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The paper deals with the stabilization of nonlinear sampled-data systems affected by nonentire input-delays. The approach combines input-Lyapunov matching, prediction and Immersion and Invariance concepts. The result is also detailed for linear dynamics and illustrated on a benchmark example.

INTRODUCTION

In the late 50s, the work by [START_REF] Smith | A controller to overcome dead time[END_REF] inspired a wide research community activity on time-delay systems pursuing many different approaches with their own benefits (e.g., [START_REF] Michiels | Stability, control, and computation for time-delay systems. An eigenvalue based approach[END_REF], [START_REF] Mazenc | Reduction model approach for linear time-varying systems with delays[END_REF], [START_REF] Fridman | Nonlinear stabilization under sampled and delayed measurements, and with inputs subject to delay and zero-order hold[END_REF] and references therein). More recent developments concern nonlinear systems where the design is carried out via reduction or prediction-based methodologies [START_REF] Mazenc | Backstepping design for time-delay nonlinear systems[END_REF], [START_REF] Krstic | Delay Compensation for Nonlinear, Adaptive, and PDE Systems[END_REF], [START_REF] Krstic | Input delay compensation for forward complete and strict-feedforward nonlinear systems[END_REF], [START_REF] Califano | Extended Lie brackets for nonlinear time-delay systems[END_REF], Bekiaris-Liberis and [START_REF] Bekiaris-Liberis | Nonlinear Control under Nonconstant Delays[END_REF], Karafyllis et al. (2016)). Nevertheless, a lot of questions still remain unanswered, mainly due to the fact the retarded system is intrinsically infinite dimensional. From the late 90s, an increasing interest has been addressed to systems under sampling where measures are periodically sampled (over intervals of length δ ∈ R + ) and the control is possibly piecewise constant over the sampling period. Huge attention is devoted to analyze the performances of sample-and-hold strategies in presence of delays (Karafyllis and Krstic (2012), [START_REF] Mazenc | Reduction model approach for linear systems with sampled delayed inputs[END_REF], Mazenc et al. (2013), [START_REF] Pepe | Stabilization in the sample-and-hold sense of nonlinear retarded systems[END_REF], [START_REF] Monaco | Sampled-data stabilization of nonlinear dynamics with input delays through immersion and invariance[END_REF]). Significant improvements have been made basically exploiting the fact that the sampled-data delayed system is finite dimensional and admits a finite (extended) hybrid state-space representation whenever the delay is affecting the input or the measurements. Whenever a digital stabilizing controller for the delay-free system is computable, compensation of the delay can be pursued by implementing the former feedback either via prediction over a finite time interval (Karafyllis and Krstic (2012)) or through discrete-time prediction mappings [START_REF] Monaco | Digital stabilization of input delayed strict feedforward dynamics[END_REF]). The consequent design procedures are based on the assumption that the sampling period can be chosen as directly proportional to the delaylength (i.e., τ = Nδ for some integer N ∈ N). Moreover, the so-defined controllers strictly depend on the computability of This work was partially supported by a CNRS-ST2I International Scientific Project -PICS -for cooperation between France and Italy. Mattia Mattioni thanks the Université Franco-Italienne/Università Italo-Francese (UFI/UIF) for supporting his mobility from France to Italy within his PhD program. the predicted state, so restricting their applicability to integrable dynamics or strict feedforward forms. Along these lines, our contribution firstly concerned the design of sampled-data controllers for the delay-free system ensuring the same Lyapunov performances as an ideal continuoustime stabilizing feedback. This is achieved by designing a digital feedback ensuring matching of the behavior of the continuous-time Lyapunov function along the continuous-time (ideally) controlled trajectories (Input-Lyapunov Matching -ILM - [START_REF] Monaco | Sampled-data stabilizing feedback; a pbc approach[END_REF][START_REF] Tanasa | Backstepping control under multi-rate sampling[END_REF]). Starting from such a delay-free design, discrete-time predictor-based solutions can easily be defined. Our second contribution relies on the improvement of the prediction-based sampled-data with respect to prediction errors. This is attained via the concept of Immersion and Invariance (I&I, [START_REF] Astolfi | Nonlinear and adaptive control with applications[END_REF]) which is shown to be adequately shaped to deal with input-delayed dynamics under sampling [START_REF] Monaco | Sampled-data stabilization of nonlinear dynamics with input delays through immersion and invariance[END_REF]). In this paper, we extend these ideas to the case of non-entire delays in the sense that τ = Nδ + σ with σ ∈]0, δ [. An equivalent sampled-data dynamics can be still associated to this class of delayed dynamics (over a state space of dimension N + 1) according to a double step sampling procedure. Exploiting the consequent cascade structure, a two step predictionbased design is proposed. First, the non-entire part of the delay is compensated via a digital stabilizing state feedback (parametrized by δ and σ ) ensuring ILM, at the time instants t = kδ + σ (k ≥ 0), of the evolution of the continuous-time Lyapunov along the delay-free continuous-time trajectories (under an ideal continuous-time feedback). In this sense, we extend the concept of ILM to non-entire input-delayed dynamics under sampling. Then, the actual control law is obtained through usual discrete-time N-step ahead prediction. The resulting predictorbased feedback is further modified according to I&I to improve robustness with respect to prediction errors. For computational facilities, approximate solutions guaranteeing local stabilizing properties are discussed.

