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Bangalore

ABSTRACT

Classification of remotely sensed data is an important task
for many practical applications. However, it is not always
possible to get the ground truth for supervised learning meth-
ods. Thus unsupervised methods form a valuable tool in such
situations. Such methods are referred to as clustering meth-
ods. There exists several strategies for clustering the given
data - K-means, density based methods, spectral clustering
etc. Recently we proposed a novel method for clustering data
- Power Spectral Clustering. In this article we aim to intro-
duce the method in the context of Geoscience and Remote
Sensing, apply the method to hyperspectral data and validate
its applicability to remotely sensed images.

Index Terms— Clustering, Hyperspectral Data

1. INTRODUCTION

Hyperspectral images goes beyond the visible spectrum and
records the values throughout the spectrum of reflected light.
This leads to a capability of potentially distinguishing be-
tween various materials using remotely sensed data. This also
means that at every pixel we have a number of spectral chan-
nels ranging from 126 to 512 depending on spectral resolu-
tion. Classification of hyperspectral images is one of the most
actively researched problem in the field of Geoscience and
Remote Sensing [1]. However ground truth data is not always
available for supervised learning methods. Clustering meth-
ods make a valuable tool in such situations.

The clustering problem aims to find similar groups in the
data without any knowledge of the ground truth, and thus is
also referred to as unsupervised classification. There exists
several methods for clustering data - k-means, density based
methods, spectral clustering [2, 3]. K-means is a method
based on distances and it cannot detect non-globular struc-
tures in the data. Density based methods are based on density
calculation at a point and can detect non-globular structures.
However, in high dimensions the density calculations are not
reliable and hence fails for high dimensional data. Spectral
clustering methods are based on distances and can also de-
tect non globular structures in the data and is suited better for
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hyperspectral data. Apart from providing a simplified repre-
sentation, clustering methods also provide information about
the neighborhood, which in turn could be used to enhance the
classification accuracy [1].

Recently in [4] the authors obtained a new method for
clustering (considering the gamma limit of spectral cluster-
ing). In this article our aim is to explore it suitability in the
context of Geoscience and Remote Sensing applications and
in particular to that of hyperspectral images. In section 2 we
explain the basic concepts of Power Spectral clustering, and
look at its applications in section 3. We conclude with a brief
overview and research in future directions in section 4.

2. THEORY

Let G = (V, E,W) denote an edge weighted graph, with V'
denoting vertices, ' denoting edges and W the weight ma-
trix. Assume that there are j distinct weights, 0 < w; <

- < wj; < 1. D denotes the degree matrix of the graph.
The laplacian is then defined as L = D — W. g =
(V, E,W(®)) denotes the graph where every weight is raised
to the power p. G, = (V, E}) denotes the graph with the
edge set I, consisting of edges whose weight equals wy.
G>ir = (V,E>}) denotes the graph with the edge set E>y
consisting only of edges whose weight is at least wy. One can
accordingly define Lj, and L.

2.1. Spectral Clustering
The basic algorithm for spectral clustering is as follows -

1. Given the data, construct a graph G and calculate its
laplacian, L.

2. Suppose that if m clusters are required, calculate the
first m eigenvectors of the laplacian L. (ordered from
smallest to largest).

3. Represent each of the points in the original dataset by
a point in R™ consisting of the corresponding value in
each of the eigenvectors.

4. In this space, use k-means or some classical algorithm
to find the clusters.



There exists several explanations as to why such an al-
gorithm finds non-globular structures in the data. One such
explanation is obtained by interpreting the above algorithm in
an optimization framework [5]. Consider the following cost
function

W(A;, A;
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It can be shown that [5] minimizing the cost function above is
approximately equivalent to solving the following optimiza-
tion problem.

minimize Tr(H'LH)
HER" Xk (2)

subjectto H'H =1

The solution to the optimization problem in (2) is given
by taking the first k eigenvectors of the laplacian L as the
columns of H [6]. This results in the spectral clustering
algorithm as described before.

