . . , T n ) , and that (this is where optimism comes 

in) f (T 1 , . . . , T n ) should be the most specific output satisfying this 

condition. One is led to choose I as a maximal set of consistent 

sources, so as to select T I as informative as possible (although Min- 

imal Commitment will prevent an arbitrarily precise choice). Of 

course, there are several possible choices of maximal subsets I of 

consistent sources. 

3.2.5. Fairness 

It ensures that all input items participate to the result. In par- 

ticular, when inputs are globally inconsistent (especially, 
⋂ 

i S(T i ) = 

∅ ), the fusion result treats all sources on a par. For instance, if T 1 is 

inconsistent with T 2 and T 3 that are mutually consistent, then hav- 

ing S( f (T 1 , . . . , T n )) = S(T 2 ) ∩ S(T 3 ) is optimistic but it is unfair to 

T 1 . 

Fairness also implies no source is privileged in the following 

sense: 

Proposition 1. If the Fairness axiom is satisfied the following 

property holds: 

6 named from Alchourrón, Gärdenfors and Makinson [2] . 

No Favouritism : the fusion result never implies any single input 

inconsistent with some of the other inputs: it does not hold that 

f (T 1 , . . . , T n ) ⊑ T i for any T i such that ∃ j S(T j ) ∩ S(T i ) = ∅ , 

Proof Due to Fairness, if S(T j ) ∩ S(T i ) = ∅ then ∃ A i ⊆ S(T i ) , A j ⊆

S(T j ) , non-empty sets such that A i ∪ A j ⊂ S( f (T 1 , . . . , T n ) . As a con- 

sequence S( f (T 1 , . . . , T n ) 6⊆ S(T i ) , and so f (T 1 , . . . , T n ) 6⊑ T i . 

So this axiom favours no source by preventing any input in- 

formation item from being the global output result in case of in- 

consistency. Note that different versions of the idea of fairness can 

be found in the literature. In particular, in [67,68] , where informa- 

tion items are consistent knowledge bases with sets of models E i , 

they propose the condition that f (E 1 , . . . ,E n ) ∩ E i 6 = ∅ either holds 

for each i , or for none. The possibility that it holds for none (that 

is, the result of the fusion may contradict all information items 

in case of conflict) is a matter of debate from a knowledge fu- 

sion point of view; it may be acceptable when fusing preferences, 

which is a matter of building a compromise, and also if the sets E i 
correspond to cores of information items T i ; but it sounds strange 

if they correspond to supports. In the latter case, as we assume no 

information about reliability of sources, we take it for granted that 

the final result should keep some memory of all sources. Replacing 

supports by cores in our fairness condition is more demanding and 

may sound questionable. 

One way to strengthen the Fairness axiom is to combine it with 

Optimism and to require that the partial information from each 

source retained in the final result be common to as many sources 

as possible: 

Optimistic fairness : For any subset I of consistent sources, 

S( f (T 1 , . . . ,T n )) ∩ 
⋂ 

i ∈ I S(T i ) 6 = ∅ . 

This condition will improve the informativeness of the result, 

as it will enforce values considered possible in the result to be in 

agreement with maximal consistent subsets of sources. 

3.2.6. Insensitivity to vacuous information 

This one looks obvious, even redundant, but dispensing with it 

may lead to overly uninformative results. In fact, this postulate im- 

plicitly admits that a non-informative source is useless and irrele- 

vant, and is assimilated to one that does not express any opinion. 

In other words this postulate does not allow for interpreting the 

input as meta-information, like a source declaring that one cannot 

know anything more informative than what is declared. There is no 

“contraction” 7 effect allowed by acquiring poor information. It is 

also the only relationship explicitly requested at this level of gener- 

ality, between fusion functions of different arities. This postulate is 

typical of information fusion, and excludes fusion rules like some 

forms of averaging that are always sensitive to vacuous information 

(if represented by, for instance uniform distributions). Of course, 

in some uncertainty theories, averaging is built-in, and is useful 

(e.g., in probability or belief function theories). But it arguably ad- 

dresses other tasks than the one considered here (like estimation, 

where independence assumptions are needed, and precise obser- 

vations are available, or the explicit discounting of sources [97] , 

which is a form of contraction [2] ). 

3.2.7. Commutativity 

This is really characteristic of fusion processes as opposed to re- 

vision. Revision is about how input information should alter prior 

knowledge. This process is fundamentally asymmetric: generally, 

priority is given to the input information and the process is driven 

by the minimal change principle [2,32] (the prior information is 

minimally changed so as to accept the input information). On the 

7 In the sense of belief revision theory [2] . 



contrary, the kind of fusion process we deal with here has to 

do with information items obtained in parallel. So, commutativ- 

ity makes sense, if no information is available on the reliability of 

sources. One obvious objection against commutativity is that in- 

formation items are often not equally reliable. However, a natural 

way of handling an unreliable information item is to use the dis- 

counting method [97] in order to get a reliable but less informa- 

tive information item. Typically, assume a set-valued information 

item of the form x ∈ T is reliable with probability p . Then this is 

equivalent to an information item T p in the form of a random set 

granting mass p to T and mass 1 − p to the whole set W . Then the 

asymmetric merging of unreliable set-like information items comes 

down to the symmetric merging of mass assignments in evidence 

theory (in fact, possibility distributions π such that π (w ) = 1 , for 

x ∈ T , and 1 − p otherwise). However, we do not consider priori- 

tised merging where information coming from unreliable sources 

is discarded if inconsistent with information coming from more re- 

liable ones. This topic is discussed in [26] for logical databases. The 

framework of prioritised merging can encompass both fusion and 

revision. 

3.2.8. Minimal commitment 

This is a very important postulate that applies in many circum- 

stances. It comes down to saying we should never express more 

information than the one that is actually available. It appears in 

all uncertainty theories in a specific form as we shall see later, in- 

cluding in logic-based approaches. It is in some sense the converse 

of the closed world assumption where any statement not explicitly 

formulated is considered to be false. Here we consider possible any 

state of affairs not explicitly discarded. This is a cautious principle 

that is nicely counterbalanced by the Optimism postulate, and this 

equilibrium is sometimes useful to characterise the unicity of fu- 

sion rules: Optimism provides an upper limit to the set of possible 

worlds and minimal commitment a lower limit. 

An important consequence of Optimism along with some of the 

other postulates can be asserted: 

Proposition 2. Suppose 
⋂ 

i C(T i ) 6 = ∅ . If a fusion operation f satisfies 

Optimism and any of Possibility Preservation 1a or Minimal Commit- 

ment, then for globally consistent information items T i , i = 1 , . . . , n, 

we have S( f (T 1 , . . . , T n )) = 
⋂ 

i S(T i ) . 

Proof . From Optimism we have S( f (T 1 , . . . , T n )) ⊆
⋂ 

i S(T i ) . 

From Minimal Commitment there is no other reason to discard 

more possible worlds. Alternatively, Possibility Preservation en- 

sures 
⋂ 

i S(T i ) ⊆ S( f (T 1 , . . . , T n )) , hence in either case, we get 

S( f (T 1 , . . . , T n )) = 
⋂ 

i S(T i ) . 

Note that, in some representation settings, other postulates 

than Optimism may further restrict the set of possible worlds. 

3.3. Facultative additional properties of fusion operations 

Some other properties are often either required or implicit in 

information fusion. But they turn out to be debatable in some sit- 

uations. 

3.3.1. Universality 

It has two complementary aspects: 

Unrestricted domain : ∀ T i ∈ T , ∃ T ∈ T , T = f (T 1 , . . . , T n ) . 

Attainability : ∀ T ∈ T , ∃ T 1 , . . . , T n ∈ T , such that T = f (T 1 , . . . , T n ) . 

Universality is one used in social choice, but it may apply to any 

aggregation problem. Indeed, Unrestricted Domain claims we must 

be able to get a result whatever items of information are merged. 

Moreover, Attainability says that no item of information should be 

excluded as a possible result. 

Strictly speaking, Universality is in fact a consequence of our 

postulates since: 

• Attainability is trivially implied by Insensitivity to Vacuous In- 

formation: ∀ T ∈ T , T = f (T , T ⊤ ) . 
• Consistency Enforcement is a strong version of Unrestricted Do- 

main whereby the combined result should not only exist, but 

be consistent. 

However, since we define the fusion operation as a mapping 

from T n to T , it requires the result be expressed in the same 

kind of representation setting as the inputs. This feature introduces 

a constraint on the possible fusion rules, that may be damaging 

in some situations: it is a closure requirement (namely all results 

should lie in the class T ). For instance, merging knowledge bases 

should yield a single knowledge base (not a subset thereof), merg- 

ing possibility distributions should yield a possibility distribution 

(not a more general object like a belief function structure), etc. So 

this property could be relaxed to account for the possibility of in- 

creasing the level of generality of the obtained result (allowing a 

larger class of operations that yield results outside T , the most 

general being convex probability sets), especially in the case of 

conflicting inputs, or when the fact of forcing the result to be in 

T rules out certain modes of fusion that sound natural in other 

respects. For instance, merging probability measures into another 

one requires a weighted average [81] , which rules out conjunctive 

and disjunctive modes of fusion (that yield belief functions) [45] . 

So we may in the following admit that in some situations, the re- 

sult of the fusion is not necessarily a member of the specific class 

T where inputs lie, but may lie in a larger class. 

3.3.2. Non-sensitivity 

When merging consistent items, increasing (resp. decreasing) 

the informativeness of one of them slightly should result in a 

slightly more (resp. less) informative result. This is a property of 

robustness of the aggregation operation, that sounds natural for 

numerical aggregation schemes. It can be expressed as follows: 

For all n -tuples of globally consistent information items T i , i = 

1 , . . . , n, ∃ k > 0, such that ∀ j = 1 , . . . , n if T j ⊑ T ′ 
j , then 

d( f (T 1 , . . . , T j , . . . , T n ) , f (T 1 , . . . , T j−1 , T 
′ 
j , T j+1 , . . . , T n )) ≤ k · d(T j , T 

′ 
j ) 

for some informational distance d between pieces of information. 

Under the same consistency assumptions, Non-Sensitivity as 

formulated above is stronger than the mere continuity of the ag- 

gregation operation. Semantically, this property requires that fu- 

sion should not be over-reactive to small informational changes. 

Note that again this property may not make sense for conflicting 

inputs, as they may become consistent in case of a small relax- 

ation, thus possibly resulting in a dramatic change of the result, 

if Consistency Enforcement and Fairness are respected. This is the 

case in a purely Boolean setting. In numerical settings, conjunc- 

tive rules like Dempster rule of combination for belief functions 

are even discontinuous in the presence of severely (but not fully) 

conflicting information [45] . 

3.3.3. Associativity 

f ( f (T 1 , T 2 ) , T 3 ) = f (T 1 , f (T 2 , T 3 )) . This property is useful to fa- 

cilitate the computation of the fusion process, but it has no other 

motivation pertaining to the nature of the fusion process. If a fu- 

sion operation can be associative, so much the worth. However, the 

lack of associativity is not a fatal flaw (e.g., averaging operations 

are not), if the fusion operation can be defined for all arities. 

3.3.4. Independence of irrelevant alternatives 

(IIR): It means that the resulting relative plausibility between w 

and w ′ only depends on the relative plausibility between w and w ′ 

declared by the sources. This is yet another property that comes 



from social choice. It is satisfied by the union and intersection of 

sets or fuzzy sets. However, in some settings, especially the one 

of belief functions, the relative plausibility between two possible 

worlds after fusion is influenced by other factors not just the rel- 

ative plausibilities of the two worlds in the original information 

items. The same is true in general when pieces of information are 

conflicting. So this property cannot be within the set of basic pos- 

tulates. Nevertheless note that the Local Ordinal Unanimity prop- 

erty underlies a form of IIR. 

3.3.5. Majority 

Consider a countable set of non-vacuous information 

items { T 1 , T 2 , . . . } such that T i = T 6 = T 1 , ∀ i > 1 . Then ∃ n > 2 , 

f n (T 1 , . . . , T n ) = T . 

This property, which sounds very natural in the case of voting 

processes, may also sound fine for fusion processes if n is large 

enough. It however implicitly presupposes that sources are inde- 

pendent and identical (similar to the statistical i.i.d. 8 assumption), 

so that when n increases, the source that proposes something dif- 

ferent from other ones appears more and more like an outlier, and 

can be dismissed. Otherwise in the case of not provably indepen- 

dent sources, this property sounds debatable. And in fact, it is not 

credible that in a real information fusion problem, there exists a 

large number of independent sources. If many sources are avail- 

able, it is very likely that some of them will be redundant (for in- 

stance, it is hard to find 100 experts agreeing on some issue of 

interest while having strictly different backgrounds). In the case of 

voters, they are legally considered independent (even if they have 

read the same newspapers), so that the majority rule is used for 

preference aggregation (see next subsection) to serve the purpose 

of democracy. But it does not sound like a basic universal postulate 

for information fusion. Finally it contradicts the Fairness axiom, as 

f n (T 1 , . . . , T n ) eventually does not take T 1 into account any more. 

Again, Majority presupposes a “the more, the more likely” assump- 

tion, which we do not regard as universal unless one can be sure 

about the independence of sources. 

3.4. Information fusion vs preference aggregation 

Information fusion takes a set of imperfect inputs (imprecise 

and uncertain) from different sources and produces a single output 

which should best reflect what is known about the true state of 

the world. In other words, in this paper, information items model 

what the world is supposed to be. In the case of preference ag- 

gregation, the items of information reflect how the world should 

be, according to sources that can represent individuals (in voting 

theory) or criteria (in multifactorial evaluation) [107] . In a nutshell, 

the aim of preference aggregation is to find a compromise between 

antagonistic options, while the aim of information fusion is to find 

the truth. This difference of perspective implies that methods that 

make sense for preference aggregation may sound debatable for 

information fusion. 

For example, if one source states that the room is hot while the 

other states the room is cold (e.g. sources are thermometers), then 

the role of merging or fusion is to resolve such inconsistency, pos- 

sibly by using some other kind of information such as reliability 

of sources, in order to find out a correct range of temperature. If 

the two words hot and cold are viewed as totally incompatible de- 

spite their fuzzy nature, the outcome is unlikely to be warm , a re- 

sult that is not reported by any source. However, if when deciding 

a duration for holidays, the husband prefers a short break of one 

week and the wife prefers a long vacation period of 4 weeks, then 

a trade-off could be a two week holiday, a trade-off originally not 

8 Independent and identically distributed random variables. 

suggested by any of the sources but plausibly acceptable by both 

of them, eventually. Therefore, information fusion or knowledge 

merging should focus on outcome(s) supported by some sources 

and not on possible worlds not suggested by any, whilst prefer- 

ence aggregation tries to find a compromise that maximises the 

satisfaction of most parties involved (or in other words, minimise 

some kind of distance between the merged result and individual 

information items), even if not previously suggested. 

Nevertheless the tools available for information fusion and pref- 

erence aggregation clearly overlap, and so do the postulates that 

delimit rational aggregation methods. For instance, the famous Ar- 

row axioms of voting apply to the fusion of total orderings and 

some of them are similar to some of our information fusion postu- 

lates [22] . For instance, as explained above, Unrestricted Domain, 

Attainability, and (ordinal) Unanimity are social choice axioms that 

make sense for ordinal information fusion. Independence of Irrele- 

vant Alternatives may be hard to sustain for information fusion in 

the face of inconsistency. But Non-Dictatorship is implied by the 

Fairness axiom. 

As can be seen, our framework for information fusion is not the 

same as the framework for social choice and voting despite the re- 

lationships existing between some of their postulates. In particular, 

the Optimism, Minimal Commitment, and Information Monotonic- 

ity postulates of information fusion have no counterpart in voting 

theory. 

3.5. Basic information aggregation modes 

Based on the definition of information items T i and their infor- 

mational ordering, several aggregation modes can be defined, that 

will be instrumental for constructing fusion operations: 

1. Conjunctive operators: a conjunctive operator is a commutative 

function c n : T n → T such that c n (T 1 , . . . , T n ) ⊑ T i , ∀ i = 1 , . . . , n ; 

a cautious conjunctive operator is a minimally committed con- 

junctive operator, that is one such that c n (T 1 , . . . , T n ) is maximal 

for ⊑ . 

2. Disjunctive operators: a disjunctive operator is a commutative 

function δn : T n → T such that T i ⊑ δn (T 1 , . . . , T n ) , ∀ i = 1 , . . . , n ; 

an optimistic disjunctive operator is a maximally committed 

disjunctive operator, that is one such that δn (T 1 , . . . , T n ) is min- 
imal for ⊑ . 

Conjunctive operators can be used for information fusion when 

the inputs are not mutually inconsistent (overlapping supports). 

Otherwise, they may fail the Consistency Property, hence Fairness, 

and Minimal Commitment. 

Proposition 3. When inputs are not strongly globally inconsistent 

(overlapping supports), cautious conjunction operators obey all basic 

properties of fusion. 

Proof . We use the fact that T 1 ⊑ T 2 imply the similar inclusions 

between supports and between cores. 

• For possibility preservation, note that the cautiousness as- 

sumption implies that S(c n (T 1 , . . . , T n )) = 
⋂ 

i S(T i ) (otherwise 

c n (T 1 , . . . , T n ) would not be maximal for ⊑ ). It also implies Fair- 

ness. Impossibility preservation is obvious. 
• Information monotonicity holds as if T i ⊑ T ′ 

i the condition 

c n (T 1 , . . . , T n ) ⊑ T i is more demanding than c n (T 1 , . . . , T n ) ⊑ 

T ′ 
i , so that there is a minimally committed result 

c n (T 1 , . . . , T 
′ 
i , . . . , T n ) that is equal to or less informative than 

c n (T 1 , . . . , T n ) . 
• Consistency Enforcement: by construction, since 

S(c n (T 1 , . . . , T n )) = 
⋂ 

i S(T i ) 6 = ∅ . It will hold in the strong 

sense if the cores intersect. 



• Optimism, Commutativity, Minimal commitment, by construc- 

tion. 
• Insensitivity to vacuous information is obvious since the 

condition c n (T 1 , . . . , T n ) ⊑ T i = T ⊤ is a tautology. And so 

c n (T 1 , . . . , T n ) = c n −1 (T 1 , . . . , T i −1 , T i +1 , . . . , T n ) . ¤

Note that if the supports of inputs are globally inconsistent, 

then Consistency Enforcement fails for cautious conjunctive op- 

erations, hence Fairness and Minimal Commitment as well. Dis- 

junctive operators are not optimistic (even when they are called 

optimistic) when the inputs are mutually consistent (overlapping 

cores). 

Adaptive aggregation schemes can then be devised. In the case 

of two inputs: 

• A binary cautious adaptive aggregation operation ac is defined 

by means of a cautious conjunctive aggregation c 2 and an opti- 

mistic disjunctive one δ2 : 

ac(T 1 , T 2 ) = 

{

c 2 (T 1 , T 2 ) if C(T 1 ) ∩ C(T 2 ) 6 = ∅;

δ2 (T 1 , T 2 ) otherwise. 
(1) 

• A binary bold adaptive aggregation operation ab is defined by 

ab(T 1 , T 2 ) = 

{

c 2 (T 1 , T 2 ) if S(T 1 ) ∩ S(T 2 ) 6 = ∅;

δ2 (T 1 , T 2 ) otherwise. 
(2) 

The difference between the two adaptive aggregations is the 

condition under which the conjunctive aggregation is applied. In 

the cautious case, the conjunction is used only if the inputs are 

strongly mutually consistent. 

