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Chatter vibrations are a major limitation for machining operations and lead to productivity reduction, low tool life and poor surface finish. When structural chatter occurs, the whole machine is vibrating and the feed drive behaviour cannot be neglected. Indeed, the proportional gain of the velocity loop is a key parameter influencing the damping provided by the drives and it can be adjusted to increase the stability limit. The objective of this article is to analyse the effect of the feed drive control parameters on the structural chatter vibrations. The process stability is studied with stability lobe diagrams and with root locus techniques applying the Padé formulas to approximate the regenerative effect delay by a rational function. This way, a single degree of freedom turning process is analysed from different point of views and the impact of the feed drive parameters is presented.

INTRODUCTION

The structural chatter vibrations can limit the productivity of large machine tools when the dynamic stiffness of the machine is lower than the one required by the cutting process [START_REF] Munoa | Chatter suppression techniques in metal cutting[END_REF]. At the design stage, the machine structures can be optimized to increase the static stiffness and the natural frequencies but it is difficult to estimate the damping which is one of the most important dynamic parameters to predict the stability. As result, some structural modes can be poorly damped and cause chatter vibrations. In order to increase the dynamic stiffness and hence, the stability, some authors proposed the introduction of external devices to add damping to the machine's structure. Passive absorbers increase the damping of the critical mode and are characterized by their relatively low cost and simplicity [START_REF] Den | Mechanical Vibrations[END_REF] [START_REF] Sims | Vibration absorbers for chatter suppression: A new analytical tuning methodology[END_REF]. However, they have problems in situations in which the dynamic parameters change during the process. The employment of self-tuned passive dampers is a recently reported alternative [START_REF] Munoa | Design of self-tuneable mass damper for modular fixturing systems[END_REF]. Nevertheless, the use of active dampers overcomes all these problems since they actuate over a range of frequencies using a feedback control algorithm [START_REF] Cowley | Active dampers for machine tools[END_REF] [6] [START_REF] Munoa | Chatter suppression in ram type travelling column milling machines using a biaxial inertial actuator[END_REF]. Another interesting solution was presented by the authors [START_REF] Munoa | Active suppression of structural chatter vibrations using machine drives and accelerometers[END_REF], where the damping is increased by an additional feedback loop in the machine's feed drives. To obtain an efficient result, an accelerometer was located close to the cutting point and the active force was introduced by means of the feed drives, avoiding the necessity of an external device. Hence, the ability of the feed drives to suppress structural chatter vibrations has been demonstrated, but the introduction of an additional control loop with the external accelerometer can induce instability issues [START_REF] Beudaert | Limiting factors for the active suppression of structural chatter vibrations using machine's drives[END_REF]. Structural chatter vibrations are characterized by low frequency modes ) with mode shapes inducing vibrations that can be measured by the drives encoders. Various studies analysed the control tuning of the feed drives from different point of view such as drive static accuracy, bandwidth, tracking accuracy, disturbance rejection, and provided general feed drive commissioning rules [START_REF] Groß | Electrical feed drives in automation[END_REF] [START_REF] Zirn | Machine Tool Analysis -Modelling, Simulation and control of machine tool manipulators[END_REF]. A review of the work related to active damping of drive vibrations caused by the machine movements has been presented in [START_REF] Altintas | Machine Tool Feed Drives[END_REF]. These active damping techniques are focused on the reduction of tool tip vibrations which are caused by inertial loads but the chatter vibrations are not considered. New feed drive control strategies are presented in the literature to suppress vibrations but the classical cascade control structure used on the feed drive can also have a significant impact on the dynamic stiffness of the machines. Significant variations of the structural chatter stability limit have been observed experimentally when the feed drives tuning parameters are changed. Initial investigations were carried out by Alter and Tsao [START_REF] Alter | Stability of turning processes with actively controlled linear motor feed drives[END_REF] regarding the interaction between the control system of a feed linear motor and the stability of the turning process. More recently, Albertelli et al. [START_REF] Albertelli | The effects of dynamic interaction between machine tool subsystems on cutting process stability[END_REF] suggested a control tuning criteria that maximize cutting process stability. In this work, the capacity of adding damping by means of the usual control loops of feed drives is analysed. For that purpose, the effect of each loop gain on the machine dynamics is analysed and after that, their impact on the stability is studied.

MODELLING

To analyse the effect of the control gains on the feed drives dynamics and on the process stability, a simple single degree of freedom model that allows understanding the effect of each parameter is studied.

