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For risk assessment to be a relevant tool in the study of any type of system or activity, 
it needs to be based on a framework that allows for jointly analyzing both unique and 
repetitive events. Separately, unique events may be handled by predictive probability 
assignments on the events, and repetitive events with unknown/uncertain frequencies 
are typically handled by the probability of frequency (or Bayesian) approach. Regardless 
of the nature of the events involved, there may be a problem with imprecision in the 
probability assignments. Several uncertainty representations with the interpretation of 
lower and upper probability have been developed for reflecting such imprecision. In 
particular, several methods exist for jointly propagating precise and imprecise probabilistic 
input in the probability of frequency setting. In the present position paper we outline 
a framework for the combined analysis of unique and repetitive events in quantitative 
risk assessment using both precise and imprecise probability. In particular, we extend 
an existing method for jointly propagating probabilistic and possibilistic input by relaxing 
the assumption that all events involved have frequentist probabilities; instead we assume 
that frequentist probabilities may be introduced for some but not all events involved, 
i.e. some events are assumed to be unique and require predictive – possibly imprecise 
– probabilistic assignments, i.e. subjective probability assignments on the unique events 
without introducing underlying frequentist probabilities for these. A numerical example 
related to environmental risk assessment of the drilling of an oil well is included to 
illustrate the application of the resulting method.

1. Introduction

The Kaplan and Garrick [30] approach for describing risk has for several decades served as a cornerstone to the field of 
quantitative engineering risk assessment. According to this approach, risk is equal to and expressed by the set of triplets 
consisting of (accident) scenarios, the likelihoods λ of these scenarios and their consequences. Three likelihood settings 
are mentioned by Kaplan [29]: repetitive situation with known frequency (λ = f , where f is a frequentist probability), 
unique situation (λ = p, where p is a subjective probability), and repetitive situation with unknown frequency (λ = H( f ), 
where H is a subjective probability distribution on the unit interval of frequencies). The last mentioned setting is typically 
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dealt with using the so-called probability of frequency approach, wherein knowledge about all potentially occurring events 
involved is assumed to be represented by uncertain frequentist probabilities of occurrence, and the epistemic uncertainties 
about the true values of the frequentist probabilities are described using subjective (also referred to as judgmental or 
knowledge-based) probabilities. Of course, the first case above is a special case of the third.

A repetitive event is an event whose occurrence or not can be embedded into a hypothetically infinite sequence of 
similar situations (technically: an exchangeable sequence), whereas a unique event cannot because such a sequence cannot 
reasonably be envisaged. As an example of a repeatable event, consider the tossing of a die. We can envisage tossing the 
die over and over again under similar conditions, thus generating a limiting frequency of the event that the die shows 
‘1’ (say). On the other hand, as an example of a unique event, consider the case of a particular election for choosing the 
president of a country. We cannot reasonably envisage a hypothetically infinite number of repetitions of this particular 
election, because among other issues, candidates are not all the same from one election to the other. Hence, we cannot 
introduce a frequentist probability of some candidate winning, but we rather just directly assign a predictive subjective 
probability of this event. Determining whether to treat an event as repeatable or unique is often a judgement call by the 
analyst; we refer to Section 7 for a discussion of this issue.

As another example, consider an oil and gas company performing an environmental risk assessment of the activity 
drilling a wildcat oil well. If there is oil at the drilling location, some might be inclined to argue that a number of factors 
(such as the physical characteristics of the reservoir, e.g. the reservoir pressure at a particular point in space and time; and 
the performance of technical barrier systems, e.g. whether a particular barrier element functions on demand) come into 
play to generate a frequentist probability of an oil spill due to a blowout or well-leak (since the reservoir pressure at a 
particular point in space changes over time, and the barrier element is not perfectly reliable). On the other hand, if there is 
no oil present in the reservoir, the frequentist probability of a blowout of oil is zero. Oil or no oil is a fixed but unknown 
state of the world – it is not subject to randomness. The situation cannot be repeated such that in some cases there is oil 
in this particular reservoir, while in others there is not.

As a final example, to the extent that Probabilistic Risk Assessment (PRA) is suitable for terrorism risk, a terrorist attack 
is also a unique event. It is however not a fixed but as-yet-unrevealed event, like presence of oil in the environmental risk 
assessment example. Yet a relative frequentist probability of a terrorist attack cannot be meaningfully defined [7].

The quantitative risk assessment setting can be formally summarized as follows: We are interested in a quantity Z
(possibly a vector) and introduce a model g(X) with input quantities X = (X1, X2, . . . , Xn) to predict Z . The quantities Z
and X could be the total number and a vector of the number of fatalities due to different accident scenarios, respectively. 
Alternatively, for a particular explosion accident scenario, Z and X could be the explosion pressure and a set of factors 
(quantities) affecting the explosion pressure, respectively. Or Z could be an indicator quantity for some overall event of 
interest, e.g. blowout in an offshore Quantitative Risk Assessment (QRA) setting or meltdown in a nuclear QRA/PRA setting, 
and X could be a set of indicator quantities for events that, through various combinations, could lead to the occurrence of 
the overall event, respectively.