Proposition 4. Cautious and bold adaptive aggregation operations 

satisfy the eight basic properties. A cautious one satisfies strong ver- 

sions of Consistency Enforcement and Fairness (using cores). 

Proof . 

• For Unanimity, if the two inputs are strongly mutually consis- 

tent, it follows from Proposition 3 , as both operations reduce 

to cautious conjunctive ones. If the inputs are weakly mutu- 

ally consistent or inconsistent, Unanimity is obvious for the 

cautious adaptive aggregation (since disjunctions preserve pos- 

sibility and impossibility). For the bold one, if the inputs are 

weakly mutually consistent it reduces to a conjunction, but 

then S(c n (T 1 , . . . , T n )) = 
⋂ 

i S(T i ) holds to respect maximality 

w.r.t. ⊑ . 
• Information monotonicity follows from Proposition 3 , Consis- 

tency Enforcement is obvious and is even strong for the cau- 

tious adaptive operation. 
• Optimism of the cautious adaptive aggregation is built-in if 

strong Consistency Enforcement is required. For the bold one, it 

is even more optimistic at the expense of getting a result with 

empty core (if cores are disjoint, then c 2 ( T 1 , T 2 ) has an empty 

core). 
• Insensitivity for Vacuous information follows from the fact that 

ac(T 1 , T 
⊤ ) = ab(T 1 , T 

⊤ ) = c 2 (T 1 , T 
⊤ ) and by Proposition 3 . 

• Fairness, Commutativity, Minimal commitment are obvious 

by construction. For the cautious adaptive aggregation, ∀ i = 

1 , . . . ,n, C(ac(T 1 , . . . ,T n )) ∩ C(T i ) 6 = ∅ (when ac = c 2 this is obvi- 

ous, and otherwise it is a disjunctive aggregation whose core 

includes all cores of all T i ’s). So this is a strong form of fairness. 

These results are summarised by Table 1 . The case of n -ary 

adaptive fusion rules is considered later in the paper. 

4. Merging set-valued and Boolean information 

Having proposed a set of general postulates for information fu- 

sion, the next step is to demonstrate the existence of fusion rules 

Table 1 

Properties of general conjunctive, disjunctive and adaptive operations. 

Properties Cautious Optimistic Cautious Bold 

conjunction disjunction adaptive adaptive 

Unanimity Yes Yes Yes Yes 

Information monotonicity Yes Yes Yes Yes 

Consistency enforcement No Yes Yes strong Yes 

Optimism Yes No Yes Yes 

Fairness No Yes Yes Yes 

Insensitivity for vacuous Yes No Yes Yes 

Commutativity Yes Yes Yes Yes 

Minimal commitment No No Yes Yes 

that obey these postulates. This question can be posed in the var- 

ious settings that can be envisaged for representing information 

items. Moreover, we should compare our set of postulates with ex- 

isting proposals in more specialised settings. The most elementary 

setting one may first consider is the one of sets, whereby any infor- 

mation item is a subset of possible worlds, one of which being the 

actual world, the simplest account of an epistemic state. This set- 

ting is important because it is the simplest information represen- 

tation framework and also has connections with knowledge base 

merging in Boolean logic, where fusion postulates were proposed 

by Konieczny and Pino-Perez [68,69] . 

4.1. Merging set-valued information: hard constraints 

Let us assume that the information items T i are defined by clas- 

sical subsets E i ⊆W representing plain epistemic states, so that here 

T = 2 W \ {∅} . In this subsection, the triple (S(T ) , C(T ) , ºT ) is de- 

fined as follows: 

• Core and Support coincide: C(T ) = S(T ) = E ⊆ W . 
• Plausibility ordering induced by T : w ≻T w ′ if w ∈ E and w ′ 6∈ E, 

while w ∼T w ′ if w, w ′ ∈ E or w, w ′ 6∈ E. 

Note that this choice is not unique. One could also decide that 

S(T ) = W (as in the next subsection). Instead we study here the 

case where any world w 6∈ E is considered impossible (for instance, 

the fusion of integrity constraints). 

It is clear that T is consistent if and only if E is not an empty 

set, and the information ordering relation ⊑ is set inclusion ⊆. 

Then all the basic properties can be naturally adapted to the 

Boolean representation. In order to characterise a canonical fusion 

rule, though, only three axioms among the eight ones are needed 

to ensure uniqueness in the case of two sources [32] : 

• Optimism: If E 2 ∩ E 1 6 = ∅ , then both f ( E 1 , E 2 ) ⊆ E 1 and 

f ( E 1 , E 2 ) ⊆ E 2 hold. 
• Unanimity : E 2 ∩ E 1 ⊆ f ( E 1 , E 2 ) ⊆ E 2 ∪ E 1 . 
• Minimal commitment : f ( E 1 , E 2 ) is the largest subset of possible 

worlds obeying Optimism and Unanimity. 

Proposition 5. If there are two sources, the only fusion rule that sat- 

isfies Optimism, Unanimity and Minimal Commitment is 

f 2 (E 1 , E 2 ) = 

{

E 2 ∩ E 1 if E 2 ∩ E 1 6 = ∅ 

E 2 ∪ E 1 otherwise . 
(3) 

Proof . in the consistent case, Optimism and Unamimity im- 

ply f 2 (E 1 , E 2 ) = E 1 ∩ E 2 , and otherwise, Minimal commitment and 

Unanimity imply f 2 (E 1 , E 2 ) = E 1 ∪ E 2 . ¤

It is clear that the above three axioms imply the other five 

ones for two sources: The intersection operation is information- 

monotonic, the fusion rule always yields a consistent outcome if 

inputs are consistent. Fairness obviously holds as the result clearly 

keeps track of the two information items. The above fusion rule is 

commutative, and is not sensitive to vacuous information items (as 



the latter are always less informative than the other items in the 

sense of relation ⊑ ). It is a first example of adaptive aggregation. 

This framework leaves room for just one such aggregation (first ad- 

vocated in [43] ). 

The rationale for such a fusion rule is clear: in case of consis- 

tent sources, we assume both are reliable and increase the preci- 

sion accordingly; if they are mutually inconsistent, the fusion rule 

does not take sides and remains optimistic by assuming one source 

at least yields correct information. This way of tackling inconsis- 

tency is similar to variable forgetting in logical knowledge bases 

[70] (if W contains two elements only, E 1 ∪ E 2 is vacuous). 

This rule exhibits a discontinuous behaviour when moving from 

a consistent situation to an inconsistent one, since the less the two 

subsets overlap, the more precise the result of fusion, until a total 

contradiction appears and then the result suddenly becomes im- 

precise. However, nothing forbids independent sources to provide 

information items having a narrow intersection. In that respect, the 

set representation is too rigid, and it pleads for a more flexible rep- 

resentation setting where inconsistency can be a matter of degree 

(some approaches get rid of inconsistency in fusion problems by a 

similarity-based enlargement of the sets of interpretations of infor- 

mation items [95] ). 

An obvious consequence of Proposition 5 this result is that the 

Associativity postulate is inconsistent with the eight information 

fusion postulates. Indeed the canonical fusion rule they charac- 

terise in the set-valued setting is clearly not associative. For in- 

stance, suppose three sources providing E i , i = 1 , 2 , 3 where E 1 ∩ 

(E 2 ∪ E 3 ) = ∅ while E 2 and E 3 are consistent. Then 

• f 2 (E 1 , f 2 (E 2 , E 3 )) = f 2 (E 1 , E 2 ∩ E 3 ) = E 1 ∪ (E 2 ∩ E 3 ) 
• f 2 ( f 2 (E 1 , E 2 ) , E 3 )) = f 2 (E 1 ∪ E 2 ) , E 3 ) = E 2 ∩ E 3 

The origin of this incompatibility between Associativity and the 

eight postulates of information fusion lies in the Consistency En- 

forcement property, which implies the Unrestricted Domain pos- 

tulate. The former is never satisfied by known fusion rules. For 

instance, Dempster rule of combination for belief functions is as- 

sociative but is not defined for totally inconsistent belief functions 

(see Section 7 ). The lack of associativity forces us to directly define 

the n -ary counterpart of the basic fusion rule. 

If the inputs are globally consistent, i.e., if 
⋂ n 

i =1 E i 6 = ∅ , Opti- 

mism and Possibility Preservation imply f n (E 1 , . . . , E n ) = 
⋂ 

i E i . This 

is a direct consequence of Proposition 2 . Let I ⊂{ 1 , . . . ,n }be a maxi- 
mal consistent subset (MCS) of information items, i.e., T I = 

⋂ 

i ∈ I E i 6 = 

∅ and T I∪{ j} = ∅ , ∀ j 6∈ I. Let T I and T I 
′ 
be the results of the conjunc- 

tive combination of the information items given by two MCSs I and 

I ′ , then T I ∩ T I 
′ 
=∅ , by construction. 

There is a generalisation of the two-source combination rule 

(3) characterised by our postulates, namely the maximal-consistent 

subset fusion rule (MCS): 

f MCS 
n (E 1 , . . . , E n ) = 

⋃ 

I∈ MCS({ 1 , ... ,n } ) 

⋂ 

i ∈ I 

E i (4) 

where MCS({1,..., n }) is the set of maximal consistent subsets of 

sources. It was first proposed by Rescher and Manor already in 

1970 [92] . This operator extends (3) to n sources. Indeed, in the 

case of 2 sources, MCS({ 1 , 2 } ) = {{ 1 , 2 }} (hence the conjunction 
rule) or {{1}, {2}} (hence the disjunction rule). We can prove that 

our axiomatic framework for set-fusion characterises the MCS fu- 

sion rule, if we take an optimistic view of the Fairness axiom: 

Proposition 6. Suppose the information items take the form of sets. 

A fusion rule satisfies Consistency Enforcement, Optimism, Optimistic 

Fairness, and Minimal Commitment if and only if it is the MCS fusion 

rule. 

Proof . Due to Consistency Enforcement and Fairness postulate, 

f n (E 1 , . . . , E n ) = A 1 ∪ · · · ∪ A n for non-empty sets A i ⊆ E i . Now due 

to Optimism and Optimistic Fairness, if I is a maximal consistent 

subset, one should select A i = A I ⊆ E i , i ∈ I; it means that no set of 

sources strictly containing I can be assumed to be simultaneously 

reliable, but nothing prevents the set I from containing reliable 

sources only. As a consequence f n (E 1 , . . . , E n ) = 
⋃ 

I∈ MCS({ 1 , ... ,n } ) A 
I . 

Now due to minimal commitment, there is no reason to choose 

A I ⊂
⋂ 

i ∈ I E i , as this choice would be arbitrary. Hence A 
I = 

⋂ 

i ∈ I E i . 

So this is the MCS fusion rule. ¤

It is obvious MCS satisfies the other basic properties 1, 2, 6, 7. 

It is clear that the MCS fusion rule does not take into account the 

number of sources supplying the same information item. The du- 

plication of sources does not affect the result of the MCS rule. It 

satisfies the following property [68] : 

Majority-Insensitivity : if E 1 = E 2 = · · · = E n = E, then 

f n +1 (E 0 , E 1 , . . . , E n ) = f 2 (E 0 , E) , ∀ n > 1 . 

Another way to circumvent the opposite drawbacks of conjunc- 

tive and disjunctive fusion modes (the former leading to contra- 

diction as more sources are involved and the latter leading to un- 

informativeness), one may use so-called k -quota merging opera- 

tors. A k -quota merging operator selects a subset of k sources that 

are jointly consistent and performs a conjunctive operation over 

them. If there are several such groups of k sources one may per- 

form the union of the partial results. Using the principle of opti- 

mism, one is led to use a value of k that is as large as possible. It 

then comes down to selecting the subset of most numerous max- 

imal consistent subsets of sources. Fusion rules of this kind can 

be found in [52,54,91] . They are intermediary between conjunctive 

and disjunctive fusion modes and are not majority-insensitive. This 

quota-merging rule satisfies most basic postulates, but it fails the 

fairness axiom as the information from sources other than the k 

selected ones is discarded; one may consider it also fails the mini- 

mal specificity requirement due to the selection process that picks 

the largest group of jointly consistent sources, which may sound 

questionable unless sources are considered independent. 

4.2. The axioms of arbitration 

It is interesting to compare the set-based instantiations of our 

general postulates to the axioms of arbitration after Liberatore and 

Schaerf [73] . They consider five postulates (here couched in our 

terminology), applied to two sets of possible worlds (however pos- 

sibly empty), as basic: 

• A closure assumption: f ( E 1 , E 2 ) is a set (implicit in [73] ). 
• Commutativity. 
• Possibility preservation, which here reads: E 1 ∩ E 2 ⊆ f ( E 1 , E 2 ). 
• Optimism (as restored in this subsection). 
• Consistency, expressed as f (E 1 , E 2 ) = ∅ if and only if E 1 = E 2 = 

∅ . 

The latter are four of our basic postulates and the first one is 

taken for granted by definition of the fusion operation. They pro- 

pose additional postulates as follows: 

• Disjunctive decomposability: f (E 1 , E 2 ∪ E 3 ) = f (E 1 , E 2 ) or 

f ( E 1 , E 3 ) or yet f ( E 1 , E 2 ) ∪ f ( E 1 , E 3 ). 
• Impossibility preservation, which here reads f ( E 1 , E 2 ) ⊆ E 1 ∩ E 2 
• Fairness: if E 1 6 = ∅ , f ( E 1 , E 2 ) ∩ E 1 6 = ∅ . 

Clearly the two last of these additional axioms are among 

our basic postulates. In the set-theoretic representation, these 

postulates are not independent, as shown in [73] ; for instance 

Impossibility Preservation and Fairness are consequence of the 

other six ones. Moreover, they show that an arbitration operation 

is of the form f (E 1 , E 2 ) = A ∪ B for some subsets A ⊆ E 1 , B ⊆ E 2 , 

and f (E 1 , E 2 ) = E 1 ∩ E 2 if the inputs are consistent. Note that if 



E 1 ∩ ( E 2 ∪ E 3 ) 6 = ∅ then f (E 1 , E 2 ∪ E 3 ) = E 1 ∩ (E 2 ∪ E 3 ) (due to Opti- 

mism and Possibility Preservation), which is of the form prescribed 

by Disjunctive decomposability. 

Although written for two inputs, the above axioms can eas- 

ily be written for n inputs but for Disjunctive decomposability. 

It is also clear that in the case of n inputs, arbitration takes 

the form 
⋃ 

I∈ MCS({ 1 , ... ,n } ) A 
I , where A I ⊂

⋃ 

i ∈ I E i (see the proof of 

Proposition 6 ). 

The Liberatore and Schaerf postulates do not include Informa- 

tion Monotonicity, Insensitivity to Vacuous Information (which is 

a trivial property of arbitration), nor Minimal Commitment. It is 

clear that the only minimally committed arbitration operation is 

our adaptive operation (3) . Note that it is Minimal Commitment 

that ensures the unicity of our fusion rule (3) . This cautiousness 

assumption is absent from [73] , in which it is assumed (like in the 

AGM revision setting) that the inputs E i underlie more informa- 

tion than what is explicitly represented, under the form of weak 

plausibility orders ≥ i , so that f (E 1 , E 2 ) = A ∪ B where A (resp. B ) 

is formed by the maximally plausible elements of E 1 for ≥ 2 (resp. 

E 2 for ≥ 1 ). Liberatore and Schaerf [73] also mention Information 

Monotonicity, albeit without the restriction to consistent inputs, 

thus getting trivialisation results. 

These results shed light on the rationale of our axiomatic set- 

ting. Our view of fusion is more a matter of displaying a cau- 

tious but useful synthesis of the information provided by several 

sources, than one of making a final decision that would be the re- 

sult of a choice between sources. Moreover, it implicitly assumes 

that if several sources deliver the same hard constraint, it means 

they may be dependent. As argued above, this assumption is some- 

times all the more plausible as the number of sources is high if 

sources are experts. 

When sources provide observations resulting from processes 

designed to be independent, as in statistics, repeated information 

matters. For instance, one can count the number of sources that 

state E i = E, say n E . In the latter case one would get a belief func- 

tion with focal sets E i , and a mass function m (E) = 
n E 
n , which is 

a kind of fusion rule which does not respect the closure property, 

since then f n (E 1 , . . . , E n ) = m 6∈ T . Note that the contour function 

πm (s ) = 
∑ 

s ∈ E m (E) consists in averaging the characteristic func- 

tions of the E i , i.e., πm (s ) = 
|{ i : s ∈ E i }| 

n , which is intermediary be- 

tween conjunction and disjunction. It gives a fuzzy set as the result 

of the fusion. However, if the result of the fusion of sets should be 

a set, there is hardly any way of expressing a reinforcement effect 

due to identical and independent information items. 

The MCS rule is in this sense a cautious combination rule. The 

fact that we retrieve a well-known, probably the oldest approach 

to handling inconsistency in logic-based representations comforts 

the idea that these postulates are natural. However, it prompts us 

to compare this setting with the one of knowledge-based merging, 

that seems to argue against fusion methods obeying Impossibility 

Preservation. 

4.3. Logic-based merging: the fusion of plausible sets 

Knowledge base merging addresses how a set of logical formu- 

lae in propositional logic obtained from different agents should be 

merged in order to obtain a consistent set of formulae. 

A commonly accepted set of postulates for judging a logic- 

based merging operator was proposed in [68] . We consider a 

propositional language L PS defined on a finite, non-empty set P

of propositional atoms, which are denoted by p , q , r etc. A propo- 

sition (or formula) φ is constructed by propositional atoms with 

logical connectives ¬, ∧ , ∨ , → in the standard way. An interpreta- 

tion w (or possible world) is a function that maps P onto the set 

{0, 1}. The set of all possible interpretations on P is denoted by W . 

Function w can be extended to any propositional sentence in L P in 

the usual way, w : L P → { 0 , 1 } . An interpretation w is a model of 

(or satisfies) φ if and only if w (φ) = 1 , denoted by w |H φ. We use 

Mod ( φ) to denote the set of models for φ. 
A (flat) knowledge base K is a finite set of propositions. K can be 

equivalently expressed as a formula φ consisting of the conjunc- 

tion of formulas in K . A knowledge profile is a multi-set of propo- 

sitional formulas E = { φ1 , φ2 , . . . , φn } . The conjunction of formu- 
las in E is 

∧ 
E = φ1 ∧ · · · ∧ φn . E is called consistent if and only if 

∧ 
E is consistent. E 1 ↔ E 2 denotes that there is a bijection g from 

E 1 = { φ1 
1 , . . . , φ

1 
n } to E 2 = { φ2 

1 , . . . , φ
2 
n } such that ⊢ f ( φ) ↔ φ. We de- 

note by E 1 
⊔ 

E 2 the multi-set union of E 1 and E 2 . 

An operator 1 is a mapping from knowledge profiles to knowl- 

edge bases, and 1 is a KP-merging operator (after Koniecny and 

Pino-Pérez [68] ) if and only if it satisfies the following postulates 

[68] . 

A1 1(E ) is consistent. 

A2 If E is consistent, then 1(E ) = 
∧ 

E . 

A3 If E 1 ↔ E 2 , then ⊢ 1(E 1 ) ↔ 1(E 2 ) . 

A4 If φ1 ∧ φ2 is not consistent, then 1({ φ1 , φ2 } ) 6⊢ φ1 . 

