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ABSTRACT 

 

The stationary dynamic response of a geared system 

with time-varying mesh stiffness subjected to stationary 

stochastic external excitation is examined in this paper. To 

this end, a spur gear pair model with periodical time-

varying mesh stiffness is extended to include stochastic 

external force excitations. These random forces are 

introduced as second-order stationary and ergodic 

processes. In order to compute the stationary response, a 

very efficient method, called the iterative spectral method 

is used. This method is derived in the frequency domain and 

provides the explicit power spectral density of the response. 

The PSD response is expressed as a function of the 

bispectrum which is the bilinear Fourier transform of the 

bitemporal impulse response of the parametric system. 

 

INTRODUCTION 

 

The static transmission error is the main internal 

source of gear dynamics, in particular in the case of the 

noise radiated by these systems [1-2]. Static transmission 

error can be viewed as the difference between the actual 

position of the driven gear and its theoretical position for a 

very slow rotation speed and for a given applied torque. Its 

characteristics depend on the instantaneous contacts of the 

meshing tooth pairs which result from tooth deflections and 

actual tooth surface micro-level geometry. In order to 

model this internal source, the elastic forces between gears 

are usually introduced by a combination of time-periodic 

stiffnesses and an imposed displacement function, both 

acting along the lines of action. The steady state dynamic 

responses of this kind of model with a constant external 

load are extensively studied [3], with in mind the problem 

of the whining noise [4]. 

Geared systems are sometimes excited by external 

excitations; see for example the cases of rattle noise and 

hammering noise induced by the acyclism of the engine [5-

6]. With this type of problem, few studies have focused on 

the case of the dynamic response under stationary stochastic 

external excitations. However, a number of practical cases 

can be considered such as geared systems subjected to 

frictional forces, wind flow for windmill, fluid load for 

vacuum pumps, to cite a few. 

In this context, the stationary dynamic response of a 

geared system with time-varying mesh stiffness subjected 

to stationary stochastic external excitation is examined in 

this work. For this purpose, a parallel gear pair model with 

a periodic time-varying mesh stiffness is extended to 

include stochastic external force excitations. The latest are 

introduced as a second-order stationary and ergodic random 

process. This paper starts with the description of this 

modelling. 

 

DYNAMIC MODELLING 

 

Equations of motion 

A standard single stage parallel gear pair running in 

stationary regimes is considered here. In this study, second-

order stationary and ergodic random processes are assumed 

to be part of the external excitations. Considering a multi-

degree-of-freedom periodic-time-varying linearized 

system, the governing equations of motion can be written 

in the matrix form as 

 

 𝐌�̈� + 𝐂�̇� + 𝐊(𝑡)𝐱 = 𝐟(𝑡) + 𝐰(𝑡) (1) 

 

In this equation, 𝐱(𝑡) is the generalized displacement 

vector. 𝐌 is the time-invariant mass matrix. 𝐂 is the time-

invariant damping matrix. It is assumed to be a proportional 

or Rayleigh damping matrix with respect of the time-

averaged mass and stiffness matrices. 𝐊(𝑡) is a periodically 

time-varying matrix. The time variation is induced by the 

time varying mesh stiffness acting between pinions. 

Usually, this variation is 𝑇𝑧-periodic at the gear mesh 

frequency 𝑓𝑧 = 1/𝑇𝑧. The external excitation terms consist 

on a classic force vector 𝐟(𝑡) and a random process 𝐰(𝑡) 
introduced for the present purpose. The first one which 

includes the internal static transmission error excitations 

will be excluded in this study according to the principle of 

linearity. The second one may include internal and external 

random excitations. This process is introduced through the 

knowledge of its power spectral density: 

 

 𝐒𝐰𝐰(𝜔) = lim
𝑇→∞

𝐒𝐰𝐰(𝜔, 𝑇) (2) 

 

where 

 