The problem is stated in Section 2. In Section 3, the sampled ILM design is developed for the delayed dynamics when τ = σ and a Lyapunov function is defined. In Section 4, the main results are settled. In Section 5, the LTI case is discussed as a case study while simulations are reported for the van der Pol oscillator in Section 6. Section 7 concludes the paper.

Notations and definitions: All the functions and vector fields defining the dynamics are assumed smooth over the respective definition spaces. M U (resp. M I U ) denotes the space of measurable, locally bounded and smooth functions u : R → U (u : I → U, I ⊂ R) with U ⊆ R. U δ ⊆ M U denotes the set of piecewise constant functions over time intervals of length δ ∈]0, T * [, a finite time interval; i.e.

U δ = {u ∈ M U s.t. u(t) = u k , ∀t ∈ [kδ , (k +1)δ [; k ≥ 0}. Given a vector field f , L f denotes the Lie derivative operator, L f = ∑ n i=1 f i (•) ∂ ∂ x i . e L f
(or e f , when no confusion arises) denotes the associated Lie series operator,

e f := 1 + ∑ i≥1 L i f i! . A function R(x, δ ) = O(δ p ) is said of order δ p ; p ≥ 1 if whenever it is defined it can be written as R(x, δ ) = δ p-1 R(x, δ ) and there exist a function θ ∈ K ∞ and δ * > 0 s. t. ∀δ ≤ δ * , | R(x, δ )| ≤ θ (δ ).
We denote by the same • the composition of functions and operators.

PROBLEM SETTLEMENT

In this paper, we consider nonlinear input-delayed dynamics over R n of the form ẋ

(t) = f (x(t), u(t -τ)) (1) 
with equilibrium x * (i.e., f

(x * , 0) = 0), u ∈ M [-τ,∞) U
and known delay τ ≥ 0. When no delay is affecting the input (i.e., τ = 0), we are referring to (1) as the delay free dynamics; namely, ẋ(t) = f (x(t), u(t)).

(2) The following standing assumptions are set.

A. The delay free dynamics is smoothly stabilizable; i.e., there exists a smooth feedback u(t) = γ(x) with γ(x * ) = 0 and a proper1 Lyapunov function

V : R n → R ≥0 such that L f (•,γ) V (x) < 0 with L f (•,u) V (x)
∂ u u=γ(x) = 0 for all x ∈ R n /{x * }. B. The system (2) is forward complete2 ; C. u ∈ U δ and measures are available only at the sampling instants t = kδ (k ≥ 0) where δ denotes the sampling period; D. τ = Nδ + σ ; σ ∈]0, δ [ for a suitable integer N ∈ N.

In this context, we address the problem of stabilizing the retarded system (1) under non-entire delay via sampled-data predictor-based feedback.

The sampled-data extended state pace representation

Under Assumptions C and D, (1) can be described as an extended equivalent hybrid model over R n × R N+1 provided by

ẋ(t) = f (x(t), v 1 k ); t ∈ [kδ , kδ + σ [ (3a) ẋ(t) = f (x(t), v 2 k ); t ∈ [kδ + σ , (k + 1)δ [ (3b) v 1 k+1 =v 2 k , . . . , v N+1 k+1 = u k (3c) with v i k = u((k -N -2 + i)δ ) := u k-N-2+i for i = 1, • • • , N + 1.
By integrating (3) over time-intervals of length δ and initial condition x k := x(kδ ), one defines the sampled-data equivalent dynamics to (1) over R n × R N+1 as

x k+1 =F δ (σ , x k , v 1 k , v 2 k ) = e σ f (•,v 1 k ) • e (δ -σ ) f (•,v 2 k ) x x k (4a) v 1 k+1 =v 2 k , . . . , v N+1 k+1 = u k . (4b)
The sampled dynamics (4a) is parameterized by both δ and σ .