Feed drive modelling

Figure 1 presents schematically the single degree of freedom system with a vibration mode on a turning tool realizing an orthogonal cutting operation. A closed loop control of the velocity and position of the mass 𝑚 1 is simulated to represent the behavior of a linear motor. 𝑚 2 represents the vibrating structure.

Figure 1: Schematic model of the system.

The system is represented by the following equations: 𝑋 2 (𝑚 2 𝑠 2 + 𝐶𝑠 + 𝐾) = 𝑋 1 (𝐶𝑠 + 𝐾) -𝐹 𝐶

(1)

𝑋 1 (𝑚 1 𝑠 2 + 𝐶𝑠 + 𝐾) = 𝑋 2 (𝐶𝑠 + 𝐾) + 𝐹 𝐷 (2)

𝐹 𝐷 = -𝑋 1 (𝑠 + 𝐾 𝑣 )𝐾 𝑝 (1 + 1 𝑇 𝑖 𝑠 ) (3) 
where 𝑚 1 and 𝑚 2 are the first and second mass linked by a rigidity 𝐾 and a damping 𝐶. The controller of the linear motor is composed of a velocity loop with a proportional gain 𝐾 𝑝 and an integral time 𝑇 𝑖 . The position loop is composed of another proportional gain 𝐾 𝑣 . The drive is generating a force 𝐹 𝐷 on the first mass while the cutting force 𝐹 𝐶 is applied to the second mass.

The proportional gain of the velocity loop 𝐾 𝑝 is the main parameter to define the bandwidth of the drive 𝑓 𝑏𝑤 in Hz. 𝑓 𝑏𝑤 should be adjusted according to the first natural frequency 𝑓 0 of the machine and as a rule of thumb it can be chosen as 𝑓 𝑏𝑤 = 0.8 * 𝑓 0 . Using 80% of the natural frequency, the optimum damping is approximately achieved, for the usual mass ratio (𝑚 2 < 𝑚 1 ) and damping of the machine tools (𝜉 = 2 -7%). Once this parameter is selected the velocity proportional gain 𝐾 𝑝 can be calculated with Eq. 4, considering a rigid system of mass 𝑚 1 + 𝑚 2 . Eq. 5 provides a damping of 70% to the integral pole and Eq. 6 ensures not to have overshoot on the position loop. This tuning will be referred as optimum damping for the rest of the article.

𝐾 𝑝 = 2𝜋(𝑚 1 + 𝑚 2 )𝑓 𝑏𝑤 (𝑁/(𝑚/𝑠) (4) 
𝑇 𝑖 = 1 𝜋 𝑓 𝑏𝑤 (𝑠) (5) 
𝐾 𝑣 = 𝜋 𝑓 𝑏𝑤 2 . 60 1000 ((𝑚/𝑚𝑖𝑛)/𝑚𝑚) (6) 
The integral term is important for disturbance rejection, whereas the position gain 𝐾 𝑣 increases the tracking accuracy. However, when the velocity feedforward is used, the position loop has a secondary importance. In general, the given formulas provide a satisfactory starting point for the commissioning of feed drives.

In this study, two different objectives should be fulfilled by the control parameters. On the one hand, the axis response should be satisfying in terms of settling time, overshoot and disturbance rejection [11] [12]. On the other hand, the process stability should be as high as possible.

Process model

An orthogonal turning process is modelled as a control system with feedback loop as introduced by Merrit [START_REF] Merrit | Theory of self-excited machine-tool chatter. Contribution to machine-tool chatter. Research 1[END_REF] (Fig. 2). The static chip thickness ℎ 𝑠 is modulated by the current vibration 𝑋 2 and by the vibration occurred in the previous revolution 𝑋 2 𝑒 -𝜏𝑠 with 𝜏 the time needed to have a complete revolution of the workpiece. The process is characterized by a specific cutting coefficient 𝐾 𝑓 and a width of cut 𝑏. The dynamics of the structure including the control loops is represented by the transfer function Φ(𝑠) relating the cutting force 𝐹 𝐶 to the tool displacement 𝑋 2 .

ℎ(𝑠) = ℎ 𝑠 (𝑠) + 𝑋 2 (1 -𝑒 -𝜏𝑠 ) (7) 
𝐹 𝐶 = ℎ(𝑠) 𝐾 𝑓 𝑏 (8) ℎ(𝑠) ℎ 𝑠 (𝑠) = 1 1+𝐾 𝑓 𝑏(1-𝑒 -𝜏𝑠 )𝛷(𝑠) (9) 
Figure 2: Regenerative chatter model [START_REF] Merrit | Theory of self-excited machine-tool chatter. Contribution to machine-tool chatter. Research 1[END_REF].

