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Interpolations of Geo Spatial Variables using
Mathematical Morphology

Aditya Challa, Member, IEEE, Sravan Danda, Member, IEEE B. S. Daya Sagar, Senior Member, IEEE
and Laurent Najman

Abstract—The problem of interpolation of images is defined
as - given two images at time t = 0 and t = T, one must find
the series of images for the intermediate time. This problem is
not well posed, in the sense that without further constraints,
there might be many solutions possible. However, restricting the
domain of application allows us to choose the “right” solution. We
thus focus on the interpolation problem from the perspective of
geoscience and remote sensing. One approach to obtain a solution
to image interpolation problem is with the use of operators
from Mathematical Morphology (MM). These operators have an
advantage of preserving the structure since the operators are
defined on sets. In this work we review and consolidate existing
solutions to the image interpolation problem from the perspective
of geoscience and remote sensing. We also summarize several
possible extensions and prospective problems of current interest.

Index Terms—Image Interpolation, Mathematical Morphology,
Morphological Interpolation.

I. INTRODUCTION

THE problem of image interpolation can be stated as -
given two Images I0 and I1, find the series of Images

{Zα, α ∈ [0, 1]} such that Z0 = I0 and Z1 = I1. Note that this
problem differs from the usual interpolation problem - given a
function values at few points, find the value of the function at
the intermediate points. Image interpolation problem requires
the answers to be “visually appealing” which is very hard to
characterize rigorously. For instance in figure 1, let the source
image be as in (a) and target image be as in (b). A simple
linear interpolation (0.5∗I0 +0.5∗I1) would result in the one
as obtained in (c). However, we expect that the “structure” to
change from the circle to square.

Image interpolation problem is also sometimes referred to
as Image morphing which is widely used for special effects
and animation. In this work, our aim is to analyze the problem
from the perspective of remote sensing and geoscience and, as
we shall soon see, the nature of the solutions are very different
from that of Image morphing. Several possible applications
exist for such a solution. For example, a satellite maps the
surface at regular intervals and one might be interested in
visualizing the intermediate states. Apart from this the prob-
lem of image interpolation is of interest to the Geographic
Information Systems (GIS) community [1].

The solution to the image interpolation problem can be
approached from various starting points. In this work, we
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are interested in analyzing the solution obtained via the use
of operators from Mathematical Morphology (MM). MM is
a theory of non-linear operators on images introduced by
Georges Matheron and Jean Serra in the late seventies [2].
These operators are famous for preserving the “structure” as
the operators are defined on sets instead of pixels. This makes
the subject of morphological operators ideal to deal with the
problem of image interpolation. The question of why MM
operators are ideal for interpolation of geo-spatial variables
will be discussed further in section II-E.

Different solutions to the problem of image interpolation via
MM operators are proposed in several works [3], [4]. One of
the aims of this article is to provide a consolidated theoretical
review of the earlier methods from the geoscience and remote
sensing perspective. We also discuss several extensions and
prospective problems for future work.

The main contributions of this article are -
• Theoretical consolidation of the existing methods
• Analysis of existing methods through simple, simulated

examples.
• Provide a platform for various extensions and future

work.
The methods described in this article are not the only

possible solutions to the interpolation problem [5], [6], [3].

(a) (b) (c)

Fig. 1. (a) Source Image. (b) Target Image. (c) Linear interpolation between
(a) and (b).

II. REVIEW OF MORPHOLOGICAL OPERATORS

In this section we introduce the basic operators of Math-
ematical Morphology (MM), recall the definitions and setup
the notation as required by the rest of the article [7], [8], [9].

Loosely speaking, the basic MM operators - dilation, ero-
sion, opening and closing, are defined on binary images and
can be extended to greyscale images. This is achieved on the
abstract level by defining the operators on abstract structures
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called Complete Lattices. However, for the purposes of this
article, we only review the basic operators on binary and
greyscale images. Interested readers can refer to [7], [8] for
theoretical details on MM operators and [10], [11] for details
about lattices.

A. Binary Images

A binary image is a map, I : E → {0, 1}. E is called the
domain of definition and is usually taken as R2 or Z2. Here
R refers to the real line and Z denotes the set of integers. For
most of theoretical aspects in this article, we consider E = R2.
Note that, practically, images are restricted to a finite domain.
However results, henceforth, are stated on infinite domain and
hold true for finite domains as well. This distinction is blurred
for the rest of the article for pedagogical reasons.