A5 1(E 1 ) ∧ 1(E 2 ) ⊢ 1(E 1 
⊔ 

E 2 ) . 

A6 If 1(E 1 ) ∧ 1(E 2 ) is consistent, then 1(E 1 
⊔ 

E 2 ) ⊢ 1(E 1 ) ∧ 

1(E 2 ) . 

These postulates are described at the syntax-level, e.g., formula- 

level, whilst the common properties we proposed above are repre- 

sented at the semantic level, e.g., possible worlds level. However, 

since axiom A3 assumes syntax independence, these postulates can 

be written at the semantic level in terms of merging sets of pos- 

sible worlds, which is the representation setting of this section, 

without loss of content. Let E i = Mod(φi ) be the set of models of φi 

and we use notation f 1 instead of 1 to denote a fusion operation 

obeying the KP axioms. 

Then the KP postulates (minus A3, trivially true) can be equiv- 

alently stated as: 

A1 ∗ f 1(E 1 , . . . , E n ) 6 = ∅ . 

A2 ∗ If E 1 ∩ ÅÅÅ ∩ E n 6 = ∅ , then f 1(E 1 , . . . , E n ) = E 1 ∩ · · · ∩ E n . 

A4 ∗ If E 1 ∩ E 2 = ∅ , then f 1(E 1 , E 2 ) ( E 1 . 

A5 ∗ f 1n (E 1 , . . . , E n ) ∩ f 1m (E 
′ 
1 , . . . , E 

′ 
m ) ⊆ f 1m + n (E 1 , . . . , E n , 

E ′ 1 , . . . , E 
′ 
m ) . 

A6 ∗ If f 1n (E 1 , . . . , E n ) ∩ f 1m (E 
′ 
1 , . . . , E 

′ 
m ) 6 = ∅ , then 

f 1m + n (E 1 , . . . , E n , E 
′ 
1 , . . . , E 

′ 
m ) ⊆ f 1n (E 1 , . . . , E n ) ∩ 

f 1m (E 
′ 
1 , . . . , E 

′ 
m ) . 

A1 ∗–A6 ∗ can be interpreted as follows in the light of our set- 

ting. A1 ∗ is the Consistency Enforcement axiom. A2 ∗ is implied by 

our information fusion postulates, after Proposition 2 . It is a con- 

sequence of Optimism and Possibility Preservation: it presupposes 

that consistent sources are reliable. A4 ∗ is a consequence of our 

Fairness axiom ( Proposition 1 ). It does not prevent the result from 

being inconsistent with φ1 and φ2 , should they be inconsistent. 

This is the main difference with arbitration operators. A5 ∗ and A6 ∗

together state that if it is possible to find two subgroups which 

agree on at least one possible world, then the result of global fu- 

sion will contain exactly those possible worlds the two subgroups 

agree on. 

The KP framework is thus different from ours. The axioms A1 

to A4 have set-valued counterparts that are consequences of our 

setting, but A5 ∗ and A6 ∗ are not presupposed by our framework. In 

fact, as the MCS rule is characteristic of our postulates, and since it 

satisfies the Majority-Insensitivity property, it follows that it does 

not satisfy A5 ∗ and A6 ∗. Indeed Konieczny and Pino-Perez [68] in- 

dicate that the Majority-Insensitivity property is incompatible with 

their axiomatic setting A1–A6 (and they propose a weak version of 

it). 

So, how do they define merging operators? In fact, the use of 

A5 and A6 forces them into a more expressive framework than the 



one of sets, namely, the one of partially ordered epistemic states. A 

subset of possible worlds viewed as an epistemic state E i is inter- 

preted as a so called syncretic assignment , which is a partial plausi- 

bility order ºi on W attached to E i such that all maximal elements 

for this plausibility order are those of E i . In fact, we are back to the 

triple T i = (S(T i ) , C(T i ) , ºi ) where conditions are expressed in our 

setting as follows: 

• C(T i ) = E i = max ºi W . In particular C(T i ) is never empty. 
• S(T i ) = W 

The resulting partial plausibility ordering ºT is obtained by 

merging the local preorders ºi and the epistemic state E resulting 

from the fusion is E = C(T ) 6 = ∅ , such that 

• If C(T 1 ) ∩ C(T 2 ) = ∅ then C(T ) 6⊆ C(T i ) , i = 1 , 2 (this is reflecting 

A4); one may have that C(T ) ∩ (C(T 1 ) ∪ C(T 2 )) = ∅ . 
• If C(T ) ∩ C(T ′ ) 6 = ∅ , where T and T ′ are the results of merging 

the profiles E and E ′ , then C(1(E, E ′ )) = C(T ) ∩ C(T ′ ) (this is 

reflecting A5 and A6) 

The authors prove that any fusion operation satisfying A1–A6 

can be obtained by means of merging syncretic assignments asso- 

ciated to the sets E i and the result of the fusion is the core of the 

obtained global partial ordering ºT . 

Note that Axioms A5 and A6 are instrumental in proving the 

existence of syncretic assignments. These axioms (like those in the 

AGM theory of revision [2] ) are directly inspired by choice function 

theory (see [16] for such a connexion) which defines axioms for 

the selection of best items from subsets of options, such that there 

exists a preference relation that can justify these choices. One may 

argue that the role of such axioms is more that of justifying a par- 

ticular representation of plausibility via orderings, than expressing 

key-properties of information fusion (A5 and A6 are also at work 

as postulates 7 and 8 in the AGM axiomatic setting for revision). In 

any case, the merging of sets according to Koniecny and Pino-Perez 

uses a richer framework than the one of sets. But the plausibility 

ordering does not appear in the KP axioms. 

Since the knowledge merging in the KP style uses information 

items of the form (S(T i ) , C(T i ) , ºi ) = (W, E i , ºi ) , it is clear that the 

subset of possible worlds E i in the KP setting is then viewed as a 

most plausible set and no longer as a hard constraint. The absence 

of any impossible world in the KP setting makes some of our ax- 

ioms of information fusion trivially satisfied under such inputs (for 

instance, Properties 1, 5). In order to account for this interpretation 

of E i in our setting, we could revise some of our axioms as follows: 

• Unanimity of Plausibility : 
• (a) 

⋂ n 
i =1 C(T i ) ⊆ C( f (T 1 , . . . , T n )) . 

• (b) C( f (T 1 , . . . , T n )) ⊆ C(T 1 ) ∪ · · · ∪ C(T n ) . 
• Strong Consistency Enforcement : C( f (T 1 , . . . , T n )) 6 = ∅ . 
• Fairness : ∀ i = 1 , . . . ,n, C( f (T 1 , . . . ,T n )) ∩ C(T i ) 6 = ∅ . 

Interestingly, put in this form, these axioms no longer sound as 

compelling as their counterparts in terms of support. While part 

(a) of Unanimity is sanctioned by the KP axiom A2 and is hard to 

challenge, part (b) looks very demanding. Indeed, one may some- 

times find it intuitively satisfactory if the most plausible worlds af- 

ter fusion do not lie in C(T 1 ) ∪ · · · ∪ C(T n ) (for instance if the most 

plausible worlds for one source are all found to be very implau- 

sible for another one, while there are worlds that are reasonably 

plausible for all sources). As a consequence the above form of the 

Fairness axiom also sounds too demanding. The Strong Consistency 

Enforcement is also endorsed by the KP framework (this is A1) but 

it may look too strong if one would like to leave room for partial 

inconsistency. 

However, it is clear that these postulates along with the five 

other ones would yield the MCS rule on plausible sets, which, in 

the Boolean setting, may look less plausible than the MCS rule on 

hard constraints. In particular, it rules out the kind of trade-off fu- 

sion rules envisaged by Konieczny and Pino-Perez, where the core 

of the result of the fusion may be disjoint from the cores of the 

inputs. 

In order to lay bare concrete examples of merging rules, these 

authors appeal to numerical encodings of their syncretic assign- 

ments, using a syntax-based Hamming distance between logical 

interpretations. In other words, they do not merge sets of mod- 

els, but fuzzy sets thereof, where the degrees of membership of 

an interpretation w to a formula φi reflects the minimal Ham- 

ming distance to a model of φi . This way of envisaging knowledge- 

based fusion is explained in more details by Benferhat et al. [7] , 

who show it comes down to merging possibilistic logic bases (see 

Section 6.3 ). 

The above discussion also lays bare the difference of perspec- 

tives between the fusion of hard constraints and knowledge-base 

merging: the idea of Konieczny and Pino-Perez is to explain the 

fusion of plain epistemic states, understood as a set of plausible 

worlds, by the existence of underlying partial orderings or numer- 

ical plausibility degrees (obtained by distances), based on axioms 

that only use plausible sets attached to these orderings. In [67] the 

same authors use both hard (integrity) constraints and belief sets 

referring to plausible worlds, and try to extend both the AGM revi- 

sion and knowledge-based merging. However, they do not envisage 

the merging of integrity constraints discussed in the previous sec- 

tion. The belief revision and merging literature takes an external 

point of view on cognitive processes under study. The underlying 

ordered structures are here a consequence of the merging postu- 

lates, but they do not appear explicitly in the axioms and they are 

not observable from the outside. On the contrary, our approach is 

to construct fusion rules that only rely on what is explicitly supplied 

by sources. In the sequel we consider the counterpart of our fusion 

postulates for ranked models, that can be expressed by means of 

total orders of possible worlds or by their encodings on a plausi- 

bility scale. 

5. Merging of ranked epistemic states: ordinal setting 

In this section we study how to adapt the eight postulates of 

information fusion to refined epistemic states, whereby some pos- 

sible worlds are more plausible than others. The various represen- 

tations of likelihood where the whole information is contained in 

the plausibility ordering over possible worlds can be captured un- 

der the umbrella of possibility theory. In the purely ordinal case 

comparative possibility was introduced by Lewis [72] and indepen- 

dently by Dubois [31] . From the late 1980’s onward, ordinal plau- 

sibility orderings are found in the theory of belief revision after 

Grove [58] , Gärdenfors [56] , Katsuno and Mendelzon [63] . In the 

later works, though, plausibility orderings are the result of the ax- 

iom systems adopted for belief revisions, and do not stand as prim- 

itive explicit available data. 

5.1. Ordinal representations 

In this subsection, we suppose information items T are ex- 

plicitly defined by complete preorders ºT on W , following Lewis, 

Dubois and Grove. They should be understood as plausibility rank- 

ings on interpretations or states, and can be equivalently described 

by well-ordered partitions P T = { A 1 , . . . , A k } such that 

∀ w i ∈ A i , w j ∈ A j , w i ≻T w j ⇐⇒ i < j 

means that w i is a more plausible world than w j . Internal consis- 

tency of such information items can be interpreted by the acyclic- 

ity of the strict relation ≻T , which holds if we start with complete 

preorders. This is a strong form of internal consistency. 



Let us denote by R T the subset of W × W corresponding to ºT . 

In contrast to strong internal consistency, strong internal inconsis- 

tency would correspond to R T = ∅ (all pairs (w 1 , w 2 ) consist of in- 

comparable states), which is made impossible by assuming com- 

plete preorders. The conventions coming from knowledge-based 

fusion define the core C(T ) as max ºT W irrespective of how much 

plausible are the most plausible worlds. The support is the whole 

set of states, none of which is assumed to be impossible. 

As seen above, the KP knowledge-based merging approach un- 

derlies plausibility orderings ºi that are not explicitly used in the 

postulates, but whose existence is a consequence of them. Here, 

we assume these are explicitly handled as complete preorders (or 

rankings). KP axioms only bear on the plausible sets E i = C(T i ) in- 

duced by abstract information items. It comes down to a kind of 

renormalisation, bringing the most plausible worlds for each ºi at 

the same plausibility level to make them minimally commensurate. 

These plausible sets are considered to be the “visible part” of the 

information items. 

For instance, in the KP approach, the information ordering 

T 1 ⊑ T 2 between information items is expressed by inclusion be- 

tween plausible sets C 1 (T ) ⊆ C 2 (T ) , irrespective of the actual un- 

derlying rankings. One may think of more demanding notions of 

entailment between possibility rankings. Here are two of them [9] : 

• Refinement ordering: º1 ⊑º2 if and only if P 1 refines P 2 ; 
• Specificity ordering [50,88] , letting k and ℓ be the number of el- 

ements of the partitions induced by º1 and º2 respectively: 

º1 ⊑ s º2 if and only if ∀ i = 1 , . . . , min (k, ℓ ) , 
⋃ 

j=1 ... i A 
1 
j ⊆

⋃ 

j=1 ... i A 
2 
j 

The refinement ordering introduces a natural mapping between 

elements of the well-ordered partitions associated to ordinal infor- 

mation items, as the equivalence classes of the coarser partition 

are unions of elements of the finer one. 

The specificity ordering (put forward by Pearl [88] as favour- 

ing the most compact ranking) is weaker than refinement but it 

introduces a systematic commensurateness assumption between 

the weak order relations, whereby A 1 
j is mapped to A 

2 
j , for j = 

1 , . . . , min (k, ℓ ) , namely it presupposes that in each pair (A 1 
j , A 

2 
j ) 

the sets are equally likely. However, there exists a dual notion pre- 

supposing that A 1 
k 
and A 2 ℓ are equally unlikely, and A 

1 
k − j 

and A 2 
ℓ − j 

as well, for j = 1 , . . . , min (k, ℓ ) − 1 . The choice between these two 

ordering comparison methods may look sowewhat arbitrary. So, in 

the purely ordinal setting, the refinement ordering looks like the 

least controversial as not involving commensurateness. Neverthe- 

less the specificity ordering is used in ordinal approaches to non- 

monotonic reasoning like Pearl’s system Z [88] , or the semantic ac- 

count of preferential inference in terms of linear possibility distri- 

butions [9] , as it fits the natural informational ordering of possibil- 

ity theory [50] . 

Likewise, in the KP setting, two information items T 1 and T 2 are 

said to be consistent if C(T 1 ) ∩ C(T 2 ) 6 = ∅ . In contrast, a much more 

demanding form of consistency between rankings, that does not 

involve a commensurateness assumption, is as follows: 

º1 is strongly consistent with º2 if and only if ∄ w 1 , w 2 , w 1 ≻1 

w 2 , w 2 ≻2 w 1 . 

It means that there is no preference reversals between T 1 and 

T 2 (this is often called comonotonicity). At the opposite, a very 

weak consistency requirement can be expressed by the existence 

of at least one pair of possible worlds for which the two sources 

agree: 

º1 is weakly consistent with º2 if and only if ∃ w 1 , w 2 , w 1 º1 

w 2 , w 1 º2 w 2 . 

It is weaker than the consistency condition in the KP set- 

ting, since the latter is weak consistency enforced to w 1 ∈ C(T 1 ) ∩ 

C(T 2 ) . 

In voting theory, well-known axioms have been proposed 

for aggregating complete preorderings into complete preorder- 

ings. Some have been already mentioned in the previous sec- 

tion: universality (UNI), local ordinal unanimity (LOU) and inde- 

pendence of irrelevant alternatives (IIR). Of course, together with 

non-dictatorship they lead to the celebrated Arrow’s impossibility 

theorem from voting theory [3] , saying that dictatorship is then 

the only possible fusion rule, namely the result of merging sev- 

eral complete preorders is necessarily one of them. Lehmann and 

Maynard-Reid [79] try to bypass the impossibility result by re- 

laxing the complete preordering representation. They use modu- 

lar relations, where transitivity is changed into modularity: if w º

w ′ then w º z or z º w ′ . Such relations also lead to well-ordered 

partitions, but they are no longer acyclic, and allow circuits in- 

side equivalence classes. In the case of sources treated on a par, 

Lehmann and Maynard-Reid propose as the basic rational fusion 

rule the set theoretic union of the strict part of (modular) relations 

ºi . The obtained relation is modular but not necessarily transitive. 

However, it is not clear why we should adopt the axioms of 

voting theory for information fusion. Clearly, voting theory uses no 

concept of information ordering, nor any form of minimal commit- 

ment. The IIR property is not always satisfied by the fusion rules 

in the set-based case (e.g., when sources are inconsistent), as clear 

from the role of MCS fusion rule in the previous section. However, 

it sounds natural to rely on plausibility orderings for representing 

information items and to share some axioms with voting theory. 

For instance, as seen earlier, Universality is a consequence of our 

framework. 

5.2. The basic postulates for the fusion of plausibility orderings 

So, let us try to instantiate the eight postulates on the fusion 

of complete preorders ºi , i = 1 , n . The use of complete preorders 

corresponds to the idea that input items of information should be 

strongly internally consistent. We denote by ∼ i the equivalence 

relation associated with ºi (that is, w 1 ∼i w 2 ⇐⇒ w 1 ºi w 2 and 

w 2 ºi w 1 ). In order to protect the approach against Arrow’s impos- 

sibility theorem, we shall assume the result of the fusion need not 

be a complete preorder: some states may be incomparable in the 

final result (denoted by w 1 ≁i w 2 ). This is the price paid for not 

making any commensurateness assumption. In this setting our ax- 

ioms can take the following form: 

1. Local ordinal unanimity. As defined earlier: If ∀ i, w ºi w ′ , then 

w º w ′ . 

2. Information monotonicity. If º1 
i refines º

2 
i , ∀ i = 1 , n then the re- 

sult of aggregating º1 
i should refine the result of aggregating 

º2 
i , if the relations º

1 
i are strongly mutually consistent. 

3. Consistency enforcement. The result must be at least weakly con- 

sistent. 

4. Optimism. If w 1 ≻i w 2 for one source i , then w 1 ≻ w 2 if w 2 ≻ j 

w 1 for no other source j . 

5. Fairness. If after fusion w 2 º w 1 , then ∃ i : w 2 ºi w 1 . 

6. Insensitivity to vacuous information. If R i = W ×W then source i 

does not influence the result of the fusion. 

7. Commutativity. 

8. Minimal commitment. The obtained plausibility relation should 

be the least refined among those that satisfy the above postu- 

lates. 

Regarding the unanimity postulate, it seems that it is very nat- 

ural to conclude that w is more plausible than w ′ if all sources 

say so, and likewise for equally plausible. Note that this is true re- 

gardless of other alternatives. Property 3 copes with the impossi- 

bility theorem of Arrow to some extent by allowing some incom- 

parabilities to take place in the resulting plausibility relation. How- 

ever, in the case of two sources providing opposite linear rankings 



of states, all options are incomparable, and there is no aggrega- 

tion method obeying the 8 postulates. The above form of the op- 

timism postulate tries to exploit all reasons to consider one state 

more plausible than another. The fairness property as formulated 

here is minimally demanding: the final comparability between any 

two states w 1 and w 2 corresponds to the opinion of at least one 

source. Property 6 is not acceptable in the scope of voting theory 

and Property 8 makes no sense in that setting. 

The fusion rule enforced by all required properties but Prop- 

erty 3 can be summarised by the following procedure for each pair 

(w 1 , w 2 ) . 

• If ∀ i, w 1 ºi w 2 , and ∄ j, w 1 ≻i w 2 , then w 1 º w 2 (unanimity). 
• If ∀ i, w 1 ºi w 2 , and ∃ j, w 1 ≻ j w 2 , then w 1 ≻ w 2 (optimism). 
• Otherwise w 1 ≁ w 2 (incomparability). 

