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Abstract

The theoretical investigation of how spatial structure affects the evolu-
tion of social behavior has mostly been done under the assumption that
parent-offspring strategy transmission is perfect, i.e., for genetically trans-
mitted traits, that mutation is very weak or absent. Here, we investigate
the evolution of social behavior in structured populations under arbitrary
mutation probabilities. We consider populations of fixed size N , struc-
tured such that in the absence of selection, all individuals have the same
probability of reproducing or dying (neutral reproductive values are the all
same). Two types of individuals, A and B , corresponding to two types of
social behavior, are competing; the fidelity of strategy transmission from
parent to offspring is tuned by a parameterµ. Social interactions have a di-
rect effect on individual fecundities. Under the assumption of small phe-
notypic differences (implying weak selection), we provide a formula for the
expected frequency of type A individuals in the population, and deduce
conditions for the long-term success of one strategy against another. We
then illustrate our results with three common life-cycles (Wright-Fisher,
Moran Birth-Death and Moran Death-Birth), and specific population struc-
tures (graph-structured populations). Qualitatively, we find that some life-
cycles (Moran Birth-Death, Wright-Fisher) prevent the evolution of altru-
istic behavior, confirming previous results obtained with perfect strategy
transmission. We also show that computing the expected frequency of al-
truists on a regular graph may require knowing more than just the graph’s
size and degree.

Keywords: mutation, relatedness, altruism, evolutionary graph theory
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1 Introduction

Most models on the evolution of social behavior in structured populations study
the outcome of competition between individuals having different strategies and
assume that strategy transmission from parents to their offspring is almost per-
fect (i.e., when considering genetic transmission, that mutation is either van-
ishingly small or absent). This is for instance illustrated by the use of fixation
probabilities to assess evolutionary success (e.g., Rousset & Billiard, 2000; Rous-
set, 2003; Nowak et al., 2004; Nowak, 2006; Ohtsuki et al., 2006). Yet, mutation
has been shown to affect the evolutionary fate of social behavior (Frank, 1997;
Tarnita et al., 2009) and is, more generally, a potentially important evolutionary
force. Here, we explore the role of imperfect strategy transmission—genetic or
cultural—from parents to offspring on the evolution of social behavior, when
two types of individuals, with different social strategies, are competing. We are
interested in evaluating the long-term success of one strategy over another.

A population in which mutation is not close (or equal) to zero will spend a
non-negligible time in mixed states (i.e., in states where both types of individ-
uals are present), so instead of fixation probabilities, we need to consider long-
term frequencies to assess evolutionary success (Tarnita et al., 2009; Wakano &
Lehmann, 2014; Tarnita & Taylor, 2014). We will say that a strategy is favored
by selection when its expected frequency is larger than what it would be in the
absence of selection.

Obviously, lowering the fidelity of parent-offspring strategy transmission—
e.g., by increasing the probability of mutation—reduces the relative role played
by selection. But in a spatially structured population, the fidelity of parent-
offspring strategy transmission also affects the spatial clustering of different strate-
gies, and in particular whether individuals that interact with each other have
the same strategy or not; this effect takes place even in the absence of selection.
Consequently, the impact of imperfect strategy transmission may differ accord-
ing to how the population is structured.

In this study, we consider populations such that, in the absence of selection
(when social interactions have no effect on fitness), all individuals have equal
chances of reproducing, and equal chances of dying. In other words, in such a
population of size N , the neutral reproductive value of each site is 1/N (Taylor,
1990; Maciejewski, 2014; Tarnita & Taylor, 2014). We provide a formula that gives
the long-term frequency of a social strategy in any such population, for arbitrary
mutation rates, and for any life-cycle (provided population size remains equal
to N ). This formula is a function of the probabilities that pairs of individuals
are identical by descent. These probabilities are obtained by solving a linear
system of equations, and we present explicit solutions for population structures

2

. CC-BY 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/082503doi: bioRxiv preprint first posted online Oct. 21, 2016; 

http://dx.doi.org/10.1101/082503
http://creativecommons.org/licenses/by/4.0/


with a high level of symmetry (structures that we call “n-dimensional graphs”).
We finally illustrate our results with widely used updating rules (Moran models,
Wright-Fisher model) and specific population structures.

2 Models and Methods

2.1 Population structures

We consider a population of fixed size N , where each individual inhabits a site
corresponding to the node of a graph D; each site hosts exactly one individual.
The edges of the graph, {di j }1≤i , j≤N , define where individuals can send their off-
spring to. We consider graphs D that are connected, i.e., such that following
the edges of the graph, we can go from any node to any other node (potentially
via other nodes). This simply means that there are not completely isolated sub-
populations. Another graph, E , with the same nodes as graph D but with edges
{ei j }1≤i , j≤N , defines the social interactions between the individuals; E can be
the same graph as D, but does not have to be (Taylor et al., 2007a; Ohtsuki et al.,
2007; Débarre et al., 2014). The edges of the two graphs can be weighted (i.e.,
di j and ei j can take any non-negative value) and directed (i.e., we can have
di j 6= d j i or ei j 6= e j i for some sites i and j ). For instance, dispersal in a subdi-
vided population is represented by a weighted graph (the probability of sending
offspring to a site in the same deme as the parent is different from the probability
of sending offspring to a site in a different deme.) Finally, we denote by D and
E the adjacency matrices of the dispersal and interaction graphs, respectively
(D = {di j }1≤i , j≤N , E = {ei j }1≤i , j≤N ).

Regular dispersal graphs In this study, we focus on dispersal graphs that are
regular, i.e., such that for all sites i , the sum of the edges to i and the sum of the
edges from i are both equal to ν:

N∑
j=1

di j =
N∑

j=1
d j i = ν, (1)

where ν is called degree of the graph when the graph is unweighted. All the
graphs depicted in the article (figures 1 and 3) satisfy eq. (1), and then are regu-
lar. Note that there is no specific constraint on the interaction graph E .

More detailed results are then obtained for regular graphs that display some
level of symmetry, that we now describe:
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Transitive dispersal graphs A transitive graph is such that for any two nodes
i and j of the graph, there is an isomorphism that maps i to j (Taylor et al.,
2007a,b): the graph looks the same from every node. In other words, the dis-
persal graph is transitive when it is “homogeneous” (sensu Taylor et al., 2007a),
i.e., when all nodes have exactly the same properties in terms of dispersal. In fig-
ure 1, graphs (b)–(e) are transitive. On the other hand, all the nodes of graph (a)
are different (for instance, node 9 is in a triangle while node 12 is not), so this
regular graph is not transitive.

Transitive undirected dispersal graphs A graph is undirected if for any two
nodes i and j , the weight of the edge from i to j is equal to the weight of the
edge from j to i (i.e., there is no need to use arrows when drawing the edges of
the graph). The dispersal graph is undirected when for all sites i and j , di j = d j i

. In figure 1, graphs (b), (c), (e) are both transitive and undirected.
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Figure 1: Examples of regular graphs of size 12. The graphs on the first line are
unoriented and unweighted graphs of degree ν= 3; Graph (d) is oriented, graph (e)
is weighted. (a) is the Frucht graph, and has no symmetry. Graphs (b) and (d) are
one-dimensional, graphs (c) and (e) are two-dimensional (see main text).

“n-dimensional” dispersal graphs We call “n-dimensional graphs” tran-
sitive graphs whose nodes can be relabelled with n-long indices, such that the
graph is unchanged by circular permutation of the indices in each dimension
(see eq. (2)). We denote by N the ensemble of node indices: N = {0, . . . , N1 −
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1}×·· ·× {0, . . . , Nn −1}, with
∏n

k=1 Nn = N ; numbering is done modulo Nk in di-
mension k. Then for all indices i , j and k of N , node labeling is such that for all
edges (modulo the size of each dimension),

di j = di+k, j+k . (2)

In figure 1, graphs (b) and (d) are 1-dimensional: we can label their nodes such
that the adjacency matrices are circulant. Graphs (c) and (e) are 2-dimensional:
the adjacency matrices are block-circulant, with each block being circulant. In
1(c), one dimension corresponds to the angular position of a node (N1 = 6 posi-
tions), and the other dimension to the radial position of a node (N2 = 2 positions,
inner or outer hexagon). In 1(e), one dimension corresponds to the horizontal
position of a node (N1 = 4 positions) and the other to the vertical position of a
node (N2 = 3 positions). Condition eq. (2) may sound strong, but is satisfied for
the regular population structures classically studied, like stepping-stones (e.g.,
cycle graphs, lattices), or island models (Taylor, 2010; Taylor et al., 2011).

2.2 Types of individuals and social interactions

There are two types (A and B) of individuals in the population, corresponding to
two strategies of social behavior. There are no mixed strategies: an individual of
type A plays strategy A, and individuals do not change strategies. The indicator
variable Xi represents the type of the individual present at site i : Xi is equal to 1
if the individual at site i is of type A, and Xi is equal to 0 otherwise (Xi =1A(i )).
A N -long vector X gathers the identities of all individuals in the population, and
X is the population average of X (X =∑N

i=1 Xi /N ). The ensemble of all possible
states isΩ= {0,1}N .

Individuals in the population reproduce asexually. Fecundities are affected
by social interactions, and are gathered in a N -long vector f . We assume that
the genotype-phenotype map is such that the two types A and B are close in
phenotype space: the individual living at site i expresses a phenotype δXi , with
δ¿ 1 (a feature called “δ-weak selection” by Wild & Traulsen (2007)).

An individual’s fecundity depends on the phenotypes of the individuals it in-
teracts with and on its own phenotype (δXi for the individual at site i ). Without
loss of generality, we can write the fecundity of the individual living at site i as

fi (X ,δ) =φi (e1iδX1, . . . ,el iδXl , . . . ,eNiδXN ;δXi ) , (3a)

where the N first arguments correspond to the potential interactants (an indi-
vidual can also be interacting with itself if ei i > 0, which can occur for instance
with a common-good), and the last (N + 1) argument is the phenotype of the
focal individual.
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Scaling fecundities such that the baseline in the absence of selection is equal
to 1, a first-order expansion of eq. (3a) yields

fi (X ,δ) = 1+δ
(

N∑
l=1

(
el i Xl ∂(l )φ(0, . . . ,0;0)

)+Xi ∂(N+1)φ(0, . . . ,0;0)

)
+O(δ2), (3b)

where ∂(n)φi represents the partial derivative of φi with respect to its nth ele-
ment.
We do not need specify a particular shape for φi ; the only assumption that we
make is that it does not matter where the interactions actually take place, only
that they do take place, and that it does not matter either where the focal indi-
vidual is (i.e., there are no external sources of heterogeneity affecting individual
fecundities). So for all i and l , 1 ≤ i , l ≤ N , we can write ∂(l )φi (0, . . . ,0;0) = b and
−c= ∂(N+1)φi (0, . . . ,0;0). Then eq. (3b) becomes

fi (X ,δ) = 1+δ
(
b

N∑
l=1

el i Xl −cXi

)
+O(δ2). (3c)

In other words, no matter the choice of the fecundity functions φ, provided that
only the phenotypes of the individuals and their interactants matter, at the first
order in δ we only need two parameters, b and c, to characterize the fecundity
functions.

Our results will be valid for any b and c, but throughout the article, we will
consider the case where b> 0 and c> 0, so that type-A individuals are “altruists”
providing benefits (b) and paying a cost (c), and we will seek to understand the
impact of imperfect strategy transmission on the frequency of altruists.

Finally, we note that when δ= 0, all individuals in the population, whichever
their type, have the same fecundity: the trait is then neutral.