An equivalent way of characterizing the binary image is to
look at sets {x ∈ E | I(x) = 1}. Such sets belong to the space
of P(E), where P(E) is the power set - set of all possible
subsets of E. Basic MM operators on binary are maps from
P(E) → P(E). To define these operators one needs another
set, called structuring element, with a defined origin.

There are several ways to look at the structuring element.
Theoretically, a structuring element is the set to which the
set {0} maps to. Then using the assumption - Invariance to
translation, we can extend the mapping to all unit sets {x}.
Then using the assumption - Invariance to supremum gives us
the dilation and using the assumption -invariance to infimum
gives us erosion. For the remaining part of the paper it is
assumed that B denotes a unit disk with origin at the center.

1) Dilation: The first MM operator we discuss is that of
Morphological Dilation, or simply Dilation, δB(.). Recall that
it is a map from P(E) to itself. Thus we havecale

δB(X) = X ⊕B =
⋃
b∈B

Xb = {x ∈ E | Bx ∩X 6= ∅}, (1)

where X ⊕B is usual Minkowski addition and Xb is the set
X translated by b.

2) Erosion: Morphological Erosion, or simply Erosion,
εB(.) with respect to the structuring element B is defined as

εB(X) = X 	 B̂ =
⋂
b∈B

X−b = {x ∈ E | Bx ⊆ X}, (2)

where X 	 B is usual Minkowski subtraction. When the
dilations and erosions are restricted to a domain, they are
called Geodesic Dilations and Geodesic Erosions respectively.
Assume that we have two sets X ⊂ Y . The geodesic dilation
and geodesic erosion are respectively defined by

∆Y,B(X) = δB(X) ∩ Y (3)
EX,B(Y ) = εB(Y ) ∪X (4)

B. Greyscale Images

A greyscale image is defined as a function I : R2 → R,
where R = R ∪ {−∞,∞}. An equivalent way of looking at
the greyscale image is using the umbra [8] defined as

U(I) = {(x, t) | I(x) ≤ t} (5)

Note that U(I) ⊂ R3. Using these sets, the definitions of
dilation and erosion for binary images can be extended to
greyscale images as well. The main distinction being how the
structuring element is extended from R2 to R3.

The most important point to note is that - all dimensions
are not created equal. Observe that two dimensions correspond
to the spatial co-ordinates while the third corresponds to the
greyscale value. The spatial co-ordinates can be handled the
same way as before. The greyscale value on the other hand, can
be handled in two ways - with/without changing the maximum
greyscale value in the image. This results in non-flat and flat
structuring elements respectively.

1) Flat Structuring Elements: Given a set B ⊂ R2, a flat
structuring element is defined as

g(x) =

{
0 x ∈ B
−∞ x /∈ B

(6)

2) Non-Flat Structuring Elements: Given a set B ⊂ R2, a
non-flat structuring element is defined as

g(x) =

{
ix x ∈ B
−∞ x /∈ B

(7)

where ix can take any value in R.
3) Greyscale Operators: Greyscale Morphological Dilation

with respect to the structuring element g(x) , δg(.) is defined
as

δg(f)(x) = sup{f(h) + g(x− h) | h ∈ E} (8)

Greyscale Morphological Erosion with respect to the structur-
ing element g , εg(.) is defined as

εg(f)(x) = inf{f(h)− g(x− h) | h ∈ E} (9)

The importance of the distinction between flat and non-flat
structuring elements and greyscale operators are further dis-
cussed in section (refer). Unless otherwise mentioned, in what
follows the dilation and erosion operators refer to operators on
binary images.

C. Hausdorff Distances

Another concept used in the remaining portion of the article
is that of distance between sets. There are various distances
which can be defined on two sets. Dilation distance, d(X,Y )
is defined as inf{λ | δλB(X) ⊇ Y }. Hausdorff Dilation
distance is defined as d(X,Y ) = sup{d(X,Y ), d(Y,X)}.
The following are the list of properties which follow from
the definition -

1) d(X,Y ) = d(Y,X)
2) d(X,Y ) = 0 if and only if X = Y .
3) d(X,Y ) ≤ d(X,Z) + d(Y,Z).
4) If we have that X ⊆ Y , then d(X,Y ) = d(X,Y )