This fusion rule is just the Pareto vector ordering (PAR) applied 

to all n complete preorders. It is easy to check that other postulates 

are satisfied. Information monotonicity holds because making one 

preference relation coarser will not create any inconsistency with 

other ones if the more refined relation was strongly consistent 

with the other ones. Fairness hold as at worst ∀ i, ∃ w 1 , w 2 such that 

w 1 and w 2 will be incomparable, hence not contradicting w 1 ≻i w 2 . 

Insensivity to vacuous information is here insensivity to full indif- 

ference, that cannot affect unanimity and optimism. Minimal com- 

mitment is due to the fact that this fusion rule does not solve 

outright conflicts and proposes incomparability in this case. Note 

that the resulting relation may be very partial but it is transitive. 

In the case where the sources are not even globally weakly con- 

sistent, that is ∄ w 1 , w 2 , ∀ i, w 1 ºi w 2 , then w 1 ≁ w 2 , ∀ w 1 , w 2 ∈ W, 

which contradicts Property 3. 

Other combination rules for partial orders exist in the literature. 

For instance 

• Lehmann and Maynard-Reid [79] suggest to compute the union 

of the strict parts of ºi : in terms of combining subsets of W ×

W , the strict part ≻MR of the result reads 

R ≻MR = 

n 
⋃ 

i =1 

(R i ∩ (R −1 
i ) c ) , 

where (w 1 , w 2 ) ∈ R −1 
i 

if and only if w 2 ºi w 1 , and R i ∩ (R −1 
i 

) c 

represents the strict part of ºi . 
• The likely dominance rule [33] : 

w 1 ≻LD w 2 ⇐⇒ [ w 1 > w 2 ] > ι [ w 2 > w 1 ] ;

w 1 ∼LD w 2 ⇐⇒ [ w 1 ≥ w 2 ] = ι [ w 2 ≥ w 1 ] , 

where [ w 1 > w 2 ] = { i : w 1 ≻i w 2 } , and ≥ ι is a partial preorder- 

ing on subsets I , J of sources, representing their relative relia- 

bility. 

Lehmann and Maynard-Reid [79] propose their fusion rule for 

merging epistemic states represented by transitive and modular re- 

lations. This is a looser framework than complete preorderings. The 

strict part of such relations still rank-orders a partition. Elements 

of a partition may be either mutually indifferent or conflicting. The 

result of the fusion may fail to be transitive and the authors sug- 

gest to compute its transitive closure. The likely dominance rule 

is the one that remains in decision under non-commensurate un- 

certainty and utility, when the first five Savage axioms of decision 

theory (see [51] Chapter 9) are preserved, but for the completeness 

and transitivity of the preference over acts. 

We can show the following result: 

Proposition 7. When merging complete preorderings, the Pareto fu- 

sion rule is equivalent to the intersection 
⋂ n 

i =1 R i of ºi . Moreover, its 

strict part is equivalent to 

1. The union of the strict parts of ºi : R PAR = ( 
⋃ n 

i =1 R i ∩ (R −1 
i 

) c ) c 

2. The likely dominance rule when groups of sources have the same 

reliability: I > ι J if and only if I 6 = ∅ = J, and I = ι J otherwise. 

Proof . Suppose w 1 ºPAR w 2 by the Pareto fusion rule. It is equiv- 

alent to w 1 ºi w 2 , ∀ i . It is equivalent to (w 1 , w 2 ) ∈ 
⋂ n 

i =1 R i . Now 

w 1 ≻PAR w 2 , if, moreover, there is some source i with w 1 ≻i w 2 , 

which corresponds to the disjunction of strict parts of ºi . The 

case of incomparability w 1 ≁PAR w 2 corresponds to when w 1 ≻i 

w 2 and w 2 ≻ j w 1 for some i, j, w 1 , w 2 , whereby both w 1 ≻MR w 2 

and w 2 ≻MR w 1 hold. For the third property, note that under the 

proposed assumptions, w 1 ≻LD w 2 ⇐⇒ [ w 2 > w 1 ] = ∅ and [ w 1 > 

w 2 ] 6 = ∅ ; It means w 1 ≻i w 2 for some i and w 1 º j w 2 for j 6 = i . This 

is w 1 ≻PAR w 2 . ¤

In the case where the obtained relation is strongly inconsistent, 

one way to escape the trival result of a strongly inconsistent re- 

sult is to attach priorities to sources, as done by Maynard-Reid and 

Shoham [80] . The likely dominance rule does the same by attach- 

ing priorities to groups of sources, but the resulting relation may 

include cycles [33] . Alternatively, we may resort to a counterpart 

of a MCS fusion rule. It consists of the following steps 

• Find all the maximal subsets of weakly consistent sources 

for the Pareto fusion rule (i.e., maximal subsets I k such that 

R PAR ({ºi : i ∈ I k } ) 
6 = ∅ ). 

• MCS(º1 , . . . , ºn ) = 
⋃ 

k R PAR ({ºi : i ∈ I k } ) 

This technique could avoid violating Property 3, but may not 

yield a transitive relation any longer. 

In summary, the issue of merging epistemic states represented 

by plausibility relations on states of affairs has received only lit- 

tle attention, compared to the same problem where the relations 

represent preferences of individuals in a group. Preliminary results 

suggest that one cannot just apply results from voting theory to 

the setting of belief merging, as the working assumptions in both 

areas seem to differ, even if they overlap. There may be specific 

approaches to belief merging likely to circumvent impossibility re- 

sults inherited from the voting area, that may be of interest only 

for belief merging. 

In particular, one may replace the notion of refinement be- 

tween ordinal epistemic states with the specificity ordering. How- 

ever, as discussed earlier, it comes down to restoring commensu- 

rateness between sources that is absent from the purely ordinal 

view. The specificity-based approach is more naturally addressed 

in the framework of possibility theory, using a common scale for 

sources of information. 

6. Merging in possibility theory 

Possibility theory is one of the main theories for reasoning un- 

der uncertainty due to incomplete information [44] . It is a flexi- 

ble framework for merging information because set-based fusion 

modes can be directly extended to fuzzy sets representing items of 

incomplete information in a gradual way. An extensive overview of 

fusion methods in possibility theory appears in [52] . 

Possibility theory has several variants [50] , some being qualita- 

tive (ordinal, as in the previous subsection, or classificatory), some 

being numerical such as the theory of kappa functions by Spohn 

[104,106] . Instead of using a purely relative notion of plausibility, 

it may be convenient to use a plausibility scale L , in the form of a 

bounded totally ordered set. The primary concept in scaled pos- 

sibility theory is the possibility distribution π on W , a mapping 

with domain W taking values on L . It rank-orders interpretations in 

terms of plausibility ( w ºT w ′ if π (w ) ≥ π (w ′ ) , albeit using abso- 

lute ratings). Moreover, it also enables landmark possibility values 

to be defined: the bottom 0 of L refers to complete impossibility 

while 1 refers to full plausibility (no impediment to the realisation 

of an event). In particular, the normalisation condition for possibil- 

ity distributions is that π (w ) = 1 for some w ∈ W . 

Pioneers of possibility theory are the English economist Shackle 

[96] who interpreted plausibility in terms of lack of surprise, the 



philosopher Lewis [72] , who introduced comparative possibility re- 

lations in order to provide a semantics to his logic of counterfactu- 

als, and the professor of electrical engineering Zadeh [118] , who re- 

lated degrees of possibility and membership functions of fuzzy sets 

in the setting of natural language understanding, for the purpose of 

modelling the extension of gradual predicates. More recently, nu- 

merical degrees of possibility were understood as upper bounds 

of probability degrees [48] . Independently, Spohn [104] introduced 

an integer-valued theory of plausibility, where higher integers re- 

flect more implausible situations and are viewed as exponents of 

infinitesimal probabilities [105] . 

6.1. Plausibility scales 

All representations of epistemic states by possibility distribu- 

tions do not have the same expressive power since the plausibil- 

ity scale can be numerical or not. In fact we can distinguish be- 

tween several representation settings according to the expressive- 

ness of the scale used. There are four kinds of scales one may en- 

visage in increasing order of expressiveness: qualitative (finite or 

not), integer-valued, or real-valued [10] . 

1. The qualitative finite or classificatory setting (QUALFI for short) 

with possibility degrees lying in a finite totally ordered scale: 

L = { α0 = 1 > α1 > · · · > αm −1 > αm = 0 } . This setting is used in 
possibilistic logic [36] . The values αi can be viewed as just de- 

noting ranked class names, from the class fully plausible ( α0 ) to 

the class impossible . 

2. The dense ordinal setting (DORD for short) using L = [0 , 1] , 

seen as an ordinal scale. In this case, the possibility distribu- 

tion π is defined up to any monotone increasing transformation 

f : [0 , 1] → [0 , 1] , f (0) = 0 , f (1) = 1 . This setting is also used 

in possibilistic logic [36] . 

3. The denumerable setting (DENUM for short), using a scale 

made of successive powers L = { α0 = 1 > α1 > · · · > αi > · · ·0 } , 
for some α ∈ (0, 1) 9 . This scale is quite expressive as it is 

equipped with semi-group operations min , max , product, and 

also division. This is isomorphic to the use of integers in so- 

called κ-functions by Spohn [104] . It is used in belief merging 
by Chopra et al. [22] . 

4. The dense absolute setting (DABS for short) where L = [0 , 1] , 

seen as a genuine numerical scale equipped with product. In 

this case, a possibility measure can be viewed as special case 

of a Shafer [97] plausibility function, actually a consonant plau- 

sibility function, and 1 − π a potential surprise function in the 

sense of Shackle [96] . 

The possibility theory framework is a graded extension of 

the set-theoretic setting. An item of information T expressed in 

the form of a possibility distribution π has support S(π ) = { w : 

π (w ) > 0 } and core C(π ) = { w : π (w ) = 1 } (which is not empty 
as long as the possibility distribution is normalised), and naturally 

defines a plausibility ordering on W . The information ordering be- 

tween possibility distributions is relative specificity ( π i ⊑ π j ⇔ π i 

≤ π j ), which differs from the refinement ordering in the previous 

section for comparative possibilities. This is a major difference with 

the ordinal setting, as here possibility distributions are commensu- 

rate. 

Like sets, uncertain inputs represented by possibility distribu- 

tions can be combined by means of aggregation operators in two 

main modes: conjunctive or disjunctive [49] with the same ratio- 

nale on the assumed reliability of sources. According to the nature 

of the plausibility scale, basic operations that are instrumental for 

fusion may differ. Conjunctions and disjunctions are defined as fol- 

lows: 

9 As usual αi stands for the i th power of α. 

Definition 1. A conjunction on L is a binary mapping ∗: L × L 7→ L 

such that 

1. If x ≤ y then x ∗z ≤ y ∗z ; 

2. If x ≤ y then z ∗x ≤ z ∗y ; 

3. 0 ∗ 0 = 0 ∗ 1 = 1 ∗ 0 = 0 and 1 ∗ 1 = 1 ; 

4. ∗ is commutative. 

It is a monotonic binary operation that coincides with a Boolean 

conjunction. A disjunction operation ⊕ is defined likewise replac- 

ing the third condition by 0 ⊕ 0 = 0 ;0 ⊕ 1 = 1 ⊕ 0 = 1 ⊕ 1 = 1 . As 

previously, conjunctive operators are instrumental to combine (es- 

pecially strongly) consistent inputs while disjunctive operators are 

useful for the combination of inconsistent uncertain inputs. 

In the QUALFI setting the most usual conjunctions and dis- 

junctions are min and max . They satisfy the De Morgan laws 

with respect to the negation operation ν(αi ) = αm −i . They are as- 

sociative. Due to the qualitative nature of this scale we restrict 

to such connectives. The DORD setting only allows for such con- 

nectives as well. Operations min and max are also exchanged 

via any decreasing and involutive mapping ν: [0, 1] → [0, 1] as 

ν( max (ν(α) , ν(β)) = min (α, β) . 

In the DASB settings the most usual conjunctions and disjunc- 

tions are respectively continuous triangular norms (t-norms, for 

short) and co-norms [65] . They are fuzzy set connectives that ex- 

tend the intersection and the union of sets. On top of min and 

max , examples of associative conjunctive operators include, prod- 

uct ( α · β) and linear product ( max (0 , α + β − 1) ) and examples of 

disjunctive operators, are the probabilistic sum ( α + β − α · β) and 
the bounded sum ( min (1 , α + β) ), where α and β stand for possi- 

bility degrees for state w according to two agents. These additional 

operations do not make sense on classificatory or ordinal scales. 

While conjunctions min and product belong to the DENUM set- 

ting, some operations are not definable. For instance, there is no 

order-reversing map on the set of integers, hence we cannot de- 

fine a non-idempotent disjunction associated to the probabilistic 

sum of terms of the form αi , αj , that is a non-idempotent dual to 

the sum i + j of integers, while min ( i , j ) and max ( i , j ) make sense. 

Non-idempotent conjunctions make sense if we can assume in- 

dependence between coherent sources, which justifies a property 

such as π1 ∗ÅÅÅ∗πn < π i for the conjunction of information items, 

expressing a reinforcement effect toward impossibility. On the con- 

trary, if the dependence between sources is unknown, the use of 

idempotent connectives (min and max ) looks appropriate [49] . 

It could lead to an additional postulate that would make sense 

on numerical plausibility scales introducing an assumption about 

source independence that is absent from the basic postulates. 

Remark 1. The scale classification at the beginning of this subsec- 

tion stands in contrast with the one usual in measurement the- 

ory [76] , distinguishing between ordinal scales (DORD), ratio scales 

(the positive real line up to a positive multiplicative factor), and 

interval scales (the real line up to a positive affine transforma- 

tion). The two latter scales are generally not used for represent- 

ing degrees of uncertainty (more usually for degrees of utility). 

Nevertheless, let us mention Ma and Liu [77] who use represen- 

tations of epistemic states as a mapping ρ : W → Z , the set of rel- 

ative integers (including ± ∞ ) that is insensitive to integer trans- 

lations (for any constant k , ρ and ρ + k represent the same in- 

formation item). The degree ρ(w ) represents a degree of rela- 

tive plausibility of w with the understanding that only the differ- 

ence ρ(w ) − ρ(w ′ ) reflects the extent to which w is more plau- 

sible than w ′ , while ρ(w ) gives no clue on the absolute plau- 

sibility strength. In such a setting, the natural fusion rule is the 

pointwise addition ρ + ρ′ , that preserves the equivalence of rela- 

tive plausibility functions up to an additive constant. However, we 

cannot use max nor min that fail to preserve it. One can construct 



a Spohn ordinal conditional function from a relative plausibility 

function ρ as: κρ (w ) = max w ′ ∈ W ρ(w ′ ) − ρ(w ) . It can be checked 

that κρ+ ρ′ = κρ + κρ′ −min w ′ ∈ W (κρ (w ′ ) + κρ′ (w ′ )) , the combina- 

tion rule for kappa functions [71] . 

6.2. Rational fusion rules on plausibility scales 

We denote by πi (w ) the degree of plausibility of alternative w 

according to source i , and consider the problem of merging n pos- 

sibility distributions π i . The consistency degree between two pos- 

sibility distributions is Cns ∗(πi , π j ) = max w πi (w ) ∗ π j (w ) , where ∗

is a conjunctive operation. It ranges from 1 when there is a com- 

mon w that is fully possible, to 0 when the supports do not over- 

lap. It depends on the choice of the conjunction. If the conjunction 

is associative, its extension Cns ∗(π1 , . . . , πn ) to n sources is obvious 

and is 1 (resp., > 0) if all cores (resp. supports) of the π i ’s overlap. 

The basic properties make sense as they stand, using the core, 

the support and the plausibility ordering induced by π i , and in- 

terpreting minimal commitment as a maximisation of possibility 

degrees. One may nevertheless provide a more specialised version 

of some postulates: 

1. Unanimity 
• Possibility preservation π1 ∗ . . . ∗ πn ≤ f (π1 , . . . , πn ) for some 

conjunction operation ∗ such that a > 0, b > 0 implies a ∗b 

> 0. 
• Impossibility preservation S( f (π1 , . . . , πn )) ⊆

⋃ n 
i =1 S(πi ) . 

2. Information monotonicity. If Cns ∗(π1 , . . . , πn ) 6 = 0 and πi ≤

π ′ 
i , ∀ i = 1 , . . . , n then f (π1 , . . . , πn ) ≤ f (π ′ 

1 , . . . , π
′ 
n ) . 

3. Consistency enforcement. The result must not be strongly incon- 

sistent, i.e., S( f (π1 , . . . , πn )) 6 = ∅ . 

4. Optimism. If Cns ∗(π1 , . . . , πn ) = 1 then π1 ∗ . . . ∗ πn ≥

f (π1 , . . . , πn ) , and max (π1 , . . . , πn ) ≥ f (π1 , . . . , πn ) other- 

wise. 

5. Insensitivity to Vacuous Information. f (π1 , . . . , πn −1 , π
? ) = 

f (π1 , . . . , πn −1 ) , where π
? (w ) = 1 ∀ w ∈ W . 

6. Commutativity. 

7. Minimal commitment. The obtained possibility distribution 

should be the least specific among those that satisfy the above 

postulates. 

Let us examine the properties of conjunctive combination rules. 

It is fairly easy to prove using conjunction min : 

Proposition 8. If Cns min (π1 , . . . , πn ) > 0 , the minimum rule πmin = 

min (π1 , . . . , πn ) satisfies all basic properties of information fusion. 

However, the minimum rule does not satisfy Consistency En- 

forcement in case supports of the possibility distributions do not 

overlap (the result is the empty set). It is then not fair either, as 

the result in case of strong inconsistency between sources, leaves 

no trace of them. Replacing the minimum by an Archimedean con- 

tinuous t-norm ( t ( α, α) < α if 0 < α < 1) such as product yields 

a connective that satisfies the same properties, but minimal com- 

mitment is in some sense supplemented by an independence as- 

sumption justifying a reinforcement effect making a state less pos- 

sible than the minimal possibility degree granted by sources to this 

state. Note that the linear product t-norm is excluded from further 

consideration as it violates possibility preservation. In fact, it can 

be useful if the possibility of lying untruthful sources exists [85] . 