In the present paper we focus on the last setting. Hence, for our purpose Z and X are 0–1-valued unknown quan-
tities where Z equals 1 if some high level event A takes place and 0 otherwise, i.e. Z = I(A). Corresponding to 
X = (X1, X2, . . . , Xn) are the lower level events B = (B1, B2, . . . , Bn), in the sense that Xi = I(B i), i = 1, 2, . . . , n, where 
I is the indicator function equal to 1 if its argument is true and 0 otherwise. This is a setting commonly dealt with using 
basic risk analysis models such as fault trees (comprising top events and basic events) and event trees (comprising initiating 
events, branching events and end events).

In the probability of frequency approach one would by default introduce a frequentist probability f of the event A, and 
a set of frequentist probabilities q = (q1, q2, . . . , qn) of the basic events B according to the structure of an event model g . 
A frequentist probability expresses the fraction of times the event of interest occurs when repeating the situation considered 
over and over again infinitely. The setting then yields f = g(q), and by establishing a subjective probability distribution over 
the vector q and propagating it through the model g , a probability distribution of the frequency probability f is established. 
Particular attention might then be put on the expected value of f , which is assumed to be also the predictive probability 
of A, i.e. E[ f ] = P (A).

In the present paper, following Kaplan and Garrick [30], we relax the assumption that frequentist probabilities of occur-
rence can be defined for all events involved. Instead we consider a setting where frequentist probabilities can be defined 
for some but not all events involved – some events are assumed to be unique and their uncertainty can only be assessed 
using predictive subjective probability assignments, or more generally, as will be argued, as imprecise probabilities.

The main contribution of the present paper is the formulation of a set-up for the combined analysis of unique and repet-
itive events in quantitative risk assessment that extends the Kaplan and Garrick [30] methodology to a setting allowing for 
imprecise probabilities, that either represent epistemic uncertainty on frequentist probabilities, or represent expert uncer-
tainty concerning unique events. The imprecise probability approach has been argued to be a more faithful representation of 
partial information than unique distributions. As a particular case, the paper describes the extension, to the joint presence 
of unique and repetitive events, of an existing method for jointly propagating probabilistic and possibilistic inputs to be 
applicable in such a setting. So this paper contributes to a better understanding of how to articulate the joint presence of 
aleatory and epistemic uncertainty in risk assessment.

Table 1 positions the present paper and its suggested methods in relation to existing frameworks and methods. The 
Bayesian framework (e.g. [10]) with its precise probabilities is straightforward to apply to settings involving respectively 



Table 1

Frameworks and methods for the study of different types of events using different types of probability.

Events

Repeatable Unique Repeatable and unique

Subjective probabilities Precise Bayesian framework

Imprecise Hybrid methods Interval analysis Present paper method

both repeatable and unique events, as well as to their combination. Imprecise probability methods can also handle these 
settings: Unique event probabilities are handled by interval analysis (e.g. Moore [38]) when (some of) the probabilities are 
imprecise. Efforts have been made to develop hybrid methods for handling repeatable events using precise and imprecise 
probabilities jointly (e.g. [13,25,12,37]). The present paper extends these efforts by addressing the setting of both repeatable 
and unique events.

The remainder of this paper is organized as follows. In Section 2, we introduce and discuss the notion of subjective 
probability. In Section 3, we formalize the set-up for combined analysis of unique and repetitive events using the Bayesian 
framework, and in Section 4, we extend the set-up to the case of imprecise probabilities. In Section 5 and Section 6, a hybrid 
probabilistic and possibilistic method is presented and applied, respectively. It can be viewed as a special case of the set-up 
described in Section 4. In Section 7, we discuss the findings of the paper, and Section 8 gives a summary and some final 
remarks.

2. Subjective probabilities and the Kaplan–Garrick setting revisited

There exist different interpretations of a subjective probability, see e.g. [6] for a recent overview of probability interpre-
tations in a risk and safety setting. Here we consider two common interpretations: A subjective probability P (A) interpreted 
with reference to a standard is the number such that the uncertainty about the occurrence of A is considered equivalent 
with the uncertainty about the occurrence of some standard event, e.g. drawing, at random, a red ball from an urn that 
contains P (A) ×100% red balls ([30,32,33], see also [10]). Alternatively the subjective probability P (A) can be interpreted as 
the amount of money that the assigner would be willing to bet if he/she would receive a single unit of payment if the event 
A were to occur, and nothing otherwise. The agent must also accept the opposite bet, exchanging roles between buyer and 
seller. Hence the probability of an event by this interpretation is the (fair) price at which the assigner is neutral between 
buying and selling a ticket that is worth one unit of payment if the event occurs, and worth nothing if not [42]. This is the 
view advocated already in the 1930’s by De Finetti [15].