We can also define the “dual” distance operator, Erosion
distance as e(X,Y ) is defined as inf{λ | ελB(X) ⊆ Y }.
And the Hausdorff Erosion distance is defined as e(X,Y ) =
sup{e(X,Y ), e(Y,X)}.
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D. Influence Zones

If Z1 and Z2 are two sets in R2, then the influence zone of
Z1 with respect to Z2 is defined as

IZ(Z1 | Z2) = {x : d(Z1, x) < d(Z2, x)} (10)

Similarly, influence zone of Z2 with respect to Z1 is defined
as

IZ(Z2 | Z1) = {x : d(Z2, x) < d(Z1, x)} (11)

One can give a simpler characterization for the influence
zone. Fix a point x. Now x ∈ IZ(Z1 | Z2) if and only if
we have that x ∈ Z1 ⊕ λB and x /∈ Z2 ⊕ λB. That is x ∈
(Z2 ⊕ λB)

c. Thus we have

IZ(Z1 | Z2) =
⋃
λ≥0

(Z1 ⊕ λB) ∩ (Z2 ⊕ λB)
c (12)

We can also define the Skeleton by Influence Zone (SKIZ)
as

SKIZ(Z1, Z2) = {x : d(Z2, x) = d(Z1, x)} (13)

E. Interpolation of Geo-Spatial Variables

1) Why Geo-Spatial variables?: Considering images as
points in Rn2

, where n2 is the number of pixels in the image,
the problem of image interpolation can be restated as - Find
a path in Rn2

between two points. This problem, of course,
has infinitely many solutions. To get a unique solution, one
needs to place some constraints on the paths. Usual constraints
are 1) the path should be smooth and 2) the interpolates
visually appealing. However, “visually appealing” is very hard
to characterize. Instead constraining the data domain can allow
to pick a unique path. Thus, in this article we focus on geo-
spatial variables.

2) Advantage of MM operators: Recall that MM operators
(Binary) act by increasing/decreasing the set of pixels. This
means that they act by changing the structure of the set, and
hence one has a control over the structure. As noted in section
I, we expect the solution to the interpolation problem to act on
the structure of the set. The images in figure 2 are generated
using geodesic dilation. Contrasting them with that of figure
1 we find that interpolates in figure 2 are “smoother”.

3) Why MM operators on Geo-Spatial variables?: Apart
from the fact that MM operators operate on the structure of
the sets, they also simulate many geophysical processes. This
is another reason why MM operators are ideal for interpolating
Geo-spatial variables. For instance constrained water flow can
be simulated by geodesic dilation.

III. FIRST ATTEMPTS

In this section we review the two methods as described in
[4]. Recall that we are interested in constraints so that we
can pick uniquely the path between the two images. One such
constraint is given by Hausdorff distances.

Rigorously speaking, consider the space K of all non empty
compact sets, with the metric given by Hausdorff distance. If

(a) (b) (c)

(d) (e) (f)

Fig. 2. (a) Source Image. (b) - (e) Geodesic Dilation. (f) Target Image.

X and Y are two sets, then we shall be interested in shortest
path between X and Y in this space. One of the shortest paths
is given by the First Hausdorff Interpolates defined below.

Definition 1 (First Hausdorff Interpolates). Let X and Y
be two sets. Let ρ = d(X,Y ) (Hausdorff distance). Let B
denote the disk structuring element with radius 1. Then the
first Hausdorff interpolates, {Zα : α ∈ [0, 1]} is defined as

Zα = δαρB(X)
⋂
δ(1−α)ρB(Y ) (14)

The interpolates defined in definition 1 satisfy

d(Zα, X) = (α)ρ d(Zα,Y ) = (1− α)ρ (15)

The proof of this can be found in [4]. The above relation
implies that the first Hausdorff interpolates falls on the shortest
path between the sets X and Y .

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. First Hausdorff Interpolates. (a) Source Image. (b) - (g) First Hausdorff
Interpolate. (h) Target Image.