2.2. Power Spectral Clustering

Let P(P) denote the optimization problem

minimize Tr(H'L® H)
HeRn Xk (3)

subjectto H'H =1
We are then interested in calculating the limit

lim arg min P® =7 )
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Such a limit is referred to as the I'—limit [7]. The technique
of adding a parameter and calculating the I'—limit was suc-
cessfully used in various cases. The main advantage of such
a technique is that, it allows us to obtain novel methods to
solve the problem, to find a simple approximate solution to
the complex problem in various scenarios or obtain efficient
algorithms to calculate the solution [8, 9].

For the case of spectral clustering, algorithm 1 calculates
the approximate I'—limit. The proof of correctness and the
validity of the approximation are discussed in [4].

How does the algorithm work? Firstly, given the data
one has to construct the edge weighted graph, G. Then start-
ing with the highest level (edges of the highest weight), recur-
sively add edges while the number of connected components
are greater than the required number of clusters m. This is
referred to as the MST-phase. Then construct an initial rep-
resentation of the data points as described in step 5 of the
algorithm. In the remaining part, we iteratively improve the
representation with respect to the lower weight edges as de-
scribed in steps 6-13.

Observe that, once the number of columns is equal to the
the required number of clusters m, then the algorithm simply

Algorithm 1 Efficient algorithm to compute I'—limit for
ratio-cut.
Input: A weighted graph, G, with distinct weights w; <
wg < - -+ < wj. Number of clusters, m.
Output: N - A representation of the subspace spanned by
the I'—limit of the minimizers.
1: Setk =j.
2: while Number of connected components of G>j is
greater than or equal to m do
3:  Setk =k — 1 {We refer to this as an MST-Phase }
4: end while
5: Construct N by stacking the vectors 1y4,/+/]A;| in
columns, where A; is a connected component of G> .
6: Set [y = 0 and [ = number of connected components in
GZ k
7: Consider the graph Gy and let Ly, be the corresponding
laplacian.
8: SetC' = [NthN]lz,lg
9: Calculate the first eigenvectors of eigenvalue problem
whose eigenvalue is less than or equal to ().

Cx=M\x )

10: Let A be the matrix obtained by stacking the eigenvectors
as columns.
11: Construct A as

P I 0

A= [0 A} (6)
12: Update /1 and [5.
133 N=Nx A
14: Setk=k-1
15: if k£ = 0 or number of columns of N is equal to m then
16:  return N
17: else

18:  Goto Step (7)
19: end if

multiplies /N with an orthogonal matrix. This implies that the
representation does not meaningfully change once the num-
ber of columns in N is equal to m, and hence it is used as a
stopping criterion in the algorithm.

Algorithm 1 provides an alternate representation to that
of spectral clustering. One can then use k-means algorithm to
cluster the data using N as the representation. This procedure
for clustering is called Power Rcut clustering. Observe that
one can substitute the laplacian with normalized laplacian and
repeat the procedure. This procedure is referred to as Power
Spectral clustering.

Before considering the clustering method in the context of
hyperspectral data, we briefly mention a few important points
to note. Please refer to [4] for details.

1. Not all properties are preserved while considering the
I'—limit. In this case, the property of non-trivial clus-



ters applicable to the ratio cuts is not preserved. Thus,
one has to post process the results to ignore the small
clusters.

2. This method is closely related to Minimum spanning
tree (MST) based clustering. In particular, if at the end
of while loop in steps 2-4 in algorithm 1, we have ex-
actly m components, then the clusters are same as these
m components.

3. Unlike MST based clustering, the ties are not broken
arbitrarily. Instead the cut is based on the size of the
clusters.

3. APPLICATIONS

In this section we consider the application of the Power spec-
tral clustering to the hyperspectral data. The datasets are
taken from [10]. We consider 3 sample images - Indian Pines,
a part of the Salinas and a part of Pavia University.