 𝐒𝐰𝐰(𝜔, 𝑇) = lim
𝑁→∞

1

𝑁
∑ 𝐒𝐰𝐰

(𝑘) (𝜔, 𝑇)𝑁
𝑘=1  (3) 

* 
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is the power spectral density estimator of the 

truncated process defined over finite duration 𝑇. Consider 

sample functions or time histories 𝐰𝑇
(𝑘)
(𝑡) of the truncated 

process {𝐰𝑇(𝑡)} from the original ones, and 𝐖𝑇
(𝑘)
(𝜔) its 

Fourier transform with respect to 𝑡, we have 

 

 𝐒𝐰𝐰
(𝑘) (𝜔, 𝑇) = 𝐖𝑇

(𝑘)
(𝜔)𝐖𝑇

(𝑘)∗
(𝜔) (4) 

 

where 𝐀∗ denotes the transpose conjugate of 𝐀. 

 

Power spectral density of responses 

Preliminary, it is assumed that the studied system is 

asymptotically stable in the Lyapunov sense, i.e. damping 

is sufficient to prevent parametric instabilities. In this case, 

the free response decreases asymptotically toward 0, the 

equilibrium state. 

Consider now forced response ℎ𝑖𝑗(𝜏, 𝑡) caused at the 

𝑖-th degree-of-freedom at time 𝑡 by an unit impulse force 

𝛿𝑗(𝑡 − 𝜏) at the 𝑗-th degree-of-freedom of the system at 

time (𝑡 − 𝜏). These impulse responses constitute the bi-

temporal matrix 𝐡(𝜏, 𝑡) which relates the output response 

𝐱(𝑡) to the input process, for example 𝐲(𝑡), as: 

 

 𝐱(𝑡) = ∫𝐡(𝜏, 𝑡)𝐲(𝑡 − 𝜏)d𝜏 (5) 

 

By assuming ℎ𝑖𝑗(𝜏, 𝑡) functions to be physically 

realizable, the bilinear Fourier transform with respect to 

times 𝜏 and 𝑡 is written in the matrix form as follows: 

 

 𝐇(𝜔1 , 𝜔2) = ∬𝐡(𝜏, 𝑡)e−𝑖(𝜔1𝜏+𝜔2𝑡)d𝜏d𝑡 (6) 

 

Inversely, we can write the matrix 𝐡(𝜏, 𝑡) from the bi-

frequency function 𝐇(𝜔1, 𝜔2) as 

 

 𝐡(𝜏, 𝑡) =
1

4𝜋2
∬ 𝐇(𝜔1 , 𝜔2)e

𝑖(𝜔1𝜏+𝜔2𝑡)d𝜔1d𝜔2
+∞

−∞
 (7) 

 

By considering the dynamic responses to truncated 

sample function force 𝐰𝑇
(𝑘)
(𝑡), it was been shown that 

dynamic response power spectral density is obtained from 

the input power spectral density by: 

 

 4𝜋2𝐒𝐱𝐱(𝜔) =  

 ∫ 𝐇(𝜔1, 𝜔 − 𝜔1)𝐒𝐰𝐰(𝜔)
+∞

−∞
𝐇∗(𝜔1, 𝜔 − 𝜔1)d𝜔1 (8) 

 

Finally, the computation of 𝐒𝐱𝐱(𝜔) depends on the 

bispectrum function 𝐇(𝜔1, 𝜔2) which could only be 

obtained by numerical scheme. 