An example of the first Hausdorff interpolate is given in
figure 3. It is observed that these interpolates even though
theoretically sound, suffer from the problem of “thick” in-
terpolates as illustrated in figure 3. There are two ways
around this problem - 1) Observe that the sets X and Y
are simple translations of each other. Thus negating the affine
transformations might reduce this effect. 2) Or more simply,
we can restrict the interpolates to the convex hull of sets X
and Y . This also reduces the problem of “thick” interpolates.
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Definition 2 (Second Hausdorff Interpolates). Let X and Y
be two sets. Let ρ = d(X,Y ) (Hausdorff distance). Let B
denote the disk structuring element with radius 1. Then the
first hausdorff interpolates, {Zα : α ∈ [0, 1]} is defined as

Zα = δαρB(X)
⋂
δ(1−α)ρB(Y )

⋂
((1− α)X ⊕ (α)Y ) (16)

The second method above makes up the Second Hausdorff
Interpolates as defined in definition 2. The corresponding
second Hausdorff interpolates for figure 3 are shown in figure
4.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Second Hausdorff Interpolates. (a) Source Image. (b) - (g) Second
Hausdorff Interpolate. (h) Target Image.

IV. INTERPOLATIONS THROUGH MEDIAN

In this section we look at yet another method to calcu-
late the interpolates. To start with we propose a series of
simplifications which reduces and simplifies the problem of
finding image interpolates, and then propose a solution which
does so. We also analyze various properties amd explain their
significance. This section is a consolidation of ideas from [3],
[4], [12], [13].

A. Series Of Simplifications

Here, we reduce to the problem of finding image interpo-
lates to a simpler problem, which would be easier to solve.
We assume binary images, which are equivalent to sets in
P(E). We assume in this section that the problem is to find
the interpolates between sets X and Y .

1) X ∩ Y 6= ∅: Consider the case when a set X is
deformed by a translation in space to Xh = X + {h}.
The ideal interpolates must be of that of a translation, i.e
Zα = X+{αh}. Morphological operators are not equipped to
handle such transformations. Indeed, the dilation and erosion
operators are extended assuming translation to invariance.
Hence, if the operators assume translation invariance, they
cannot simulate translation. Hence it makes sense to “negate”
the translation before calculating the interpolates and then
adjust the solution accordingly. Infact we “negate” all affine
transformations.

Proposition 1. Let T denote an affine transformation. Let X
and Y be two sets. If T (X)∩ Y = ∅ for all T then either X
is empty or Y is empty.

The above proposition is easy to see. Proposition 1 and
negating the affine transformations allows the assumption

X ∩ Y 6= ∅ (17)

to hold true. The “ideal” affine transformation is obtained by

T ∗ = arg maxArea(T (X) ∩ Y ) (18)

the affine transformation which maximizes the area of inter-
section between X and Y . To solve this is hard, but there
exists several approximations [12]. We assume that any affine
transformation has 3 parts - translation, rotation and scaling,
that is

T = ThRθSλ (19)

We can accordingly define,

T −(1−α) = T−(1−α)hR−(1−α)θS−(1−α)λ (20)

How to reconstruct the Interpolates? Let interpolates between
T (X) and (Y ) be {Z ′

α}.Then the interpolates between X and
Y is obtained by

Zα = T −(1−α)(Z
′

α) (21)

To check this, observe that Z0 = T −(1)(Z ′

0) = T −(1)T (X) =
X . And similarly we have Z1 = Y .

2) X ⊆ Y : Intuitively, an interpolation method between
two sets X and Y must gradually remove features from X and
gradually incorporate features from Y . The features in X ∩Y
must remain unchanged. Taking this heuristic into account, to
calculate the interpolates between X and Y , one can calculate
the interpolates between X and X∩Y , {Uα}, and interpolates
between Y and X ∩ Y , {Wα}. Then the interpolates between
X and Y are given by, {Zα}, where,

Zα = U1−α ∪Wα (22)

Thus we need only develop a method to calculate the median
between X and Y under the assumption X ⊆ Y , and any such
method extends to the general case using (22).

To assess the reasonability of the above simplification,
consider the case when the interpolates Uα and Wα are
obtained by definition 2. Then, the following can be easily
obtained from definitions.

d(X,Uα) = (1− α)ρ1 d(X ∩ Y, Uα) = (α)ρ1

d(Y,Wα) = (1− α)ρ2 d(X ∩ Y,Wα) = (α)ρ2

Uα ⊂ X Wα ⊂ Y

Here we assumed that d(X,X ∩Y ) = ρ1 and d(Y,X ∩Y ) =
ρ2. Also, assume without loss of generality that ρ1 < ρ2. Then
the proposition 2 holds true.

