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Abstract

This paper deals with feature selection procedures for spatial point pro-
cesses intensity estimation. We consider regularized versions of estimating
equations based on Campbell theorem derived from two classical functions:
Poisson likelihood and logistic regression likelihood. We provide general con-
ditions on the spatial point processes and on penalty functions which ensure
consistency, sparsity and asymptotic normality. We discuss the numerical
implementation and assess finite sample properties in a simulation study. Fi-
nally, an application to tropical forestry datasets illustrates the use of the
proposed methods.

1 Introduction

Spatial point pattern data arise in many contexts where interest lies in describing
the distribution of an event in space. Some examples include the locations of trees in
a forest, gold deposits mapped in a geological survey, stars in a cluster star, animal
sightings, locations of some specific cells in retina, or road accidents (see e.g. Møller
and Waagepetersen, 2004; Illian et al., 2008; Baddeley et al., 2015). Interest in
methods for analyzing spatial point pattern data is rapidly expanding accross many
fields of science, notably in ecology, epidemiology, biology, geosciences, astronomy,
and econometrics.

One of the main interests when analyzing spatial point pattern data is to estimate
the intensity which characterizes the probability that a point (or an event) occurs in
an infinitesimal ball around a given location. In practice, the intensity is often as-
sumed to be a parametric function of some measured covariates (e.g. Waagepetersen,
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2007; Guan and Loh, 2007; Møller and Waagepetersen, 2007; Waagepetersen, 2008;
Waagepetersen and Guan, 2009; Guan and Shen, 2010; Coeurjolly and Møller, 2014).
In this paper, we assume that the intensity function ρ is parameterized by a vector
β and has a log-linear specification

ρ(u;β) = exp(β>z(u)), (1.1)

where z(u) = {z1(u), . . . , zp(u)}> are the p spatial covariates measured at location
u and β = {β1, . . . , βp}> is a real p-dimensional parameter. When the intensity is a
function of many variables, covariates selection becomes inevitable.

Variable selection in regression has a number of purposes: provide regularization
for good estimation, obtain good prediction, and identify clearly the important vari-
ables (e.g. Fan and Lv, 2010; Mazumder et al., 2011). Identifying a set of relevant
features from a list of many features is in general combinatorially hard and com-
putationally intensive. In this context, convex relaxation techniques such as lasso
(Tibshirani, 1996) have been effectively used for variable selection and parameter
estimation simultaneously. The lasso procedure aims at minimizing:

− logL(β) + λ‖β‖1

where L(β) is the likelihood function for some model of interest. The `1 penalty
shrinks coefficients towards zero, and can also set coefficients to be exactly zero. In
the context of variable selection, the lasso is often thought of as a convex surrogate
for the best-subset selection problem:

− logL(β) + λ‖β‖0.

The `0 penalty ‖β‖0 =
∑p

i=1 I(|βi| > 0) penalizes the number of nonzero coefficients
in the model.

Since lasso can be suboptimal in model selection for some cases (e.g. Fan and Li,
2001; Zou, 2006; Zhang and Huang, 2008), many regularization methods then have
been developped, motivating to go beyond `1 regime to more aggressive non-convex
penalties which bridges the gap between `1 and `0 such as SCAD (Fan and Li, 2001)
and MC+ (Zhang, 2010).

More recently, there were several works on implementing variable selection for
spatial point processes in order to reduce variance inflation from overfitting and bias
from underfitting. Thurman and Zhu (2014) focused on using adaptive lasso to se-
lect variables for inhomogeneous Poisson point processes. This study then later was
extended to the clustered spatial point processes by Thurman et al. (2015) who es-
tablished the asymptotic properties of the estimates in terms of consistency, sparsity,
and normality distribution. They also compared their results employing adaptive
lasso to SCAD and adaptive elastic net in the simulation study and application,
using both regularized weighted and unweighted estimating equations derived from
the Poisson likelihood. Yue and Loh (2015) considered modelling spatial point data
with Poisson, pairwise interaction point processes, and Neyman-Scott cluster mod-
els, incorporated lasso, adaptive lasso, and elastic net regularization methods into
generalized linear model framework for fitting these point models. Note that the
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study by Yue and Loh (2015) also used an estimating equation derived from the
Poisson likelihood. However, Yue and Loh (2015) did not provide the theoretical
study in detail. Although, in application, many penalty functions have been em-
ployed to regularization methods for spatial point processes intensity estimation,
the theoretical study is still restricted to some specific penalty functions.