The analysis of the characteristic equation 9 allows the evaluation of the process stability using the classical chatter theory [17] [18]. Considering the Laplace variable as 𝑠 = 𝜎 + 𝑗𝑤 𝑐 , the absolute minimum of the stability diagram can be obtained analytically with the following formula:

𝑏 𝑎𝑏𝑠 = -1
2𝐾 𝑓 𝐺(𝑤 𝑐 ) [START_REF] Iglesias | Optimisation of face milling operations with structural chatter using a stability model based process planning methodology[END_REF] with 𝐺 being the real part of the transfer function Φ = G + iH and 𝑤 𝑐 the chatter frequency.

Structure dynamics with control parameters

Previous section shows that the stability is related to the transfer function Φ(𝑠) of the machine structure between the cutting force 𝐹 𝐶 and the tool displacement 𝑋 2 . The literature offers several studies in which the structure is modeled as an ideal mass-spring-damper system which is subject to an oscillatory cutting force. This model results in a second order transfer function. Such approximation dismisses the effect of the feed drives on the transfer function, since they are considered as fixed. However, the feed drives control parameters can modify considerably the overall response of the tool. Thus, the present work adds the drive velocity and position control loops to the ideal mass-spring-damper model which represents the vibrating structure (Fig. 1). Therefore the expression of the transfer function Φ(𝑠) when taking into account the control loops of the linear drive is given in Eq. 11.

For the rest of the article, the following numerical value will be used: 𝑚 1 = 5522.6 𝑘𝑔, 𝑚 2 = 788 𝑘𝑔, 𝐾 = 28 10 6 𝑁/𝑚, 𝐶 = 14854 𝑁/(𝑚/𝑠), 𝐾 𝑓 = 1500 10 6 𝑁/𝑚². If the linear motor is stopped (𝑚 1 is fixed), these numerical values lead to a vibration mode at 𝑓 0 = 30Hz with 5% damping.

ANALYSIS OF THE EFFECT OF THE CONTROL PARAMETERS ON THE PROCESS STABILITY

The present section is focused on the study of the effect of the feed drive control parameters on the cutting capability of the machine. The absolute stability limit will be evaluated for different values of the feed drives control parameters.

As well, the overall shape of the stability lobes and the process root locus will be analysed for specific parameter sets.

Effects of Kp, Ti, Kv on the absolute stability limit

To evaluate the effect of the feed drive control parameters on the stability limits, the minimum width of cut is calculated with the equations 10 and 11.

𝛷(𝑠) =

(𝑠+𝐾 𝑣 )𝐾 𝑝 (1+ Figure 3 shows the evolution of the minimum stability limit as a function of the integral time and the position proportional gain, for two velocity loop gain cases. When the velocity proportional gain is adequately tuned with the commissioning rule given in section 2.1, it can be seen that the absolute width of cut is increased compared to the fixed drive configuration except when the integral time is too low. In this configuration, the pole related to the integral term becomes poorly damped and is at the origin of the chatter vibration. The root locus of the velocity loop presented in Fig. 6 shows that effect when the locus of the mechanical and integral term poles are interacting. Following the standard commissioning rules of section 2.1 for the tuning of the control parameters, this situation should not appear. With an adequate 𝐾 𝑝 gain, a large range of 𝑇 𝑖 and 𝐾 𝑣 combination gives high value of the absolute limit of stability. However, when the proportional gain of the velocity loop is too high, for example 𝐾 𝑝 = 3 10 6 𝑁/(𝑚/𝑠), 𝑏 𝑎𝑏𝑠 is significantly lower because the feed drive control does not provide any additional damping to the mechanical pole.

1 𝑇 𝑖 𝑠 )+𝑚 1 𝑠 2 +𝐶𝑠+𝐾 (𝑚 2 𝑠 2 +𝐶𝑠+𝐾)(𝑠+𝐾 𝑣 )𝐾 𝑝 (1+ 1 𝑇 𝑖 𝑠 )+𝑠 2 (𝑚 1 𝑚 2 𝑠 2 +(𝑚 1 +𝑚 2 )𝐶𝑠+(𝑚 1 +𝑚 2 )𝐾) (11)
Figure 4 shows the evolution of the absolute stability limit with conservative values of the integral time and position proportional gain (𝐾 𝑣 = 2 (𝑚/min )/𝑚𝑚 and 𝑇 𝑖 = 0.010 𝑠). In this configuration, the optimum value of 𝐾 𝑝 for process stability is close to 𝐾 𝑝 = 10 6 𝑁/(𝑚/𝑠) given by Eq. 4. 