In most cases, a closed-form solution for (4a) does not exist and each flow is described by its exponential series expansion. For computational purposes, approximations are actually used in practice and defined as truncations at finite order p ∈ N (in powers of δ ) of the exponential series expansion defining (4a).

Remark 2.1. When τ = 0 in (1) (i.e., σ = 0 and N = 0 in (3)), (4a) recovers the sampled-data equivalent model of the delayfree dynamics (2) that is provided by the mapping

x k+1 = F δ (x k , u k ) := e δ f (•,u k ) x x k (5) with u k = v 2 k .
For the sake of the dissertation, we are rewriting (4) in the cascade form below

x e k+1 =F δ e (σ , x e k , v 2 k ) (6a) v 2 k+1 =v 3 k , . . . , v N+1 k+1 = u k (6b)
to underline the x e = (x , v 1 ) -dynamics over R n+1 . Whenever N = 0, v 2 k = u k and ( 6) reduces to the x e -dynamics. Given the cascade structure of equations ( 6), the design is backstepping-like in the sense that we first design a fictitiousfeedback on v 2 for stabilizing the x e -subsystem and then the effective control u for the whole cascade. Under the standing assumptions A to D, we prove:

(1) the existence of a smooth fictitious feedback v 2 k = K δ (σ , x e k ) that guarantees Global Asymptotical Stability (GAS) of the equilibrium (x * , 0) of (6a) (Theorem 3.1);

(2) the existence of a predictor-based control u k = K δ (σ , x ep k ) with suitably defined discrete-time predictor state x ep k yielding GAS of the equilibrium (x * , 0, 0 N ) of the extended ( 6), (Theorem 4.2) and, equivalently, S-GAS3 of (1);

(3) I&I stabilizability of the sampled-data dynamics (6) so providing a modified predictor-based controller ensuring S-GAS of the closed-loop equilibrium of (1) (Proposition 4.1) with intrinsic robustness improvement with respect to prediction errors; stability properties under approximate solutions are established as well (Theorem 4.1).

SAMPLED STABILIZATION OF THE X E -DYNAMICS

Consider the x e -dynamics (6a) with equilibrium (x * , 0). We aim at defining a fictitious feedback v

2 k = K δ (σ , x k , v 1 k ) (with K δ (σ , x, v 1 ) : R ≥0 × R n+1 → R)
ensuring GAS of the closedloop equilibrium of (6a). For this purpose, we extend the concept of ILM to retarded systems of the form (1) whenever Assumption A holds. In doing so, we underline that the xdynamics in (6a) rewrites as affected by distributed delay; namely, it takes the form

x k+1 = F δ (σ , x k , v 2 k , v 2 k-1
). The following result is instrumental and generalizes to (1) the notion of ILM [START_REF] Monaco | Sampled-data stabilizing feedback; a pbc approach[END_REF]).

Lemma 3.1. Consider the system (1) under Assumptions A to C. Then, when τ = 0, there exists a smooth mapping γ δ (•) : R n → R in the form

γ δ (x) = γ(x) + ∑ i≥1 δ i (i + 1)! γ i (x)
solution of the ILM equality

V (F δ (x k , γ δ (x k )) -V (x k ) = (k+1)δ kδ L f (•,γ(•)) V (x(s))ds (7)
for any constant value x k = x(kδ ) (k ≥ 0). As a consequence, the feedback u k = γ δ (x k ) makes the closed-loop equilibrium of (2) (resp. (5) GAS at the sampling instants t = kδ , for any k ≥ 0 (resp. GAS). Theorem 3.1. Consider the system (1) under Assumptions A to D and let the mapping γ δ (•) : R n → R be solution to (7).