Which interpretation to use is a debated topic; see [28,29,41,2,6,18]. This discussion is however beyond the scope of 
the present paper and will not be addressed in the following. What is important here is that both the “random drawing 
from an urn” analogy and the betting view force the assigner/analyst to provide unique probabilities for describing his/her 
state of beliefs. Subjective probabilities are based on an axiom assuming that precise measurements of uncertainties can 
be made; see e.g. [10, p. 31]. However, many researchers have questioned this assumption of and requirement for precise 
measurements of uncertainties (e.g. [16,40,44]; see also [23,22]). In many situations, the basis for assigning the probabilities 
could be weak. A specific number can be assigned, but the rationale for it can be questioned – strong assumptions may 
be needed to justify a concrete number. The assigned probability is precise, but such a precision may be considered rather 
arbitrary. One may, for example, subjectively assess that two different situations have probabilities equal to 0.7 say, but in 
one case the assignment is supported by a substantial amount of relevant data, whereas, in the other, by effectively no data 
at all. The strength of knowledge, the probabilities are based on, is not at all reflected by the assigned number (Aven and 
Zio [8]).

These considerations have led to the use of alternative approaches and methods for representing the uncertainties [22,
18]. Here our focus is on interval probabilities or, more generally, imprecise probabilities. Imprecise probability theory 
generalizes probability by using an interval [P (A), P (A)] to represent uncertainty about an event A, with lower probability 
P (A) and upper probability P (A) = 1 − P (A), where 0 ≤ P (A) ≤ P (A) ≤ 1 and A is the complement of set A.

In line with the uncertainty standard interpretation of a subjective probability [33] we interpret an imprecision interval, 
say [0.2, 0.5] for the event A, as follows: The analyst states that his/her assigned degree of belief is greater than the urn 
chance of 0.20 (the degree of belief of drawing one particular ball out of an urn comprising 5 balls) and less than the urn 
chance of 0.5. The analyst is not willing to make any further judgments. Then the interval [0.2, 0.5] can be considered an 
imprecision interval for the hypothetical urn probability P (A). In contrast, following Walley’s betting interpretation [44], 
the lower probability is interpreted as the maximum price for which one would be willing to buy a bet which pays 1 if A
occurs, and 0 if not and the upper probability as the minimum price for which one would be willing to sell the same bet. 
In this case, the lower bound 0.2 is directly interpreted as the degree of belief in A, the degree of belief of its complement 
being 0.5. If the upper and lower probabilities are equal, we are led to precise probabilities à la De Finetti.

The use of imprecision intervals is a debated topic also in the applied probability literature; see for example Lindley [33]
and Aven [3]. In their paper, Kaplan and Garrick [30, p. 18] claim that “Statistics, as a subject, is the study of frequency 
type information. That is, it is the science of handling data. On the other hand probability, as a subject, we might say is 
the science of handling the lack of data. [. . .] When one has insufficient data, there is nothing else one can do but use 



probability.” The above discussion emphasizing the emergence of generalizations of subjective probability and the use of 
intervals for describing incomplete information make Kaplan and Garrick’s emphatic statement on the exclusive position of 
probability theory in belief representation indeed debatable. However, we leave this discussion here.

For the purpose of the present work we simply assume that the analysts either accept the precise subjective stance (the 
Bayesian approach), or adopt an approach based on imprecise probabilities. The former approach is a special case of the 
latter, but we choose to treat these approaches separately as they are based on different ideas and it is easier to understand 
the general case by first casting the analysis within the simpler Bayesian framework. For an extension of the Kaplan and 
Garrick risk perspective, which allows for alternative ways of representing uncertainties, including imprecise probabilities, 
see Aven [3].

3. Combined analysis of unique and repetitive events using the Bayesian framework

In this section we present a form of the Kaplan–Garrick set-up for the combined analysis of unique and repetitive events 
according to a Bayesian approach. We do so first for a setting involving two events, before introducing the more general 
setting involving a complex combination of events. The set-up is based on precise probabilities in this section. Imprecise 
probabilities are considered in Section 4.

3.1. Two-event case

Let A denote an event whose occurrence depends on the outcome of a unique event U and of a repeatable event R
in such a way that A occurs if both U and R occur. Furthermore, define X = I(U ) and Y = I(R), where I is the indicator 
function which equals 1 if its argument is true and 0 otherwise. Then we have

I(A) = XY .