2.3 Reproduction and strategy transmission

The expected number of successful offspring established at site j at the next
time step, descending from the individual who is living at site i at the current
time step, is denoted by B j i ( f (X ,δ)), written B j i for simplicity. “Successful off-
spring” of a focal individual means individuals who descend from this focal in-
dividual and who are alive and established at the start of the next time step. Be-
cause there is exactly one individual per site, 0 ≤ B j i ≤ 1. We assume that B j i

does not depend on external factors such as temporal fluctuations independent
of the state of the population.

Individuals imperfectly transmit their strategy to their offspring. We do not
specify the nature of this transmission (it can be genetic, it can be vertical cul-

6

. CC-BY 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/082503doi: bioRxiv preprint first posted online Oct. 21, 2016; 

http://dx.doi.org/10.1101/082503
http://creativecommons.org/licenses/by/4.0/


tural transmission), but we use for simplicity the term “mutation” to character-
ize transmission failure. Mutation occurs with probability µ, 0 < µ ≤ 1; when
mutation occurs, the offspring are of type A with probability p and of type B
otherwise (0 < p < 1). For instance, under this mutation scheme, the offspring
of an individual of type A is also of type A with probability 1−µ+µp (Taylor et al.,
2007b; Nowak et al., 2010; Tarnita & Taylor, 2014). The parameter p controls the
asymmetry of mutation, and it is also the expected frequency of type-A individ-
uals in the absence of selection (i.e., when δ= 0). Although the use of the word
“mutation” hints at a genetic transmission of the trait, this framework can also
describe vertical cultural transmission, so µ does not have to be small. The mu-
tation probability, however, cannot be zero; if it were, the all-A and all-B states
would be absorbing: we would end up either with only type-A or only type-B
individuals in the population, and we would not be able to define a stationary
distribution of population states—for similar reasons, p cannot be 0 nor 1.

We denote by Di ( f (X ,δ)) (or Di for simplicity) the probability that the indi-
vidual living at site i is dead at the beginning of the next time step, given that the
population is currently in state X . This probability of death at site i can be ex-
pressed as a function of the probabilities of birth and establishment of offspring
at site i , summing over the locations j of the potential parents:

Di =
N∑

j=1
Bi j . (4)

There is exactly one individual per site, so at a given site i , there can be at most
one successfully established offspring at each time step, and 0 ≤ Di ≤ 1. On the
other hand, the expected number of offspring of the parent currently living at
site i is 0 ≤∑N

j=1 B j i ≤ N .
Finally, we are considering dispersal graphs such that in the absence of se-

lection (δ = 0), all individuals have the same probability of reproducing, and
all individuals have the same probability of dying—meaning that all sites in the
population have the same reproductive value 1/N (Taylor, 1990; Caswell, 2001;
Lieberman et al., 2005; Maciejewski, 2014; Allen et al., 2015); this implies that for
all sites i

N∑
j=1

B j i ( f (X ,0)) = B∗ = Di ( f (X ,0)). (5)

The parameter B∗ is the expected number of offspring produced by an individ-
ual during a time step in the absence of selection (δ = 0); it is the same for all
individuals, but the value taken by B∗ depends on the life-cycle that is consid-
ered.
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2.4 Life-cycles

Most of our results are derived without specifying a life-cycle (also called “up-
dating rule”). In the Illustrations section, we will give specific examples using
classical life-cycles: Moran models (Birth-Death and Death-Birth), with exactly
one birth and one death during a time step, and the Wright-Fisher model, where
all adults die and are replaced by new individuals at the end of a time step.

2.5 Simulations

Stochastic simulations, coded in C, were run to numerically confirm the analyti-
cal results. For each combination of parameters, a simulation was run for 4×109

generations, the state of the population being sampled every 400 generations,
where one generation corresponds to N time steps with the Moran updating,
and 1 time step with the Wright-Fisher updating. A set of parameters corre-
sponded to a choice of updating rule, of population structure, of mutation prob-
ability (µ ∈ {0.01,0.025,0.05,0.1,0.15,0.2}) and of mutation bias (p ∈ {0.3,0.5}.

3 Results

Expected frequency of type-A individuals in the population

We describe here the key steps of the computation of the expected frequency
of type-A individuals in the population and refer the reader to Appendix A for
mathematical details.

We denote by Ω the set of all possible states of the population (Ω = {0,1}N ).
No state is absorbing (thanks to mutation, a lost strategy can always reappear),
and all states are accessible. We denote by ξ(X ,δ,µ) the stationary distribu-
tion of population states, i.e., the probability that, after a long enough number
of time steps, the population is in state X , in a model with strength of selec-
tion (phenotype differences) δ and mutation probability µ. Notation E

[]
de-

notes expectation, for instance the expected state of the population is E
[

X
] =∑

X∈Ω X ξ(X ,δ,µ). . The expected frequency of type-A individuals in the popula-
tion, denoted by E

[
X

]
, can be computed considering what happens during one

during step. Given state X of the population, at the end of the time step, the state
of the individual living at site i depends on whether it has survived during the
time step (first term within the brackets of eq. (6)), and, if it has been replaced,
on the type of the newly established offspring (second term within the brackets);
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we then take the expectation over all population states, and obtain:

E
[

X
]= ∑

X∈Ω

1

N

N∑
i=1

[
(1−Di )Xi +

N∑
j=1

Bi j
(
X j (1−µ)+µp

)]
ξ(X ,δ,µ). (6)

This is the expected frequency of type-A individuals in the population. For in-
stance, if we run a simulation of the model for a very long time, the average over
time of the frequency of type-A individuals will provide an estimation of E

[
X

]
;

this quantity does not depend on the initial state of the population.
We then assume that selection is weak, i.e., δ is small, and write a first-order

expansion of eq. (6) that contains derivatives of ξ, Di and Bi j with respect to δ.
For the last two, we further use the chain rule with the variables fk , which rep-
resent the fecundity of the individual living at site k. In doing so, we let appear
quantities that are the expectations of the state of pairs of sites when no selec-
tion is acting (i.e., when δ= 0; we call these “neutral expectations” and ξ(X ,0,µ)
is called the neutral stationary distribution):

P j k = ∑
X∈Ω

X j Xk ξ(X ,0,µ) = E0
[

X j Xk
]
. (7)

The fact that these neutral expectations appear in our equations does not
mean that selection is initially not acting and then “turned on”: selection is act-
ing all the time, but it is weak because phenotypic differences are small (δ¿ 1).
At the first order in δ, we can ignore the effect of selection on the expected state
of pairs of sites, and this is why we only need neutral expectations (eq. (7)).

Eventually, we deduce that the expected frequency of individuals of type A
in the population can be written as

E
[

X
]≈ p + δ

µB∗N

[
b

(
N∑

j ,k,l=1

(
N∑

i=1
(1−µ)∂ fkBi j −∂ fkD j

)
el k P j l +µ

N∑
i , j ,k,l=1

∂ fkBi j el k p2

)

−c

(
N∑

j ,k=1

(
N∑

i=1
(1−µ)∂ fkBi j −∂ fkD j

)
P j k +µ

N∑
i , j ,k=1

∂ fkBi j p2

)]
,

(8)

with P as defined in eq. (7), ∂ fk being a shorthand notation for ∂
∂ fk

∣∣∣
δ=0

, and∑N
i , j ,k,l=1 being a compact way of writing

∑N
i=1

∑N
j=1

∑N
k=1

∑N
l=1 . Eq. (8) is an ap-

proximation at the first order in δ (we neglect terms in δ2 and higher). A weak
mutation approximation of eq. (8) is presented in Appendix A.4.

Eq. (8) is still implicit, because we need to evaluate the Pi j terms, which we
now do.
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Expected state of pairs of sites at neutrality

We recall that Pi j , defined in eq. (7), is also the probability that both sites i and j
are occupied by individuals of type A, at neutrality (i.e., when δ= 0). Under van-
ishing mutation (µ→ 0), convenient connections can be made between identity
in state and identity-by-descent (Cockerham & Weir, 1993; Rousset & Billiard,
2000), and then with coalescence times (Slatkin, 1991, 1993; Rousset, 2004; Allen
et al., 2012). Here as well, we can characterize Pi j in terms of probabilities of
identity-by-descent, Qi j . Two individuals at sites i and j are said to be identical
by descent (IBD) if they share a common ancestor and if no mutation occurred
in their lineages since this common ancestor (Kimura & Crow, 1964, note though
that the original definition is with an infinite allele model, where each mutation
creates a new allele). If two individuals are IBD, then they are both of type A
with probability p, the expected state of a single individual at neutrality. If two
individuals are not IBD, then they are both of type A with probability p2. Sim-
plifying, we obtain

Pi j = p2 +Qi j p (1−p) (9)

(Rousset & Billiard, 2000; Allen & Nowak, 2014) (see Appendix B.1 for more de-
tails). Eq. (9) also valid when i = j . So we can work with IBD relationships.

To find the probabilities of identity-by-descent, we first write the probability
that two individuals at sites i and j are IBD given the state X of the population at
the previous time step, and then take the expectation of this conditional prob-
ability. We can still do so without specifying the way the population is updated
(using notation as in Allen et al. (2015)), and the resulting equation is presented
in Appendix B.1, eq. (B.1). This equation can also be adapted to specific up-
dating rules, as shown in the Illustrations section (details of the calculations are
provided in Appendix B).

Keeping in mind that Qi j = Q j i and that Qi i = 1, we then have to solve a
linear system of N (N −1)/2 equations to obtain explicit formulas for all the Qi j

terms, for any regular graph. More explicit formulas for Qi j can be found for
regular graphs, and in particular for n-dimensional graphs, as we will see in the
Illustrations section. Finally, we can gather all probabilities of identity by de-
scent in a matrix Q = {Qi j }1≤i , j≤N .

Back to the expected frequency of type-A individuals

Using the relationship between the expected state of pairs of sites Pi j and prob-
abilities of identity-by-descent Qi j (eq. (9)), we can rewrite eq. (8) as follows (see
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Appendix A.5 for details):

E
[

X
]≈ p +δp(1−p)

µB∗ N

[
b

(
N∑

j ,k,l=1

(
N∑

i=1
(1−µ)∂ flBi j −∂ flD j

)
ekl Q j k

)

−c

(
N∑

j ,k=1

(
N∑

i=1
(1−µ)∂ fkBi j −∂ fkD j

)
Q j k

)]
,

(10)

where as before ∂ fk is a shorthand notation for ∂
∂ fk

∣∣∣
δ=0

, and the sums are written

in a compact way.

Interpretation For each focal individual at site k, we consider the influence
that this individual can have on an identical-by-descent individual at site j (Q j k ),
by affecting the production of new identical-by-descent individuals by j ((1−
µ)

∑N
i=1 Bi j ), or j ’s survival (D j ). This can occur because of intrinsic changes

(the cost of being social c) in the fecundity of individual k (∂ fk ), and because the
focal k provides a benefit to an individual l (bekl ) – where l is j itself or another
individual in the population – changing l ’s fecundity (∂ fl ), with repercussions
on j . Finally, we note that the factor associated to (−c) is non-negative (see Ap-
pendix A.6.)

Structure parameter We say that a strategy is favored if its frequency at the
mutation-selection-drift equilibrium is higher than what it would be in the ab-
sence of selection. For type A, this translates into E

[
X

] > p. With eq. (10), this
condition becomes∑N

j ,k,l=1

(∑N
i=1(1−µ)∂ flBi j −∂ flD j

)
ekl Q j k∑N

j ,k=1

(∑N
i=1(1−µ)∂ fkBi j −∂ fkD j

)
Q j k︸ ︷︷ ︸

κ

b−c> 0. (11)

Hence, a single parameter, κ, summarizes, for a given life-cycle, the structure
of the population and the effect of mutation (Tarnita et al., 2009; Taylor & Ma-
ciejewski, 2012); κ is interpreted as a scaled coefficient of relatedness, that in-
cludes the effect of competition (Lehmann & Rousset, 2010).