Introduce the predictor

x p k := x(kδ + σ ) = F σ (x k , v 1 k ) (8) with F σ (x, v 1 ) = e σ f (•,v 1 ) x x k
, evolving according to

x p k+1 =F δ (x p k , v 2 k ) (9) with x p k+1 := x((k + 1)δ + σ ) and x p 0 = F σ (x 0 , v 1 0 ). Then, setting K δ (σ , x k , v 1 k ) :=γ δ (F σ (x k , v 1 k )) = γ δ (x p k ) (10) V e (x, v 1 ) :=V (F σ (x, v 1 )) = e σ f (•,v 1 ) V (x) (11) the fictitious feedback v 2 k := K δ (σ , x k , v 1 k ) ensures GAS of the closed-loop equilibrium of (6a) with predictor-dynamics x p k+1 =F δ (x p k , γ δ (x p k )) (12) with Lyapunov function V e (x, v) in (11).
Proof. From Lemma 3.1, we infer that when σ = 0, the fictitious feedback v 2 = v 1 = γ δ (x) stabilizes (5) in the sampleddata sense. When σ ∈]0, δ [, one introduces the predictor variable (8) and computes x p k+1 = x(kδ + σ + δ ) so getting

x p k+1 =e σ f (•,v 2 k ) x x k+1 (13) 
with, according to (6a),

x k+1 =e σ f (•,v 1 k ) • e (δ -σ ) f (•,v 2 k ) x x k = e (δ -σ ) f (•,v 2 k ) x x p k . (14) 
Substituting now ( 14) into (13), one obtains (9) that coincides with the delay-free (5) setting u k = v 2 . Since γ δ (•) satisfies (7), one sets v 2 = K δ (σ , x, v 1 ) as in (10) so that the closedloop predictor sampled dynamics (9) has a GAS equilibrium in x p * with Lyapunov function V (x p ). As a consequence, the resulting closed-loop dynamics (6a) satisfies

x k+1 =F δ (σ , x k , v 1 k , γ δ (x p k )) = e σ f (•,v 1 k ) • e (δ -σ ) f (•,γ δ (x p k )) x x k v 1 k+1 =γ δ (x p k ) (15) 
where the predictor

x p k = e σ f (•,v 1 k ) x x k
is computable at any sampling instant t = kδ . For proving closed-loop stability, we have to show that V e (x, v) in ( 11) is a Lyapunov function for (6a). For this purpose, it is sufficient to note that, by construction, the fictitious feedback

K δ (σ , x k , v 1 k ) satisfies ∆ k V e (x, v 1 ) = (k+1)δ +σ kδ +σ L f (•,γ(•)) V (x(s))ds with ∆ k V e (x, v 1 ) = V e (x k+1 , K δ (σ , x k , v 1 k )) -V e (x k , v 1 k ).
Thus, one recovers the ILM equality (7) at the time instants t = kδ +σ with initial condition x p 0 = x(σ ) = e -σ f (•,v 1 0 ) (x 0 ). GAS of the equilibrium (x * , 0) of (6a) follows.

Remark 3.1. K δ (σ , x, v 1 ) is smoothly parameterized by δ and σ . By construction one verifies that lim σ →0 K δ (σ , x, v 1 ) = γ δ (x) and lim σ →δ K δ (σ , x, v 1 ) = γ δ (F δ (x, v 1 )).

THE MAIN RESULT

The predictor based controller

Considering now the complete dynamics (6), we show that the predictor-based feedback u k = K δ (σ , x p k+N , v 1 k+N ) = γ δ (x ep k ) with extended predicted state x ep k := (x p k+N , v 1 k+N ) (with x p k+N := x((k + N)δ + σ )) ensures GAS of the equilibrium of (6) at the time instants t = kδ + σ (k ≥ 0). For, we exploit the fact that the study of the extended predictor can be addressed starting from the one of (6a) under virtual feedback

v 2 k = K δ (σ , x p k , v 1 k ). Theorem 4.1. Consider (1) under Assumptions A to D. Intro- duce the predictor x ep k := ( xp k , v 1 k+N ) with v 1 k+N = v N k , xp k = x p k+N and, in detail, xp k = e σ f (•,v 1 ) • e δ f (•,v 2 ) • • • • • e δ f (•,v N+1 )
x x k whose evolutions are described by the difference mapping

xp k+1 =F δ ( xp k , u k ) (16a) v 1 k+N+1 =u k . (16b) Then, the predictor-based feedback u k =K δ (σ , xp k , v 1 k+N ) := K δ (σ , x ep k ) (17 
) ensures GAS of the equilibrium of the closed loop dynamics (6) at the time instants

t = kδ + σ (k ≥ 0) with Lyapunov function V ep (x, v 1 , • • • , v N+1 ) = V e (x p
k+N , v 1 k+N ). S-GAS of the equilibrium of the retarded dynamics (1) follows.