 

COMPUTATIONAL PROCEDURE 

 

General principal 

From a practical point of view, there are two ways to 

calculate dynamic responses of the system. The first one 

consists in computing the bi-spectrum matrix 𝐇(𝜔1, 𝜔2) 
before determining the specific dynamic responses. The 

second way is a direct computation of these dynamic 

responses. For these two approaches, the problem is to 

compute the dynamic response of the system to external 

forces. Indeed, for the first purpose, the response 𝐲𝑗(𝜔1, 𝑡) 

of the system to excitation vector 𝐬𝑗(𝜔1, 𝑡) whose j-th 

component is equal to exp(𝑖𝜔1𝑡) while the others are equal 

to zero needs to be considered. Then both the excitation and 

the response vectors are given by 

 

 𝐬𝑗(𝜔1 , 𝑡) = 𝛔𝑗𝑒
𝑖𝜔1𝑡 (9) 

 

 𝐲𝑗(𝜔1, 𝑡) = ∫𝐡(𝜏, 𝑡)𝛔𝑗𝑒
𝑖𝜔1(𝑡−𝜏)d𝜏 (10) 

 

where 

 

 (𝛔𝑗)𝑘 = 𝛿𝑗𝑘 (11) 

 

Equation (10) represents the Fourier transform of the 

impulse response matrix 𝐡(𝜏, 𝑡) with respect to 𝜏, then 

 

 𝐲𝑗(𝜔1, 𝑡) = 𝐇(𝜔1 , 𝑡)𝛔𝑗𝑒
𝑖𝜔1𝑡  (12) 

 

Now, by computing the Fourier transform of 

𝐲𝑗(𝜔1, 𝑡) with respect to 𝑡, we obtain 

 

 𝐘𝑗(𝜔1, 𝜔) = ∫𝐇(𝜔1 , 𝑡)𝛔𝑗𝑒
𝑖(𝜔1−𝜔)𝑡d𝑡 (13) 

 

 𝐘𝑗(𝜔1, 𝜔) = 𝐇(𝜔1, 𝜔 − 𝜔1)𝛔𝑗 (14) 

 

Therefore, the columns of the matrix 𝐇(𝜔1 , 𝜔 − 𝜔1) 
can be known by the computation of the response spectrum 

subjected to 𝑒𝑖𝜔1𝑡 applied at each degree of freedom of the 

system. With the knowledge of the power spectral density 

𝐒𝐰𝐰(𝜔), one can finally compute the power spectral 

density of the output dynamic response 𝐒𝐱𝐱(𝜔). 
The second way, i.e. the direct computation of the 

response characteristics, is based on Monte Carlo 

simulations. Thus, we need to generate samples of input 

forces. This can be performed by imposing the spectral 

density of the input with stochastic phases uniformly 

distributed over [0,2𝜋[. This procedure leads to a Gaussian 

process for the input. 

 

Practical computational scheme 

In order to compute stationary responses, we use an 

iterative spectral method previously defined and described 

for determinist external excitations [7-8] and random ones 

[9] in the context of rotor dynamics. To this end, the matrix 

equation (1) is rewritten in the modal basis obtained by 

considering the average characteristic of the system. This 

modal basis is computed with the mass matrix 𝐌 and the 

mean-time stiffness matrix 𝐊avg given by  

 

 𝐊avg =
1

𝑇𝑧
∫ 𝐊(𝑡)d𝑡
𝑇𝑧
0

 (15) 

 

It leads to the eigenfrequencies {𝜔𝑗} and the 

associated eigenvectors 𝐯𝑗  normalized by the mass matrix, 

such as: 

 

 𝐯𝑖
T𝐌𝐯𝑗 = 𝛿𝑖

𝑗
 (16) 

 𝐯𝑖
T𝐊avg𝐯𝑗 = 𝜔𝑗

2𝛿𝑖
𝑗
 (17) 

 

By introducing the modal coordinates vector 𝐪 with 

𝐱 = 𝐕𝐪 with 𝐕 = {𝐯𝑗}, and assuming that the damping 

matrix is proportional to the mass or stiffness matrices, we 

obtain the following equation 

 

 𝐦�̈� + 𝐜�̇� + 𝐤𝐪 + 𝐠(𝑡)𝐪 = 𝐬(𝑡) (18) 

 