To get rid of the difficulty with Consistency Enforcement, one 

assumption that is often implicitly made is the “No Impossible 

World” assumption, here ∀ w ∈ W, ∀ i = 1 , . . . , n : πi (w ) > 0 , which 

then lead some authors to accept conjunctive rules as the only ra- 

tional merging rules. The strong form of the Consistency Enforce- 

ment postulate says that if there is some common ground between 

sources with a non-zero possibility degree, it should include the 

truth, also a strong form of optimism. Trying to satisfy this prop- 

erty justifies a renormalised conjunctive operation of the form, 

∀ w ∈ W : 

ˆ ∗(π1 , . . . , πn )(w ) = Cns ∗(π1 , . . . , πn ) → ∗ (π1 (w ) ∗ . . . ∗ πn (w )) 

where α → ∗ β = sup { γ : α ∗ γ ≤ β} is the residual operator of ∗
[65] , which yields 1 if α ≤ β . Two instances of this rule, respec- 
tively in the QUALFI or DORD settings and in the numerical ones 

were already proposed in [45] : 

ˆ min (π1 , . . . , πn )(w ) 

= 

{

min n i =1 πi (w ) if less than Cns min (π1 , . . . , πn ) 
1 otherwise; 

(5) 

ˆ prod (π1 , . . . , πn )(w ) = 
π1 (w ) · · · · · πn (w ) 

max v ∈ W π1 (v ) · · · · · πn (v ) 
(6) 

The rule (5) violates Impossibility Preservation (Unanimity 1b) 

in the situation of disjoint supports, since everything becomes pos- 

sible in this case. The second part of the optimism axiom may be 

violated as well due to the renormalisation factor which may make 

a state w fully plausible even if no source is proposing it with full 

possibility. Moreover, the rule (5) loses the associativity of the min- 

imum rule, while its variant (6) with product instead of minimum 

preserves associativity [45] . However, the latter rule makes sense 

only as long as 
⋂ n 

i =1 S(πi ) 6 = 0 . If this condition is not met, the 

rule again violates Consistency Enforcement, because it then is not 

defined mathematically. Note that this combination rule is exactly 

the one recently proposed by Laverny and Lang [71] on positive 

integers: 

κ ⊕ κ ′ = κ + κ ′ − min 
w ′ ∈ W 

(κ(w 
′ ) + κ ′ (w 

′ )) , 

in order to combine ranking functions of Spohn, once the latter 

is mapped back to the unit interval (DENUM setting) via a suit- 

able transformation. Ma and Liu [77] propose postulates to jus- 

tify this combination rule in terms of addition of relative plausi- 

bility functions ρ recalled in Remark 1 . These postulates partially 

reflect some basic properties advocated here, but there is no full- 

fledged information comparison ordering between relative plausi- 

bility functions that are defined in terms of integer-valued func- 

tions invariant with respect to a translation (but for comparing the 

cores). Moreover, the use of addition or product presupposes a re- 

inforcement effect that makes sense only if sources can be consid- 

ered independent, and that can only be expressed in a numerical 

setting. 

Then, in order to recover all our basic postulates in the possi- 

bilistic setting, one is led to use disjunctive combination rules and 

extend the MCS rule (4) from sets to fuzzy sets. We can do it in at 

least two ways: 

MCS-1 (π1 , . . . , πn ) = max 
I∈ MCS({C(π1 ) , ... , C(πn ) } ) 

∗i ∈ I πi (7) 

MCS-0 (π1 , . . . , πn ) = max 
I∈ MCS({S(π1 ) , ... , S(πn ) } ) 

∗i ∈ I πi (8) 

In fact each of MCS-1, MCS-0 selects maximal consistent sub- 

sets in a specific way, checking consistency on cores or supports 

respectively. Rule MCS-0 may yield a subnormalised but not empty 

result. Once, this principle chosen, the same reasoning holds as in 

the crisp case, and we obtain expected properties for these two 

fusion rules: 

Proposition 9. For ∗ = min , the extended-MCS rules ( 7 ) and ( 8 ) sat- 

isfy all basic fusion properties. 

Proof . It is clear that these fusion rules coincide with the mini- 

mum rule if Cns min (π1 , . . . , πn ) = 1 . Moreover, if all input distribu- 

tions have disjoint supports then both rules yield the maximum of 



Table 2 

Possibilistic fusion rules on 3-level plausibility scales. 

Rules C 1 ∩ C 2 6 = ∅ C 1 ∩ C 2 = ∅ , S 1 ∩ S 2 6 = ∅ S 1 ∩ S 2 = ∅ 

min ( C 1 ∩ C 2 , S 1 ∩ S 2 ) ( ∅ , S 1 ∩ S 2 ) ( ∅ , ∅ ) 
ˆ min ( C 1 ∩ C 2 , S 1 ∩ S 2 ) ( S 1 ∩ S 2 , S 1 ∩ S 2 ) ( W , W ) 

MCS-1 ( C 1 ∩ C 2 , S 1 ∩ S 2 ) ( C 1 ∪ C 2 , S 1 ∪ S 2 ) ( C 1 ∪ C 2 , S 1 ∪ S 2 ) 

MCS-0 ( C 1 ∩ C 2 , S 1 ∩ S 2 ) ( ∅ , S 1 ∩ S 2 ) ( C 1 ∪ C 2 , S 1 ∪ S 2 ) 

MCS-cuts ( C 1 ∩ C 2 , S 1 ∩ S 2 ) ( C 1 ∪ C 2 , S 1 ∩ S 2 ) ( C 1 ∪ C 2 , S 1 ∪ S 2 ) 

all possibility distributions. So 

min (π1 , . . . , πn ) ≤ MCS- i (π1 , . . . , πn ) ≤ max (π1 , . . . , πn ) , i = 0 , 1 

and Unanimity postulate clearly holds (these rules are idempo- 

tent moreover). Informational Monotony, Consistency Enforcement 

(strong for MCS-1), Insensitivity to Vacuous Information and Com- 

mutativity are obvious. These rules satisfy Fairness, since when 

Cns min (π1 , . . . , πn ) < 1 , ∀ i, ∃ w ∈ C(πi ) , MCS- 1(π1 , . . . , πn )(w ) = 1 

and ∀ i, ∃ w ∈ S(πi ) , MCS- 0(π1 , . . . , πn )(w ) > 0 . Optimism holds for 

MCS-1 in the sense that for maximal subgroups I of strongly con- 

sistent sources a conjunctive rule is applied and the use of the 

minimum operation corresponds to Minimal Commitment inside 

this group. Similarly, optimism also holds for MCS-0 considering 

consistent sources. Minimal Commitment also prevents us from 

choosing between the maximal strongly consistent subsets. ¤

MCS-1 is much demanding on mutual consistency of sources 

and already yields plain disjunction if cores of π i are dis- 

joint. MCS-0 is less demanding and more optimistic: it yields 

min (π1 , . . . , πn ) if all supports overlap, but one may renormalise 

the resulting distribution. The same results hold if min is re- 

placed by product, with the same proviso as before regarding min- 

imal commitment. Note that there are more such rational fusion 

rules as we could use α-cuts {A α(πi ) = { w : πi (w ) ≥ α} to com- 
pute maximal consistent subsets: 

MCS- α(π1 , . . . , πn ) = max 
I∈ MCS({A α (π1 ) , ... , A α (πn ) } ) 

∗i ∈ I πi . 

All fusion rules MCS- α, α ∈ L �{0} can be defined, and become 

more demanding as α increases. 

Another fusion rule for possibility distributions called MCS-cuts 

applies the classical MCS rule to all cuts of the input possibility 

distributions has been recently proposed [30] . Its result T is de- 

fined by the family of sets T α , α ∈ L �{1} obtained by applying (4) 

to {A α(π1 ) , . . . , A α(πn ) } . 

T α = 

⋃ 

I∈ MCS(A α (π1 ) , ... , A α (πn )) 

⋂ 

i ∈ I 

A α(πi ) (9) 

It obviously satisfies all basic postulates but the sets T α , α ∈ 

L �{1} are in general no longer nested, which calls for an enlarged 

representation framework. Note that one may even have that T αi ∩ 

T α j = ∅ for i 6 = j . In the numerical settings DABS and DENUM, it 

yields a belief function, with mass function such that m T (T αi ) = 

αi − αi +1 , i = 0 , . . . , m − 1 . 

To illustrate these fusion rules we can consider the simplest 

qualitative plausibility scale L = { 1 > α > 0 } . This is when an in- 
formation item is completely defined by non-empty supports and 

cores: T = (C T ⊆ S T ) defining an ordered partition P T = (C T , S T \ 
C T , W \ S T ) . The results of applying the above rules for two sources 
yielding (C i , S i ) , i = 1 , 2 are pictured on Table 2 : 

It can be checked that 

• all fusion rules coincide if cores intersect; 
• the min rule violates Consistency Enforcement and Fairness 

when S 1 ∩ S 2 = ∅ ; 
• in the same situation, the normalised ˆ min rule violates Impos- 

sibility Preservation, Optimism and Fairness; 

• MCS-1 coincides with the max rule when cores are disjoint and 

is less optimistic than MCS-0; 
• MCS-0 mends the min rule as it restores (weak) Consistency 

Enforcement and Fairness when the latter fails them; 
• the MCS-cuts rule does not yield nested subsets, and espe- 

cially we may have (middle column) (C 1 ∪ C 2 ) ∩ (S 1 ∩ S 2 ) = ∅ if 

it turns out that C 1 ∩ S 2 = S 1 ∩ C 2 = ∅ . 

Remark 2. In [87] , the following properties were proposed w.r.t a 

fusion operator ◦π applied to a set of possibility distributions π i : 

O1 : π-Commutativity and π-associativity. 
O2 : π-Idempotence. 
O3 : π-Monotony. Given two sets { π1 , . . . , πn } and { π ′ 

1 , . . . , π
′ 
n } 

of possibility distributions such that ∀ i, ∀ w, πi (w ) ≥ π ′ 
i (w ) , 

then ◦π (π1 , . . . , πn ) ≥ ◦π (π ′ 
1 , . . . , π

′ 
n ) . 

O4 : π-impossible case and π-complete ignorance case. 
Let π∅ ( π∅ (w ) = 0 , ∀ w ∈ W ) and πW ( πW (w ) = 1 , ∀ w ∈ W ) 

be possibility distributions that stand for complete contradic- 

tion and vacuous information respectively, and then 

1. ◦π (π1 , . . . , πn , π∅ ) = ◦π (π1 , . . . , πn ) 

2. ◦π (π1 , . . . , πn , πW ) = ◦π (π1 , . . . , πn ) . 

Our axiomatic framework does not consider associativity (O1) nor 

idempotence (O2) as imperative requirements, nor does it assume 

the possibility of inconsistent inputs (first part of O4). We also re- 

strict axiom O3 (our property 2) to strongly consistent inputs. Up 

to these points, the above axioms do fit ours (O4-2 is our property 

6: insensitivity to vacuous information). 

There are two axioms related to O4, adapted from the proba- 

bilistic setting [24] : 

(a) zero preservation: If ∃ w ∈ W, ∀ i, πi (w ) = 0 , then ◦π (π1 , . . . , 

πn )(w ) = 0 . 

(b) maximal plausibility: If ∃ w ∈ W, ∀ i, πi (w ) > 0 , then ◦π (π1 , 

. . . , πn )(w ) > 0 . 

These properties correspond to our postulate 1. 

Remark 3. Quota merging rules can apply to possibility distribu- 

tions [52] . In this case one can consider the maximal number k ∗
of strongly consistent sources (cores intersecting), and the maxi- 

mal number k ∗ > k ∗ of weakly consistent sources (supports inter- 

secting), performing the conjunction of pieces of information from 

the former group, and the renormalised conjunction of pieces of 

information from the latter group. These two resulting informa- 

tion items can be further merged, in a prioritised way, giving more 

weight to the set of strongly consistent sources. 

Remark 4. Chopra et al [22] also propose seven postulates for in- 

formation fusion in the DENUM setting. We briefly restore them in 

our setting. Their axiom 10 corresponds to an optimistic form of 

impossibility preservation (even though no state is considered im- 

possible in [22] ), which would read π (w ) ≤ max n 
i =1 

πi (w ) in our 

setting. Axiom 11 is a truth-functionality axiom, akin to Inde- 

pendence of Irrelevant Alternatives, saying basically that π (w ) is 

a function of the values πi (w ) only. Remember that this postu- 

late does not contradict our setting only if πi (w ) > 0 , ∀ i, ∀ w ∈ W . 

They also require commutativity ( 13), ordinal unanimity ( 14) and 

a form of Fairness ( 15) similar to the one in the ordinal setting of 

Section 5.2 . Axiom ( 16) is a variant of the Optimism axiom cast in 

terms of a form of strict Pareto dominance Finally, there is also one 

postulate ( 12) requiring that the range of values used in the fu- 

sion process is made of consecutive integers (a requirement which 

is only justified by the DENUM representation setting). 

This axiomatic system is again quite in agreement with our ba- 

sic postulates, even though there is no use of informational com- 

parison between information items, nor any minimal commitment 

assumption, nor any postulate regarding the uselessness of unin- 

formed sources. The lack of such considerations and the fact that 



they compare their setting with the one of Arrow as well and dis- 

cuss strategy-proofness, suggest their framework is not solely de- 

voted to the search of truth in a body of information items, but like 

authors of [69] , they consider information fusion as encompassing 

both preference and plausibility merging. 

6.3. Relation with distance-based knowledge merging 

Possibility distributions over a set consisting of interpretations 

of a Boolean language can be encoded as possibilistic knowledge 

bases [36] . So, aggregation operations that apply to possibility dis- 

tributions can be encoded at the syntactic level into operations 

that merge totally ordered, or stratified, knowledge bases in pos- 

sibilistic logic. The reader is referred to the literature for details 

on this topic, especially the works of Benferhat and colleagues 

[7,8,11,12,62] as well as Liu and colleagues [75,75,89–91,117] . 

It is nevertheless interesting to point out the link between the 

distance-based merging approaches that implement fusion rules in 

propositional logic, and the possibilistic fusion setting. 

In the distance-based merging approach [66] , given a proposi- 

tional knowledge base K i , a distance between interpretations and 

K i is defined as 

d(w, K i ) = min 
w ′ |HK i 

d(w, w 
′ ) , 

where d is a distance between interpretations of the language, for 

instance the Hamming distance counting the number of instanti- 

ated variables that differ in w and w ′ . Viewing the set of models 

of K i as the core of an information item, and using a Hamming dis- 

tance, it is natural to interpret the integer d(w, K i ) as the degree of 

disbelief of w given the belief base K i , in the style of Spohn ranking 

functions. It is then easy to construct a possibility distribution ex- 

pressing the relative plausibility of w as πi (w ) = ǫd(w,K i ) , for some 

positive ǫ < 1 (which brings the problem inside the DENUM set- 

ting). As explained in [7] , it is then easy to reinterpret distance- 

based propositional knowledge-based merging rules in terms of 

aggregation operations in possibility theory: 

• The maximum rule proposed in [66,68] corresponds to the nor- 

malised minimum rule (5) in possibility theory. Indeed, the in- 

terpretations w such that the function max n 
i =1 

d(w, K i ) is mini- 

mal correspond to the maximal elements of min n i =1 πi (w ) and 

form the core of the resulting possibility distribution, which 

comes down to a normalisation. The result of the propositional 

fusion of K 1 , . . . , K n is then always a consistent classical propo- 

sitional base K such that [ K] = { w : π (w ) = Cns min (π1 , . . . , πn ) } . 
Note that this fusion rule is not associative, even if max is asso- 

ciative. The max rule is one of those proposed by Chopra et al. 

[22] in the DENUM setting. 
• The sum rule proposed in [66,68] corresponds to the nor- 

malised product rule (6) in possibility theory. Indeed, the in- 

terpretations w such that 
∑ n 

i =1 d(w, K i ) is minimal correspond 

to the maximal elements of ∗n 
i =1 

πi (w ) and form the core of the 

resulting possibility distribution, which comes down to a nor- 

malisation. The result of the propositional fusion of K 1 , . . . , K n 
is then always a consistent classical propositional base K such 

that [ K] = { w : π (w ) = Cns ∗(π1 , . . . , πn ) } . Note that a form of 

this fusion rule was already at work in the old expert system 

MYCIN (see the corresponding discussion in [45] ). The sum rule 

is also one of those proposed in [22] and appears as well in 

[71,77] . 
• The GMax fusion rule proposed in [66,68] corresponds to the 

leximin rule [34] that refines the minimum operation applied 

to possibility distributions [7] . This operation results in a rank- 

ing of interpretations that is finer-grained than the scale of the 

inputs. One of the merging rules (called 1min 1 ) proposed in 

[22] encodes the GMax fusion rule by means of integers. 

• Quota rules for merging knowledge bases are found in [54,91] 

and can be explained in the setting of possibility theory as well. 

In [75] , an adaptive algorithm for merging stratified knowledge- 

bases (SKBs) is proposed. The algorithm first selects among 

maximal consistent subsets of sources based on assessing how 

(partially) consistent the information pieces in the subset are, 

in the spirit of possibilistic merging. However, this paper does 

not mention any information ordering between SKBs, refers 

neither to Information Monotonicity nor Optimism to advocate 

the proposed fusion operators. 
• In the same vein, Hunter and Liu [59] , proposed an adaptive 

algorithm for merging possibility distributions. Although infor- 

mation ordering, as defined in this paper was not used in [59] , 

the assessment of information quality for ranking information 

items was indeed applied in order to generate partially maxi- 

mal consistent subsets. 

Note that, in the distance-based merging context, ∀ w ∈ 

W, πi (w ) > 0 so that conjunctive merging rules always satisfy Con- 

sistency Enforcement and Fairness, hence all basic postulates of 

information fusion. This condition is not taken for granted in the 

usual possibilistic setting, which explains again the absence of MCS 

rules in the frameworks of distance-based merging and all settings 

based on the integer scale for grading disbelief. 

These approaches explicitly use the connection between strat- 

ified knowledge-bases and plausibility ranking of possible worlds 

to define merging operations. This is also true for the approach 

in [117] , where the set of possible worlds is ranked, based on the 

set of stratified knowledge bases, according to a Condorcet-like 

method after voting systems, prior to reconstructing a stratified 

base. This method satisfies most of the basic postulates as well but 

for those involving the information-ordering, a notion not used in 

that paper. 

7. A principled view of information fusion in Dempster–Shafer 

theory 

In evidence theory [97,116] , further developed as the Transfer- 

able Belief Model [102] , a piece of information T is modelled by 

a basic belief assignment (bba) m T which is a mapping from 2 W to 

[0, 1] such that 
∑ 

E⊆W m T (E) = 1 , and m T (∅ ) = 0 . This piece of in- 

formation must be interpreted as an unreliable testimony, whereby 

m T ( E ) is the probability that E is the correct information given by 

the source. It means that with probability 1 −m T (E) , the piece of 

information E is irrelevant. A set E with positive mass is called a 

focal set . The set of focal sets is denoted by F m . Given a bba, two 

conjugate evaluations can be defined, regarding the confidence it 

gives in propositions described by sets A ⊆W : 

• The degree of belief in a proposition A is the probability that 

A can be logically inferred from the agent’s body of evidence: 

Bel(A ) = 
∑ 

E i ⊆A 
m T (E i ) ; 

• The degree of plausibility of A is the probability that A is log- 

ically consistent with the agent’s body of evidence: P l(A ) = 
∑ 

E i ∩ A 6 = ∅ 
m T (E i ) = 1 − Bel(A c ) , where A c is the complement of A . 

The uninformative item is captured by the vacuous belief func- 

tion : m ⊤ such that m ⊤ (W ) = 1 . It is well-known [97] that a bba 

subsumes probability distributions (when focal sets are only sin- 

gletons), and possibility distributions (when focal sets are nested). 

In the first case, the belief and plausibility functions reduce to a 

probability measure; in the latter case they are necessity and pos- 

sibility measures respectively. 



7.1. Core, support, plausibility ordering 

Various relevant notions can be defined as follows for a bba m T . 

They are instrumental for instantiating the basic properties in evi- 

dence theory: 

• Support : if F T ={ A 1 , . . . , A n } , then S(m T )= 
⋃ n 

i =1 A i . 
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• Core : C(m T ) = 
⋂ n 

i =1 A i . 
• Plausibility ordering : It can be constructed in two ways: 

• using the contour function [97] : πT (w ) = 
∑ 

A ⊆W,w ∈ A m T (A ) = 

P l({ w } ) ; this is a natural option for comparing possible 
worlds ( w 1 ºT w 2 if and only if πT (w 1 ) ≥ πT (w 2 ) ). 