Proposition 2. Let {Uα} and {Wα} be as described above.
Let the interpolates be defined by (22). Then we have

d(X,Z0.5) = d(Y, Z0.5) = 0.5 ∗ ρ2 (23)

Proof. Firstly note that,

d(X,Zα) = d(X,Wα) ≤ d(X ∩ Y,Wα) = αρ2

d(Zα, X) ≤ d(Uα, X) = (1− α)ρ1

Hence we have,

d(X,Zα) ≤ sup{αρ2, (1− α)ρ1} (24)
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Similarly, we can also deduce that

d(Y,Zα) ≤ sup{αρ1, (1− α)ρ2} (25)

Considering the case when α = 0.5 with the assumption that
ρ1 < ρ2, we can prove equation 23.

The proposition 2 is stated to justify the reasonability of the
method to construct interpolates. In other words, proposition
2 implies that if interpolates are constructed to satisfy
property as in (15), then the construction as described
above preserves this property..

3) Construct only medians: Any α ∈ [0, 1] can be written
in binary code. Thus, if one has a method to generate only the
interpolate Z0.5, one can generate the interpolate for any α.
For example, let α = 5/8. The following steps would generate
Zα.

(i) Generate interpolate between Z0 and Z1, we get Z0.5.
(ii) Generate interpolate between Z0.5 and Z1, we get Z0.75.

(iii) Generate interpolate between Z0.5 and Z0.75, we get
Z0.625 = Zα.

The interpolate Z0.5 is referred to as the median interpolate.
Thus, if one has the method to generate the median interpolate,
one can generate the interpolate for any α. However, note
that any such method to produce the median must satisfy
the consistency property 1. In simplest case this means -
the median between Z0.25 and Z0.75 must equal the median
between Z0 and Z1.

Property 1 (Consistency of Median). Let Zα1
and Zα2

be
two interpolates. Then the median between Zα1

and Zα2
must

be Z(α1+α2)/2

Proposition 3. Suppose X ⊆ X
′ ⊆ Y

′ ⊆ Y and m(X,Y )
denotes the median between X and Y then

m(X,Y ) =m(X
′
, Y

′
)⇒

m(X,Y ) = m
(
m(X,X

′
),m(Y, Y ′)

) (26)

if (26) holds true and we have that

m(Z0, Z1) = m(Z0.25, Z0.75) (27)

then the property 1 holds as well.

Proof. Here we only provide the intuitive idea of why the
proposition is correct. Let Z0 = X ⊂ Y = Z1. Indi-
cate the median, m(Zα1

, Zα2
) by Z(α1+α2)/2. Thus Z0.5 =

m(Z0, Z1). Assume that,

Z0.5 = m(Z0.25, Z0.75) = m(Z0, Z1) = m(Z0.5, Z0.5) (28)

Using (26) we get,

Z0.5 = m(Z0.125, Z0.875) = m(Z0, Z1) = m(Z0.375, Z0.625)
(29)

One can continue this to show that, for all ε < 0.5

Z0.5 = m(Z0.5−ε, Z0.5+ε) (30)

This can be generalized to any α, that is

Zα = m(Zα−ε, Zα+ε) (31)

by observing that sets X and Y are arbitrary. So, the first time
we encounter α, we can name the sets Z0 and Z1 and proceed
accordingly.

Note that consistency of the medians is a desired property.
However, the heuristic is still valid and can be followed to
reduce the computational costs.

B. Median

In [4] the definition 3 of median is proposed.

Definition 3 (Median). Given two sets X ⊆ Y , the median
m(X,Y ) is defined as

m(X,Y ) =
⋃
λ≥0

({X ⊕ λB} ∩ {Y 	 λB}) (32)

The medians defined above can also be characterized in
terms of influence zones as shown in proposition 4.

Proposition 4. Let X ⊆ Y be two sets and B be the circular
structuring element. Let the median be defined as in (32). Then
we have that

m(X,Y ) = IZ(X | Y c) (33)

Proof. We have

IZ(X | Y c) =
⋃
λ

{(X ⊕ λB) ∩ (Y c ⊕ λB)c}

=
⋃
λ

{(X ⊕ λB) ∩ (Y 	 λB)}

= m(X,Y )

The first equality follows from (12) The second equality comes
from the duality between dilation and erosion operators.