Suppose that an expert supplies a subjective probability p for U , i.e. p = P (U ) = P (X = 1) and knows the precise frequentist 
probability f of R , i.e. f = F (R) = F (Y = 1); here P is a subjective probability measure and F a frequentist one. To proceed 
we rely on the following two principles:

1. A complex event made up of a logical combination of repeatable and non-repeatable events is non-repeatable (as we 
are interested in the particular occurrence of R taking place along with the unique occurrence of U ).

2. The subjective probability of the occurrence of a repeatable event should be measured by its real frequency if the latter 
is known (the Hacking frequency principle [26]).

Based on the above principles and assuming independence between U and R , we can consider pf as the subjective 
probability of A. To see this, note that

P (A) = E[XY ] = P (XY = 1) = P (U ∩ R) = P (U | R)P (R) = P (U )F (R) = pf .

In this calculation, the subjective probability P (R) is measured by means of the frequency of occurrence of R , F (R), during 
the unique experiment where U is observed or not. This interpretation is implicit when we compute the product pf .

Actually the probability P (A) should be written P (A | f ) as f is assumed known. If this assumption is dropped, we 
obtain the unconditional probability of the event A:

P (A) =

∫

P (A | f )dH( f ) =

∫

pf dH( f ) = p · E( f ), (1)

where H is a subjective probability distribution of f and E( f ) is its mean value.

3.2. Complex combination of events

More generally, let A denote an event whose occurrence depends on the outcome of n unique events U =

(U1, U2, . . . , Un) and m repetitive events R = (R1, R2, . . . , Rm) through a function g . For example, A could be the top 
event and (U , R) the basic events of a fault tree. Or A could be an end event and (U , R) the initiating event and barrier 
failure events of an event tree. Define a vector of unknown quantities X = (X1, X2, . . . , Xn) and a vector of random quantities 
Y = (Y1, Y2, . . . , Ym), and let Xi = I(U i), i = 1, 2, . . . , n, and Y i = I(R i), j = 1, 2, . . . , m. Then we have

I(A) = g(X, Y ).

Let p = (p1, p2, . . . , pn) be the subjective probabilities of the unique events U , and let H( f ) denote the subjective probabil-
ity distribution of f , where we extend the definition of f from now on to be a vector f = ( f1, f2, . . . , fm) and f i = F (R i)

is the frequentist probability of the event R i . We assume that the analysts’ uncertainties about f are not dependent on 
the outcomes of X . Denoting by Ω = {0, 1}m the domain of f , p(x) = P (X = x) and g(x, f ) = P (A | X = x, f ) and taking 
expectations, yields:



P (A) = E
[

E
[

g(X, Y ) | f
]]

=

∫

Ω

E
[

g(X, f )
]

dH( f ) =

∫

Ω

∑

x

g(x, f )p(x)dH( f )

=
∑

x

p(x)

∫

Ω

g(x, f )dH( f ) =
∑

x

p(x)E
[

g(x, f )
]

.

Moreover the subjective probability p(x) is of the form 
∏

i:xi=1 pi ·
∏

i:xi=O (1 − pi), which since xi is Boolean can be written 
∏

i=1,...,n(xi pi + (1 − xi)(1 − pi)).

4. Combined analysis of unique and repetitive events using imprecise probabilities

We now extend the set-up presented in Section 3 from a precise probability framework to an imprecise probability 
framework. The objective is to establish an interval [P (A), P (A)], with P (A) ≤ P (A). This interval represents, in the presence 
of unique events, the degree of belief in A for the expert, and, by duality, the degree of belief in its complement (A). Total 
ignorance is obtained if both degrees of belief are 0.

4.1. Two-event case

Consider the setting introduced in Section 2.1 involving two events, and first assuming that the precise frequentist prob-
ability f is known and that p = P (U ) and p = P (U ) are lower and upper probabilities of the unique event U , respectively. 
Note that, under Walley’s gamble-based approach, the subjective interval [p, p] represents the analyst’s state of belief about 
U and does not contain a “true subjective probability” that would represent the analyst’s opinion in an accurate way [44]. 
The same holds for the other interpretation described in Section 2, where the analyst’s uncertainty about U is compared to 
that related to a standard event.

In the simple case of two events, assuming independence, we just have to multiply the subjective probability bounds 
and the frequentist probability to obtain

[

P (A), P (A)
]

= [p · f , p · f ].

In the case that the frequentist probability f is unknown, still assuming independence between U and R and now also that 
the probability of U is not affected by knowing or not knowing the value of f , we obtain

[

P (A), P (A)
]

= [p · f , p · f ].

where f = E[ f ] and f = E[ f ], derived from the lower and upper cumulative distribution functions on f , respectively.