• directly using a kind of dominance between bba’s [37] : 

w 1 º
dom 
T w 2 if and only if 

for any A ⊆ W \ { w 1 , w 2 } , m T (A ∪ { w 1 } ) ≥ m T (A ∪ { w 2 } ) . 

It is clear that w ∈ S(m T ) if and only if P l({ w } ) > 0 and w ∈ 

C(m T ) if and only if P l({ w } ) = 1 . Note that the core may be 

empty. When the focal sets are nested, the contour function π T of 

the bba m T coincides with a possibility distribution, and P l(A ) = 

max w ∈ A πT (w ) is a possibility measure. Moreover, bba dominance 

ºdom 
T is a partial ordering coherent with the contour function as 

indicated by the easy-to-check result: 

Proposition 10. : ºdom 
T is a reflexive and transitive relation. More- 

over, w 1 º
dom 
T w 2 implies πT (w 1 ) ≥ πT (w 2 ) , and likewise w 1 ≻

dom 
T 

w 2 implies πT (w 1 ) > πT (w 2 ) 

A bba is usually assumed to be self-consistent, i.e., as said ear- 

lier, m (∅ ) = 0 . A stronger form of self-consistency requests a non- 

empty core, that is, a normalised contour function. However, in the 

following we shall still call bba a mass function for which m ( ∅ ) 

6 = 0. Such bba will be called weakly consistent if m ( ∅ ) 6 = 1, and 

strongly inconsistent otherwise. 

7.2. Mutual consistency 

We now examine issues related to the notion of conflict be- 

tween belief functions. 

The degree of inconsistency (or conflict) of two bbas m 1 and 

m 2 is often measured by the mass bearing on the empty set as 

the result of the conjunction of m 1 and m 2 viewed as independent 

random sets: 

Inc(m 1 , m 2 ) = 

∑ 

A ∩ B = ∅ 

m 1 (A ) ·m 2 (B ) . 

It is the counterpart of 1 −Cns ∗(π1 , π2 ) in possibility theory, us- 

ing conjunction product. However, this index is questionable. It has 

been pointed out in [74] that m 1, 2 ( ∅ ) is not a measure of discrep- 

ancy between bba’s, since two identical bba’s may have a non-zero 

degree of conflict 11 . Moreover, assuming independence is an extra 

assumption that may or may not be used in the fusion process. 

Alternatively we can adopt definitions that do not rely on inde- 

pendence: two mass functions m and m ′ with focal sets F and F ′ 

are said to be 

• Weakly mutually consistent if ∃ E ∈ F , E ′ ∈ F ′ : E ∩ E ′ 6 = ∅ (note 

that it implies that Inc ( m 1 , m 2 ) < 1) 
• Strongly (or logically [29] ) mutually consistent if ∀ E ∈ F , ∀ E ′ ∈ 

F ′ : E ∩ E ′ 6 = ∅ (note that it does imply that Inc(m 1 , m 2 ) = 0 ). 

It is easy to see that these conditions can only be partially 

stated in terms of contour functions. Indeed, m and m ′ are: 

10 Often called the core in the literature, which is at odds with, e.g., probability 

theory where this set is also called the support. 
11 A distance function such as d (m 1 , m 2 ) = max A ⊆W (| m 1 (A ) −m 2 (A ) | ) seems more 

appropriate for this kind of discrepancy. 

• weakly mutually consistent if and only if 

max w ∈ W min (πm (w ) , πm ′ (w )) 6 = 0 
• strongly mutually consistent whenever 

max w ∈ W min (πm (w ) , πm ′ (w )) = 1 . 

The converse of the last statement does not hold, since 

max w ∈ W min (πm (w ) , πm ′ (w )) = 1 presupposes the use of belief 

functions with non-empty cores. 

Note that the above definitions do not involve the mass func- 

tions, and are all-or-nothing concepts, which may not be fully sat- 

isfactory. Strong mutual consistency is nevertheless very natural 

as it means that each pair of focal sets coming from each belief 

function is consistent. It is weaker than the strong consistency of 

their contour functions. However, weak mutual consistency can be 

judged too weak. An alternative stronger definition of consistency 

may be as follows [29,40] : 

Definition 2. Two mass functions m 1 and m 2 are said to be mutu- 

ally probabilistically consistent if there exists a joint mass function 

x (B, C) , B ∈ F 1 , C ∈ F 2 such that 
∑ 

B ∈F 1 

x (B, C) = m 2 (C) , ∀ C ∈ F 2 ; (10) 

∑ 

C∈F 2 

x (B, C) = m 1 (B ) , ∀ B ∈ F 1 ; (11) 

x (B, C) = 0 whenever B ∩ C = ∅ . (12) 

∑ 

B ∈F 1 ,C∈F 2 

x (B, C) = 1 . (13) 

The two first sets of equalities say that m 1 and m 2 are 

marginals of x ( ·, ·); the third one forbids to allocate positive mass to 

pairs of conflicting focal sets (then x ( ·, ·) is strongly self-consistent). 

Given a belief function, it is well-known that the set of prob- 

abilities M (m ) = { P : P (A ) ≥ Bel(A ) , ∀ A } is non-empty and convex. 
It is called the credal set induced by m . The above definition of 

consistency is equivalent to saying that the two credal sets M (m 1 ) 

and M (m 2 ) have a non-empty intersection [20] , which explains 

the name of this type of consistency. A degree of probabilistic con- 

sistency between m 1 and m 2 can then be defined as 

P C(m 1 , m 2 ) = sup 
x 

∑ 

B ∈F 1 ,C∈F 2 ,B ∩ C 6 = ∅ 

x (B, C) 

where x is any joint mass assignment with marginals m 1 and m 2 

(not necessarily obeying (16) ). This consistency index has better 

behaviour than 1 − Inc(m 1 , m 2 ) . First, it does not presuppose inde- 

pendence between m 1 and m 2 . Moreover, it obeys intuitively satis- 

factory properties that the other index violates: 

Proposition 11. Index PC obeys the following properties: 

• For any normalised mass function m, P C(m, m ) = 1 . 
• P C(m 1 , m 2 ) = 1 if and only if m 1 and m 2 are mutually probabilis- 

tically consistent . 

Proof . Indeed for the case when m 1 = m 2 = m, it is enough to 

choose x (A, A ) = m (A ) , ∀ A ⊆ W to get P C(m, m ) = 
∑ 

A ⊆W m (A ) = 1 . 

The other point is obvious as probabilistic consistency precisely 

consists in the possibility to assign joint masses in agreement to 

the given marginals only to non-conflicting sets. ¤

Note that even if m 1 and m 2 are weakly mutually consistent, 

they may be probabilistically inconsistent ( P C(m 1 , m 2 ) = 0 ), in con- 

trast with Inc ( m 1 , m 2 ) that will always be less than 1). Besides, 

strong mutual consistency ensures P C(m 1 , m 2 ) = 1 . 

The drawback of our conflict index is that it needs to run a 

linear programming algorithm to compute it in practice. Recently, 



Destercke and Burger [28] have proposed an axiomatic setting for 

measures of conflict, that has some connection with our postulates. 

However, they propose degrees of confict that use contour func- 

tions and are easier to compute. 

7.3. Information ordering 

In the literature, different information orderings in evidence 

theory have been proposed for comparing the information contents 

of bba’s. We only consider the most basic ones (see e.g. [29,41] ) 

Definition 3 (c-ordering) . m 1 ⊑ c m 2 if ∀ w ∈ W, πm 1 (w ) ≤ πm 2 (w ) . 

This is a straightforward extension of the specificity ordering 

of possibility theory. It very much lacks discrimination as it only 

relies on the plausibility of singletons. 

Definition 4 (pl-ordering) . [41] m 1 ⊑ pl m 2 , if ∀ A ⊆W , pl 1 ( A ) ≤

pl 2 ( A ). 

This kind of information ordering is much in line with the un- 

derstanding of belief functions as a special family of probability 

functions since m 1 ⊑ pl m 2 is equivalent to the inclusion between the 

corresponding credal sets: M (m 1 ) ⊆pl M (m 2 ) . 

The next definition requires the notion of a commonality func- 

tion q induced by a bba m T [97] : q (A ) = 
∑ 

E i ⊇A 
m T (E i ) . Clearly de- 

grees of commonality tend to be all the greater as masses are al- 

located to larger focal sets. 

Definition 5 (q-ordering) . [41] m 1 ⊑ q m 2 if ∀ A ⊆W , q 1 ( A ) ≤ q 2 ( A ). 

It means that, by and large, m 2 assign masses to larger subsets 

than m 1 , which sounds like m 2 being the last informative of the 

two bba’s. 

Definition 6 (Specialisation) . [41,64] Let m 1 and m 2 be two bbas 

over W , m 1 is a specialisation of m 2 , denoted by m 1 ⊑ s m 2 if and 

only if there exists a non-negative matrix joint bba with general 

term x ( A , B ), A ∈F 1 , B ∈F 2 such that 
∑ 

A ∈F 1 

x (A, B ) = m 2 (B ) , ∀ B ∈ F 2 ; (14) 

∑ 

B ∈F 2 

x (A, B ) = m 1 (A ) , ∀ A ∈ F 1 ; (15) 

x (A, B ) = 0 whenever A * B. (16) 

∑ 

B ∈F 1 ,C∈F 2 

x (B, C) = 1 . (17) 

Note that a necessary condition for specialisation (or s- 

ordering) is that ∀ A ∈ F 1 , ∃ B ∈ F 2 , A ⊆ B and ∀ B ∈ F 2 , ∃ A ∈ F 1 , A ⊆

B . Moreover, this definition is in full agreement with the definition 

of probabilistic consistency between bba’s (notice the strong simi- 

larity between their respective definitions). 

Relationships among these orderings are as follows [41] : s- 

ordering implies pl-ordering and q-ordering, but the converse is 

false. Both are more demanding than the c-ordering. Hence the s- 

ordering is the strongest ordering of the four, and c-ordering the 

weakest. Moreover, they all coincide with the specificity ordering 

of possibility theory when the focal sets are nested. However, the 

pl-ordering and the q-ordering are not comparable and can be at 

odds with one another: it is easy to find bba’s m 1 and m 2 such 

that m 1 �pl m 2 and m 2 �q m 1 , in which case the contour functions 

are equal [29] , which may baffle the intuition. These arguments 

plea for the use of specialisation as the most natural information 

ordering in the setting of evidence theory. 

7.4. Instantiation of basic fusion postulates in evidence theory 

There are several possible ways of instantiating the basic postu- 

lates of information fusion for belief functions, due to several no- 

tions of mutual consistency, information ordering, plausibility or- 

dering, and the like. 

In the following we give one possible instantiation which may 

be appealing because it is as little constrained as possible. To this 

end we use specialisation, dominance ordering, and strong mu- 

tual consistency. For the sake of simplicity we write the postulates 

for two bba’s m 1 and m 2 , denoting by m 12 the result of the fu- 

sion. In order to build a combination rule we also need a depen- 

dence structure between sources that is expressed by the joint bba, 

namely we must know the joint bba is x ( ·, ·) whose marginals are 

m 1 and m 2 . On this basis, two straightforward extensions of the 

set-theoretic intersection and union can then be defined for ran- 

dom sets: 

∀ E ⊂ W, m 1 ∩ 2 (E) = 
∑ 

E= F ∩ G x (F , G ) . (18) 

∀ E ⊂ W, m 1 ∪ 2 (E) = 
∑ 

E= F ∪ G x (F , G ) . (19) 

One assumption often made is independence between pieces of 

information provided by sources, so that x (F , G ) = m 1 (F ) ·m 2 (G ) . 

Then these combination rules are the ones already known in the 

literature [42,100] , except that, here, the joint bba is x ( ·, ·) instead 

of the product of bba’s that requests an independence assumption 

between the two random sets. In the latter case, we denote m 1 ∩ 2 

by m 1 ⊙m 2 , and m 1 ∪ 2 by m 1 ⊕m 2 . 

This dependence or independence assumption does not affect 

the postulates below. Namely, fusion postulates do not have to im- 

pose a particular dependence structure between sources. 

1. Unanimity 
• Possibility preservation : If w ∈ C(m 1 ) ∩ C(m 2 ) then, w ∈ 

C(m 12 ) . 
• Impossibility preservation : If w 6∈ S(m 1 ) ∪ S(m 2 ) , then w 6∈ 

S(m 12 ) . 
• An additional requirement can be local ordinal unanimity 

with respect to dominance ordering: for two any states w 

and w ′ : if w ºdom 
1 w ′ and w ºdom 

2 w ′ then w ºdom 
12 w ′ . 

2. Weak Information monotonicity : If m 1 and m 2 are strongly con- 

sistent, and m 1 ⊑ s m ′ 1 , m 2 ⊑ s m ′ 2 , then m 12 ⊑ s m ′ 12 . 

3. Consistency enforcement : 
•

∑ 

E⊆S m 12 (E) = 1 (strong version). 
• 6E ⊆ S m 12 ( E ) > 0 (weak version). 

4. Optimism 

• If m 1 and m 2 are strongly mutually consistent, then m 12 ⊑ s 

m i , i = 1 , 2 . 
• There exists a joint bba x ( ·, ·) whose marginals are m 1 and 

m 2 , such that m 12 ⊑ s m 1 ∪ 2 . 

5. Fairness 
• No Favourite : If m 1 and m 2 are not strongly mutually consis- 

tent, then m 12 6⊑ s m i , i = 1 , 2 
• No Dismissal : Each m i should be weakly consistent with m 12 . 

6. Insensitivity to vacuous information : If m 1 (W ) = 1 then m 12 = 

m 2 . 

7. Symmetry : m 12 = m 21 . 

8. Minimal commitment : m 12 should be minimally specific for spe- 

cialisation. 

Some comments are in order. For Consistency Enforcement, the 

choice between strong and weak version depends on whether 

the result of the combination rule should be normalised or 

not. The optimism postulate again expresses that we favour con- 

junctive rules of combination when sources strongly agree and that 

we should assume at least one source is correct if they disagree. 

The latter involves the disjunctive combination rule m 1 ∪ 2 . In the 



Fairness axiom, we have provided the two sides of it explicitly, 

because they are no longer redundant, since we do not use the 

same form of mutual consistency on each side. Finally, minimal 

commitment could be expressed in the sense of any suitable in- 

formation ordering relation. The choice of a dependence structure 

between the sources expressed via the joint bba x ( ·, ·) reduces the 

scope of the minimal commitment axiom and the role of the pos- 

tulates to the choice of a proper set-theoretic combination for focal 

sets. 

7.5. Examples of fusion rules 

Let us consider a few known combination rules in the the- 

ory of belief functions, to be evaluated in the light of the above 

postulates. Many combination rules have been proposed in evi- 

dence theory for merging information, apart from the well-known 

Dempster’s rule of combination. For the sake of simplicity, we 

only focus on the main combination rules, although many variants 

have been proposed in the literature (see [101] for an extensive 

review). 

m De (C) = 

{ ∑ 

A,B : A ∩ B = C m 1 (A ) ·m 2 (B ) 

1 −
∑ 

A,B : A ∩ B = ∅ m 1 (A ) ·m 2 (B ) 
, ∀ C 6 = ∅ , 

0 if C = ∅ . 

(Dempster’s rule) (20) 

m Sm (C) = 

∑ 

A,B ⊆W,A ∩ B = C 

m 1 (A ) ·m 2 (B ) = m 1 ⊙m 2 (C) 

(Smets’ rule) [101] (21) 

m Ya (C) = 

 

 

 

∑ 

A,B : A ∩ B = C m 1 (A ) ·m 2 (B ) if C 6 = W, ∅ 

m 1 (W ) ·m 2 (W ) + 
∑ 

A ∩ B = ∅ m 1 (A ) ·m 2 (B ) if C = W, 

0 if C = ∅ . 

(Yager’s rule) [114] (22) 

m DP (C) = 

 

 

 

∑ 

A,B : A ∩ B = C m 1 (A ) ·m 2 (B ) 

+ 
∑ 

A,B : A ∪ B = C,A ∩ B = ∅ m 1 (A ) ·m 2 (B ) , ∀ C 6 = ∅ , 

0 if C = ∅ . 

(23) 

The most celebrated fusion rule is an associative operation called 

Dempster rule of combination [27,97] . All four fusion rules presup- 

pose independence between sources, as an additional assumption, 

which enforces the choice of x (·, ·) = m 1 (·) ·m 2 (·) . The main dif- 

ference between Dempster’s rule and the three other rules respec- 

tively proposed in [102] (see also [100] ) [113] , and [45] concern 

the way the mass (m 1 ⊙m 2 )(∅ ) = 
∑ 

A,B : A ∩ B = ∅ m 1 (A ) ·m 2 (B ) is re- 

allocated. In Dempster’s rule, the renormalisation by division en- 

forces consistency preservation, when the two bba’s are weakly 

consistent (otherwise the operation is not defined). Smets’s rule 

simply keeps this mass on ∅ , whilst Yager’s rule assigns it to W . 

The DP rule keeps the mass m 1 ( A ) · m 2 ( B ) on A ∩ B whenever this 

intersection is not empty, and gives it to A ∪ B otherwise. 

All four fusion rules coincide with each other if the two bba’s 

are strongly consistent. Then all postulates are satisfied. When 
∑ 

A ∩ B = ∅ m 1 (A ) ·m 2 (B ) = 1 , m De is not defined due to a total con- 

flict between the sources, which violates the Consistency Enforce- 

ment postulate, like for the normalised conjunctive rules in pos- 

sibility theory. When the two bba’s are weakly mutually consis- 

tent, the result is consistent since m De (∅ ) = 0 . For instance, sup- 

pose that m 1 and m 2 are weakly mutually consistent in a minimal 

way, namely if there is a single pair A ∈ F 1 , B ∈ F 2 , such that A ∩ B 

6 = ∅ , which is a situation of severe conflict. Then m De (A ∩ B ) = 1 , 

so m De 6⊑ m 1 ⊕m 2 as soon as there are C ∈ F 1 , D ∈ F 2 , such that 

A ∩ B �C ∪ D , since the mass m De ( A ∩ B ) cannot flow to all focal sets 

of m 1 ⊕m 2 . The afore-mentioned situation shows that Dempster’s 

rule of combination is over-optimistic in case of weak consistency; 

it may fail to satisfy the second optimism condition, due to renor- 

malisation (it would satisfy it if we replace it by the weaker con- 

dition S(m 12 ) ⊆ S(m 1 ) ∪ S(m 2 ) ). 

Smets [100] has advocated a non-normal version (21) of Demp- 

ster combination rule, which comes down to a mere intersection 

of independent random sets. In Smets rule, the mass assigned 

to the empty set m S ( ∅ ), may be different from 0, and can even 

be 1. Thus, Smets rule does not respect the Consistency Enforce- 

ment principle, even if it is always defined, since it may deliver 

the plain empty set in case m 1 and m 2 are strongly inconsis- 

tent. Like Dempster rule of combination, Smets’ rule is purely con- 

junctive, hence does not behave in agreement with the postulates 

in case of partial mutual inconsistency. The Fairness axiom for- 

mally fails with this fusion rule because it is not compatible with 

the failure of the Consistency Enforcement postulate. Optimism 

is recovered at the expense of internal consistency of the result, 

which is subnormalised in case of weakly consistent inputs. So, 

while Dempster rule is overoptimistic, Smets rule gives up internal 

consistency. 