Another property we expect from such a median is duality.
That is, we expect that m(X,Y ) = (m(Y c, Xc))c to hold.
The medians do not satisfy this property, but one can show
that they are “close enough”. The dual median is defined as

M(X,Y ) = (m(Xc, Y c))
c (34)

Proposition 5. Let X ⊆ Y be two sets. Let m(X,Y ) be the
median as defined in (32). Let M(X,Y ) be the dual median
as defined in (34). Then we have

M(X,Y ) =
⋂
λ>0

{(Y 	 λB) ∪ (X ⊕ λB)} (35)

and

M(X,Y ) \m(X,Y ) = {x | d(x,X) = d(x, Y )} (36)

Proof. Equation (35) can be obtained by set transformations.
To show (36) - Since, we have that, from proposition 4.

m(X,Y ) = IZ(X | Y c) = {x | d(x,X) < x(x, Y c)}

and

M(X,Y ) = (m(Xc, Y c))c

= (IZ(Y c | X))c = {x | d(x, Y c) < d(x,X)}c

= {x | d(x,X) ≤ d(x, Y c)}
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Thus although, duality does not hold, we have that the
median and the dual median only differ in the boundary.

Recall that we have stated earlier that it is favorable for
medians to satisfy the consistency property 1. Although, the
medians defined above satisfy this property for simple sets, it
is still an open question as to whether it is true for all sets
X ⊆ Y . We discuss further on this in the section (refer).

Another problem with the medians arises in the case of non-
convex shapes. Consider the sets X and Y as in figure 5 (a)
and (b). One expects the median to be close to figure 5(e)
while the median calculation results in 5(c).

(a) (b)

(c) (d)

(e)

Fig. 5. (a) Set X . (b) Set Y (c) The median calculated according to (32).
(d) The grey scale image obtained by Meyer’s method. (e) Median calculated
using the proposed approach (37).

There is however a simple solution to this issues. Assume
that X ⊆ Y . Let d(X,Y ) = ρ. For all x ∈ Y \X . Define

f(x) =


1 x ∈ X
1− dδ(X,x)

ρ x ∈ Y \X
0 x ∈ Y c

(37)

Thresholding the greyscale image in (37) gives the interpo-
lates. This method is first described in the article [14]. This
method works better in such cases. The median image in figure
5(e) is obtained using this method.

C. Meyer’s Method

We now describe yet another method to calculate the inter-
polates between two images, due to F. Meyer, as described in
[3]. Given two sets X and Y , we are required to find a median.

As mentioned earlier, we assume that X ⊆ Y . Let x be a point
in the set Y \X . Let dδ(X,x) = inf{λ | x ∈ X ⊕ λB}, and
dε(x, Y ) = inf{λ | x /∈ Y 	 λB}. Define

f(x) =


1 x ∈ X

dε(x,Y )
dε(x,Y )+dδ(X,x)

x ∈ Y \X
0 x ∈ Y c

(38)

We thus have a greyscale image with values in [0, 1]. To
calculate the interpolate, we take

Zα = Tα(f) (39)

where, Tα(.) is a threshold operator and f is the greyscale
image obtained by (38). This formulation gives us an easy and
efficient way to calculate the medians. An example is shown
in figure 5(d).

Proposition 6. Let X ⊆ Y be two sets. The median calculated
by (32), is the same as one obtained by (39), taking α = 0.5.

Proof. The proof follows from the fact that, at α = 0.5 we
have that the median consists of

{x : dδ(X,x) ≤ dε(x, Y )} (40)

In other words, the Meyer’s median is equal to IZ(X|Y c),
which from proposition 4 equals the one in (32).

Note that although the median elements for both Meyer’s
method and median obtained by (32) are the same, in general
this need not be true for all interpolates.

The main advantage of Meyer’s method is that one can
calculate all the interpolates at one shot and this saves a lot
of computation.

V. GREYSCALE IMAGES

Recall that the operators of binary images are extended
to greyscale images using subgraphs. An important point to
note is that not all the three dimensions can be treated the
same. Two dimensions belong to the spatial domain, and the
third gives the value domain. This impacts the way structuring
elements would be handled. This results in two kinds of
structuring elements - flat and non-flat as discussed in II-B.
In this section we first look at how the interpolation methods
discussed above extend to greyscale images. We then analyze
the distinction between flat and non-flat structuring elements.