Proof. Defining x ep

k as stated, one verifies that the x ep -dynamics recovers the x e -ones in the sense that one gets

x ep k+1 = F δ e (0, x ep k , u k ) with F δ e (0, xep k , u k ) = [F δ ( xep k , u k )] u k . Accordingly, xp k = x p
k+N and the predictor-based feedback is provided by

u k =K δ (σ , x p k+N , v 1 k+N ) := γ δ (x ep k ) so recovering u k = e δ f (•,v 2 k ) • • • • • e δ f (•,v N+1 k ) γ δ (x p k ) = γ δ (x p k+N )
. Following the lines of the proof of Proposition 3.1, the closedloop predictor dynamics

xp k+1 =F δ ( xp k , γ δ ( xp k )) (18) v N k+1 =γ δ ( xp k ) (19 
) is GAS as it coincides with (12). GAS of (6) (and hence S-GAS of (1)) follows along the same lines of the proof of Proposition 3.1 by noting that after N + 1 step the dynamics of (6) reduces to x e k+N+1 = F δ e (σ , x ep k , γ δ (σ , xp k )) and, more in details,

x k+N+1 =F δ (σ , xp k , v 1 k+N , γ δ ( xp k )) (20) v 1 k+N+1 =γ δ ( xp k ). (21) 
or, in compact form as, x e k+N+1 = F δ e (σ , xpe k , γ δ ( xp k )) so recovering (15) that is GAS.

Remark 4.1. The compensating feedback K δ (σ , x pe ) in ( 17) is based on a N-step prediction of the feedback defined over the reduced dynamics (6a) in Proposition 3.1. As underlined in the proof of Theorem 4.2, the consequent feedback is equivalent to the one resulting from a prediction over Nδ + σ of the delayfree feedback γ δ (x k ) in Lemma 3.1 over the x-dynamics (4a).

The I&I feedback for N > 0

The proposed predictor-based control can be further modified according to a result in [START_REF] Monaco | Sampled-data stabilization of nonlinear dynamics with input delays through immersion and invariance[END_REF]. The following Theorem follows from Theorem 3.1. Proposition 4.1. Let (1) fulfil Assumptions A to B and (6) be its extended sampled-data equivalent model. Then, ∀δ ∈ ]0, T * [, σ ∈]0, δ [, (6) is I&I stabilizable with target dynamics

x k+1 =F δ (σ , x k , K δ (σ , x k , v 1 k )), v 1 k+1 = K δ (σ , x k , v 1 k ) (22) rewritten with x e = (x , v 1 ) as x e k+1 =α δ (σ , x e k ) with α δ (σ , x e k ) = ([F δ (σ , x e k , K δ (σ , x e k ))] , K δ (σ , x e k )).
Proof. In order to prove the result one has to show that hypotheses H1 to H4 of Theorem 2.2 in [START_REF] Monaco | Sampled-data stabilization of nonlinear dynamics with input delays through immersion and invariance[END_REF] are verified. From Proposition 3.1 it is straightforward to conclude that the closed-loop equilibrium (x * , 0) of the target ( 22) is GAS so that H1 is ensured. Then, it follows that the immersion and invariance condition is guaranteed by setting the immersion mapping π δ : R n+1 × R N → R n and on-the-manifold control c δ : R n+1 → R as

π δ (x e k ) =(x e k , K δ (σ , x e k ), . . . , K δ (σ , x e k+N-1 )) (23a) c δ (x e k ) =K δ (σ , x e k+N ). (23b) where K δ (σ , x e k+i ) =([(α δ (σ , x e k )) i ] , v 1 k+i ) (α δ (σ , x e k )) i =e σ f (•,v 1 k ) • e δ f (•,v 1 k+1 ) • e δ f (•,v 1 k+i ) x x k
for i = 1, . . . , N. As a consequence, H3 is fulfilled by implicitly defining the manifold as