Alternative formulation The presence ofµ at the denominator in eq. (10) might
look ominous, given that our equation is meant to be valid for any mutation
probability. However, we note that the probabilities of identity by descent can
be written

Qi j = 1+µQ̃i j , (12)
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since in the limit µ → 0, all individuals in the population are identical by de-
scent. If we now replace Qi j using eq. (12) in eq. (10), recalling that the size of
the population is fixed (eq. (4)), we obtain

E
[

X
]≈ p +δp(1−p)

B∗ N

[
b

(
N∑

j ,k,l=1

(
N∑

i=1
(1−µ)∂ flBi j −∂ flD j

)
ekl Q̃ j k −

N∑
i , j ,k,l=1

∂ flBi j ekl

)

−c

(
N∑

j ,k=1

(
N∑

i=1
(1−µ)∂ fkBi j −∂ fkD j

)
Q̃ j k −

N∑
i , j ,k=1

∂ fkBi j

)]
.

(13)

This confirms that dangerous looking denominator µ in eq. (10) is not problem-
atic, even for small mutation probabilities. The sums

∑N
i , j=1 Bi j correspond to

the total number of births in the population during one time step, which is inde-
pendent of the composition of the population in the life-cycles that we consider
as examples (so the last terms on each line of eq. (13) will disappear).

4 Illustrations

4.1 Updating rules

The results presented so far were valid for any updating rule, provided it is such
that population size remains equal to N . We now express the expected frequency
of type-A individuals for specific updating rules, commonly used in studies on
the evolution of altruistic behavior in structured populations: the Moran model
and the Wright-Fisher model. Under a Moran model (Moran, 1962), exactly one
individual dies and one individual reproduces during one time step; hence, at
neutrality, B∗ = 1/N (B∗ was defined in eq. (5)). The order of the two events
matters, so two updating rules are distinguished (Ohtsuki & Nowak, 2006; Oht-
suki et al., 2006): Birth-Death and Death-Birth. In both cases, payoffs are com-
puted at the start of each time step, before anything happens.

4.1.1 Moran model, Birth-Death

Any regular graph Under a Birth-Death (BD) updating, an individual j is cho-
sen to reproduce with a probability equal to its relative fecundity in the popula-
tion ( f j /

∑N
l=1 fl ); then its offspring disperses at random along the D graph, and

so replaces another individual i with a probability d j i /ν, so that

Bi j =
f j∑N

l=1 fl

d j i

ν
, and D j =

N∑
i=1

B j i =
∑N

i=1 fi di j

ν
∑N

l=1 fl
. (14)
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Note that with this updating rule, the probability of dying D j depends on the
composition of the population. With these probabilities of reproducing and dy-
ing eq. (10) becomes,

E
[

X
]≈ p +δp(1−p)

µ

[
b

( N∑
k,l=1

1−µ
N

ekl Ql k −
N∑

j ,k,l=1

(
dl j

Nν
− µ

N 2

)
ekl Q j k

)

−c

(
1−µ−

N∑
j ,k=1

(
dk j

Nν
− µ

N 2

)
Q j k

)]
,

(15a)

or, using matrix notation,

E
[

X
]≈ p +δp(1−p)

µ

[
b

( βBD
D︷ ︸︸ ︷

1−µ
N

Tr(E ·Q)−

βBD
I︷ ︸︸ ︷(

Tr(E ·D ·Q)

Nν
− µTr(E · 1N×N ·Q)

N 2

))
−c

(
1−µ︸ ︷︷ ︸
γBD

D

−
(

Tr(D ·Q)

Nν
− µTr(1N×N ·Q)

N 2

)
︸ ︷︷ ︸

γBD
I

)]
,

(15b)

where Tr(M) denotes the trace of a matrix M, i.e., the sum of its diagonal ele-
ments, and 1N×N is the N -by-N matrix of ones. Each of the factors associated to
the b and (−c) terms contain direct (D ) effects, discounted by indirect effects (I ).
Recall that since we moved from a description with the expected state of pairs of
sites (Pi j , eq. (8)) to a description with probabilities of identity-by-descent (Qi j ,
eq. (10)), we interpret the different terms in terms of survival and production of
identical-by-descent offspring.

Interpretation The direct effect term βBD
D corresponds to the additional

identical-by-descent (hereafter, IBD) offspring (1−µ) produced by interacting
with IBD individuals Tr(E·Q)

N . Where there is only one type of interactant (for

instance, neighbors on a lattice, or members of the same group), Tr(E·Q)
N can

be described as the relatedness to social interactants times the number of in-
teractants. But when there are different types of interactants (e.g., on a non-
symmetric structure like figure 1(a), or when there are weights on the interac-
tion graph E ), then we cannot talk of “a” relatedness, and instead consider an
averaged relatedness, weighted by the interaction graph E .
Social interactions also have indirect consequences (βBD

I ). First, a focal k that
helps (ekl ) an individual l who can send offspring (dl j ) to a site j occupied by an
individual IBD to the focal (Q j k ), indirectly affects the survival of that individual
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k ( Tr(E·D·Q)
Nν ); since this is about survival, there is no µ involved here. The second

term of βBD
I corresponds to competitors l whose increased fecundity (thanks to

interactions with a focal k, ekl ) could indirectly reduce the birth rate of individ-
uals j IBD to the focal (Q j k ), but whose fecundity increase was “wasted” by the
production of non-IBD offspring (µ).
The terms associated to (−c) have a similar interpretation. Here, we consider the
consequences of the cost of being social, i.e., of the reduction in a focal individ-
ual k’s fecundity. The direct effect γBD

D corresponds to this reduction of fecundity
and its impact on the production of IBD individuals (1−µ). The indirect effects
γBD

I are due i) to the indirect changes in the survival of an individual j IBD to
a focal individual k (Q j k ), who is less likely to be replaced by the offspring of k
(dk j ) since k is less fecund, and ii) to the increased relative fecundity of individ-
uals j IBD to the focal k (Q j k ), “wasted” by the production of non-IBD offspring
(µ).

When transmission is almost perfect (µ→ 0), we recover Grafen & Archetti
(2008)’s result that the competition neighborhood under a Birth-Death updating
is one dispersal step away (hence the D terms in eq. (15b)). Decreasing the fi-
delity of parent-offspring transmission, by increasing µ, not only changes prob-
abilities of identity-by-descent (Q), but also the kind of competition to take into
account. This is because social interactions affect both the birth and death of
individuals, and the issue of transmission fidelity only concerns reproduction,
not survival.

Probabilities of identity by descent With the Birth-Death updating rule,
the probabilities of identity by descent satisfy, for any i and j 6= i ,

Qi j = 1−µ
2ν

N∑
k=1

(
dk j Qki +dki Qk j

)
(16)

(see Appendix B.2 for details on the derivation). For generic regular graphs, we
have to solve a system of N (N −1)/2 equations to find the probabilities of iden-
tity by descent.

Transitive undirected graphs When the graph is transitive and undirected, prob-
abilities of identity by descent verify

Q =µλ′
M

(
IN − 1−µ

ν
D

)−1

, (17)
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where IN is the identity matrix, andµλ′
M is such that Qi ,i = 1 for all i (the M index

stands for “Moran”). With eq. (17), eq. (15) simplifies into

E
[

X
]≈ p +δp(1−p)

N

[
b

(−2+µ
1−µ Tr(E ·Q)+ λ′

M Tr(E)

1−µ + Tr(E · 1N×N )λ′
M

N

)
−c

(
N
−2+µ
1−µ + λ′

M N

1−µ +λ′
M

)]
.

(18)

The term Tr(E)/N corresponds to social interactions with oneself; it is usually
considered as null in the case of pairwise interactions, but is not for common
good type of interactions (when benefits are pooled and then redistributed).
We show in Appendix C.1.3 that the sum of the other two terms associated to
the benefits b is negative or zero. So unless interactions with oneself are strong
(large Tr(E)/N ), the factor modulating the effect of benefits b is non-positive.
We noticed previously that the factor associated to (−c) is non-negative; conse-
quently, the expected frequency of altruists cannot be greater than what it would
be in the absence of selection (i.e., E

[
X

]≤ p.) when interactions with oneself are
small.

Evaluating probabilities of identity by descent in transitive regular graphs
still requires the inversion of a N by N matrix (eq. (17)), which can limit applica-
tions. Results are simpler in graphs that match our definition of “n-dimensional
graphs”; they depend on the dimensionality n of the graph and are presented in
Appendix B.2.

4.1.2 Moral model, Death-Birth

Any regular graph Under a Death-Birth (DB) updating, the individual who is
going to die is chosen first, uniformly at random (i is chosen with probability
1/N ). Then, all individuals produce offspring, and one of them (one offspring of
parent j wins with probability f j d j i /

∑N
l=1 fl dl i ) replaces the individual chosen

to die. When di i 6= 0, one needs to clarify whether the individual chosen to die
reproduces before dying or not; here we assume that this is the case, but some
alternative formulations do not. Under this updating rule, we have

D j = 1

N
, and Bi j = 1

N

f j d j i∑N
l=1 fl dl i

. (19)
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Using matrix notation, eq. (10) becomes

E
[

X
]≈ p +δp(1−p)

µ
(1−µ)N

[
b

(
N∑

k,l=1

ekl Ql k

N
−

N∑
i , j ,k,l=1

d j i dl i

Nν2 ekl Q j k

)

−c

(
1−

N∑
i , j ,k=1

d j i dki

Nν2 Q j k

)]
,

(20a)

or, using matrix form,

E
[

X
]≈ p +δp(1−p)

µ

[
b

( βDB
D︷ ︸︸ ︷

1−µ
N

Tr(E ·Q)−

βDB
I︷ ︸︸ ︷

1−µ
Nν2 Tr

(
E ·D ·DT ·Q

))
−c

(
1−µ︸ ︷︷ ︸
γDB

D

− 1−µ
Nν2 Tr

(
D ·DT ·Q

)
︸ ︷︷ ︸

γDB
I

)]
,

(20b)

where T denotes transposition.

Interpretation We can again identify direct and indirect effects of benefits and
costs; the direct effects (D ) are the same as for the Birth-Death updating rule,
but the indirect effects (I ) differ. First, the indirect effects reflect the fact that
competitors are now two dispersal steps away (Grafen & Archetti, 2008; Débarre
et al., 2014). Under a Death-Birth updating rule indeed, individuals j and k are
competing for a site i whose occupant has just been chosen to die if both j and
k can send their offspring to i ; this depends on d j i dki , leading to the D · DT

products in eq. (20). Second, with a Death-Birth updating, social interactions
do not affect the probability of dying, so we only take into account effects on
reproduction, and we can factor in the (1−µ) terms.

Probabilities of identity by descent With the Death-Birth model as de-
fined above, the system of equations for the probabilities of identity by descent
at neutrality is the same as in eq. (16).

Transitive undirected graphs When the graph is transitive and undirected, eq. (17)
still holds and eq. (20) simplifies into

E
[

X
]≈ p +δp(1−p)

N

[
b

(−2+µ
1−µ Tr(E ·Q)+λ′

M
Tr(E ·D)

ν
+ λ′

M

1−µTr(E)

)
−c

(
N
−2+µ
1−µ +λ′

M
Tr(D)

ν
+ λ′

M N

1−µ
)]

.