4.2. Complex combination of events

Based on an imprecise probability representation of the uncertain individual elements of the vectors f and X we want 
to establish bounds on P (A). We assume independence everywhere, i.e. between the elements of X , between the elements 
of Y and between X and Y . The subjective probability p(x) is then on the format P (X1 = x1)P (X2 = x2) . . . P (Xn = xn), 
xi ∈ {0, 1}, i = 1, 2, . . . , n, which can be evaluated using interval analysis Moore [38]. It is assumed that the subjective 
assessment of P (Xi = xi) is specified by a probability interval [pi pi ].

In the most general case, the imprecise knowledge about the frequencies f is represented by a credal set, that is, 
a convex set of probabilities F. For specified values x of X the function g(X, f ) is a product of the individual elements 
of f and hence straightforward to evaluate. Instead of integrating g(x, f ) in terms of H( f ) we may consider directly the 
integral E[g(x, f )] defined at the end of Section 3 (integrated over f ): By obtaining bounds on P (g(x, f ) ≥ α) we can use 
the well-known result that for a non-negative unknown quantity W its expected value is given by (e.g. [39])

E[W ] =

∫

P (W ≥ w)dw,

so that letting

P
(

g(x, f ) ≥ α
)

= inf
{

P
(

g(x, f ) ≥ α
)

: P ∈ F
}

,

and

P
(

g(x, f ) ≥ α
)

= sup
{

P
(

g(x, f ) ≥ α
)

: P ∈ F
}

we can compute the bounds

E
[

g(x, f )
]

=

1
∫

0

P
(

g(x, f ) ≥ α
)

dα, (2)



and

E
[

g(x, f )
]

=

1
∫

0

P
(

g(x, f ) ≥ α
)

dα. (3)

In some cases (when the lower probability is 2-monotone, or is a belief function) we have equalities:

E
[

g(x, f )
]

= inf
P∈F

E
(

g( f , x)
)

; E
[

g(x, f )
]

= sup
P∈F

E
(

g( f , x)
)

and these quantities are Choquet integrals.
Next, we can compute upper and lower probabilities using interval optimization techniques [38,35]:

P (A) = inf

{

∑

x

E
[

g(x, f )
]

∏

i=1,...,n

(

xi pi + (1− xi)(1− pi)
)

: pk ∈ [pkpk],k = 1, . . . ,n

}

(4)

and

P (A) = sup

{

∑

x

E
[

g(x, f )
]

∏

i=1,...,n

(

xi pi + (1 − xi)(1 − pi)
)

: pk ∈ [pkpk],k = 1, . . . ,n

}

(5)

where the sum is over x such that g(x, f ) > 0. Note that these expressions are generally not easy to compute, because their 
monotonic behavior in terms of probabilities pk is not easy to guess. Generally, we know that the optimum is attained for 
one of the bounds of [pkpk] but in the worst case, we must try all of them, which is of exponential complexity in the 
number n of non-repeatable events. See Jacob et al. [27] for detailed calculations and an algorithm for the computation 
of such kinds of intervals. Strangely enough, there is almost no older literature on interval calculations with imprecise 
probabilities on Boolean expressions, stemming e.g., from fault trees.

5. Hybrid probabilistic and possibilistic approach

Like imprecise probability theory, possibility theory differs from probability theory (where a single probability measure is 
used) in that it uses a pair of dual set-functions, here called possibility and necessity measures, to represent uncertainty. The 
possibility function π is the basic building block of possibility theory and for each s in a set S , π(s) expresses the degree of 
possibility of s being the true value of some unknown quantity X . When π(s) = 0 for some s, the outcome s is considered 
impossible, whereas when π(s) = 1 for some s, the outcome s is possible, i.e. is just unsurprising, normal, usual [17]. This 
is a much weaker statement than a probability equal to 1. As one of the elements of S is the true value, it is assumed 
that π(s) = 1 for at least one s. Possibility distributions on numerical spaces often take the form of fuzzy intervals [19], 
namely, π is an upper semi-continuous mapping from the reals to the unit interval such that Vα = {v : π(v) ≥ α} is a 
closed interval for all 0 < α ≤ 1. Hence, possibility theory is a suitable representation of uncertainty in situations where the 
available information takes the form of nested subsets with various confidence levels. Two sets are nested if one of the sets 
is a subset of the other and, by extension, sets in a sequence are nested if each subsequent set is contained in the next.

The possibility function π induces a pair of necessity/possibility measures [N, 5], and the possibility of an event A, 
5(A), is defined by

5(A) = sup
s∈A

π(s), (6)

and the associated necessity measure, N(A), by

N(A) = 1− 5(A) = inf
s/∈A

(

1− π(s)
)

. (7)

Then each cut Vα of a continuous fuzzy interval can viewed as an interval containing the quantity of interest with confi-
dence level N(Vα) ≥ 1 − α.