Yager [113] proposed another form of renormalisation that en- 

sures a strongly internally consistent result, while making the 

combination applicable to any pair of bba’s, by reassigning the 

mass m S ( ∅ ) to the whole set W . It does not respect optimism 

and moreover, impossibility preservation is clearly violated. The 

failure of Optimism can be observed if the two bba’s are not 

strongly consistent, that is when m Ya ( W ) > m 1 ( W ) · m 2 ( W ). Then 

the condition m Ya ⊑ s m 1 ⊕m 2 may fail because m Ya ( W ) has become 

too large. In fact this rule is far too cautious in the presence of 

conflicts. 

Regarding local ordinal unanimity we can prove the following 

Proposition 12. Dempster, Smets and Yager combination rules obey 

local ordinal unanimity with respect to dominance ordering. 

Proof. We prove for Smets rule first. Suppose w 1 º
dom 
1 w 2 and 

w 1 º
dom 
2 w 2 , namely that for any A ⊆ W \ { w 1 , w 2 } , m i (A ∪ { w 1 } ) ≥

m i (A ∪ { w 2 } ) for i = 1 , 2 . Then we must prove that for any C ⊆

W \ { w 1 , w 2 } , 
∑ 

C∪{ w 1 } = F ∩ G 
m 1 (F ) ·m 2 (G ) ≥

∑ 

C∪{ w 2 } = F ∩ G 
m 1 (F ) ·m 2 (G ) . 

Note that if C ∪ { w 1 } = F ∩ G then F = F ′ ∪ C ∪ { w 1 } and F = G ′ ∪ 

C ∪ { w 1 } , with F 
′ , G ′ ⊆ W \ { w 1 , w 2 } and likewise for w 2 . The latter 

inequality reads: 
∑ 

F ′ ,G ′ ⊆W \{ w 1 ,w 2 } 
m 1 (F 

′ ∪ C ∪ { w 1 } ) ·m 2 (G 
′ ∪ C ∪ { w 1 } ) 

≥
∑ 

F ′ ,G ′ ⊆W \{ w 1 ,w 2 } 
m 1 (F 

′ ∪ C ∪ { w 2 } ) ·m 2 (G 
′ ∪ C ∪ { w 2 } ) 

which holds since 

m 1 (F 
′ ∪ C ∪ { w 1 } ) ·m 2 (G 

′ ∪ C ∪ { w 1 } ) ≥ m 1 (F 
′ ∪ C ∪ { w 2 } ) ·

m 2 (G 
′ ∪ C ∪ { w 2 } ) from the working assumption. 

As to Dempster rule of combination, note that the mass func- 

tion obtained differs from the one in Smets rule only by a multi- 

plicative coefficient. 

Yager rule respects Local Ordinal Unanimity for dominance, 

since the obtained bba differs from Smets rule result only by 

adding a constant to the mass of W . ¤

The combination rule (23) directly extends the basic fusion rule 

(3) for two sets, from Section 4.1 , and was proposed by Dubois and 

Prade [45] . Again, it coincides with Dempster’s rule of combination 

and Smets’ conjunctive rule, and Yager’s as well if and only if the 

two mass functions are strongly consistent, that is, ∀ F , m 1 ( F ) > 0, 

∀ G , m 2 ( G ) > 0, F ∩ G 6 = ∅ . 



Table 3 

Properties of combination rules in evidence theory. 

rule/Prop Una Mono Vacuous Cons Opti Fair Min-Com 

Dempster Yes 1 Yes Yes Stronga No Yes a No 

Smets Yes b Yes Yes b No Yes No Yes b 

Yager No Yes Yes b Strong No Yes Yes 

DP Yes Yes Yes Strong Yes Yes Yes 

a Only when defined. 
b Trivially in case of strong inconsistency. 

Proposition 13. The DP fusion rule (23) satisfies all fusion postulates 

stated for belief functions. 

Proof It goes just as for the basic fusion rule for two sets 

(3) . We only clarify the possibly not obvious issues. Impossibil- 

ity preservation is ensured by the fact that masses m 1 ( F ) · m 2 ( G ) 

are never allocated outside F ∪ G . As a consequence, m 12 ⊑ s m 1 ∪ 2 

(just reallocate to F ∪ G the masses m 1 ( F ) · m 2 ( G ) allocated to F ∩ G 

when F ∩ G 6 = ∅ . For fairness, consider the No Favourite property: if 

F ∩ G = ∅ the mass allocated to F ∪ G can be reallocated neither to F 

nor to G , and in general there is no focal set of m i that will contain 

F ∪ G , or if it does, the mass m DP ( F ∪ G ) may well be larger than the 

sum of the masses m i ( C ) for F ∪ G ⊆C . The No Dismissal is obvious. 

Minimal commitment holds because, once the dependence struc- 

ture is fixed, it is applied for each pair of focal sets, one for m 1 , 

one for m 2 like for the rule (3) . ¤

Note that Dempster rule and Smets rule are associative, while 

the other aggregation methods are not. However, Yager’s rule is 

quasi-associative (apply Smets rule to the n inputs, then renor- 

malise the result by transferring the mass on the empty set to the 

whole set W ) and Dubois and Prade combination rule can be read- 

ily extended to n > 2 independent sources, using the MCS rule (4) 

on all n -tuples of focal sets: ∀ E 6 = ∅ , 

m DP−n (E) = 

∑ 

F 1 , ... ,F n : E= f MCS 
n (F 1 , ... ,F n ) 

m 1 ( F 1 ) · . . . ·m n ( F n ) (24) 

The above results are summarised by Table 3 (all above rules 

are symmetric). 

As already said, the fusion rules considered in this section can 

be generalised, replacing the product of bba’s m 1 ( F ) · m 2 ( G ) by a 

suitably chosen joint mass function x ( E , F ) whose marginals are 

m 1 and m 2 . If we give up choosing a dependence structure, we 

can replace strong consistency by probabilistic consistency, that is 

all four fusion rules would coincide with m 12 (E) = 
∑ 

E= F ∩ G x (E, F ) 

if m 1 and m 2 are probabilistically mutually consistent. However, 

there may be several minimally specific fusion rules, if we leave 

the choice of x ( E , F ) open [29] . 

8. Information fusion in probability theory 

A probability distribution can be used to serve either of two 

purposes: modelling of random phenomena (it is then said to be 

objective), and modelling belief (it is then said to be personal or 

subjective). In the latter case, a probability distribution is attached 

to the observer rather than to the observed phenomenon. This is 

what we assume here, since each information item we consider is 

attached to a source. 

A subjective probability distribution is arguably the full-fledged 

opposite to set-valued representation of incomplete knowledge: it 

cannot represent incomplete knowledge understood as partial ig- 

norance faithfully. On the contrary, probability distributions are tai- 

lored to aleatory uncertainty. This point has been abundantly doc- 

umented in the literature. Three main points can be stressed [51] : 

1. The uniform probability distribution is ambiguous, it cannot tell 

fair dice from unknown ones, but for the fact that the uniform 

distribution representing the former is objective, while the one 

representing the latter is subjective. 

2. Probabilistic representations of ignorance are questionably scale 

or language-dependent: for instance a uniform distribution on a 

linear scale does not remain uniform after a non-linear mono- 

tonic transformation (e.g. logarithmic). This is acceptable if the 

distribution represents frequentist information, less so for igno- 

rance. 

3. In the presence of ambiguity or incomplete information, people 

do not make decision in agreement with expected utility based 

on a unique subjective probability distribution on states of na- 

ture, as revealed by Ellsberg paradox [53] . 

Actually a probability distribution should be understood as a 

weighted collection of conflicting singletons, in contrast with belief 

functions or possibility distributions that account for a collection of 

more or less reliable disjunctive sets representing incomplete infor- 

mation. Contrary to the basic fusion modes of disjunctive sets that 

come down to a conjunction or a disjunction, there are no such 

connectives available in probability theory (conjunction and dis- 

junction are not closed operations for singletons). Only the setting 

of evidence theory can shed light on what could be a conjunction 

or a disjunction of probability distributions (e.g. the union of ran- 

dom singletons is a mass function bearing on focal sets with one 

and two elements). 

Nevertheless, beginning in the 1960s, there is a large litera- 

ture on the fusion of subjective probability measures, split in two 

schools. When parallel fusion is taken for granted (see for instance 

[24] ), the result is often required to be a weighted average of orig- 

inal probabilities. Under the Bayesian approach [57,84] , the fusion 

process is in fact a combined revision/fusion process due to the 

presence of a prior probability. Moreover, its application requires a 

lot of information to be available (for instance, prior probabilities). 

As explained quite early by Walley [109] , the framework of im- 

precise probability is much more convenient than the one of single 

subjective probability in order to discuss the problem of merging 

beliefs, since the latter are inherently imprecise. In fact, the rep- 

resentation of belief by imprecise probability is but a slight varia- 

tion of the standard exchangeable betting behaviour setting [110] . 

Nowadays, imprecise probabilities have been extensively developed 

and found applications in many real-world scenarios [4] . 

8.1. Representing beliefs by convex sets of probabilities 

In this section, it is assumed that information items take the 

form of convex sets of finitely additive probabilities on W , denoted 

by M . This representation is justified by Walley as a rational ap- 

proach to representing coherent beliefs, after some previous works 

by Smith [103] and Williams [112] , extending De Finetti’s frame- 

work for subjective probabilities [55] . We briefly provide an ac- 

count of this view. 

Like in the personalist approaches to probability [55] , belief is 

measured by the propensity of an agent to buy or gamble with 

uncertain outcomes. Walley’s theory presupposes that the real line 

models a well-defined currency system, where positive values rep- 

resent gains and negative values represent losses. A gamble is a 

bounded mapping X : W → R , interpreted as a random function 

that delivers X(w ) currency units if the actual world turns out to 

be w . A set of gambles desirable for an agent is denoted by D. It 

satisfies the following rationality properties [110] : 

1. If X ∈ D then ∀ λ > 0 , λX ∈ D. 

2. If X ∈ D and Y ∈ D, then, X + Y ∈ D. 

3. If X ≥ 0, X 6 = 0 then X ∈ D (Accepting partial gain) 

4. If X ≤ 0, X 6 = 0 then X / ∈ D (Refusing partial loss) 

A set of gambles takes the form of a positive cone in R W , ex- 

cluding the origin 0. There is a range of prices an agent accepts to 



pay for getting gamble X . The maximal price, E ( X ), based on a set 

D of desirable gambles, is defined as 

E (X ) = sup { x ∈ R : X − x ∈ D} , 

where [ X − x ](w ) = X(w ) − x, also called a lower prevision. E ( X ) 

is superadditive ( E (X + Y ) ≥ E (X ) + E (Y ) ), homogeneous ( E (λX ) = 

λE (X ) , ∀ λ > 0 ), and such that E (X ) ≥ inf { X(w ) : w ∈ W } . E ( X ) is 
called a lower prevision and can be interpreted as the lower bound 

of a family of expected values of X with respect to a set of proba- 

bilities called a credal set : 

M ( E ) = { P : E P (X ) ≥ E (X ) } , 

where E P ( X ) is the expected value of X w.r.t. probability P . 

If an agent provides a set of allegedly maximal buying prices 

ρ(X 1 ) , . . . , ρ(X n ) for gambles X 1 , . . . , X n , this assignment is said to 

ensure a sure loss if the associated credal set M ρ = { P : E P (X ) ≥

ρ(X i ) , ∀ i = 1 , . . . , n } is empty. If not empty, the assignment is 
said to be coherent if ∀ i = 1 , . . . , n, the lower expectation E (X i ) = 

inf { E P (X ) : P ∈ M ρ} precisely equals ρ( X i ), i.e. the proposed prices 
cannot be increased without changing the credal set. 

Conversely, any convex subset M is characterised by the lower 

expectations on gambles E M (X ) = inf { E P (X ) : P ∈ M} inducing the 
set of almost desirable gambles D = { X : E M (X ) ≥ 0 } . Note that the 
upper expectation E (X ) = −E (−X ) is the least price at which the 

agent accepts to sell X . In the classical exchangeable bet approach 

[55] , the buying and selling prices are the same and E (X ) = E (X ) 

is the expectation with respect to a single probability distribution. 

Under the subjectivist interpretation due to Walley [110] , epis- 

temic states are characterised by a credal set. Of course, credal sets 

can also represent imprecise information about an otherwise pre- 

cise random phenomenon. In any case, information supplied by a 

source can take the form of a credal set, which is more general 

than all other frameworks encountered so far. Credal sets M in- 

duce upper and lower probabilities on events, of the form 

P (A ) = inf { P (A ) : P ∈ M}; P (A ) = sup { P (A ) : P ∈ M} = 1 − P (A c ) 

Degrees of belief attached to propositions take the form of lower 

probabilities. However, the credal set M can generally not be re- 

covered from the knowledge of the lower probabilities on events 

it induces, as in general M ⊂ { P : P (A ) ≥ P (A ) } . Nevertheless there 
are noticeable set-functions that are special cases of coherent 

lower or upper probabilities [111] : 

• 2-monotone (convex) capacities g such that g(A ∪ B ) + g(A ∩ B ) 

≥ g(A ) + g(B ) . Then M (g) = { P : P (A ) ≥ g(A ) } 6 = ∅ . It holds that 

P (A ) = inf { P (A ) : P ∈ M (g) } = g(A ) . 
• Belief functions, that are ∞ -monotone: M (m ) = { P : P (A ) ≥
Bel(A ) } 6 = ∅ . It holds that P (A ) = inf { P (A ) : P ∈ M (m ) } = Bel(A ) . 

• Necessity measures: M (π ) = { P : P (A ) ≥ N(A ) } 6 = ∅ . It holds 

that P (A ) = inf { P (A ) : P ∈ M (π ) } = N(A ) . 
• Sets: M (T ) = { P : P (T ) = 1 } . 
• Single probability measures: M = { P } is then a singleton. 

The information ordering between credal sets M and M ′ is de- 

fined by the inclusion ordering M ⊆ M ′ , whereby M is at least 

as informative as M ′ . Two credal sets are mutually inconsistent if 

their intersection is empty. Hence, basic concepts of informational 

comparison and mutual consistency for credal sets are the same 

as for mere set-valued representations of information items. The 

plausibility ordering induced by M can be defined by means of 

the upper probability of singletons, in agreement with the possi- 

bility theory and belief function settings. 

8.2. Walley’s merging axioms 

In an unpublished research note [109] , Walley gave a detailed 

account of postulates for information fusion taking the form of 

credal sets representing agent opinions, emphasising four general 

requirements 

a) the aggregated opinion should be coherent; 

b) if all agents of the group desire a certain gamble, so should re- 

flect the aggregated result; 

c) an aggregation result should at least partially reflect the opin- 

ions of each agent (what Walley calls a reconciliation ); 

d) an aggregation result should reflect any level of indeterminacy 

shared by all agents. 

These concerns prove to be in agreement with our approach to 

information fusion, and Walley’s unpublished report can clearly be 

seen as a pioneering reflexion on information fusion. To implement 

these four concerns, fifteen axioms were precisely stated mathe- 

matically, in terms of credal sets, sets of desirable gambles, and 

lower previsions, respectively. Below, we recall these axioms (num- 

bered after Walley and using his terminology) and compare them 

with our common properties listed above, emphasising the credal 

set point of view that is more in agreement with our set-based 

setting. 

Suppose n sources supplying n credal sets M i (with associated 

desirable sets of gambles D i , and lower previsions E i ( X )), and let 

the merged result be f (M 1 , . . . , M n ) . 

Criterion 1: (Coherence). f (M 1 , . . . , M n ) should be a credal set 

(a convex set of probability measures). 

This criterion is captured by our Property 3 (Consistency en- 

forcement). 

Criterion 2: (Unanimity). f (M 1 , . . . , M n ) ⊆ H( 
⋃ n 

i =1 M i ) where 

H denotes the convex hull. 

This criterion is a variant of our property 1b (Impossibil- 

ity preservation). The use of a convex hull is motivated by 

the need to get a credal set as a result, which 
⋃ n 

i =1 M i is 

not. It can be justified in terms of desirable gambles as the 

property is provably equivalent to 
⋂ n 

i =1 D i ⊆ D where D is 

the set of desirable gambles associated to f (M 1 , . . . , M n ) 

(requirement (b) above). In terms of lower previsions, it is 

E (X ) ≥ min n i =1 E i (X ) , which also provides min n i =1 P i (A ) as a 

lower bound to the resulting lower probabilities. 

Criterion 3: (Reconciliation). If 
⋂ n 

i =1 M i = ∅ , then 

f (M 1 , . . . , M n ) ∩ M i 6 = ∅ , ∀ i = 1 , . . . , n . 

It corresponds exactly to our Fairness property 5. In terms of 

desirable gambles, Walley proves that this condition comes 

down to never let a gamble X be accepted by the group of 

sources if one of them finds its opposite −X strictly desir- 

able. In terms of lower previsions, it is E (X ) ≤ min n i =1 E i (X ) , 

which also provides min n i =1 P i (A ) as an upper bound to the 

resulting lower probabilities. Clearly, this property ensures 

that if the opinions of the sources are described by differ- 

ent single probability functions, the result can then never be 

an additive probability measure, as it should be a credal set 

containing all input distinct probabilities. 

Criterion 4: (Indeterminacy) 
⋂ n 

i =1 M i ⊆ f (M 1 , . . . , M n ) 

This is clearly our Possibility preservation property 1a; it 

implies that the resulting information cannot be more pre- 

cise than what the group considers jointly to be possible. In 

terms of desirable gambles it says that the collective desir- 

able gamble set is contained in the “additive closure” of the 

D i , that is, { 
∑ n 

i =1 X i : X i ∈ D i , ∀ i = 1 , . . . , n } . The translation of 
this postulate in terms of lower previsions is less palatable. 

The two stronger forms below deal with situations when 

agents have inconsistent beliefs. 

Criterion 5: (Strong indeterminacy): It consists in replacing 
∑ n 

i =1 X i : X i ∈ D i , ∀ i = 1 , . . . , n by 
⋃ n 

i =1 D i in the previous cri- 

terion: if no agent of the group finds X desirable, then the 

group should not find X desirable. It is far less obvious to 



express in terms of credal sets, except that ultimately, it 

seems to enforce 
⋂ n 

i =1 M i ⊂ f (M 1 , . . . , M n ) , which is hardly 

acceptable (it is not clear why we forbid equality in the 

case of consistency between the credal sets). It also reads 

E (X ) ≥ max n 
i =1 

E i (X ) . 

Criterion 6: (Strong Pareto): This criterion is again hard to ex- 

press with credal sets. In terms of gambles it says that a 

gamble X can stand as the result of merging if it is de- 

sirable for at least one agent, and is not strictly undesir- 

able for other agents. Despite its intuitive appeal in this 

form, it violates coherence. This is because it reads E (X ) ≥

min ( max n 
i =1 

E i (X ) , min n i =1 E i (X )) . That it may lead to incon- 

sistency is patent if we notice that the set-functions g 1 (A ) = 

max n 
i =1 

P i (A ) and g 2 (A ) = min n i =1 P i (A ) can be any capacity, 

that is, the credal sets induced by g 1 and g 2 can be empty. 

Criterion 7: (Strong reconciliation): If for some subset I of inte- 

gers, 
⋂ n 

i ∈ I M i 6 = ∅ , then f (M 1 , . . . , M n ) 
⋂ n 

i ∈ I M i 6 = ∅ . 

This is clearly the optimistic form of the Fairness property, 

already mentioned in Section 3.2 , according to which the 

outcome of merging should be determined by the merged 

opinions of consistent sources. One can consider it is Fair- 

ness plus the Optimism axiom applied to subset of sources. 