(21)
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Now, even in the absence of self-interactions (i.e., even when Tr(E) = 0), the term
associated to b can be positive. As it is the case in the absence of mutation (Oht-
suki et al., 2007; Taylor et al., 2007a; Débarre et al., 2014), a key role is played
by Tr(E·D)

νN , which is higher the more the D and E graphs overlap; if we also scale
the interaction graph E to control for the number of interactants, then a lower
degree makes Tr(E·D)

νN higher, and thereby increases the expected frequency of al-
truists in the population.

We also note that eq. (21) (Death-Birth) and eq. (18) (Birth-Death) become
the same when D/ν = 1N×N /N , i.e., when the dispersal graph is the complete
graph (with self-loops), in other words when the population is unstructured.
This reflects the fact that in the Birth-Death updating, the individual who re-
produces is chosen among all individuals of the population, while in the Death-
Birth updating, the individual who reproduces is chosen locally, among the neigh-
bors of the individual who just died. This scaling persists with arbitrary fidelity
of parent-offspring transmission µ.

4.1.3 Wright-Fisher

Under a Wright-Fisher model, generations are non-overlapping: all adults pro-
duce offspring, then all adults die and the offspring disperse and compete for
establishment, so that

D j = 1, and Bi j =
f j d j i∑N

l=1 fl dl i
. (22)

In a Wright-Fisher model, at neutrality, B∗ = 1 (the entire population is renewed
at each generation; in a Moran model we had B∗ = 1/N ); eq. (22) differing from
its Moran Death-Birth equivalent (eq. (19)) by only a factor 1/N , we end up with
the same equation as eq. (20) for the expected frequency of type-A individuals
in the population. The difference between the Moran Death-Birth and Wright-
Fisher life-cycles however lies in the evaluation of probabilities of identity by
descent.

Probabilities of identity by descent Under a Wright-Fisher model, the en-
tire population is replaced, so the equation is different from the one obtained
under a Moran model; probabilities of identity by descent of two different indi-
viduals satisfy (i 6= j )

Qi j = (1−µ)2
N∑

k,l=1

dki

ν

dl j

ν
Qkl . (23)
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(see Appendix B.3 for details of the derivation.) In short, two individuals are
identical by descent if there parents were, and if neither offspring is a mutant
((1−µ)2).

Undirected transitive graphs When the dispersal graph is undirected (D = DT )
and transitive, the probabilities of identity by descent verify

Q =µλ′
W F

(
IN − (1−µ)2

ν2 DD
)−1

, (24)

with µλ′
W F such that for all i , Qi i = 1, and the W F index stands for “Wright-

Fisher”. With this, the expected frequency of type-A individuals becomes

E
[

X
]≈ p +δ p(1−p)

N (1−µ)2

[
b

(
(−2+µ)Tr(E ·Q)+λ′

W F Tr(E)
)

−c
(
N (−2+µ)+Nλ′

W F

)]
.

(25)

We can immediately see the difference with the Moran Death-Birth case (eq. (21)),
caused by a different equation for the probabilities of identity by descent Q. Cru-
cially missing in eq. (25) is the positive term λM

1−µ
Tr(E·D)

Nν : without it, the factor
associated to the benefits b is negative unless interactions with oneself (Tr(E))
are strong enough, as was the case with the Moran Birth-Death updating.

As for the Moran model, evaluating probabilities of identity by descent in
undirected transitive graphs (eq. (24)) involves the computation of the inverse
of a N by N matrix. More explicit results can be obtained for “n-dimensional
graphs”; they are presented in Appendix B.3.

4.2 Specific population structures

All numerical examples given in this section are derived with b> 0 and c> 0, so
type-A individuals can be called altruists.

As an illustration, we explore the impact of mutation on the expected pro-
portion of type-A individuals in graph-structured populations, in which the same
graph defines dispersal and interactions among individuals (Lieberman et al.,
2005; Hindersin & Traulsen, 2015; McAvoy & Hauert, 2015), so that E = D.

When the graph undirected and transitive, the equations for the expected
frequency of altruists (type-A individuals) can be further simplified; the formu-
las are given in the Appendix(eq. (C.8) and eq. (C.12)). Under a Wright-Fisher
updating, eq. (25) cannot be much further simplified.
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4.2.1 Small graphs

For regular graphs of small size, the probabilities of identity by descent can be
calculated directly using eq. (16) (Moran model) or eq. (23) (Wright-Fisher). In
figure 2, we show the value of E

[
X

]
on three regular graphs that have the same

size (N = 12) and the same degree (ν = 3), and we consider three common life-
cycles in populations of fixed size (Moran Death-Birth, Moran Birth-Death, Wright-
Fisher). We compare the prediction based on eq. (8) (curves) to the outputs of
stochastic simulations (points) (Comparable results are obtained with other val-
ues of mutation bias p, see figure S1). For all life-cycles, increasing the mutation
probability µ makes E

[
X

]
closer to its value at the mutation-drift equilibrium

(p). The curves corresponding to different structures are almost undistinguish-
able under a Moran model (figures 2(a) and (b))—the curve corresponding to
the graph with no symmetry (red, squares) being a bit less similar though). In
the Wright-Fisher model (figure 2(c)) however, the effects of the three structures
are clearly different, even whenµ becomes very small: knowing only the size (N )
and degree (ν) of a regular graph is not enough in this case to precisely predict
the expected frequency of altruists in the population. This is because the λ′

W F
terms greatly differ between the three graphs that we tested, all the more when
µ→ 0, while the values of λ′

M for the three structures remained close to each
other.

4.2.2 Large graphs: variations on a circle

When the number of nodes gets larger, we have to concentrate on graphs with
a high level of symmetry. Here we will consider 1-dimensional graphs (graphs
whose nodes can be relabelled to satisfy eq. (2)) that are undirected, and hence
that can be categorised as undirected transitive graphs. For simplicity, we can
consider a circle graph, such that the nodes are arranged on a circle, and each
node is connected to its two neighbors only. Here, we assume that the num-
ber of nodes is infinite: N → ∞. As previously, a given node hosts exactly one
individual (see figure 3(a)).

Under a Moran model, using eq. (B.12b), we find for µ> 0

λ′
M =

√
(2−µ)p
µ

, (26a)

and, although the quantity is not needed to compute E
[

X
]

under a Moran model
(see eq. (C.8) and eq. (C.12)), the probability of identity by descent between two
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Figure 2: Expected frequency of type-A individuals E
[

X
]
, depending on popu-

lation structure (legend on the first line), updating rule ((a): Moran Death-Birth,
(b): Moran Birth-Death, (c): Wright-Fisher), and mutation probability µ (horizontal
axis): Comparison between the theoretical prediction (curves) and the outcomes
of numerical simulations (points). The horizontal dotted gray line corresponds to
p, the expected frequency of type-A individuals when there is no selection (i.e.,
when δ= 0). Other parameters: δ=0.005, p = 1/2, b= 8, c= 1.

neighbors on the circle is given by

QM = 1−√
(2−µ)µ

1−µ , (26b)

and we recover the formula presented in, e.g., Allen et al. (2012) (see Appendix B.2.4
for details). This result is plotted in figure 3(c). We however need to note that the
first-order approximation for E

[
X

]
fails when both µ → 0 and N → ∞: this is

because the integral behind eq. (26a) does not converge when µ→ 0. Similarly,
for instance, the first order approximation for the probability that two neighbors
are identical by descent 1−µ(N −1), which was obtained by Taylor et al. (2007a),
fails when N is too large compared to µ.

Under a Wright-Fisher updating, the probability of identity by descent be-
tween neighbors is equal to 0. This is because all individuals reproduce at each
time step, and their offspring can only establish on the node on the left or on
the right of their parent, so that relatedness cannot build up (a feature called
checkerboard effect by Grafen & Archetti, 2008). This checkerboard effect is
also the reason why λ′

W F differed among the small graphs that we tested; for
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instance, under a Wright-Fisher updating Q does not converge to 1N×N when
µ→ 0 with the graph depicted in figure 1(c) while it does for graph 1(b).

We can however modify the graph to allow for establishment in the parent’s
node: with probability (1−m) the offspring remain where the parent was, other-
wise they move to the right or the left-hand side node (with probability m/2 for
each; see figure 32(b)). In this case, we find the following probability of identity
by descent between neighbors:

QW F =
µ (2−µ)+2(1−µ)2m (1−m)−

√
µ (2−µ)

(
µ+2m (1−µ)

)(
2−µ−2m (1−µ)

)
2(1−µ)2m (1−m)

.

(27)
(See Appendix B.3.4 for details; the corresponding value ofλ′

W F is given in eq. (B.48b).)
QW F is undefined for µ= 0 or m = 1, and limµ→0 QW F = 1, but limm→1 QW F = 0.
The result is plotted in figure 3(d) for different values of the emigration proba-
bility m.
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Figure 3: Circle graphs, without (a) or with self-loops ((b); the weight of the self-
loop is 1−m), and Probability that two neighbors on the graph are identical by
descent, as function of the mutation probability µ, for the Moran updating on an
infinite circle graph (c), and for the Wright-Fisher updating on an infinite circle
graph with self loops (d). In (d), emigration probabilities m take values 0.5, 0.75,
0.9, 0.999 (increasingly lighter curves).
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5 Discussion

While most studies on the evolution of cooperation assume an almost perfect fi-
delity of strategy transmission from parent to offspring, here, we explored the ef-
fect of arbitrary mutation on the evolution of social behavior in structured pop-
ulations. We provide a formula (eq. (10)) that gives the expected frequency of a
given strategy, for any life-cycle, any fidelity of parent-offspring strategy trans-
mission, and that is valid in populations of fixed size that are such that the re-
productive values of all sites are equal (i.e., when all individuals have the same
fecundity, they all have the same chance of actually reproducing). The formula
depends on the probability of identity by descent of pairs of individuals, and we
show how to compute those in general.

Identity by descent and expected state of pairs of sites

The effects of social interactions depend on the actual types of the individuals
who interact. With imperfect strategy transmission from parents to their off-
spring (µ > 0), common ancestry does not guarantee that two individuals are
of the same type. The concept of identity by descent, as we use it in this arti-
cle, adds to common ancestry the condition that no mutation has occured in
the two individuals’ lineages since the common ancestor (Kimura & Crow, 1964;
Taylor et al., 2007b), and hence guarantees that the two individuals are of the
same type. Two individuals that are not IBD can be treated independently, and
we can hence relate the probability that the individuals at two sites i and j to
their expected state (see our eq. (9), Allen & Nowak (2014), or also Rousset &
Billiard (2000)). Finally, equations with probabilities of identity by descent are
simpler than those for the expected state of pairs of sites.

A structure parameter κ

Tarnita et al. (2009) and Taylor & Maciejewski (2012) showed that, when so-
cial interactions affect fecundities, there exists a parameter independent of the
terms of the interaction matrix that summarizes the effects of population struc-
ture (in terms of dispersal patterns and also of who interacts with whom), that
depends on the rule chosen to update the population and on mutation; here we
provide a generic formula for such a structure parameter. This parameter, κ, can
be interpreted as a scaled relatedness (Queller, 1994; Lehmann & Rousset, 2010),
which includes the effect of competition. Eq. (11) provides a generic formula for
κ, for any life-cycle and population structure (provided condition eq. (1) is sat-
isfied).
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The actual value of the scaled relatedness κ depends on the life-cycle and
on the mutation probability µ. First, κ includes competition (what we call “in-
direct effects” of social interactions), and the scale of competition depends on
the life-cycle (Grafen & Archetti, 2008; Débarre et al., 2014). Second, even direct
effects of social interactions—and so even what is referred to as relatedness—do
depend on the life-cycle and µ.