Let P(π) be the family of probability measures such that for all events A, N(A) ≤ P (A) ≤ 5(A). It is known [20] that 
P(π) = {P : P (Vα) ≥ 1 − α, 0 < α ≤ 1}. Then it can be proved that set functions N and 5 are coherent lower and upper 
previsions in the sense of Walley [44], namely [14]:

N(A) = inf
P∈P(π)

P (A) and 5(A) = sup
P∈P(π)

P (A).

The possibility and necessity measures of an event can hence be interpreted as upper and lower limits, respectively, for the 
probability of an event, i.e. they are special cases of upper and lower probabilities. Under the subjectivist view, they model 
the cautious expert that sells Boolean gambles for less than 1$ only if (s)he can get them for free.



When uncertainty about f is described using possibility theory, the extension principle (e.g. [46]) can be used to generate 
a possibility distribution πg for g(x, f ) for specified values of x. It takes the following form [19]:

πg(z) = 5
({

f : g(x, f ) = z
})

= sup
f :g(x, f )=z

min
(

π1( f1), . . . ,πm( fm)
)

This computation comes down to performing interval computations on α-cuts V iα of possibility distributions πi , which yield 
the α-cuts of πg . From a probabilistic point of view, the choice of a single threshold α for all distributions πi presupposes

complete dependency between the possibility distributions, which corresponds to the same level of confidence for all inputs, 
used by a single expert. Alternatively, one may choose various thresholds for cutting the πi , and combine interval analysis 
with Monte-Carlo methods, thus obtaining a random set for g(x, f ). This makes sense if the πi ’s come from independent 
sources. The results of applying the extension principles are not directly comparable with the results of treating the πi ’s 
as independent random sets. See Dubois and Prade [21] for the relation between fuzzy and random set arithmetics, and 
Baudrit et al. [12,11] for the theoretical foundations and implementation of a hybrid possibilistic–probabilistic propagation 
method using interval analysis and Monte-Carlo methods.

Then bounds of the form N(g(x, f ) ≥ α) ≤ P (g(x, f ) ≥ α) ≤ 5(g(x, f ) ≥ α) can be generated, from which bounds on the 
integral E[g(x, f )] can be obtained using (2) and (3) as [11]:

E
[

g(x, f )
]

=

1
∫

0

N
(

g(x, f ) ≥ α
)

dα = inf
P∈P(πg)

E
(

g( f , x)
)

, (8)

and

E
[

g(x, f )
]

=

1
∫

0

5
(

g(x, f ) ≥ α
)

dα = sup
P∈P(πg )

E
(

g( f , x)
)

. (9)

In the next section we provide a numerical example of the procedure described above.

6. Numerical example

We now return to the oil-drilling example introduced in Section 1, and define the following events:
A = Blowout

U1 = Oil at drilling location
U2 = Well kick barrier failure type I
R1 = Well kick

R2 = Well kick barrier failure type II
We assume that a blowout will occur under the combined circumstances that there is oil at the drilling location, a well 

kick occurs during the drilling, and either one or both of the barriers in place to avoid that a well kick develops into a 
blowout fails, i.e., A = U1 ∩ R1 ∩ (U2 ∪ R2). According to principle (1) described in Section 3.1, the event A is a unique event 
(being made up of a logical combination of repeatable and non-repeatable events). Then we have

I(A) = g(X, Y ) = X1Y1

(

1− (1− X2)(1 − Y2)
)

= X1(1 − X2)Y1Y2 + X1X2Y1

(decomposing into disjoint events) and consequently

g(x, f ) = x1 f1
(

1− (1 − x2)(1 − f2)
)

= x1(1− x2) f1 f2 + x1x2 f1,

so that

g
(

(1,1), f
)

= f1,

g
(

(0,1), f
)

= 0,

g
(

(1,0), f
)

= f1 f2,

g
(

(0,0), f
)

= 0

Regarding dependence between the set of events (U1, U2, R1, R2), clearly P (U1|U2, R1, R2) = P (U1) and P (R1|R2, U2) =
P (R1), since U1 and R1 occur before the conditional events in these probabilities. Also, clearly P (U2|U1, R1, R2) =
P (U2|R1, R2) and P (R2|U1, U2, R1) = P (R2|U2, R1), since the occurrence of R1 makes U1 superfluous. However, we may 
not always have P (U2|R1, R2) = P (U2) and P (R2|R1, U2) = P (R2), since the probability of a barrier failure may differ during 
testing and during real demand, and since knowing that one barrier has failed could induce some belief in a common cause 



Fig. 1. Possibility distributions of f1 (top), f2 (middle) and f1 f2 (bottom).