Stability lobes

The stability lobes diagram is a widely employed tool for designing proper cutting process parameters [START_REF] Dombovari | General milling stability model for cylindrical tools[END_REF]. These stability lobes can be obtained using the frequency domain method presented by Altintas in [START_REF] Altintas | Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design[END_REF]. In this work, the lobes diagram will be used to show the stability prediction variations employing different control parameters sets. Apart from the optimum damping tuning proposed in the section 2.1, it is possible to set the gains to maximize the minimum of the real part 𝐺 to increase 𝑏 𝑎𝑏𝑠 , similarly to the tuning proposed by Sims [START_REF] Sims | Vibration absorbers for chatter suppression: A new analytical tuning methodology[END_REF] to adjust passive dampers.

In the present work, the four parameters sets presented in Fig. 5a are compared: 1-The feed drive is rigidly blocked so 𝑚 1 is fixed 𝑥 1 = 𝑥1 = 𝑥1 = 0 (mechanical brake is activated). 2-Control parameters are set with high gains. 3-Optimum damping tuning is used. 4-The control parameters are optimized to maximize the minimum stability limit. The colour code defined in Fig. 5a will be used for the rest of the figures. Figure 5b shows that the feed drive can have a significant impact on the Frequency Response Function. It can be seen that when the control gains are set too high, the feed drive behaves more as a rigid element and is not able to provide extra damping to the system. However, when they are properly tuned, the flexibility of the critical mode can be considerably reduced (curve 2 in green). This improvement on the frequency response function involves an increase of the stability of the machine. Analysing figure 5c, it can be observed that the minimum stability limit is higher when parameters are set to maximize the negative real part of the frequency response function (curve 4 in red). Nevertheless, although this parameter set provides interesting chatter stability properties, this kind of optimization leads to poor performance in terms of overshoot and vibrations during drive movements as presented in the section 4.

Root locus of the turning process

In section 3.2, the process stability is studied with stability lobe diagrams in the frequency domain. A parallel analysis can be carried out using root locus techniques. This analysis allows to have a different view of the process stability problem and to know which pole of the system is causing the instability. From Eq. 9, the characteristic equation that determines the stability of the turning process is:

1 + 𝐾 𝑓 𝑏(1 -𝑒 -𝜏𝑠 )𝛷(𝑠) = 0 ( 12 
)
As presented by Olgac & Hosek [START_REF] Olgac | A new perspective and analysis for regenerative machine tool chatter[END_REF] and by Ganguli [START_REF] Ganguli | Chatter reduction through active vibration damping[END_REF], the stability limit of the process can be obtained using a root locus. The term (1 -𝑒 -𝜏𝑠 ) has an infinite number of roots which can be approximated as a rational function by the Padé approximation. The accuracy of the approximation is linked to the order of the polynomials. For the chatter stability analysis, the Padé order should be chosen based on the expected chatter frequency and on the minimum spindle speed that should be studied. Indeed, higher is the lobe order, lower is the accuracy of the approximation. In this work, a Padé approximation of order 20 has been employed.

Increasing 𝜏 or decreasing the spindle speed vertically compresses the root locus as the zeros are moving along the imaginary axis, Fig. 6. The zeros located at a lower frequency than the mechanical pole corresponds to the stability lobes which cannot be made unstable at this spindle speed. For 20, 25 and 30 rev/s, the lower branch of the root locus is never crossing the imaginary axis. Similarly, in Fig. 5c, the lobe 0 is not limiting the stability for those spindle speeds.

As shown in Fig. 7, the infinite number of roots associated with the delay term (1 -𝑒 -𝜏𝑠 ) correspond to the infinite number of lobes which can be crossed at a given spindle speed. The next figures, shows two different zones in the stability lobes diagram. At 50 rev/s, the locus of the mechanical pole is at the origin of the process instability. Hence, the higher damping provided by an adequate tuning of the control parameters can increase significantly the stability limit. However, in the sweet spot zone of the lobe, at 28.3 rev/s (Fig. 8), the large improvement of the mechanical pole damping has no effect because the stability limit is given by the delay terms which are almost not affected. Figure 8: Root locus of turning process at 28.3 rev/s for fixed drive and adequately tuned drive. Thanks to this analysis, it can be concluded that a different strategy should be used when the stability limit is not governed by the locus of the mechanical mode. For this area of the lobes, the control feed drive gains have little effect on the stability. In the literature, other control strategies such as the delayed resonator [START_REF] Olgac | A new perspective and analysis for regenerative machine tool chatter[END_REF] and delayed position feedback [START_REF] Bilbao-Guillerna | Control laws for chatter suppression in milling using an inertial actuator[END_REF] [START_REF] Mancisidor | Optimal control laws for chatter suppression using inertial actuator in milling processes[END_REF] have been presented for cases in which the instability is not related to the mechanical pole and the increase of damping does not improve significantly the stability limit.