Finally, there is a single structure parameter κ because social interactions
only affect fecundity. Previous studies assuming vanishing or absent mutation
have shown that the parameter will be different if social interactions instead
influence survival (Nakamaru & Iwasa, 2006; Taylor, 2010) and that we need
more than one parameter if social interactions affect both fecundity and sur-
vival (Débarre et al., 2014).

Updating rules and the evolution of altruism

We illustrate our results with specific updating rules, with either exactly one new
individual at each time step (Moran Birth-Death, Moran Death-Birth), or exactly
N new individuals, i.e., the entire population being renewed at each time step
(Wright-Fisher). Previous studies done under the assumption of vanishing mu-
tation rates (and with undirected transitive dispersal graphs) found that updat-
ing rules had a great impact on the evolution of altruism, and in particular, that
selection did not favor altruism (benefits given to others exclusively) under a
Wright-Fisher or Moran Birth-Death updating (the “cancellation result”; Taylor,
1992; Taylor et al., 2011; Ohtsuki et al., 2007; Lehmann et al., 2007). The result
holds with imperfect strategy transmission as well. Under a Death-Birth updat-
ing, competition is against individuals two dispersal steps away, but identity by
descent is computed using individuals one dispersal step away: competition is
“diluted”, and altruism can be favored by selection.

To include imperfect transmission in our model, we had to distinguish be-
tween effects of social interactions on the probability of reproduction (∂ flBi j ;
because mutation can occur) or of death (∂ flD j ; transmission fidelity is not rel-
evant). Thanks to this, we can trace the origin of the indirect effects, and we
can highlight the different nature of the competitive circles identified by Grafen
& Archetti (2008), for the Birth-Death and Death-Birth models, in top of their
differences in radii. Under a Birth-Death model, with vanishing mutation, the
competitive circle is a circle of death: if a focal individual has an increased fe-
cundity, this reduces the survival of its neighbors. Under a Death-Birth model
however, the competitive circle is a circle of (reduced) birth: if a focal individual
has an increased fecundity, this reduces the reproductive potential of its neigh-
bors’ neighbors.
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Again, note that the conclusions for the Moran model depend on which
trait is affected by the social behavior. If survival, instead of fecundity, is af-
fected by the social behavior, the scale of competition (Grafen & Archetti, 2008)
is switched between the Birth-Death and Death-Birth updating rules, and then
altruism is favored under a Birth-Death updating (Nakamaru & Iwasa, 2006; Tay-
lor, 2010; Débarre et al., 2014).

Implications for adaptive dynamics

Our results are obtained by considering the changes that occur during one time
step from a given population state, chosen from the stationary distribution of
population states—hence the phrase “long-term”, which differs from the use
made by, for instance Van Cleve (2015), where it refers to a trait substitution
sequence. Yet, our results can also be used in that context. The adaptive dy-
namics framework describes evolution as a series of trait substitutions (Geritz
et al., 1997; Champagnat et al., 2006; Champagnat & Lambert, 2007; Lehmann,
2012; Lehmann & Rousset, 2014) and is based on the assumption that mutations
are rare and incremental; in a finite population, trait evolution proceeds along
a gradient of fixation probabilities. Computing those fixations probabilities can
be challenging in spatially structured populations.

Yet, the existence of a single parameter (in this case, defined as σ = (κ−
1)/(κ+1), Tarnita et al., 2009) to characterize population structure and update
rules led to the extension of the adaptive dynamics framework to populations
with arbitrary structure (Allen et al., 2013), the structure parameter however re-
maining unspecified in general. Our formula for κ (eq. (11)) is valid for arbitrary
mutation, so a fortiori for vanishing mutation probabilities, and can therefore be
used to explicitly study adaptive dynamics in structured populations (provided
the reproductive values of all sites are equal).
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Appendix

A Expected frequency of type-A individuals

A.1 Conditional expectations

We denote by E
[

Xi (t + 1)|X (t )
]

the expected state of the individual at site i at
time t + 1, given that the population is in state X at time t . Because Xi is an
indicator variable, E

[
Xi (t +1)|X (t )

]=P [Xi (t +1) = 1|X (t )]. Site i is occupied by
an individual of type A at time t +1 if: i) it was occupied by an individual of type
A at time t and this individual has not been replaced (i.e., has not died) between
t and t + 1 (first term in eq. (A.1)), or ii) the individual has been replaced by a
new one, whose parent was in site j at t ; in this case, either the parent was of
type A and the offspring is not a mutant; or, whichever the type of the parent,
the offspring is a mutant and mutated into type A (second term of eq. (A.1)):

E
[

Xi (t +1)|X (t )
]= (1−Di )Xi +

N∑
j=1

Bi j
(
X j (1−µ)+µp

)
. (A.1)

A.2 Unconditional expectations

We now want to consider the long-term outcome of competition. We denote by
ξ(X ,δ,µ) the probability that the population is in state X , given phenotype dif-
ference δ between the two types and a mutation rate µ, and by Ω the ensemble
of all possible population states. By definition, the expectation of the state of the
population is given by E

[
X

]=∑
X∈Ω X ξ(X ,δ,µ).

When the stationary distribution is reached (i.e., for very large t ), E
[

X (t +
1)

] = E
[

X (t )
] = E

[
X

]
; we consider the population average of X , X = ∑

i Xi /N .
From eq. (A.1), we obtain

E
[

X
]= ∑

X∈Ω

N∑
i=1

1

N

(
N∑

j=1
Bi j X j −Di Xi −µ

N∑
j=1

Bi j (X j −p)+Xi

)
ξ(X ,δ,µ),
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Appendix A

which, after simplifications , becomes

∑
X∈Ω

1

N

[
N∑

j=1

(
N∑

i=1
Bi j −D j

)
X j −µ

N∑
i=1

N∑
j=1

Bi j (X j −p)

]
ξ(X ,δ,µ) = 0. (A.2)

Weak selection approximation While eq. (A.2) is valid for any µ and δ, we now
assume that δ, which scales the phenotype difference, is small, so that we can
neglects terms of order δ2 and higher. We note that in the absence of selection
(i.e., when the expressed phenotypes are identical, δ = 0), the expected state of
a site j when the stationary distribution is reached is equal to the probability
that a mutated offspring is of type A (i.e.,

∑
X∈Ω X jξ(X ,0,µ) = p; see section A.3

below for more details). Using eq. (5) and the compact notation ∂δ to represent
∂
∂δ

∣∣∣
δ=0

, a first-order expansion of eq. (A.2) yields, after simplifications:

0 = δ

N

∑
X∈Ω

[∑
j

(
N∑

i=1
∂δBi j −∂δD j

)
X j −µ

N∑
i=1

N∑
j=1

∂δBi j (X j −p)

]
ξ(X ,0,µ)

− δµ

N

∑
X∈Ω

[
N∑

j=1
B∗ (X j −p)

]
∂δξ(X ,δ,µ) +O(δ2). (A.3a)

Because ξ is a probability distribution,
∑

X∈Ω∂δξ(X ,δ,µ) = 0; reorganizing eq. (A.3a),
we obtain

∂δE
[

X
] = 1

µN B∗

( ∑
X∈Ω

[ N∑
j=1

(
N∑

i=1
∂δBi j −∂δD j

)
X j

]
ξ(X ,0,µ)

− ∑
X∈Ω

[
µ

N∑
i , j=1

∂δBi j (X j −p)

]
ξ(X ,0,µ)

)
+O

(
δ

µB∗

)
. (A.3b)

We can now use the chain rule:

∂δBi j =
N∑

k=1

∂Bi j

∂ fk

∣∣∣∣
δ=0

∂δfk , (A.4a)

∂δD j =
N∑

k=1

∂D j

∂ fk

∣∣∣∣
δ=0

∂δfk , (A.4b)

where the ∂δfk terms are computed using the definition of f presented in eq. (3c):

∂δfk =−cXk +b
N∑

l=1
elk Xl . (A.5)
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Appendix A

Doing so, we let products of X s appear. We denote by P j k the expected state of
a pair of sites ( j ,k) evaluated when there are no social interactions (δ= 0):

P j k = ∑
X∈Ω

X j Xk ξ(X ,0,µ). (A.6)

Combining these results and plugging them in the first order expansion of E
[

X
]
,

E
[

X
]= p +δ∂δE

[
X

] +O(δ2), (A.7)

we recover eq. (8) in the main text.

A.3 In the absence of selection (δ= 0)

In the absence of selection, neither Di nor Bi j depend on the state of the pop-
ulation, because all individuals now have the same fecundity; we then denote
them by D0

i and B 0
i j . Consequently, when δ = 0, and given that neutral repro-

ductive values are all equal (eq. (5) in the main text),eq. (A.1) becomes

E
[

Xi (t +1)|X (t )
]= (1−B∗)Xi +

N∑
j=1

B 0
i j

(
X j (1−µ)

)+µpB∗. (A.8)

We now take the expectation of eq. (A.8) over the neutral distribution of states
(ξ(X ,0,µ); we denote by E0

[]
this neutral expectation); since B 0

i j does not de-
pend on X , we have

E0
[

Xi
]= (1−B∗)E0

[
Xi

]+ N∑
j=1

B 0
i j

(
E0

[
X j

]
(1−µ)

)+µpB∗, (A.9a)

and we obtain after simplifying

E0
[

Xi
]= p. (A.9b)

A.4 Weak mutation

Whenµ= 0, there is no stationary distribution of states, because the states X = 0
and X = 1 (loss of type-A and loss of type-B individuals, respectively) are ab-
sorbing. We can nevertheless extend ξ by continuity at µ= 0, so that ξ(X ,δ,0) =
limµ→0 ξ(X ,δ,µ). Then, it does not matter whether we Taylor-expand ξ first in δ
then in µ or first in µ and then in δ, and so we can consider µ¿ δ and δ¿ µ

(Tarnita & Taylor, 2014).
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Weak selection then weak mutation Starting from eq. (A.3a), a first order ex-
pansion near µ= 0 yields

0 = 1

N

∑
X∈Ω

N∑
j=1

(
N∑

i=1
∂δBi j −∂δD j

)
X j∂µξ(X ,0,µ) − 1

N

∑
X∈Ω

N∑
i , j=1

∂δBi j (X j −p)ξ(X ,0,0)

− 1

N

∑
X∈Ω

N∑
j=1

B∗(X j −p)∂δξ(X ,δ,0) +O

(
δ

µ

)
+O(µ).

(A.10)

Here we have δ¿µ¿ 1. Notation ∂µ stands for ∂
∂µ

∣∣∣
µ=0

.

Weak mutation then weak selection Starting from eq. (A.2), a first order ex-
pansion near µ= 0 and then a first order expansion near δ= 0 yields

0 = 1

N

∑
X∈Ω

N∑
j=1

(
N∑

i=1
∂δBi j −∂δD j

)
X j∂µξ(X ,0,µ) − 1

N

∑
X∈Ω

N∑
i , j=1

∂δBi j (X j −p)ξ(X ,0,0)

− 1

N

∑
X∈Ω

N∑
j=1

B∗(X j −p)∂δξ(X ,δ,0) +O
(µ
δ

)
+O(δ).

(A.11)

Here we have µ¿ δ¿ 1.
At the first orders, eq. (A.10) and eq. (A.11) are the same.
When µ→ 0, the population is either in state X = 0 or in state X = 1, so

ξ(1,δ,0) = 1−ξ(0,δ,0) = lim
µ→0

E
[

X
]
, (A.12a)

and as a result
∂δξ(1,δ,0) =−∂δξ(0,δ,0) . (A.12b)

In addition, when δ= 0,
ξ(1,0,µ) = p. (A.12c)

So at the first orders, reorganizing eq. (A.10) (or equivalently eq. (A.11)), we ob-
tain the following equation for the derivative with respect to δ of the expected
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state of the population when µ→ 0 (Tarnita & Taylor, 2014):

∂δξ(1,δ,0) ≈ 1

B∗

[
1

N

∑
X∈Ω

N∑
j=1

(
N∑

i=1
∂δBi j −∂δD j

)
X j∂µξ(X ,0,µ)

− 1

N
p(1−p)

N∑
i , j=1

(
∂δBi j (1) −∂δBi j (0)

)]
.