Fig. 2. Cumulative (top) and complementary cumulative (bottom) Necessity and Possibility distributions of f1 f2 . (For interpretation of the references to 
color in this figure, the reader is referred to the web version of this article.)

failure having occurred. Nevertheless, we assume independence here as a simplification judged as reasonable. Finally, we 
have P (R1) = P (R1|U1)P (U1) + P (R1|not U1)P (not U1) = f1p1 + 0(1 − p1) = f1p1 . Using precise probabilities we obtain

P (A) =
∑

x

p(x)E
[

g(x, f )
]

= p1p2E[ f1] + p1(1 − p2)E[ f1 f2],

Note that the system g is a monotone system with respect to its arguments, but the parameters (p1, p2, E[ f1], E[ f1 f2]) that 
we obtain through the analysis are not directly those of elementary events, namely (p1, p2, E[ f1], E[ f2]). It is, however, 
easy to check that in this particular case P (A) is increasing with E[ f1] and E[ f1 f2] (as patent in the expression above) as 
well as with p1 and p2 . Indeed, P (A) also reads p1(p2(E[ f1] − E[ f1 f2]) + E[ f1 f2]), and E[ f1] ≥ E[ f1 f2]. So the upper and 
lower probabilities of A are obtained as

P (A) = p
1
p
2
E[ f1] + p

1
(1 − p

2
)E[ f1 f2],

P (A) = p1p2E[ f1] + p1(1 − p2)E[ f1 f2].

Note that the monotonicity of the function g is not always guaranteed. It would not hold if the Boolean expression of A
contains an elementary event and its negation (for example an exclusive OR). In that case the computation of the upper 
and lower probabilities can be tricky (it may become exponential in complexity with the number of variables, see [27]). 
This phenomenon usually does not appear in fault-trees where the top event is just a disjunction of conjunctions and the 
interval analysis is straightforward.

We now assume that the lower and upper values of p1 and p2 are [p
1
, p1] = [0.4, 0.6] and [p

2
, p2] = [0.01, 0.2], respec-

tively. Furthermore, we assume that the range and core values of the possibility distributions π( f1) and π( f2) are given 
by the triplets (0.1, 0.2, 0.3) and (0.2, 0.5, 0.7), respectively. These possibility distributions are shown in Fig. 1, together 
with the possibility distribution π( f1 f2) resulting from the combination of π( f1) and π( f2). The distribution π( f1 f2)

was calculated by application of the extension principle, which is equivalent to performing interval analysis on the α-cuts 
Vα = [vα, vα ] = {v : π(v) ≥ α}, as already explained. The interpretation of the possibility distributions in Fig. 1 is as fol-
lows: The probability that the quantity in question, say f1 , belongs to Vα is P ( f1 ∈ Vα) ≥ 1 − α. For example, looking at 
the top distribution of Fig. 1, we see that there is a 50% or greater probability that f1 belongs to the interval [0.15, 0.25].

The cumulative and complementary cumulative possibility and necessity distributions of f1 f2 induced by π( f1 f2) are 
shown in Fig. 2, determined using Equations (6) and (7), respectively. The interpretation of these distributions is, for exam-

ple, that considering the top set of distributions, the probability P ( f1 f2 ≤ 0.05) is seen to be greater than 0 and less than 



approximately 0.6 (cf. the left/green cumulative possibility distribution); and the probability P ( f1 f2 ≤ 0.15) is seen to be 
less than 1 and greater than approximately 0.5 (cf. the right/red cumulative necessity distribution).

Use of Equations (8) and (9) yields [E[ f1], E[ f1]] = [0.15, 0.25] and [E[ f1 f2], E[ f1 f2]] = [0.055, 0.15], and so finally by 
means of Equations (4) and (5) we obtain

[

P (A), P (A)
]

= [0.02038,0.102].

Hence, the imprecise subjective probability of a blow-out is approximately [0.02, 0.1], which, under the uncertainty standard 
interpretation, can be interpreted to mean that the degree of belief in a blowout is greater than that of drawing one 
particular ball out of an urn containing 50 balls, and less than that of drawing one particular ball from an urn containing 
10 balls; cf. Section 2. Alternatively, in the Walley spirit, the degree of belief in a blow-out is very small (0.02) and the 
degree of belief in the absence of blow-out is very large (0.9).

7. Discussion

The framework described in the present paper is based on a distinction between unique and repetitive events, i.e. events 
are assumed to be of one kind or the other. Deciding when the situation is repetitive, respectively unique – or rather decid-
ing which events to model as repetitive and which ones to treat as unique – is however not necessarily straightforward. The 
question of when to introduce probability models and frequentist probabilities (chances) instead of using predictive prob-
ability assignments is addressed by Aven [4] (see also [5]), who argues that introducing frequentist probabilities (chances) 
should only be done when the quantities of interest are frequentist probabilities and/or when systematic information up-
dating is important to meet the aim of the analysis.