In this equation, 𝐦, 𝐜 and𝐤 are diagonal matrices 

with the following values 𝑚𝑗𝑗 = 1, 𝑐𝑗𝑗 = 2𝜁𝑗𝜔𝑗  and 𝑘𝑗𝑗 =
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𝜔𝑗
2 respectively, with 𝜁𝑗 an equivalent modal damping 

coefficient for the 𝑗-th eigenmode. 𝐠(𝑡) represents the 

periodical counterpart of the modal stiffness matrix defined 

by 𝐕T(𝐊(𝑡) − 𝐊avg)𝐕. Notice that the matrix equation 

remains coupled by this parametric excitation. Finally and 

concerning the external forces, the only introduced ones are 

the stochastic processes 𝐬(𝑡) = 𝐕𝑇𝐰(𝑡). Transferring the 

parametrical terms to the right-hand side, equation (18) 

becomes 

 

 𝐦�̈� + 𝐜�̇� + 𝐤𝐪 = 𝐬(𝑡) − 𝐠(𝑡)𝐪(𝑡) (19) 

 

Assuming that the system is asymptotically stable, i.e. 

it is outside of parametric instabilities, free responses 

vanish as time increases. Then, by retaining only stationary 

terms, the Fourier transform of equation (19) leads to 

 

 (−𝜔2𝐦+ 𝑖𝜔𝐜 + 𝐤)�̂�(𝜔) = �̂�(𝜔) − [�̂� ∗ �̂�](𝜔) (20) 

 

where �̂�, �̂�, �̂� are the Fourier transform of 𝐪, 𝐬, 𝐠 

respectively, and ∗ denotes the convolution product. In 

order to solve equation (20), we retain an efficient and 

proven iterative procedure leading at the (𝑛 + 1)-th 

iteration  

 

 �̂�𝑛+1(𝜔) = �̂�0(𝜔) − 𝐇. [�̂� ∗ �̂�𝑛](𝜔) (21) 

 

In this equation, 𝐇(𝜔) is the modal frequency 

response complex functions matrix and �̂�0 is the initial 

response which corresponds to the modal frequency 

response of the time-invariant system. They are given by 

 

 𝐇(𝜔) = (−𝜔2𝐦+ 𝑖𝜔𝐜 + 𝐤)−1  

 �̂�0(𝜔) = 𝐇(𝜔)�̂�(𝜔) (21) 

 

This iterative procedure is applied until the error of 

the root mean squared values between two successive 

iterations is lower than a prescribed sufficiently small 

value. Up to now, and in various context, no convergence 

problem has been found. 

Finally, the frequency response 𝐘𝑗(𝜔1, 𝜔), equation 

(14), can be numerically obtained. In a same way, the 

spectral characteristics of the dynamic response can be also 

directly done by Monte Carlo simulations. 

 

ILLUSTRATIVE EXAMPLES 

 

The single-degree-of-freedom gear modelling 

As an application, a standard single-degree-of-

freedom spur parallel gear pair running at constant speed is 

introduced. The geared system is excited by both 

parametric excitation and a random external excitation. The 

parametric excitation is defined as a periodically time-

varying stiffness. Thus, the equation of motion is written as 

 

 𝑚�̈� + 𝑐�̇� + 𝑘(𝑡)̅̅ ̅̅ ̅̅ 𝑥 + 𝑔(𝑡)𝑥(𝑡) = 𝑤(𝑘)(𝑡) (22) 

 

where 𝑥 is the dynamic transmission error computed 

along the line of action, 𝑚 is an equivalent mass including 

inertia of wheels, 𝑘 is the time-averaged meshing stiffness 

acting along the line of action of the gear pair, 𝑔(𝑡) is the 

fluctuating part of the meshing stiffness (𝑘(𝑡) − 𝑘(𝑡)̅̅ ̅̅ ̅̅ ), 𝑐 is 

a viscous coefficient and 𝑤(𝑘) is a sample of the excitation 

process. Without loss of generality, one can rewrite this 

equation in the following form  

 