(A.13)

A.5 With probabilities of identity by descent

Here we detail how to go from eq. (8) to eq. (10). We use the relationship with
Pi j and Qi j given in eq. (9) (see Appendix B for more details on how to obtain
this relationship), and obtain

E
[

X
]≈ p + δ

µB∗N

[
b

( N∑
j ,k,l=1

(
N∑

i=1
(1−µ)∂ fkBi j −∂ fkD j

)
elkQ j l p(1−p)

+µ
N∑

j ,k,l=1

(
N∑

i=1
∂ fkBi j −∂ fkD j

)
el k p2

)

−c

( N∑
j ,k=1

(
N∑

i=1
(1−µ)∂ fkBi j −∂ fkD j

)
Q j k p(1−p)

+µ
N∑

j ,k=1

(
N∑

i=1
∂ fkBi j −∂ fkD j

)
p2

)]
.

(A.14)

Since the size of the population is constant (eq. (4)),
∑
j

(∑
i
∂ fkBi j −∂ fkD j )

)
= 0

and the second terms of each factor in eq. (A.14) are zero, and we obtain eq. (10)
in the main text (where we switch the names of the summation indices k and l
for the factor associated to b).

A.6 Sign of the factor associated to (−c)

Eq. (10) is holds for any combination of parameters, and in particular, the factors
associated to b and (−c) do not depend on b and c, but depend on population
structure (via the dispersal and interaction graphs), mutation probability µ and
on the chosen updating rule. So in particular when b = 0 and c > 0, eq. (10)
reduces to

E
[

X
]≈ p −cδ

p(1−p)

µB∗ N

[(
N∑

j ,k=1

(
N∑

i=1
(1−µ)∂ fkBi j −∂ fkD j

)
Q j k

)]
. (A.15)
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Having b= 0 and c> 0 means that there are no social interactions between indi-
viduals, and that type-A always have a lower fecundity than type-B individuals.
For any type of structure, mutation probability and updating rule, the expected
frequency of type-A individuals is hence lower that what it would be when δ= 0,
which means that the factor associated to (−c) is non-negative.
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B Probabilities of identity by descent

We first start by showing the link between the expected state of a pair of sites
(Pi j ) and probabilities of identity by descent (Qi j ), for any life-cycle.

B.1 Any life-cycle

B.1.1 Notation

To be able to consider any life-cycle, we use notation similar to what is used in
Allen et al. (2015). At each time step, from 1 to N individuals are replaced, de-
pending on the updating rule; R denotes the set of individuals that are replaced
(i.e., the sites where an individual is replaced by another one). For each site i
where a replacement happened (i ∈ R), α(i ) gives the index of the site where the
parent of the new individual lived, while for individuals that were not replaced,
∀i ∈ {1, . . . , N }\R,α(i ) = i 1. Finally, ρ(R,α) denotes the probability of the replace-
ment event (R,α). In the absence of selection, this probability does not depend
on the current state of the population.

B.1.2 Expected state of a pair of sites

Considering two different sites i and j , depending on the updating rule, at each
time step, i) either none of the individuals are replaced—then they are both of
type A if they already were [first term in eq. (B.1)], ii) either one of the individ-
uals (i or j ) is replaced—then they are both of type A if the surviving individual
is A and if either the parent of the other individual was of type A and no mu-
tation occurred, or the offspring mutated into type A whichever the type of its
parent [second and third terms in eq. (B.1)]), or finally iii) both individuals are
replaced—then the probability that both offspring are of type A is Pα(i )α( j )(1−µ+
µp)2+2(p −Pα(i )α( j ))(1−µ+µp)(µp)+ (1−2p +Pα(i )α( j ))(µp)2, which simplifies

1Here we extend the notation used in Allen et al. (2015), because in their study,α : R → {1, . . . , N }
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into the fourth term in eq. (B.1)). We obtain the following equation:

∀(i , j ) ∈ {1, . . . , N }2, i 6= j ,

Pi j =
∑
R,α

i∉R, j∉R

q(R,α)Pα(i )α( j )

+ ∑
R,α

i∉R, j∈R

q(R,α)
[
Pα(i )α( j )(1−µ)+pµp

]
+ ∑

R,α
i∈R, j∉R

q(R,α)
[
Pα(i )α( j )(1−µ)+pµp

]
+ ∑

R,α
i∈R, j∈R

q(R,α)
[
Pα(i )α( j )(1−µ)2 + (2−µ)µp2] .

(B.1)

B.1.3 Identity by descent

Considering two different sites i and j , depending on the updating rule, at each
time step, i) either none of the individuals are replaced—then they are identical
by descent (IBD) if they already were [first term in eq. (B.1)], ii) either one of the
individuals (i or j ) is replaced—then they are both IBD if the surviving individ-
ual and the parent of the new individual were and no mutation occurred [second
and third terms in eq. (B.1)]), or finally iii) both individuals are replaced—then
then are IBD if their two parents were and no mutation occurred in either [fourth
term in eq. (B.1)]. We obtain the following equation:

∀(i , j ) ∈ {1, . . . , N }2, i 6= j ,

Qi j =
∑
R,α

i∉R, j∉R

ρ(R,α)Qα(i )α( j ) +
∑
R,α

i∉R, j∈R

ρ(R,α)Qα(i )α( j )(1−µ)

+ ∑
R,α

i∈R, j∉R

ρ(R,α)Qα(i )α( j )(1−µ)+ ∑
R,α

i∈R, j∈R

ρ(R,α)Qα(i )α( j )(1−µ)2.

(B.2)

For all pairs i 6= j , eq. (B.1) and eq. (B.2) are equivalent when we set

Qi j =
Pi j −p2

p(1−p)
, (B.3)

and eq. (B.3) is also valid when i = j (in this case Qi i = 1 and Pi i = p). So we can
use the recursion on Q presented in eq. (B.2) together with eq. (B.3).

Finally, while Qi j is an expectation over the stationary distribution of pop-
ulation states, we also introduce the indicator variable qi j (t ), equal to 1 if, in a
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realization of the process, the individuals at sites i and j are IBD at time t . We
also denote by Q the matrix gathering the Qi j terms.

B.2 Moran model

In a Moran model, exactly one individual died and one individual reproduces
during one time step. Given a state X at time t , for i 6= j , probabilities of identity
by descent verify

E
[
qi j (t +1)|X (t )

]=qi j (t )

(
1− 2

N

)
+ 1−µ

N

N∑
k=1

dk j qki (t )+dki qk j (t )

ν
. (B.4)

Taking the expectation of this quantity over the stationary distribution of states,
we obtain

Qi j = 1−µ
2ν

N∑
k=1

(
dk j Qki +dki Qk j

)
(i 6= j ), (B.5)

and Qi j = 1 when i = j . Eq. (B.5) is valid for any regular graph; all the Qi j terms
can be found by solving a system of N (N −1)/2 equations (since Qi j =Q j i ). We
can also write eq. (B.5) in matrix form:

Q = 1−µ
2ν

(QD+DT Q)+L, (B.6)

where D is the adjacency matrix of the dispersal graph (with elements di j ), T

denotes transposition, and L is a diagonal matrix whose i th diagonal element is
1−∑N

k=1 dki Qki /ν (i.e., such that Qi i = 1). We note that each of these elements
is of order µ (because when µ→ 0, Q → 1N×N , and then 1−∑N

k=1 dki /ν= 0 since
the graph is regular).

B.2.1 Transitive undirected graphs

When the dispersal graph is transitive, then all the elements on the diagonal of
L are equal, so we can write L = µλ′

M IN , where IN is the N by N identity matrix.
When the graph is also undirected, D = DT , and we also show by induction that
DQ = QD (Grafen & Archetti, 2008).

Let us assume without loss of generality that initially (t = 0) all individuals are
IBD (qi j (0) = 1N N , where 1N N is the N -by-N matrix containing only ones) and
of type B (X (0) = {0, . . . ,0}). Also, let us denote by ζ0(X , t ) the probability that
the population is in state X at time t given that it was in state {0, . . . ,0} at time 0,
and by Et

[]
expectations with respect to that distribution, at time t . Then from
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eq. (B.4), since qi i = 1, and given that the graph is regular,

E1
[
q
]= (

1− 2

N

)
1N N +2

1−µ
N

1N N +µλ′
1IN , (B.7)

so

D ·E1
[
q
]= (

1− 2

N

)
ν1N N +2

1−µ
N

ν1N N +µλ′
1D = E1

[
q
] ·D. (B.8)

Then, assuming that D and Et
[
q
]

commute, and given that we assume D = DT ,

Et+1
[
q
]= (

1− 2

N

)
Et

[
q
]+ 2(1−µ)

N
D ·Et

[
q
]+µλ′

t IN , (B.9)

so

D ·Et+1
[
q
]= (

1− 2

N

)
D ·Et

[
q
]+ 2(1−µ)

N
D2 ·Et

[
q
]+µλ′

t D = Et+1
[
q
] ·D (B.10)

And so, when t →∞, we have D ·Q = Q ·D.

Then with a transitive undirected dispersal graph, eq. (B.6), simplifies into

Q = 1−µ
ν

D ·Q+µλ′
M IN , (B.11)

and so (for µ> 0),

Q =µλ′
M

(
IN − 1−µ

ν
D

)−1

, (B.12a)

with

µλ′
M = 1((

IN − 1−µ
ν D

)−1
)

1,1

. (B.12b)

Eq. (B.11) also implies

Q = (1−µ)2

ν2 D ·D ·Q+µλ′
M

1−µ
ν

D+µλ′
M IN , (B.13)

but also
1N×N ·Q =λ′

M1N×N . (B.14)
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More aboutλ′
M We denote by u the column vector of ones; then from eq. (B.11)

we have, using the fact that D and Q commute,

Q ·u = 1−µ
ν

Q ·D ·u+µλ′
M u; (B.15a)

since the dispersal graph is regular, we obtain

Q ·u =λ′
M u. (B.15b)

So λ′
M is an eigenvalue of Q. When µ→ 0, Q → 1N×N , and eq. (B.15b) implies

that
λ′

M (µ= 0) = N . (B.16)

In the main text, we decomposed probabilities of identity by descent as Qi j =
1+µQ̃i j (eq. (12)); since we are dealing with probabilities, we have Q̃i j ≤ 0 for all
i and j (it is equal to 0 when i = j ). Similarly, using eq. (B.16) we write

λ′
M = N +µλ̃′

M . (B.17)

Putting this back into eq. (B.15b), we obtain

Q̃ ·u = λ̃′
mu, (B.18a)

i.e.,

∀i ∈ {1, . . . , N }, λ̃′
m =

N∑
j=1

Q̃i j ≤ 0. (B.18b)

Altogether, this means that
λ′

M ≤ N . (B.19)

It is possible to find more explicit formulae when the graphs are transitive
and when they are n-dimensional, and we do so for 1-D and 2-D graphs.