M δ = {(x e , v 2 , . . . v N+1 ) ∈ R n+1 × R N s. t. φ δ (x e , v 2 , . . . v N+1 ) = 0 N } with φ δ (x e , v 2 , . . . v N+1 ) =(φ δ 1 (x e , v 2 ), . . . , φ δ N (x e , v 2 , . . . v N+1 ) φ δ i (x e , v 2 , . . . v i+1 ) =v i+1 k -K δ (σ , (F δ e (σ , x e ) i ) (F δ e (σ , x e ) i =([(F δ (σ , x k , v 1 k )) i ] , v i+1 k ) (F δ (σ , x k , v 1 k )) i =e σ f (•,v 1 k ) • e δ f (•,v 2 k ) • e δ f (•,v i+1 k ) x x k for i = 1, . . . , N. Accordingly, one defines the off-the-manifold component z = (z 1 , . . . , z N ) by setting z i = φ δ i (x e , v 2 , • • • , v i+1 ) with z 0 = φ δ (x e 0 , v 2 0 , • • • , v N+1 0 
) .Thus, stabilization in closedloop of ( 6) is achieved by any feedback u

= ψ δ (x e , v 2 , • • • v N+1 , z) such that ψ δ (π δ (x e ), 0 N ) = c δ (x e
) that is designed so to drive z → 0 while guaranteeing boundedness of all the (x, v, z) trajectories. Before showing how to construct the I&I feedback, we first notice that the dynamics of the extended system (x e , v 2 , . . . , v N , z) coordinates is described by a cascade structure composed of ( 6) plus the z-dynamics provided by

z 1 k+1 =z 2 k , . . . , z N k+1 = z N+1 k z N+1 k+1 =u k -K δ (σ , (F δ e (σ , x e ) N ).
or, in more compact form, as

z k+1 =A z k + B(u k -K δ (σ , (F δ e (σ , x e ) i )) (24) with A = 0 (N-1)×1 I (N-1)×(N-1) 0 1×(N-1) 0 1×(N-1) , B = 0 1×(N-1) 1 . (25) 
Accordingly, stabilization in closed-loop is achieved by a the feedback of the form

ψ δ (x e , v 2 , • • • v N+1 , z) = K δ (σ , (F δ e (σ ,
x e ) N ) + Lz k where L is chosen so that A + BL is Schur. Unfortunately, in most cases the above feedback cannot be exactly computed. Hence, only approximate solutions can be implemented so loosing, in general, global stability properties in closed-loop. The following result is stated while the proof can be carried out along the lines of the one of Proposition 3.2 in [START_REF] Monaco | Sampled-data stabilization of nonlinear dynamics with input delays through immersion and invariance[END_REF].

Theorem 4.2. Let (1) verify Assumptions A to D. Then, sampled-data (local) asymptotic stabilization of the equilibrium x * of the retarded dynamics (1) is achieved by any feedback

u k = K δ (σ , (α δ (σ , x e k )) N ) + L δ (x e k )z k (26) 
where L δ (x e k ) is chosen to achieve lim k→∞ z k = 0 with boundedness of the state trajectories of ( 6)-( 24).

Remark 4.2. Writing the feedback as (26) underlines that the I&I feedback is composed of the predictor-based feedback plus a term that represent a feedback on the prediction error. As a matter of fact, when the manifold is reached (i.e., z ≡ 0), the I&I feedback (26) recovers the predictor-based one; namely,

K δ (σ , α δ (σ , x e k ) N ) = γ δ (x p k+N ) with x p k+N = e δ f (•,v 2 ) • • • • • e δ f (•,v N+1 ) x x p k and x p k = F σ (x k , v 1 k ).

THE LINEAR CASE

Consider, as a case study, the LTI system ẋ(t) = Ax(t) + Bu(tτ) (27) where x ∈ R n verifying assumptions B to D while Assumption A reformulates as follows:

LA. When τ = 0 the couple (A, B) is stabilizable and the continuous-time feedback u = Fx stabilizes in closed-loop with Lyapunov function

V (x) = x Qx, Q > 0 such that (A + BF) Q + Q(A + BF) < 0 and QB is full rank.
In the LTI case, the sampled-data equivalent dynamics are exactly computable. Thus, we are now specifying the results in Theorems 4.1 and 4.2 to the present case. As well known, the LTI nature of ( 27) is preserved under sampling so that the extended sampled-data equivalent model gets the form

x k+1 =A δ x k + A δ -σ B σ v 1 k + B δ -σ v 2 k (28a) v 1 k+1 =v 2 k , . . . , v N+1 k+1 = u k (28b) 
where x k = x(kδ ) for k ≥ 0 and A δ = e δ A ; B σ = σ 0 e sA Bds. From the above definitions, it is straightforward to verify that