 �̈� + 2𝜁Ω�̇� + Ω2[1 + 𝛼𝑝(𝑡)]𝑥(𝑡) = 𝑠(𝑘)(𝑡) (23) 

 

In this equation, Ω denotes the modal frequency of the 

gear pair (extracted for the time-invariant system), 𝜁 is the 

equivalent viscous damping ratio, 𝑝(𝑡) is a periodical 

function at the meshing frequency 𝜔𝑧, 𝛼 governs the 

amplitude of the parametric excitation, and 𝑠(𝑘)(𝑡) is the 

random excitation divided by the equivalent mass. It 

consists on a zero-mean Gaussian white noise truncated 

over a frequency range ]04Ω] whose magnitude is 𝑆0. 

Finally, the Monte Carlo simulation is performed after a 

frequency discretization by introducing the following 

pseudo random process  

 

 𝑠(𝑘)(𝑡) = ∑ 𝐴𝑗cos(𝑗𝜔0𝑡 − 𝜑𝑗
(𝑘))

𝑗=𝑁
𝑗=1  (24) 

 

with 𝐴𝑗 = 2√Ω𝑆0/𝑁 and 𝜑𝑗
(𝑘) a random variable 

uniformly distributed over the interval [02π[. 
 

The power spectral density response 

A typical power spectral density (PSD) of a sample of 

the dynamic displacement response Sxx(𝜛) with 𝜛 = 𝜔/Ω, 

is shown in figure 1. The conditions for this response are 

𝑝(𝑡) = cos(𝜔𝑧𝑡) with 𝜔𝑧 = 1.3Ω, 𝛼 = 0.2, and 𝜁 = 2%. 

The ensemble average of the PSD with 500 samples is also 

shown in figure 2 for the same conditions.  

 

 

 

Sxx
(𝑘)(𝜛) 

 
𝜛 

Fig.1 Typical single sample of the PSD response 

 

 

 

Sxx(𝜛) 

 
𝜛 

Fig.2 Ensemble average of the PSD response 
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As the convolution product in equation (21) is 

directly performed without Fourier transform in the time 

domain, the calculation time was found to be very short 

(less then 1s CPU time on a usual laptop) which 

demonstrate the efficiency of the proposed method. As we 

can see, the filtered response of the broadband random 

process is clearly shown with the occurrence of three 

spectral peaks. The principal ones at 𝜛 = 1.0 corresponds 

to the direct excitation of the geared system at its modal 

frequency by the broadband excitation. The secondary 

peaks at 𝜛 = 0.3 and 𝜛 = 2.3 correspond to the parametric 

effect. More generally, the supplementary peaks can be 

predicted localized at 

 

 𝜔 = |𝜔𝑧 ±Ω| (24) 

 

Effect of the viscous damping ratio 

For the same conditions than the above results, but 

with two different damping ratio (𝜁 = 1% or 2%), we 

compare the ensemble-averaged PSD of the response in 

figure 3. As expected, it only affects all the spectral peaks 

in level in the same way of the dynamic response of a time 

constant dynamic system. 

 

Sxx(𝜛) 

 
𝜛 

Fig.3 Ensemble average of the PSD  

response for 𝜁 = 1% or 2%. 

 

Effect of the spectral content of the meshing stiffness 

In this new case the meshing stiffness is introduced as 

a periodic stiffness not purely harmonic. More precisely, 

𝑝(𝑡) = cos(𝜔𝑧𝑡) + 0.6cos(2𝜔𝑧𝑡), and figure 4 shows the 

result.  

  

Sxx(𝜛) 

 
𝜛 

Fig.4 Ensemble average of the PSD response  

for 𝑝(𝑡) = cos(𝜔𝑧𝑡) + 0.6cos(2𝜔𝑧𝑡) in thick line 

and for  𝑝(𝑡) = cos(𝜔𝑧𝑡) in dashed line. 