B.2.2 One-dimensional graphs

On a 1-D graph, numbering the different nodes modulo N , for all i and j , by
definition of a 1-D graph, di j = d0, j−i = d̃ j−i , and as a result similar equalities
hold for the expected states of pairs of sites: Qi j =Q0, j−i = Q̃ j−i . We can hence
rewrite eq. (B.5) as follows, keeping in mind that Qi j =Q j i and that node num-
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bering is done modulo N :

Qi j = Q̃ j−i =1−µ
2ν

N−1∑
k=0

d0, j−kQ0,k−i +d0,i−kQ0, j−k (i 6= j )

=1−µ
2ν

N−1∑
k=0

d0,k P0, j−i−k +d0,k P0, j−i+k [change of variables k ′ = j −k]

=1−µ
2ν

N−1∑
k=0

d̃k P̃ j−i−k + d̃k P̃ j−i+k ,

so that

Q̃l =
1−µ

2ν

(
N−1∑
k=0

d̃kQ̃l−k + d̃kQ̃l+k

)
+δlµλ

′
M , (B.20)

where δl = 1 when l ≡ 0 and δl = 0 otherwise, and λ is as defined in the previous
section, i.e., such that Q̃0 = 1:

µλ′
M = 1− 1−µ

ν

N−1∑
k=0

d̃kQ̃k . (B.21)

(Recall that Q̃l = Q̃−l ).
To solve for Q̃l , we can follow the same method as in Malécot (1975); Gandon

& Rousset (1999) and use discrete Fourier transforms, defining the transforms of
Q and of d as follows:

Qq =
N−1∑
l=0

Q̃l exp

(
−ı

2πql

N

)
, (B.22a)

Dq =
N−1∑
l=0

d̃l exp

(
−ı

2πql

N

)
. (B.22b)

and in particular (ν being the degree of the dispersal graph)

D0 =
∑

l
d̃l = ν. (B.22c)

We obtain

Qq =µλ′
M +

N−1∑
l=0

[
1−µ

2ν

(∑
k

d̃kQ̃l−k + d̃kQ̃l+k

)]
exp

(
−ı

2πql

N

)
, (B.23a)

=µλ′
M + 1−µ

2ν

(
DqQq +D−qQq

)
. (B.23b)
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Solving for Qq , we obtain

Qq = µλ′
M

1− 1−µ
2ν

(
Dq +D−q

) . (B.23c)

To recover Q̃, we now use an Inverse Discrete Fourier Transform

Q̃r = 1

N

N−1∑
q=0

Qq exp

(
ı

2πqr

N

)
; (B.24)

combining eq. (B.23c) and eq. (B.24), we obtain

Q̃r = 1

N

N−1∑
q=0

µλ′
M

1− 1−µ
2ν

(
Dq +D−q

) exp

(
ı

2πqr

N

)
. (B.25a)

When r = 0, we have Q̃0 = 1, so combining this with eq. (B.25a), we can now
evaluate λ:

µλ′
M = N∑N−1

q=0
1

1− 1−µ
2ν (Dq+D−q )

. (B.25b)

Finally, when the graph is not oriented, Dq =D−q .

B.2.3 Two-dimensional graphs

Similar calculations are done with two-dimensional graphs. Numbering is done
modulo N1 for the first dimension, and modulo N2 for the second dimension
(N1N2 = N ). The 2-D equivalent of eq. (B.20) is

Q̃l1
l2

= 1−µ
2ν

N1−1∑
k1=0

N2−1∑
k2=0

(
d̃k1

k2

Q̃l1−k1
l2−k2

+ d̃k1
k2

Q̃l1+k1
l2+k2

)
+δl1

l2

µλ′
M , (B.26)

where δk1
k2

= 1 when (k1,k2) ≡ (0,0) (modulo N1 and N2), and δk1
k2

= 0 otherwise,

and

µλ′
M = 1− 1−µ

ν

N1−1∑
l1=0

N2−1∑
l2=0

d̃k1
k2

Q̃k1
k2

. (B.27)
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We then use 2-D Discrete Fourier Transforms:

Qq1
q2
=

N1−1∑
l1=0

N2−1∑
l2=0

Q̃l1
l2

exp

(
−ı

2πq1l1

N1

)
exp

(
−ı

2πq2l2

N2

)
, (B.28a)

Dq1
q2
=

N1−1∑
l1=0

N2−1∑
l2=0

d̃l1
l2

exp

(
−ı

2πq1l1

N1

)
exp

(
−ı

2πq2l2

N2

)
, (B.28b)

and obtain

Qq1
q2
=µλ′

M + 1−µ
2ν

(
Dq1

q2
+D−q1−q2

)
Pq1

q2
. (B.29a)

Solving for Qq1
q2

,

Qq1
q2
= µλ′

M

1− 1−µ
2ν

(
D q1

q2 +D−q1−q2

) . (B.29b)

Finally, an Inverse Fourier Transform gives us Q̃r1
r2

:

Q̃r1
r2
= 1

N

N1−1∑
q1=0

N2−1∑
q2=0

µλ′
M

1− 1−µ
2ν

(
D q1

q2 +D−q1−q2

) exp

(
ı

2πq1r1

N1

)
exp

(
ı

2πq2r2

N2

)
, (B.29c)

with C such that P̃0
0
= p:

µλ′
M = N∑N1−1

q1=0

∑N2−1
q2=0

1

1− 1−µ
2ν

(
D

q1
q2
+D

−q1−q2

) . (B.29d)

And when the graph is undirected, D−q1−q2 =D q1
q2.

B.2.4 Illustration: infinite circle

On a circle graph (like in figure 3(a)), the Fourier transform of the dispersal dis-
tance is

Dq = 2 cos

(
2πq

N

)
. (B.30)

We can evaluate µλ′
M using eq. (B.25b),

µλ′
M = N∑N−1

q=0
1

1−(1−µ)cos
(

2πq
N

) , (B.31a)
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and when population size is infinite, this becomes

µλ′
M = 1∫ 1

0
1

1−(1−µ)cos(2πx) dx
=√

µ(2−µ). (B.31b)

But we note that the integral does not converge whenµ→ 0. Finally, we compute
probabilities of identity by descent using eq. (B.25a), and obtain eq. (26b) in the
main text for neighbors on the the circle (q = 1).

B.3 Wright-Fisher model

In a Wright-Fisher model, all individuals are replaced at each time step. Given a
state X at time t , for i 6= j , probabilities of identity by descent verify

E
[
qi j (t +1)|X (t )

]=(1−µ)2
N∑

k,l=1

dki dl j

ν2 qkl (t ). (B.32)

Taking the expectation of this quantity over the stationary distribution of states,
we obtain

Qi j = (1−µ)2

ν2

N∑
k,l=1

(
dki dl j Qkl

)
(i 6= j ), (B.33)

and Qi j = 1 when i = j . Eq. (B.33) is valid for any regular graph; all the Qi j terms
can be found by solving a system of N (N −1)/2 equations (since Qi j =Q j i ). We
can also write eq. (B.5) in matrix form:

Q = (1−µ)2

ν2 (DT QD)+L, (B.34)

where D is the adjacency matrix of the dispersal graph (with elements di j ), T

denotes transposition, and L is a diagonal matrix whose i th diagonal element is
such that Qi i = 1.

B.3.1 Transitive undirected graphs

When the dispersal graph is transitive, then all the elements on the diagonal of
L are equal, so we can write L =µλ′

W F IN , where IN is the N by N identity matrix.
Like in the case of a Moran updating, when the graph is also undirected, D = DT ,
and we also show by induction that DQ = QD (Grafen & Archetti, 2008).

Let us assume without loss of generality that initially (t = 0) all individuals are
IBD (qi j (0) = 1N N , where 1N N is the N -by-N matrix containing only ones) and
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of type B (X (0) = {0, . . . ,0}). Also, let us denote by ζ0(X , t ) the probability that
the population is in state X at time t given that it was in state {0, . . . ,0} at time 0,
and by Et

[]
expectations with respect to that distribution, at time t . Then from

eq. (B.32), since qi i = 1, and given that the graph is regular,

E1
[
q
]= (1−µ)2

ν2 1N N +µλ′
1IN , (B.35)

so

D ·E1
[
q
]= (1−µ)2

ν2 ν1N N +µλ′
1D = E1

[
q
] ·D. (B.36)

Then, assuming that D and Et
[
q
]

commute, and given that we assume an undi-
rected dispersal graph (D = DT ),

Et+1
[
q
]= (1−µ)2

ν2 D ·D ·Et
[
q
]+µλ′

t IN , (B.37)

so

D ·Et+1
[
q
]= (1−µ)2

ν2 D ·D ·D ·Et
[
q
]+µλ′

t D = Et+1
[
q
] ·D (B.38)

And so, when t →∞, we have D ·Q = Q ·D.

Then with a transitive undirected dispersal graph, eq. (B.34), simplifies into

Q = (1−µ)2

ν2 D ·D ·Q+µλ′
W F IN , (B.39)

and so (for µ> 0),

Q =µλ′
W F

(
IN − (1−µ)2

ν2 DD
)−1

, (B.40a)

with

µλ′
W F = 1((

IN − (1−µ)2

ν2 DD
)−1

)
1,1

. (B.40b)

It is possible to find more explicit formulae when the graphs are transitive and
when they are n-dimensional, and we do so for 1-D and 2-D graphs.

More about λ′
W F Like we did for the Moran model, we denote by u the N -long

column vector of ones. Using eq. (B.39), the fact that D and Q commute, and the
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regularity of the D graph, we have

Q ·u = (1−µ)2Q ·u+µλ′
W F u, (B.41a)

which simplifies into

Q ·u = λ′
W F

2−µu. (B.41b)

B.3.2 One-dimensional graphs

In a 1D graph, we can rewrite eq. (B.33) as follows, were Q̃m =Q0m (numbering
being done modulo N ):

Q̃m =


∑N−1
k,l=0

d̃k d̃l

ν2 Q̃m−l+k (m 6= 0)

1 (m = 0).
(B.42)

Using a Discrete Fourier Transform (see eq. (B.22)), we obtain,

Qq = (1−µ)2

ν2 DqD−qQq +µλ′
W F , (B.43a)

with

µλ′
W F =1−

N−1∑
k,l=0

d̃k d̃l

ν2 Q̃−l+k . (B.43b)

Solving for Qq , we obtain

Pq = µλ′
W F

1− (1−µ)2

ν2 DqD−q

. (B.43c)

Then using an Inverse Fourier Transform to recover Q̃ (see eq. (B.24)), we obtain

Q̃r = 1

N

N−1∑
q=0

µλ′
W F

1− (1−µ)2

ν2 DqD−q

exp

(
ı

2πqr

N

)
(B.44)

Noting that Q̃0 = 1, we can evaluate λ:

µλ′
W F = N∑N−1

q=0
1

1− (1−µ)2

ν2 DqD−q

. (B.45)
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B.3.3 Two-dimensional graphs

Following the same method as previously, we obtain

Q̃r1
r2
= 1

N

N1−1∑
q1=0

N2−1∑
q2=0

µλ′
W F

1− (1−µ)2

ν2

(
D q1

q2D
−q1−q2

) exp

(
ı

2πq1r1

N1

)
exp

(
ı

2πq2r2

N2

)
, (B.46a)

with

µλ′
W F = N∑N1−1

q1=0

∑N2−1
q2=0

1

1− (1−µ)2

ν2

(
D

q1
q2

D
−q1−q2

) . (B.46b)

B.3.4 Illustration: Circle graph with self-loops

On a circle graph with self-loops (like in figure 3(b)), the Fourier transform of the
dispersal distance is

Dq = (1−m)+m cos

(
2πq

N

)
. (B.47)

(Here ν = 1, while with the circle graph we had ν = 2; this does not matter for
IBD). We can evaluate µλ′