When to use precise and imprecise probability is also not necessarily obvious. As discussed by Flage [24] (see also Aven 
et al. [9]), a recurring argument appears to be that probability is an appropriate representation of uncertainty only if a large 
enough amount of data is available to base it on. However, it is not obvious how to make such a prescription operational 
([24], p. 33): ‘Consider the representation of uncertainty about the parameter (s) of a probability model. If a large enough 
amount of data exists, there would be no uncertainty about the parameter (s) and hence no need for a representation of 
such uncertainty. When is there enough data to justify probability, but not enough to accurately specify the true value of 
the parameter in question and, thus, make probability, as an epistemic concept, superfluous? [. . .] Also, depending on the 
relevance of the available observations, different [amounts of data] could be judged as sufficient in different situations.’

The latter point was also made by one of the reviewers of the present paper. He/She stated that reducing the issue 
to a question of sample size misses much of the discussion on this topic, and points out that (we allow ourselves to 
cite the referee comments) ‘In fact, the nature of the data is also quite important. For instance, imprecise methods are 
particularly useful when the plus-or-minus ranges for data values are non-negligible, when there is statistical censoring or 
missing data, or when there is structural uncertainty about shapes of distributions, their dependencies, or the correct form 
of the expression or model being evaluated.’ Nevertheless, under some assumption such as unimodal distributions, it is 
possible to derive a possibility distribution from a single observation (assuming the latter is the mode), using a probabilistic 
inequality [36].

As stated in Section 3, we rely on two principles related to the events and probabilities involved, that lead us to consider 
non-repeatable any complex events involving at least a non-repeatable one, and to admit that the frequency of a repeatable 
event is used as the subjective probability of any of its occurrence.

The first principle is self-evident, since the complex event occurs if and only if the non-repeatable events occur. The 
second principle is well-known in Bayesian statistics, where the probability of an event in an exchangeable sequence of 
random quantities is taken as equal to the limiting frequency (sometimes referred to as a chance (e.g. [43]) or propensity 
(e.g. [34]) of that event in the same sequence, i.e. P (A|p) = p, where p is the chance of A.

Returning to the formal setting introduced in Section 1, with the model g(X) used to predict a quantity of interest Z , the 
methods in the present paper only consider parameter uncertainty, i.e. uncertainty about X , and neglects model (output) 
uncertainty, i.e. uncertainty about the difference g(X) − Z . In this vein, we may consider the use of set-valued models in 
order to cope with lack of knowledge about function g .

8. Summary and final remarks

This paper develops a framework for combined analysis of unique and repetitive events in quantitative risk assessment 
using both precise and imprecise probability. We start from a subjective probability (Bayesian) setting involving one event of 
each type, and then generalize to a setting involving a complex combination of the two types of events with their associated 
uncertainty represented by a combination of subjective probability and imprecise probability. One way of representing 
imprecise probability is through possibility theory, and we extend an existing method for jointly propagating probabilistic 
and possibilistic input to fit the developed framework. Finally, a numerical example related to environmental risk assessment 
of the drilling of an oil well is included to illustrate the application of the proposed method.

Allowing for different types of events and different types of uncertainty representations enlarges our modelling capaci-
ties. Computationally, the described methods can be handled by a combination of interval analysis and reliance on the fact 



that the defined complex function of unique and repetitive events is an uncertain quantity on the unit interval, i.e. a non-
negative uncertain quantity, which means that we can rely on the well-known result that the expectation of a non-negative 
uncertain quantity is the integral over its complementary cumulative distribution function.

The described framework can be extended and applied in various ways. In the present paper we have considered the case 
of possibility theory as representation of uncertainty in terms of lower and upper probability. Other representations also 
exist for this purpose, for example the theory of belief functions (also known as evidence theory or Dempster–Shafer theory 
[40]) as an alternative to theories of imprecise or interval probability [44,45]. An example where incomplete knowledge of 
frequencies is modeled by belief functions on the frequency range [0, 1] instead of possibility distributions is in [31]. While 
belief functions are just special cases of lower probabilities corresponding to random sets, it turns out that on Boolean 
frames like {0, 1}, they are mathematically equivalent. So it is tempting to represent a plain probability interval for a 
Boolean variable by a random set on {0, 1}. On this basis, imprecise probabilities of final events of an event tree can be 
efficiently obtained, and more general reliability analysis methods can be devised [1]. The obtained results differ from those 
of interval analysis because the underlying independence analysis are not the same. The comparison of the two approaches 
is worth studying further.

Furthermore, it is conceivable to extend the framework to include finite populations, i.e. the setting between unique and 
repetitive events.
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