We can observe two differences. The first one is the 

clearly occurrence of a new spectral peak. It has been found 

centered around 𝜔 = |2𝜔𝑧 ± Ω|, i.e. for the example 𝜛 =
1.6. The second difference consists on higher levels clearly 

observed on all the spectral peaks. This result demonstrates 

the interaction between the spectral components, which is a 

typical parametric effect. 

 

Effect of a low parametric excitation frequency 

Now, we consider a meshing frequency for the 

parametric meshing stiffness lower than the modal 

excitation, i.e. 𝜔𝑧 = 0.3Ω. Figures 5 and 6 show the results 

for two parametric excitations, 𝑝(𝑡) = cos(𝜔𝑧𝑡) +
0.6cos(2𝜔𝑧𝑡) and 𝑝(𝑡) = cos(𝜔𝑧𝑡) + 0.6 cos(3𝜔𝑧𝑡). 

 

Sxx(𝜛) 

 
𝜛 

Fig.5 Ensemble average of the PSD response  

for 𝑝(𝑡) = cos(𝜔𝑧𝑡) + 0.6cos(2𝜔𝑧𝑡) 
 

 

Sxx(𝜛) 

 
𝜛 

Fig.5 Ensemble average of the PSD response  

for 𝑝(𝑡) = cos(𝜔𝑧𝑡) + 0.6cos(3𝜔𝑧𝑡) 
 

Once again, we can clearly distinguish the appearance 

of secondary peaks around the primary peak at 𝜛 = 1. For 

all the cases, these spectral peaks are localized at 

 

 𝜔 = |𝑛𝜔𝑧 ± Ω| (25) 

 

In this relation, n is a natural number. As we can 

observe in these figures, the dominant spectral peaks are 

related to the spectral content of the time-varying mesh 

stiffness parametric excitation. Thus, for the first 

simulation, the main amplifications occur for 𝑛 = 1 or 2 -

that is at 𝜛 = 1.3(= 𝜛𝑧 + 1), 0.7(= 𝜛𝑧 − 1), 1.6(=
2𝜛𝑧 + 1) and 0.4(= 2𝜛𝑧 − 1) and with a very low level 

at 0.1(= 3𝜛𝑧 + 1) and 1.9(= 3𝜛𝑧 + 1). The same result 

for the second case (𝑛 = 1 or 3 for the dominant peaks) -

that is localized at 𝜛 = 1.3(= 𝜛𝑧 + 1), 0.7(= 𝜛𝑧 − 1), 
1.9(= 3𝜛𝑧 + 1), and 0.1(= 3𝜛𝑧 − 1) and with a lower 

level at 𝜛 = 0.2, 0.4 and 2.2. 
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To conclude on these phenomena, the effect of the 

parametric excitation on the broadband external excitation 

can be easily understood by considering the iterative 

spectral method, equation (21), which clearly displays the 

convolution product effect on the spectral response. 

 

CONCLUSION 

 

This paper focused on a spectral approach to compute 

the stationary response of a geared transmission system 

modelling both excited by the periodical meshing stiffness 

internal parametric excitation and by broadband white noise 

external excitations. In this paper, the response PSD is 

formally expressed as a function of the input PSD via the 

bispectrum functions, which are the bilinear Fourier 

transform of the bitemporal impulse responses. The 

bispectrum or more directly the PSD response are computed 

using an iterative spectral method developed previously for 

parametrical systems under deterministic external 

excitation and for gear applications, the whining noise 

prediction. In the context of rotor dynamics, the case of 

external random excitation has been also considered. The 

efficiency of the proposed method in terms of accuracy and 

computation time required has been demonstrated. 

Concerning the dynamic behavior of the geared system, the 

multifrequency nature of responses has been exhibited. The 

main result is the occurrence of spectral peaks localized at 

the natural frequency and its sideband governed by the 

harmonics of the meshing frequency according to the 

equation (25). Finally, peak levels are mainly governed by 

damping ratio and the spectral content of the meshing 

stiffness. 
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