Firstly, note that simply replacing the binary dilation/erosion
with greyscale dilation/erosion will enable to extend the inter-
polations in definitions 1 and 2 to greyscale images as well.
Since greyscale images are just sets (subgraphs) in a different
space, all the properties generalize accordingly.

For the median calculation in definition 3, one needs to
verify if the series of simplifications in section IV-A are still
valid. The assumption 1, X ∩ Y 6= ∅ trivially holds for
greyscale images since we consider the subgraphs. This is
because of having a value domain. Assumption 2, X ⊂ Y also
holds for greyscale images, since we still are considering sets,
although in higher dimensions. Assumption 3, that medians
are enough, also would apply greyscale images. Thus, if f1
and f2 are two 1-d greyscale images, we assume that f1 ≥ f2
and the problem of interpolation drops to finding the median
element.
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(a) (b) (c)

(d) (e) (f)

Fig. 6. (a) Shoreline at time t = 0 denoted by the cyan region. (b) Shoreline at time t = 1 denoted by the cyan region. The grey region indicates the part
which did not change between times t = 0 and t = 1. (c) Median (boundary) obtained by flat structuring element indicated by the blue line . (d) Median
(boundary) obtained by non-flat structuring element indicated by the blue line . (e) Plot of the distances as in (42) between successive interpolates obtained
by flat structuring element. (f) Plot of the distances as in (42) between successive interpolates obtained by non-flat structuring element.

A. Flat vs Non-Flat structuring elements

A point to note is that, in binary images we are assured of
getting thin interpolates using influence zones. This extends
to greyscale images as well only if we use non-flat structuring
elements. Thin interpolates are not assured if we use flat
structuring elements, and this is the reason why the practice is
to take non-flat structuring elements is followed. However, a
transformation on the value domain would allow us to obtain
thin interpolates.

Proposition 7. Let f1(x) ≥ f2(x) for all x, be two greyscale
images defined on finite domain E ⊂ R2. If, inf f1 ≤ sup f2,
then SKIZ(f2, f

c
1) has the measure 0, when influence zones

are calculated using flat structuring elements.

We only provide an intuitive explanation for the proposition.
Intuitively, for greyscale images, SKIZ consists of all the
points which are equidistant to the two sets and also all the
points which cannot be reached by either of them by any
number of finite dilations (usually happens for flat structuring
elements). However, in case we have inf f1 ≤ sup f2, then the
latter situation does not arise and hence the SKIZ is thin.

The above proposition implies that under some conditions,
thick boundaries do not appear even with flat structuring
elements. It is not tough to see that, there exists a transfor-
mation on the value domain, under which one can guarantee
inf f1 ≤ sup f2. Note that this transformation results in the
changes to brightness and contrast in an image. We assume

that whenever the method uses flat structuring elements, this
transformation is suitably applied.

In summary, the procedure to calculate the median accord-
ing to definition 3 is

1) Let f1 and f2 be two greyscale images.
2) Calculate f̂ = min(f1, f2).
3) Calculate the medians between f1 and f̂ , {xα} and f2 and

f̂ {yα}. If using flat structuring elements, appropriately
scale f1 and f2.

4) The median between f1 and f2 is then given by
max(xα, yα).

5) Repeat the above steps iteratively to get the interpolates.

Which to choose- Flat or Non-Flat? Usually, Non-flat
structuring elements are preferred since they do not result
in “thick” interpolates. However, the proposition 7 states
that even flat structuring elements do not result in “thick”
interpolates under some conditions. In practice, it has been
observed that non-flat structuring elements gives “smoother ”
interpolates.

1) Example: Simulated shoreline interpolation: As an ex-
ample to illustrate the difference between flat and non-flat
structuring elements, we simulate shorelines at two distinct
times and calculate the interpolates. Evolving shorelines has
also been studied in [15], using medians to extrapolate the
shorelines.

We simulate the shorelines by considering two 1-
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dimensional functions

f1 = N(2, 0.5) +N(4, 1) +N(7, 1.5)

f2 = N(1, 1) +N(3, 0.5) +N(8, 1.5)

where,

N(µ, σ) = exp{1

2

(
x− µ
σ

)2

} (41)

The functions f1 and f2 are shown in figures 6 (a) and (b).
The median obtained by flat/non-flat structuring elements is
plotted in figures 6 (c) and (d) respectively. It can be seen that
the median calculated using non-flat structuring element takes
into account the shape of f1 better than the median using
flat structuring element, between 4 and 8. This is because,
in that patch the flat structuring element cannot go below the
minimum. This in effect shows that proposition 7 is not enough
to justify the use of flat structuring elements instead of non-flat
structuring elements.