Criterion 8: (Conjunction): If 
⋂ n 

i ∈ I M i 6 = ∅ , then 

f (M 1 , . . . , M n ) ⊆
⋂ n 

i =1 M i . 

This criterion is covered by the Optimism postulate. In terms 

of desirable gambles it writes 
∑ n 

i =1 X i ∈ D whenever X i ∈ 

D i , ∀ i = 1 , . . . , n . 

Criterion 9: (Total reconciliation): f (M 1 , . . . , M n ) ⊇
⋃ n 

i =1 M i 

In terms of desirable gambles, it says that a gamble can be 

accepted by the set of sources only if it is accepted by all of 

them. In terms of lower previsions, E (X ) ≤ min n i =1 E i (X ) . This 

is a very conservative property at odds with Optimism, and 

that is questionable as it allows for non-informative merged 

results (e.g. P (A) = 0) from informative inputs (e.g., P i (A ) > 

0 , ∀ i = 1 , . . . , n ). 

Criterion 10: (Symmetry): All agents play the same role if no 

particular additional information is available that allows to 

prioritise some sources over the others. This is our Commu- 

tativity property. 

Criterion 11: (Complete ignorance): An agent providing no in- 

formation can be ignored during merging. This criterion is 

exactly our Insensitivity to Vacuous Information postulate. 

Criterion 12: (Relative ignorance): An agent with beliefs that 

can be subsumed by the beliefs of each of the remaining 

agents can be ignored in the result of merging. This is a 

strengthening of Insensitivity to Vacuous Information, which 

makes sense if the aggregation is idempotent. It is insensi- 

tivity to redundant information, which could read for two 

sources and any representation framework: if T 1 ⊑ T 2 , then 

f (T 1 , T 2 ) = T 1 . However, it becomes questionable in the case 

of independent sources, when reinforcement effects are al- 

lowed. 

Criterion 13: (Aggregation of aggregation): Merging can be 

done step-by-step, merging the partial result with the infor- 

mation of the next source. This is a weak version of asso- 

ciativity, but still very demanding. Along with the three first 

criteria, it enforces a disjunctive combination H( 
⋃ n 

i =1 M i ) as 

a result. Then the result of merging does not depend on 

whether the sources are mutually consistent or not. 

Criterion 14: (Continuity): This criterion says that aggregated 

opinions should not be sensitive to small changes in inputs. 

This criterion is akin to the Non-Sensitivity property. But 

we have seen that this criterion is not compatible with the 

proper handling of inconsistent sources, that require a form 

of merging different from consistent ones. This criterion is 

easy to fulfil with consistent sources only. 

Criterion 15: (Updating): This is a request for commuting revi- 

sion and merging: The revision of the merged information 

should be the result of merging revised original information 

items. This criterion is out of scope of our study that re- 

stricts to the postulates of information fusion. However, in 

a more general perspective, it may be natural to consider 

fusion and revision to occur at the same time. 

It is clear that there is a significant overlap between our pos- 

tulates in the general case, and Walley criteria for merging convex 

sets of probabilities. In fact Walley’s axiomatic setting covers our 

properties 1,3, 4, 5, 6, 7 explicitly. Walley mentions no counter- 

part to the Information monotonicity property 2, not does he use 

minimal commitment in the axioms. Moreover, the expression of 

the criteria is exactly the same as the corresponding properties for 

merging set-valued information items viewed as constraints in our 

paper. As a consequence, basic rules characterised by his criteria 

are the same as the ones we obtain for merging sets: the intersec- 

tion of consistent sets of states is replaced by the intersection of 

credal sets, applying criteria 2 (our Impossibility Preservation) and 

8 (Optimism); he nevertheless obtains the union of sets as an ob- 

vious consequence of criterion 4 (our Possibility Preservation) and 

the debatable criterion 9. Actually, our Information Monotonicity 

property is a consequence of the other ones for sets. 

Note that Walley does not consider all his criteria on a par. He 

only considers 1–4 as essential (our properties 1, 3, 5), and criteria 

5, 6, 9, 13, 14 as dubious (they correspond indeed to properties we 

either discarded or did not mention). 

Besides, minimal commitment is actually a major building block 

of Walley’s theory, yielding the so-called natural extension. It al- 

ways computes the least informative credal set in agreement with 

available information (maximal credal set compatible with con- 

straints [110] ). This is equivalent to choosing a set of desirable 

gambles listed by an agent, using the 4 requirements (a-d) listed 

at the beginning of this subsection, and that coherent sets of de- 

sirable gambles should satisfy. The setting of imprecise probability 

theory has this feature, shared by possibility and belief function 

theory, namely its concern to represent information at the exact 

degree of inderminacy it contains. This is in opposition to single 

probability distributions that cannot account for incompleteness 

of information. In our general approach to information fusion, we 

found it instrumental to require minimal commitment as one of 

the basic postulates, even if it seems to exclude a purely Bayesian 

approach to uncertainty. 

Moral and Sagrado [83] also consider postulates for merging 

credal sets partially inspired by Walley’s. Interestingly, they again 

endorse Possibility and Impossibility Preservation, Insensitivity to 

Vacuous Information, Commutativity, Optimism (requiring the con- 

junction of credal sets as the proper fusion rule if they intersect), 

and a form of Information Monotonicity. They suggest to simplify 

the input family of credal sets, by deleting the redundant ones, and 

replacing them by intersections of maximal consistent subsets of 

the remaining ones. Then they propose a rather complex merging 

process based on convex combinations. 

8.3. Basic fusion rules in imprecise probability theory 

Walley [109] comes up with a number of merging rules that re- 

sult from the conditions he posed, and that according to the above 

analysis fit our framework. For simplicity, we only mention the fol- 

lowing ones, that are counterparts to fusion rules already encoun- 

tered in other settings: 

• If the information items are mutually consistent, the conjunc- 

tion rule obtains: f 
⋂ 

n (M 1 , . . . , M n ) = 
⋂ n 

i ∈ I M i . 



• If the information items are pairwise mutually inconsistent, the 

convex disjunction rule obtains: f ∪ n (M 1 , , M n ) = H( 
⋃ n 

i =1 M i ) , 

also called unanimity rule by Walley. 
• In the general case, Walley proposes the imprecise prob- 

ability version of the MCS rule (4) : f MCS 
n (M 1 , . . . , M n ) = 

H( 
⋃ 

I∈ MCS({ 1 , ... ,n } ) 

⋂ n 
i ∈ I M i 6 = ∅ ) . 

Noticeably, the three combination rules are the same as in the 

case of set-based information items, replacing states by probability 

measures. Like in the case of merging sets of states, the Walley- 

unanimity (disjunctive) rule is questionable when the credal sets 

proposed by sources are globally consistent (it violates Optimism), 

and the conjunction rule is not coherent when sources are incon- 

sistent. On the other hand, the MCS rule satisfies all of our postu- 

lates, as well as those of Walley, but for the dubious criteria 5, 6, 9, 

13, 14. It satisfies the updating criterion (Walley says), and reduces 

to the conjunction rule if sources are globally inconsistent and to 

the unanimity rule if they are pairwise mutually inconsistent. 

8.4. Probabilistic fusion methods 

The unanimity (disjunction) fusion is especially interesting 

when merging single probabilities, which, as soon as they are 

distinct are pairwise conflicting. Namely, if M i = { P i , i = 1 , . . . , n } , 
then f ∪ n (M 1 , . . . , M n ) = H({ P 1 . . . P n } ) . As pointed out by Walley, 

this fusion rule is at odds with usual approach to probabilistic fu- 

sion that results in a single probability measure that differs from 

all other input probability measures, hence violating Fairness. This 

is in particular true for one of the two main approaches to proba- 

bilistic fusion described as follows: 

• The weighted average rule, promoted by Cooke [24] , of the 

form f a v n (P 1 , . . . , P n ) = 
∑ n 

i =1 αi P i where 
∑ n 

i =1 αi = 1 . This rule 

proves to be the only one ensuring that f (P 1 (A ) , . . . , P n (A )) is a 

probability measure, assuming f (1 , . . . , 1) = 1 and f (0 , . . . , 0) = 

0 , and being stable under marginalisation (Mc Conway [81] , 

Lehrer and Wagner [108] ) 12 . 
• The Bayesian fusion rule, which assumes pieces of informa- 

tion take the form of observations w 1 , . . . , w n , along with con- 

ditional probability functions (likelihoods) P (w i | w ) of observ- 

ing w i if the real state is w . Then a prior probability P on W 

is supposed to be available. It enables Bayes rule to be ap- 

plied, yielding P (w | w 1 , . . . , w n ) , assuming in the simplest case 

that P (w 1 , . . . , w n | w ) is obtained as 
∏ n 

i =1 P (w i | w ) (this is called 

naive Bayesian fusion). 

There are several difficulties when trying to apply our frame- 

work to the above probabilistic combination rules. The weighted 

average rule is generally not symmetric. Considering the mere 

arithmetic average so as to stay in agreement with our assump- 

tions, the issue is whether we consider a probability measure P 

as a singleton { P }, i.e. as a very special credal set, as Walley [109] 

did, or if we see P as just a kind of distribution pointing out some 

states are more probable than other ones. 

In the first view, as already pointed out, the result of the merg- 

ing by arithmetic mean will be none of the input probabilities, 

hence violating Impossibility Preservation. This point of view could 

be challenged if we admit that sources can have different beliefs 

(disjoint credal sets) about the state of the world while still be- 

ing in relative agreement about what this state is. In other words, 

for the subjective Bayesian, the notion of mutual consistency be- 

tween credal sets adopted by Walley will sound too strong: the 

fusion problem is not so much to check the overlap between { P 1 } 

and { P 2 } viewed as credal sets (which sounds barren), as the one of 

12 This result has a counterpart in possibility theory in terms of weighted maxi- 

mum of possibility measures [47] . 

measuring consistency of P 1 and P 2 , viewed as restricting subsets 

of possible states. 

And indeed, if we adopt the latter view with a strict Bayesian 

approach, we can encode any set-valued information item T as a 

uniform probability over its support following Laplace principle of 

insufficient reason. Then we are bound to use the arithmetic mean 

of characteristic functions of sets or fuzzy sets (properly renor- 

malised in the guise of probability distributions) as the main fu- 

sion tool to be evaluated in the face of our postulates. It is obvious 

that several postulates are then verified: Possibility and Impossi- 

bility Preservation (with respect to possible states, not probabili- 

ties as in the credal set view), Consistency Enforcement, Fairness, 

Commutativity. However, Insensitivity to Vacuous Information is 

clearly not respected, if vacuous means uniform over W (but again 

no Bayesian probabilistic information is vacuous...). Moreover, we 

are at a loss defining mutual consistency and information order- 

ing for probability functions, which may prevent us from writing 

the other postulates. Mutual consistency may just refer to non- 

overlapping supports of distributions (a very weak form in proba- 

bilistic terms). For information ordering, one way out is to compare 

the entropies of the probability distributions. But then, Optimism 

would be violated by the arithmetic mean, since the entropy of the 

average of two overlapping distributions may be greater than the 

ones of each input distribution, while Optimism requires that the 

resulting informativeness should increase from merging consistent 

inputs. 

Interestingly, the comparison between entropies of two prob- 

ability distributions yields an ordering that refines the specificity 

ordering of possibility distributions that can be obtained by a suit- 

able transformation (called the Lorentz curve) of these probabil- 

ity distributions (see [35] for results in the finite setting and an 

overview of this literature). In other words, if we consider prob- 

ability distributions as one (very constrained) way of represent- 

ing imprecise information (as is the case with subjective probabili- 

ties), looking for postulates of merging in the style of our approach 

seems to lead us back to the set-theoretic setting, for mutual con- 

sistency and information ordering. 

This is even more patent in the case of Bayesian fusion, where 

input information takes the form of likelihood functions that are 

well-known to be a kind of possibility distributions [23,39] . When 

the prior information takes the form of a uniform distribution 

over W , what naive Bayesian fusion achieves is a variant of the 

normalised product fusion rule (6) of possibility distributions un- 

der vacuous prior information (the normalisation factor is such 

as to recover a probability measure). The Bayesian fusion actu- 

ally combines revision (of the prior probability) and fusion (of 

the likelihood functions); see [52] for more details and the coun- 

terpart to Bayesian fusion in possibility theory, using possibilistic 

priors. 

Note that as probabilities are special belief functions, the fusion 

rules of evidence theory considered in the previous section still ap- 

ply to combine independent probability functions P 1 and P 2 , if we 

allow for the result to lie in a more general family of set-functions: 

• The conjunctive rule of Smets leads to a submormalised distri- 

bution such that P (w ) = P 1 (w ) · P 2 (w ) . It can be renormalised in 

a standard way (this is Dempster rule) or by assigning the mass 
∑ 

w 1 6 = w 2 
P 1 (w 1 ) · P 2 (w 2 ) to W , which is no longer a probability 

distribution. This mass is generally quite high. 
• The DP fusion rule coincides with the disjunctive rule when ap- 

plied to probabilities and yields a mass function bearing on sin- 

gletons and doubletons: 

m DP ({ w } ) = P 1 (w ) · P 2 (w ) = m ∪ ({ w } ) 

m DP ({ w 1 , w 2 } ) = P 1 (w 1 ) · P 2 (w 2 ) + P 1 (w 2 ) · P 2 (w 1 ) 

= m ∪ ({ w 1 , w 2 } ) 



The corresponding belief function is defined by Bel DP (A ) = 

P 1 (A ) · P 2 (A ) since, in general, Bel ∪ (A ) = Bel 1 (A ) · Bel 2 (A ) for the 

disjunctive rule [42] . This approach is almost never used since it 

is always assumed that merging probabilities must yield probabil- 

ities. Yet the DP-rule, which is a special case of MCS, seems to be 

reasonable as it accounts for the discrepancies between sources in 

a style similar to Walley’s unanimity rule. The latter computes the 

credal set M = { λP 1 + (1 − λ) P 2 : λ ∈ [0 , 1] } and thus yields a more 
informative result than the DP rule, since the lower prevision it 

provides is P (A ) = min (P 1 (A ) , P 2 (A )) > Bel DP (A ) , but it is not a be- 

lief function. 

8.5. Ontic vs. epistemic views of credal sets 

At this point it is useful to reconsider imprecise probabilities 

in the scope of the opposition between frequentist and subjectivist 

views of imprecise probability. Indeed, this debate sheds light on 

the meaning of credal set fusion as envisaged by Walley [109] . If 

we adopt the frequentist standpoint, a probability measure P rep- 

resents a model of a random phenomenon, hence it can be viewed 

as a possible world, and a credal set represents imprecise infor- 

mation about the unknown probability. Hence we can argue that 

we are back to the case of set-based information ( Section 4.1 ), re- 

placing deterministic states of the world by stochastic ones. This is 

the sensitivity analysis interpretation of credal sets: a credal set is 

just a standard epistemic set, containing the actual probability dis- 

tribution. No surprise then that Walley’s postulates fit our general 

setting, and were precisely pioneering it. And Walley’s unanimity 

rule looks convincing as a way to reconcile credal sets represent- 

ing imprecise probabilistic models of reality obtained from several 

sources (in particular, the convex hull of alternative precise proba- 

bilities). 

However, adopting the subjectivist standpoint under Walley’s 

approach, a credal set M does not represent imprecise knowl- 

edge about an ill-known subjective probability, it represents the 

agent’s beliefs in a singular event, just as in the previous section 

of this paper. Walley considers [110] that there is no such thing 

as an ill-known subjective probability: beliefs in imprecise proba- 

bility theory are directly modelled by lower previsions and in par- 

ticular, lower probabilities (this is the so-called direct interpreta- 

tion of lower prevision [110] , section 2.10). Hence, under this view 

a credal set is not a model of an ill-known probability: it is the 

lower prevision function that represent the agent’s epistemic state. 

Then M is an ontic set [25,82] , a precise mathematical represen- 

tation of the lower prevision function, which in turn may repre- 

sent imprecise knowledge of a determinic state w ∈ W . Under this 

view, Walley’s setting for fusion becomes somewhat questionable. 

The support of M should be the set of states having positive up- 

per prevision S(M ) = { w : P (w ) > 0 } as in possibility and evidence 
theories, not M itself (which is only compatible with an objec- 

tivist view of probabilities). Interestingly, even if M 1 ∩ M 2 = ∅ , the 

supports of S(M 1 ) and S(M 2 ) may overlap (obvious, consider- 

ing the case singletons). So, while as epistemic representations of 

a stochastic reality, M 1 and M 2 totally conflict, they may still be 

partially mutually consistent as ontic representations of agent’s be- 

liefs about a precise state in W . It suggests that directly expressing 

merging rules in terms of lower or upper previsions may lead to 

postulates different from those using credal sets. Typically, Possi- 

bility Preservation, in the form of Walley criterion 4, whose ex- 

pression in terms of lower previsions is too complex; one may ar- 

gue it should be written as S(M 1 ) ∩ S(M 2 ) ⊆ f (S (M 1 ) , S (M 2 )) ). 

The fact that the interpretation of credal sets may affect the defi- 

nition of some basic notions pertaining to them is not surprising. 

The same holds for the notions of independence in imprecise prob- 

ability theory that differ if credal sets are imprecise descriptions 

of probability functions or precise characterisations of lower previ- 

sions [110] . 

These considerations suggest more work is needed to put in- 

formation fusion of lower previsions in the proper subjectivist per- 

spective, and especially to find some that are in agreement with 

fusion rules in possibility and evidence theories. 

9. Conclusion 

In this paper, we have provided a general framework for 

analysing fusion operators proposed in different settings, in a uni- 

fied way. We have investigated various representation formats in- 

cluding classical sets, knowledge bases, total pre-orders, possibility 

theory, imprecise probabilities, and evidence theory, considering a 

few representative sampling of operators. It is clear that the analy- 

sis may be carried out even more systematically, as well as applied 

to other settings, whether numerical or ordinal, e.g., ranking func- 

tions [104] (that we nevertheless also discuss briefly). 

Our aim was to propose a unified view of information fusion, as 

the task of finding what is true out of a collection of testimonies, 

by studying the conflicts between them, bypassing the boundaries 

of various disciplines and formalisms. We could lay bare 8 univer- 

sal postulates that seem to fit this purpose, and we showed they 

are at work in most known fusion rules in the literature from vari- 

ous unrelated areas. Some properties not among the basic ones can 

still be useful, in the sense that a fusion rule will be criticised if it 

does not satisfy them, like associativity (unlikely in the presence 

of conflicting information), or insensitivity to small changes (e.g. 

Dempster’s rule is oversensitive to small changes of input values). 

Some other properties can be useful in some situations but not 

possessed by many fusion rules (e.g., idempotency). Our postulates 

have no claim to be relevant to other types of aggregation tasks 

such as voting, or preference merging, or multicriteria decision- 

making. We focalise here on imprecise or uncertain testimonies in 

the form of elementary pieces of information. 

A natural line for further work is to adapt the basic proper- 

ties to prioritised merging. It would lead us to an enlarged setting 

where belief revision and fusion could be considered in the same 

range of formal framework, since belief revision can be viewed as a 

form of prioritised fusion, or yet constrained fusion, and Bayesian 

fusion methods are in the same vein. Some relevant preliminary 

results can be found in [26,32,60,67] . The study of combination 

rules for dependent sources is another open issue. 
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