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ABSTRACT 

 

Gear power transmissions are responsible for 

upsetting vibroacoustic phenomena. The gear teeth 

compliance, the manufacturing errors and the tooth 

corrections lead to a periodic transmission error 

fluctuation and a parametric excitation associated to gear 

mesh stiffness fluctuation. Under operating conditions, 

these excitation sources generate dynamic mesh forces 

transmitted to the housing and responsible for the whining 

noise radiated from the gearbox. 

This work is focused on the multiphysics 

coupling between the gear mesh internal excitation and the 

external excitation associated with the upstream engine 

and downstream receiver system. These excitations mix 

the high frequencies of internal meshing excitations and 

low frequencies of the external excitations of the rotating 

shafts. The coupling between excitations generates an 

enrichment of the vibratory frequency response. 

The goal of this paper is to present the spectral 

iterative methodology used and the dynamic results 

induced by this coupling in the case of a root vacuum 

pump. 

 

INTRODUCTION / INDUSTRIAL CONTEXT 

 

Mechanical systems presenting gear transmission are 

excited by the meshing process. It is usually assumed that 

static transmission error (STE) and gear mesh stiffness 

fluctuations are responsible of noise radiated by the 

gearbox. STE is defined as the difference between actual 

position of the output toothed wheel and the position it 

would occupy if the gear drive were perfect [1]. Its 

characteristics depend on the instantaneous situations of 

the meshing tooth pairs resulting from tooth deflections 

and manufacturing errors. 

The STE is also responsible for variations of the 

meshing stiffness k(t) which is a parametric excitation. 

Under steady-state operating conditions, these excitations 

are periodic (fundamental frequency = mesh frequency 

fe=Z. fr, with Z the number of teeth). 

They generate dynamic mesh forces which are 

transmitted to the housing through wheel bodies, shafts 

and bearings. Housing vibratory state is directly related to 

the noise radiated from the gearbox (whining noise).  

``Internal" excitations generated by the meshing 

process may be coupled with ``external excitations" 

associated with torque variations of upstream and/or 

downstream devices.  

The aim of this paper is to present a dynamic 

analysis method of coupling through the vibro-acoustic 

study of a roots vacuum pump submitted to a fluid 

excitation. 

 

The roots vacuum pump is composed of two shafts 

powered by an engine associated with a 1:1 reverse spur 

gear that ensures the counter-rotative motion (see figure 1). 

The rotors have a figure-eight configuration lobes and are 

separated from one another and from the stator by a 

narrow gap. The roots vacuum pump is designed with 5 

pumping stages. The fundamental frequency of the 

``external" sources corresponds to the rotation frequency fr. 

Two different ``external excitations" are considered: 

 the variations of the fluid pumping torque at 

each stage of the rotors: C(t), 

 the variations of the engine torque: Cm(t). 

 

In this context, an ``iterative spectral method" has 

been developed [2-3] in order to solve effectively a system 

of parametric equations. This method is able to deal with 

high number of degrees of freedom system and wide 

frequency spectrum excitations. It has been used to 

analyze the whining noise generated by parallel axes mono 

[4-5-6-7] and multi-meshing [8] gearboxes. It has also 

been used in the case of an external random excitations 

with gyroscopic terms [9]. The objectives of this paper is 

to adapt this method to an additional excitation (here, the 

fluidic excitation of the pumping mechanism) that is 

coupled with the periodic parametric meshing excitation. 

In the first part of this paper, the definition and 

characterization of the excitations due to the gear 

* 



transmission are presented. Then, dynamic equations of 

the finite element model chosen, in the physical and modal 

basis, are expressed. Furthermore, the problem is 

expressed in the spectral domain and the interests of the 

method are highlighted. 

 

 
 

Fig.1 Example of figure 

 

 

STATIC TRANSMISSION ERROR AND MESH 

STIFFNESS FLUCTUATIONS  

 

The calculation of the Static Transmission Error (STE) of 

a gear transmission under a load F (corresponding to the 

global force applied to the meshing) is well-known [10]. 

The principle is to solve the static contact equation 

between geared wheels. The excitations are described in 

figure 2. 

For each angular position θ of the driving wheel, a 

kinematic analysis of the meshing process is used to 

determine the theoretical contact line over the teeth 

(potential position of the contact on the teeth in the plane 

of action). These lines are discretized, in order to 

introduce a compliance matrix H that links the teeth 

deflection under the load on the discrete points. The 

matrix H is constructed with a finite element model of the 

wheel and teeth in a prior calculation. All the physical 

phenomenon that contributes to the deflection of the teeth 

must be taken into account. The thiner the body of the 

wheel, the higher the influence of the wheel elasticity and 

the interaction between the teeth in contact [10]. The 

Hertz deformation is also taken into account in the matrix 

H. The tooth corrections the manufacturing errors are 

introduced through the vector e that describes the initial 

gap between the teeth. This vector e also takes into 

account the parallelism errors that comes from the 

elasto-static deformation of the whole gearbox. For each 

position θ, the resolution of the contact equations allows 

the evaluation of the STE δ(θ), and to the distributed loads 

P along the contact lines. The corresponding system of 

equations is: 

 

 
 

under the constraints: 

 

 
 

The evolution of the STE over the meshing 

period leads to the second parametric excitation of the 

gear transmission: the mesh stiffness which is a parametric 

excitation. It is written as the derivate of the force with 

respect to the STE, as follows: 

 

 
 

 
 

Fig. 2 Gear Transmission 

 

DYNAMIC EQUATIONS AND FINITE ELEMENT 

MODEL 

 

Linearization of the meshing force 

The differential equations that define the 

movement can be written for the generalized coordinates x 

as follows: 

 

 
 

with M the mass matrix, C the dumping matrix. The 

non-linear terms fNL(x,t) represents the meshing force that 

depends on the variations of the STE and mesh stiffness. 