Note that clustering in the context of images is closely
related to segmentation. In these datasets we are interested in
segmenting the image to identify the various classes. Thus,
we consider the 4-adjacency graph of the image where the
edges are weighted by L, norm. Also, we over segment the
images for the following reasons -

1. Not all points are classified in the ground truth. This
implies that there exists several gaps in the images, and
thus one may not achieve connected components.

2. The main focus of the application is to identify the ho-
mogeneous regions in the image. Also, the regions
can later be merged together depending on the require-
ments.

The results obtained by Power Rcut on the three sample
images are shown in figure 1. Figure 1 (a) and (b) denote
the Indian Pines dataset. Observe that the overall structure is
preserved in the image. The boundaries however are not that
sharp as the ground truth, since not all points in the ground
truth image are classified. Another point to note is that the
classes are not color coded, i.e each class is not denoted by
the same color. Our aim is to show that our method results
in acceptable segmentation of the image. Figure 1 (c) and
(d) shows a part of the Salinas dataset. Observe, once again,
that the overall structure is preserved. The consistency of the
classes obtained is analyzed in section 3.1.

Figure 1 (e), (f) and (g) shows a part of the Pavia Univer-
sity dataset. Figure 1(g) shows the results obtained by spectral
clustering. Observe that Power Rcut preserves the structure
better that spectral clustering. In particular spectral clustering
seems to prefer convex clusters more than Power Rcut. See
for instance the buildings (marked in red in the ground truth
image).

Fig. 1. (a) Indian Pines dataset - Ground Truth. (b) Indian
Pines dataset - Power Rcut result. (c) part of Salinas dataset -
Ground Truth. (d) part of Salinas dataset - Power Rcut result.
(e) part of Pavia Univeristy dataset - Ground Truth. (f) part of
Pavia Univeristy dataset - Power Rcut result. (g) part of Pavia
Univeristy dataset - Spectral Clustering result.

3.1. Validation Results

To validate the results of Power Rcut, we consider Adjusted
mutual information [11] defined by

MI(U,V)—EMIU,V))

AMIUY) = 0, HV)) — BT V)

(7

As mentioned earlier, we are interested in identifying the
homogeneous regions in the image, and thus over segment
the image. Mutual information measures the consistency of



Dataset (Method) Score | Adjusted Score
Indian Pines (Power Rcut) 0.38 0.73
Salinas (Power Rcut) 0.66 0.89
Pavia University (Power Rcut) | 0.23 0.81
Pavia University (Spectral) 0.16 0.79

Table 1. AMI scores on various datasets. Column 2 indicates
the actual AM I score. Column 3 indicates the AM I score
ignoring class 0

the clustering results, and is not constrained by the number of
clusters being equal. Hence it is the ideal validation measure
to compare with the ground truth. Adjusted mutual informa-
tion adjusts for chance. This also implies that the scores are
bounded above by 1, i.e a score of 1 indicates a perfect match-
ing. See [12] for more details.

The adjusted mutual information scores for various
dataset/methods is given in table 1. The second column
indicates the scores. Recall that not all pixels are classified
in the datasets and hence class 0 (indicating unclassified pix-
els) must be ignored before calculating the scores. The third
column indicates the adjusted scores for the datasets. It can
be deduced from the results that the Power Rcut identifies the
classes well.

4. CONCLUSION AND FUTURE WORK

In this article, we introduced a new method for clustering -
Power Rcut, and analyzed its application to the hyperspectral
data. We concluded that the method identifies the homoge-
neous regions in the image satisfactorily. However, clustering
the image is usually a first step in understanding the data. We
have shown that our method can be used to visualize an unla-
belled data to identify the homogeneous regions.

Another application of clustering is to improve the accu-
racy of classification by incorporating the spatial information
as well [1]. This is considered for the future work.
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