A δ -σ B σ + B δ -σ = A σ B δ -σ + B σ = B δ .
The predictor-based feedback Corollary 5. 1. Consider (27) under Assumptions LA and B to D and let F δ be computed as the solution to the ILM equality

(A δ + B δ F δ ) Q(A δ + B δ F δ ) = e (A+BF) δ Qe (A+BF)δ . (29)
Then, the predictor-based feedback

u k = F δ A Nδ x p k + N-1 ∑ i=0 F δ A iδ B δ v N+1-i k (30) with x p k := x(kδ + σ ) = A σ x k + B σ v 1 k
(31) and initial conditions (x 0 , v 0 , u 0 ) so that

u 0 = F δ A Nδ (A σ x 0 + B σ v 1 0 ) + N-1 ∑ i=0 F δ A iδ B δ v N+1-i 0
asymptotically stabilizes (28) As a consequence, (30) asymptotically stabilizes (27) at the time instants t = kδ + σ , k ≥ 0.

Proof. From Lemma 3.1, one has that, by construction, when τ = 0 the feedback u k = F δ x k stabilizes the delay-free system in closed-loop. By straightforwardly applying Proposition 3.1, one sets

K δ (σ , x k , v 1 k ) = F δ (A σ x k + B σ v 1 k ) so that the fictitious feedback v 2 k = F δ x p k with x p k as in (31) makes x k+1 =A δ x k + A δ -σ B σ v 1 k + B δ -σ F δ x p k , v 1 k+1 = F δ x p k ( 
32) asymptotically stable in closed-loop with asymptotically stable predictor dynamics provided by

x p k+1 =(A δ + B δ F δ )x p k (33) with x p 0 = A σ x 0 + B σ v 1 0 .
As a matter of fact, one obtains that, when k → ∞, x p k → x * and thus x k → (A δ -σ + B δ -σ F δ )x * and v 1 k → F δ x * = 0 and so x k → A δ -σ x * . Accordingly, Theorem 4.1 applies now by defining the real feedback as the prediction of the virtual feedback K δ (σ , x k , v 1 ) = F δ x p k , N-step ahead over the x p -dynamics (33); namely, one gets

u k =K δ (σ , x p k+N , v 1 k+N ) = F δ A Nδ x p k + N-1 ∑ i=0 F δ A iδ B δ v N+1-i k .
Because of the cascade structure, after N +1 steps the dynamics (28) in closed-loop recovers the feedback dynamics (32) with asymptotically stable equilibrium (x * , 0); i.e., one gets

x k+N+1 =A δ x k+N + A δ -σ B σ v 1 k+N + B δ -σ F δ x p k+N v 1 k+N+1 =F δ x p k+N .
5.1 The I&I feedback for N > 0 Theorem 4.2 is specified below to (27). Corollary 5.2. Consider ( 27) under Assumptions LA and B to D and let F δ be computed as the solution to the ILM equality (29). Then, ( 28) is I&I stabilizable with target dynamics

x k+1 =(A δ + B δ -σ F δ A σ )x k + (A δ -σ B σ + B δ -σ F δ B σ )v 1 k v 1 k+1 =F δ A σ x k + F δ B σ v 1 k . ( 34 
) Thus, asymptotic stability of ( 28) is ensured by the feedback

u I k = L δ z k + F δ (A δ + B δ F δ ) N x p k + N-1 ∑ i=0 F δ A iδ B δ z N-i k (35)
where x p k is as in (31), L δ is chosen so that the matrix A + BL δ (with A and B as in ( 25)) is Schur and z = (z 1 , . . . , z N ) with

z i k = v i+1 k -F δ (A δ + B δ F δ ) i-1 x p k ( 36 
) for i = 1, . . . , N and z i 0 = v i+1 0 -F δ (A δ + B δ F δ ) i-1 x p 0 .
Proof. Again we have to show that hypotheses H1 to H4 of Theorem 2.2 in [START_REF] Monaco | Sampled-data stabilization of nonlinear dynamics with input delays through immersion and invariance[END_REF]. First, we notice that the target dynamics (34) coincides with (32) so proving that H1 is fulfilled. H2 is guaranteed by setting