L∞(f1, f2) = sup
x
|f1(x)− f2(x)| (42)

To analyze the difference further, hierarchical medians were
generated to the level 4 (which gives 16 interpolates in total)
for both flat and non-flat structuring elements. Then distance
measured by L∞ (42) is calculated between successive inter-
polates and plotted in figures 6 (c) and (d). From this, one
can deduce that non-flat structuring elements gives smoother
interpolates compared to the flat structuring elements.

VI. EXTENSIONS AND FUTURE WORK

As stated earlier, another important aim of this paper is to
provide a platform for various extensions and future work. In
this section, we pose several questions and discuss possible
questions to be answered.

A. Graph based Interpolation

A graph G = (V,E) is a tuple of a vertex set V and an
edge set E ⊆ V ×V . An image can be represented as a graph,
taking the set of pixels as the vertex set and edges between
two adjacent pixels. Recently, MM operators are generalized
to graphs [16], [17], [18]. So, a natural question arises - Can
we extend the morphological interpolates to graphs as well?
We briefly review the question here.

The basic MM operators, dilation and erosion, can be
extended to the graphs using the lattice definitions - dilation
defined as the operator which preserves the supremum and
erosion being the operator which preserves the infimum. There
are in fact two different kinds of dilations/erosions one can
define - δ•, δ×, ε•, ε×. (Complete details can be found in [16]).
The operators δ•, ε• map the set of edges to a set of vertices
while the operators δ×, ε× map a set of vertices to a set of
edges.

Defining,

∆(X) = δ•(δ×(X))

E(X) = ε•(ε×(X))

allows us to define the dilation and erosion operators on the
set of vertices to vertices. All the above methods to obtain
binary interpolates can be directly extended to graphs using
these operators instead.

There is also another possibility of extending the operators
using only δ× or δ•. Each of these operators can be thought
of as half-dilations. To represent these, one has to use a
different representation of the image using cubical complexes
as established in [19].

For greyscale images, one can think of them as binary
images in higher dimension, construct the graph and then
proceed as above. However, an alternate solution would be to
extend the graph based MM operators to weighted graphs and
accordingly define the interpolates. The topic of analyzing the
graph based interpolations and greyscale operators on graphs
is left as a topic of further research.

B. Problem of median being consistent

Recall that in property 1 we stated that any median must be
consistent, and in proposition 3 we have given an equivalent
condition for the property to hold. It can be easily seen
that the median obtained by using (37) follows this property.
However, it still an open question whether medians proposed
in definition 3 satisfies this property or not. Apart from this,
other equivalent conditions to the consistency property 1 might
provide better insights into the interpolation problem.

C. Metric for judging interpolates

An important task is to have an ability of judging interpo-
lates obtained via a metric. This would allow us to compare
different methods of interpolation and maybe obtain new
interpolation methods as well. The basic criteria for such a
metric is
• It should have higher values for non-smooth interpolates

compared to smoother interpolates
• Should be independent of the number of interpolates

obtained.
As a starting point, one can consider the following metric.
Let d(I1, I2) be any metric to measure the distance between
two images. For example L∞ measure. Let Z = {I0 =
Z0, Z1, Z2, · · · , Zn = I1} be a set of interpolates. Define,

D(Z) = sup
0<i<n−1

d(Zi, Zi+1) (43)

This satisfies the condition to penalize non-smooth interpo-
lates. However, increasing the number of interpolates can
reduce this metric. Finding a right metric to judge interpolates
is also a subject of future research.

D. Interpolation as a optimization problem

A time tested way of solving a problem is to pose it as an
optimization problem. This makes the problem well-defined
and allows us to techniques from other areas to calculate the
interpolates. This can be considered as one of the topics of
further research.
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VII. CONCLUSION

In this article we reviewed a method to get the solution to
the problem of image interpolation - Given two images I1 and
I2 find the suitable intermediate images. We have reviewed the
basic methods for morphological interpolations from the view
of geoscience and remote sensing, and provided a theoretical
consolidation of various ideas available in the literature. Apart
from this, we have also stated and discussed briefly several
problems and directions for future work.
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