FEED DRIVE BEHAVIOUR

The control tuning should fulfil different objectives at the same time: the process stability and the motion performance. The root locus of the velocity loop shows the evolution of the system poles as a function of the proportional gain of the velocity loop 𝐾 𝑝 (Fig. 9). The colour code corresponds to the integral time of the parameter sets of Fig. 5a. For the given 𝐾 𝑝 of the parameter sets, the location of the system poles is marked by the squares. For this analysis, the cutting process and the position loop are not considered. When the proportional gain of the velocity loop is too high, the feed drive does not provide significant damping improvement to the mechanical pole. Indeed, the system pole corresponding to the mechanical mode gets close to the mechanical zero which has 6% damping. With the optimum gain 𝐾 𝑝 in green, the drive can give a damping of 10.5% to the mechanical pole. When the integral time is too low, the shape of the root locus changes drastically: the circular locus related to the integral term interacts with the locus of the mechanical pole and the damping of the pole related to the integral time is significantly reduced (red curve). This effect corresponds to the important reduction of the absolute stability limit in the top plot of Figure 3. The dark green root locus corresponds to the adequate axis tuning which aims at providing the optimum damping for the mechanical pole and important damping to the integral pole. To analyse the axis response with the different tuning, Fig. 10 shows the motor and tool tip velocity and position bode plots. General commissioning rules allow a +3dB overshot on the motor side knowing that the vibration will be amplified on the tool tip. However, the position loop is closed on top of the velocity loop and the position bode plot should not exceed the 0dB line. Comparing the 3 parameters sets, the adequate axis tuning gives lower gain magnification while preserving a high bandwidth for the velocity loop (Fig. 10a &10b). On the position loop, the low value of 𝐾 𝑣 for the red curve leads to a really low bandwidth. However, if the gain 𝐾 𝑣 is increased the absolute stability limit decreases quickly. Hence, the parameter sets 4 (in red) for the optimization of the absolute width of cut cannot fulfil both stability and motion performances. Regarding the parameter set 2 (in blue), the high tuning of the gain is detrimental both for the stability limit and for the motion response of the drive. Practical tuning on the machines are realized looking only at the motor response because no measuring system is available to get the response of the tool tip. Hence, this kind of high gain tuning can often be encountered on the machine tools because the bode plots on the motor side (Fig. 10a &10c) does not reflect large amplification of the vibration on the tool tip (Fig. 10b &10d).

With the proposed model, the key parameter influencing the absolute stability limit is the proportional gain of the velocity loop. Using the formulas (Eq. 4, 5 & 6) to obtain the 𝐾 𝑝 , 𝑇 𝑖 and 𝐾 𝑣 parameters a good balance is achieved regarding chatter stability limit and the motion drive characteristics.

CONCLUSION

This article studied the effect of the feed drive control parameters on the process stability limit. The model used is simple but it allows evaluating the effect of the key parameters. First, it can be seen that the control tuning of the feed drive can have an impact on the process stability limit. The proportional gain of the position loop 𝐾 𝑣 has a secondary effect compared to the velocity loop controller (𝐾 𝑝 and 𝑇 𝑖 ). For process stability purpose, the integral time should not be too low and the proportional gain should be adjusted to provide the highest damping. When 𝐾 𝑝 is too high, the control does not provide additional damping which is detrimental both for chatter and for control performance. This situation can occur on the machine tools because the bode plots on the motor side does not put in evidence the problem related to the vibration on the tool side. The optimum damping tuning rules provided in section 2.1 allow to obtain parameters for the velocity and position loops which are interesting both for the chatter stability and for the motion performances. To go further, a mechatronic model of the machine tool combining Finite Element model of the structure and feed drive simulation could be used to extend this analysis to complex structures.
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 6 Figure 6: Root locus of the stability process for the fixed drive configuration.
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 7 Figure 7: Root locus of turning process at 50 rev/s for fixed drive and adequately tuned drive.
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 9 Figure 9: Root locus of the velocity loop.
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 10 Figure 10: Bode plots of the position and velocity loop at the motor and tool tip points.
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