π δ (x p ) = (Π δ 1 , . . . , Π δ N ) x p , c δ (x p ) = C δ x p with Π δ 1 = I, Π δ i = F δ (A δ + B δ F δ ) i-1 (i = 2, . . . , N) and C δ = F δ (A δ + B δ F δ ) N . Accordingly, H3 is verified by idefining the invariant set as M δ = {(x , v 1 ; v 2 , . . . , v N+1 ) ∈ R n+1 × R N s.t. v i+1 k -F δ (A δ + B δ F δ ) i-1 (A δ x + B δ v 1 ) = 0} 
so deducing the off-the-set component z as in (36) with dynamics

z k+1 = A z k + B u k -F δ (A δ + B δ F δ ) N x p k + N-1 ∑ i=0 F δ A iδ B δ z N-i k ) .
Accordingly, the feedback u I k in (35) satisfies H4 as in closedloop one gets z k+1 = (A + BL δ )z k that is asymptotically stable so proving the result.

THE VAN DER POL EXAMPLE

Let the van der Pol oscillator dynamics be described by ẋ2

= x 1 -x 2 1 u, ẋ1 = u (37) 
and denote x = (x 1 , x 2 ) . The smooth continuous-time feedback u = -3x 1 -

x 3 1 3 -x 2 makes the closed-loop equilibrium GAS with Lyapunov function V (x) = x 2 1 + x 4 1 3 + x 1 x 2 + 1 2 x 2 2 . When u ∈ U δ , by applying Lemma 3.1, the approximate sampled-data feedback in u = γ δ (x) = -3x 1 - x 3 1 3 -x 2 + δ 2 (x 3 1 + 8x 1 + 3x 2 ) + O(δ 2
) makes the closed-loop equilibrium S-GAS. Assume that a delay τ = δ + σ is acting on the control in (37). One computes the extended hybrid sampled-data equivalent dynamics to (37) as

x 2k+1 =x 2k + δ x 1 -v 1 (σ (σ -δ ) - σ 2 2 ) - 1 3 (x 1k + σ v 1 k -v 2 k (σ -δ )) 3 + 1 2 v 2 k (σ -δ ) 2 ) + 1 3 x 3 1k x 1k+1 =x 1k + σ v 1 k + (δ -σ )v 2 k , v 1 k+1 = v 2 k , v 2k+1 = u k .
The predictor-based feedback (Theorem 4.1) is provided by

u = -( δ 2 6 + δ 2 + 1)(x 2 + σ x 1 + δ 2 2 v 2 + σ 2 2 v 1 + x 3 1 3 + δ (x 1 + σ v 1 )) -( δ 2 2 v 2 + x 1 + σ v 1 )( 3δ 2 + δ 2 6 (2δ + 3) + δ 2 2 + 3)
while the I&I feedback gets the form provided in Theorem 4.2 with a static gain L ∈ (-1, 1).

Simulations are performed for N = 1, different values of δ and σ . We compare the predictor-based (PB) and the I&I feedbacks (Theorems 4.1 and 4.2) with the sampled-data (SD) delay-free one. As one might expect, both the design strategies yield good performances when δ and σ are small (Figure 1). Though, since approximate solutions are applied, the I&I feedback yields improved performances with respect to the PB one (Figure 2). Furthermore, we compare the behavior of the Lyapunov function of the closed-loop PB system (V e (x, v), Theorem 4.1) with the ones of the continuous-time (CT) and sampled-data (SD) delay-free systems (Assumption A and Lemma 3.1). In this case, simulations confirm that matching of the CT behavior is achieved by the predictor-based feedback at the time instants t = kδ + σ . Though, such a property is lost in Figure 2 as the sampling period increases basically due to the fact that only the approximated prediction-based feedback is implemented. 
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Fig. 1 .Fig. 2 .

 12 Fig. 1. δ = 0.2 s, N = 1 and σ = 0.1 s

V : R n → R is proper if ∀ r > 0, V -1 ([0, r]) = {x ∈ R n V (x) ≥ r} is compact.

Assuming the delay free dynamics forward complete ensures that the delayed one (1) is complete too (Karafyllis andKrstic (2012)) 

By S-GAS of the equilibrium of (1) we mean that the sampled-data control ensures stability of the equilibrium x * of (1) at the time instants t = kδ + σ , k ≥ 0.