FS represents the static force transmitted by the gear. 

The mesh stiffness k(t) is defined as follows: 

 

 
 

The linearized force FL(x,t) may be written using a 

first-order limited development of fNL(x,t) around the 

equilibrium position xs: 

 

 
 

fNL(x,t) being perdiodic, so is FL(x,t). Introducing the 

linearized force (6) in the equation (4), we can then write 

the differential equation with parametric coefficients as 

follows: 

 



 
 

Matrix equations in the physical basis 

The kinematic chain of the roots vacuum pump (2 rotors) 

and his gear transmission are discretized with a N-degrees 

of freedom finite element model. The matrix equations of 

the movement driving the vector x (physical degrees of 

freedom) is written as follows: 

 

 
 

with MEF and KEF the mass and stiffness matrices of the 

finite element model and C the dumping matrix taking 

into account through the Basile hypothesis, a posteriori. R 

is ``geometrical structure" vector that transforms the local 

tooth force (1 dimension) into the force located in the 

closest point of the finite element model of each rotor (12 

degrees of freedom in the case of beam 3D elements). It is 

also called ``coupling vector". k(t) is the meshing periodic 

stiffness and F(t) represents the time-dependent external. 

xs is a vector that corresponds to the static answer to the 

external static forces. Here, the STE can be written as 

follows: 

 

 
 

The Dynamic Transmission Error (DTE) is defined with 

the following scalar function: 

 

 
 

We set: 

 

 
 

with  the average mesh stiffness and g(t) the centered 

fluctuation of the mesh stiffness. We can then introduce 

the KAV matrix that corresponds to the global stiffness 

matrix (averaged over time): 

 

 
 

We can then summarize the matrix equations in the 

following form: 

 

 
 

with F the discretized position vector of the external 

excitation F(t) and γ(t) its temporal part. 

 

Modal equations 

The idea is to extend the solution on the modal basis 

determined with the average characteristic of the system. 

This modal basis is computed with the matrices MEF and 

KAV. It leads to the eigen frequencies ω(t) and eigen 

vectors Vk: 

 

 
 

such as: 

 

 
 

We can then define: 

 

 
 

With the modal coordinate q. 

The equation (13) can then be written as follows: 

 

 
 

The symmetrizing properties of the eigen modes leads us 

to the following form: 

 

 
 

with r = B-1R the structural vector projected in the modal 

basis, and Φ = B-1F the projection in the modal basis of 

the position vector of the fluctuating external forces. 

The parametric-coupled equations system of the 

mechanism can be written in the indexed following form: 

 

 
 

EQUATIONS IN THE SPECTRAL DOMAIN 

 

The first principle of the spectral method is to solve the 

coupled equations (19) in the spectral domain, keeping 

only the steady-state of the system (forced response). In 

fact, the free response is either a decreasing exponential 

(asymptotic stability) or an increasing exponential in the 

case of parametric instabilities. We assume that the 

dumping is high enough to be out of the parametric 

instabilities region. The Fourier transform of the coupled 



equations under the indexed form gives: 

 

 
 

or: 

 

 
 

With: 

 

 
 

and Q(ω), G(ω), K(ω) and E(s)(ω) respectively the Fourier 

transform of qk(t), g(t), k(t) and ∆(s)(t), and finally ⊗ the 

convolution product. 

 

The second principle of the method is to condense the N 

coupled equations on the line of action in order to explicit 

the Dynamic Transmission Error E(ω). The coupled 

equations system (21) is then turned into one and only 

equation: 

 

 
 

We define the dynamic error in the spectral domain: 

 

 
 

We then come to: 

 

 
 

For the sake of simplicity, we define: 

 

 
 

 
 

We introduce the following scalar function: 

 

 
 

We can then rewrite: 

 

 
 

We finally get the scalar equation: 

 

 
 

PRINCIPLE OF RESOLUTION 

 

The third principle of the spectral iterative method is to 

iterate according to the following schema: 

 

 
 

wth the following initial conditions: 

 

 
 

The termination criterion is based on the relative gap 

between two iterations: 

 

 
 

 

 



DYNAMIC MESH FORCE AND PHYSICAL 

RESPONSE 

 

The equation (30) and the iterative schema of the 

equations (31) and (32) directly give the dynamic 

transmission error on the meshing. The meshing overload 

associated with fD(t) is written as follows: 

 

 
 

In the spectral domain: 

 

 
 

In order to compute the response of a degree of freedom 

Xi(ω) of the system, it is necessary to go back to the 

physical basis through the matrix B-1 composed of eigen 

vectors Vi of the system (see equation (16)), and use the 

equation (21), which gives: 

 

 
 

We can then access to the physical basis and write the 

degrees of freedom i in the following way: 

 

 
 

CONCLUSION 

 

This article presents a methodology for solving 

vibro-acoustic problems coupling internal parametric 

periodic excitations associated with the gear mesh process 

and fluctuating external forces. The specific case of a roots 

vacuum pump composed of a 1:1 ration gear transmission 

and submitted to fluidic external torque variations is 

presented. The spectral iterative method is characterized 

by: 

 a use of the modal basis of the system, which is 

determined by characteristics of the system 

averaged over time 

 a resolution in the spectral domain, under 

steady-state operating conditions 

 a condensation of the N-equations system into a 

single equation using the ``structural geometric" 

vector expressed in the modal basis 

 a simple iterative schema 

 

This efficient method permits a fast resolution in the 

spectral domain of a system excited by coupled high 

parametric frequencies due to a gear transmission and low 

frequencies due to a fluidic pumping torque on the stage 

of the rotors. 
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