W F using eq. (B.45),

µλ′
W F = N∑N−1

q=0
1

1−(1−µ)2
(
(1−m)+m cos

(
2πq

N

))2

, (B.48a)

and when population size is infinite, this becomes

µλ′
W F = 1∫ 1

0
1

1−(1−µ)2((1−m)+m cos(2πx))2 dx
,

= 2
√

(2−µ)µ(−µ−2(1−µ)m +2)(µ+2(1−µ)m)√
(2−µ)(−µ−2(1−µ)m +2)+√

µ(µ+2(1−µ)m)
,

(B.48b)

according to Mathematica (Wolfram Research, Inc., 2015). Here as well, the inte-
gral does not converge whenµ→ 0. Finally, we compute probabilities of identity
by descent using eq. (B.46a), and obtain eq. (27) in the main text for neighbors
on the the circle (q = 1).
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C Specific life-cycles

C.1 Birth-Death updating

C.1.1 Derivatives of Bi j and D j

We will need to specify whether we consider two different sites, or the same site
twice ( j = l ), and to this end introduce notation

δ j ,k =
{

1 when j = k,

0 otherwise.
(C.1)

With a Moran Birth-Death updating rule (see eq. (14)), the derivatives of Bi j

with respect to fl is

∂Bi j

∂ fl

∣∣∣∣
δ=0

= d j i

ν

δ j ,l N −1

N 2 ,

so that

N∑
i=1

∂Bi j

∂ fl

∣∣∣∣
δ=0

= δ j ,l N −1

N 2 , (C.2a)

(because of the graph’s regularity, eq. (1)), and for D j we obtain

∂D j

∂ fl

∣∣∣∣
δ=0

= dl j

Nν
− 1

N 2 . (C.2b)

C.1.2 Expected frequency of social individuals

We replace the derivatives of Bi j and D j by their formulas for the Birth-Death
life-cycle (eq. (C.2)), noting that for all j , Q j j = 1 and remembering that B∗ =
1/N ; then eq. (10) becomes

E
[

X
]≈ p +δp(1−p)

µ

[
b

(∑
k,l

1−µ
N

ekl Qlk +
∑
j ,k,l

(
−1−µ

N 2 − dl j

Nν
+ 1

N 2

)
ekl Q j k

)

−c

(∑
k

1−µ
N

+∑
j ,k

(
−1−µ

N 2 − dk j

Nν
+ 1

N 2

)
Q j k

)]
,

(C.3a)
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which after simplification becomes

E
[

X
]≈ p +δp(1−p)

µ

[
b

(∑
k,l

1−µ
N

ekl Qlk −
∑
j ,k,l

(
dl j

Nν
− µ

N 2

)
ekl Q j k

)

−c

(
1−µ−∑

j ,k

(
dk j

Nν
− µ

N 2

)
Q j k

)]
.

(C.3b)

Using matrix notation, we obtain

E
[

X
]≈ p +δp(1−p)

µ

[
b

(
1−µ

N
Tr(E ·Q)−

(
Tr(E ·D ·Q)

Nν
− µTr(E · 1N×N ·Q)

N 2

))
−c

(
1−µ−

(
Tr(D ·Q)

Nν
− µTr(1N×N ·Q)

N 2

))]
.

(C.4)

C.1.3 On transitive undirected dispersal graphs

We need results on Q, given by eq. (B.11) and eq. (B.14); they imply that

Tr(E ·D ·Q)

ν
= Tr(E ·Q)

1−µ − µ

1−µλ
′
M Tr(E) , (C.5a)

Tr(E · 1N×N ·Q) =λ′
M Tr(E · 1N×N ) , (C.5b)

Tr(D ·Q)

ν
= (1−µλ′

M )N

1−µ , (C.5c)

and

Tr(1N×N ·Q) = Nλ′
M . (C.5d)

Back to eq. (C.4), we obtain

E
[

X
]≈ p +δp(1−p)

µ

[
b

((
1−µ− 1

1−µ
)

Tr(E ·Q)

N
+ µλ′

m

1−µ
Tr(E)

N
+ µλ′

M Tr(E · 1N×N )

N 2

)
−c

(
1−µ− (1−µλ′

M )

1−µ +µλ
′
M

N

)]
,

(C.6)

which simplifies into eq. (18) in the main text.
Now we show that the factor associated to b is negative when we exclude

interactions with one-self (i.e., when Tr(E) = 0). We use the following upper
bounds: for all pairs of sites i and j , Qi j ≤ 1, and λ′

M ≤ N (see eq. (B.19)). As
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a result, we have

−2+µ
1−µ Tr(E ·Q)+ λ′

M

N
Tr(E · 1N×N ) ≤ −2+µ

1−µ Tr(E · 1N×N )+Tr(E · 1N×N )

= −1

1−µTr(E · 1N×N ) ≤ 0.

(C.7)

When the dispersal and interaction graphs are the same We can further sim-
plify eq. (18), using eq. (C.5d) again, and we obtain

E
[

X
]≈ p +δp(1−p)

[
b

(
(−2+µ)ν(1−µλ′

M )

(1−µ)2 + λ′
M d11

1−µ + νλ′
M

N

)
−c

(−2+µ
1−µ + λ′

M

1−µ + λ′
M

N

)]
.

(C.8)

C.2 Death-Birth updating

C.2.1 Derivatives of Bi j and D j

With a Moran Death-Birth updating rule (see eq. (19)), the derivatives of Bi j and
D j with respect to fk are given by the following equations:

∂Bi j

∂ fl

∣∣∣∣
δ=0

= δl , j dl iν−d j i dl i

Nν2 , (C.9a)

so that

N∑
i=1

∂Bi j

∂ fl

∣∣∣∣
δ=0

= δl , j

N
−

N∑
i=1

d j i dl i

Nν2 , (C.9b)

and

∂D j

∂ fl

∣∣∣∣
δ=0

= 0, (C.9c)

with δk, j as defined in eq. (C.1).

C.2.2 Expected frequency of social individuals

We replace the derivatives of Bi j and D j by their formulas for the Death-Birth
life-cycle (eq. (C.9)), noting that for all j , Q j j = 1 and remembering that B∗ =
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1/N ; then eq. (10) becomes

E
[

X
]≈ p +δp(1−p)

µ

(1−µ)

N

[
b

(
N∑

k,l=1
ekl Qlk −

N∑
i , j ,k,l=1

d j i dl i

ν2 ekl Q j k

)

−c

(
N∑

k=1
1−

N∑
i , j ,k=1

d j i dki

ν2 Q j k

)]
,

(C.10a)

and under matrix form, we have

E
[

X
]≈ p+δp(1−p)

µ

(1−µ)

N

[
b

(
Tr(E ·Q)− 1

ν2 Tr
(
E ·D ·DT ·Q

))−c

(
N − 1

ν2 Tr
(
D ·DT ·Q

))]
.

(C.10b)

C.2.3 On transitive undirected dispersal graphs

We need results on Q given by eq. (B.13); it implies

1

ν2 Tr(D ·D ·Q) = 1

(1−µ)2

(
N −µλ′

M
1−µ
ν

Tr(D)−µλ′
M N

)
(C.11a)

1

ν2 Tr(E ·D ·D ·Q) = 1

(1−µ)2

(
Tr(E ·Q)−µλ′

M
1−µ
ν

Tr(E ·D)−µλ′
M Tr(E)

)
(C.11b)

Plugging these into eq. (C.10b), we obtain eq. (21).

When the dispersal and interaction graphs are the same We can further sim-
plify eq. (21), using eq. (C.5d) again, and we obtain

E
[

X
]≈ p +δp(1−p)(1−µ)

[
b

(
(−2+µ)ν(1−µλ′

M )

(1−µ)3 + λ′
M

1−µ

∑
k d 2

1k

ν
+ λ′

M

(1−µ)2 d11

)

−c

( −2+µ
(1−µ)2 + λ′

M

1−µ
d11

ν
+ λ′

M

(1−µ)2

)]
.

(C.12)
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C.3 Wright-Fisher updating

C.3.1 Derivatives of Bi j and D j

With a Wright-Fisher updating rule (see eq. (22)), the derivatives of Bi j and D j

with respect to fk are

∂Bi j

∂ fl

∣∣∣∣
δ=0

= δl , j dl iν−d j i dl i

ν2 , (C.13a)

∂D j

∂ fl

∣∣∣∣
δ=0

= 0. (C.13b)

with δk, j as defined in eq. (C.1). This differs by a factor N from the Death-Birth
version (eq. (C.9)), and since B∗ = 1 (instead of 1/N ) in the Wright-Fisher model,
we end up with eq. (C.10b) for the expected frequency of type-A individuals in
the population.

C.3.2 On transitive undirected dispersal graphs

Probabilities of identity by descent Q are not the same under a Wright-Fisher
model as under a Moran model. Using the relationship between Q and D given
in eq. (B.39), we can further simplify E

[
X

]
; for this we need the following quan-

tities:

1

ν2 Tr(D ·D ·Q) = N

(1−µ)2 (1−µλ′
W F ), (C.14a)

1

ν2 Tr(E ·D ·D ·Q) = 1

(1−µ)2

(
Tr(E ·Q)−µλ′

W F Tr(E)
)

, (C.14b)

and so

N − 1

ν2 Tr(D ·D ·Q) = N

(−2µ+µ2

(1−µ)2 + µλ′
W F

(1−µ)2

)
, (C.15a)

Tr(E ·Q)− 1

ν2 Tr(E ·D ·D ·Q) = −2µ+µ2

(1−µ)2 Tr(E ·Q)+ µλ′
W F

(1−µ)2 Tr(E) . (C.15b)

Plugging these into eq. (C.10b), we recover eq. (25).
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Figures

Figure 1
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Figure 1: Examples of regular graphs of size 12. The graphs on the first line are
unoriented and unweighted graphs of degree ν= 3; Graph (d) is oriented, graph (e)
is weighted. (a) is the Frucht graph, and has no symmetry. Graphs (b) and (d) are
one-dimensional, graphs (c) and (e) are two-dimensional (see main text).
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Figure 2

Population structures
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Figure 2: Expected frequency of type-A individuals E
[

X
]
, depending on popu-

lation structure (legend on the first line), updating rule ((a): Moran Death-Birth,
(b): Moran Birth-Death, (c): Wright-Fisher), and mutation probability µ (horizontal
axis): Comparison between the theoretical prediction (curves) and the outcomes
of numerical simulations (points). The horizontal dotted gray line corresponds to
p, the expected frequency of type-A individuals when there is no selection (i.e.,
when δ= 0). Other parameters: δ=0.005, p = 1/2, b= 8, c= 1.
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Figure 3: Circle graphs, without (a) or with self-loops ((b); the weight of the self-
loop is 1−m), and Probability that two neighbors on the graph are identical by
descent, as function of the mutation probability µ, for the Moran updating on an
infinite circle graph (c), and for the Wright-Fisher updating on an infinite circle
graph with self loops (d). In (d), emigration probabilities m take values 0.5, 0.75,
0.9, 0.999 (increasingly lighter curves).
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(a) Death-Birth
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(b) Birth-Death
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(c) Wright-Fisher
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Figure S1: Expected frequency of type-A individuals E
[

X
]
, depending on popu-

lation structure (legend on the first line), updating rule ((a): Moran Death-Birth,
(b): Moran Birth-Death, (c): Wright-Fisher), and mutation probability µ (horizontal
axis): Comparison between the theoretical prediction (curves) and the outcomes
of numerical simulations (points). The horizontal dotted gray line corresponds to
p, the expected frequency of type-A individuals when there is no selection (i.e.,
when δ= 0). Other parameters: δ=0.005, p = 0.3, b= 8, c= 1.
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