In this paper, we propose regularized versions of estimating equations based on
Campbell formula derived from the Poisson and the logistic regression likelihoods to
estimate the intensity of the spatial point processes. We consider both convex and
non-convex penalty functions. We provide general conditions on the penalty function
to ensure an oracle property and a central limit theorem. Thus, we extend the work
by Thurman et al. (2015) and obtain the theoretical results for more general penalty
functions and under less restrictive assumptions on the asymptotic covariance matrix
(see Remark 3). The logistic regression method proposed by Baddeley et al. (2014) is
as easy to implement as the Poisson likelihood method, but is less biased since it does
not require deterministic numerical approximation. We prove that the estimates
obtained by regularizing the logistic regression likelihood can also satisfy asymptotic
properties (see Remark 2). Our procedure is straightforward to implement since we
only need to combine the spatstat R package with the two R packages glmnet and
ncvreg.

The remainder of the paper is organized as follows. Section 2 gives backgrounds
on spatial point processes. Section 3 describes standard parameter estimation meth-
ods when there is no regularization, while regularization methods are developed in
Section 4. Section 5 develops numerical details induced by the methods introduced
in Sections 3-4. Asymptotic properties following the work by Fan and Li (2001)
for generalized linear models are presented in Section 6. Section 7 investigates the
finite-sample properties of the proposed method in a simulation study, followed by
an application to tropical forestry datasets in Section 8, and finished by conclusion
and discussion in Section 9. Proofs of the main results are postponed to Appendices
A-C.

2 Spatial point processes

Let X be a spatial point process on Rd. Let D ⊂ Rd be a compact set of Lebesgue
measure |D| which will play the role of the observation domain. We view X as
a locally finite random subset of Rd, i.e. the random number of points of X in
B, N(B), is almost surely finite whenever B ⊂ Rd is a bounded region. Suppose
x = {x1, x2, . . . , xm} denotes a realization of X observed within a bounded region
D, where xi, i = 1, . . . ,m represent the locations of the observed points, and m is
the number of points. Note that m is random and 0 ≤ m <∞. If m = 0 then x = ∅
is the empty point pattern in D. For further background material on spatial point
processes, see for example Møller and Waagepetersen (2004).

3



2.1 Moments

The first and second-order properties of a point process are described by intensity
measure and second-order factorial moment measure. First-order properties of a
point process indicate the spatial distribution events in domain of interest. The
intensity measure µ on Rd is given by

µ(B) = EN(B), B ⊆ Rd.

If the intensity measure µ can be written as

µ(B) =

∫
B

ρ(u)du, B ⊆ Rd,

where ρ is a nonnegative function, then ρ is called the intensity function. If ρ is
constant, then X is said to be homogeneous or first-order stationary with intensity
ρ. Otherwise, it is said to be inhomogeneous. We may interpret ρ(u)du as the
probability of occurence of a point in an infinitesimally small ball with centre u and
volume du.

Second-order properties of a point process indicate the spatial coincidence of
events in the domain of interest. The second-order factorial moment measure α(2)

on Rd × Rd is given by

α(2)(C) = E
6=∑

u,v∈X

I[(u, v) ∈ C], C ⊆ Rd × Rd.

where the 6= over the summation sign means that the sum runs over all pairwise
different points u, v in X, and I[.] is the indicator function. If the second-order
factorial moment measure α(2) can be written as

α(2)(C) =

∫ ∫
I[(u, v) ∈ C]ρ(2)(u, v)dudv, C ⊆ Rd × Rd,

where ρ(2) is a nonnegative function, then ρ(2) is called the second-order product
density. Intuitively, ρ(2)(u, v)dudv is the probability for observing a pair of points
from X occuring jointly in each of two infinitesimally small balls with centres u, v
and volume du, dv. Fore more detail description of moment measures of any order,
see appendix C in Møller and Waagepetersen (2004).

Suppose X has intensity function ρ and second-order product density ρ(2). Camp-
bell theorem (see e.g. Møller and Waagepetersen, 2004) states that, for any function
k : Rd → [0,∞) or k : Rd × Rd → [0,∞)

E
∑
u∈X

k(u) =

∫
k(u)ρ(u)du (2.1)

E
6=∑

u,v∈X

k(u, v) =

∫ ∫
k(u, v)ρ(2)(u, v)dudv. (2.2)
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In order to study whether a point process deviates from independence (i.e., Pois-
son point process), we often consider the pair correlation function given by

g(u, v) =
ρ(2)(u, v)

ρ(u)ρ(v)

when both ρ and ρ(2) exist with the convention 0/0 = 0. For a Poisson point process
(Section 2.2.1), we have ρ(2)(u, v) = ρ(u)ρ(v) so that g(u, v) = 1. If, for example,
g(u, v) > 1 (resp. g(u, v) < 1), this indicates that pair of points are more likely
(resp. less likely) to occur at locations u, v than for a Poisson point process with the
same intensity function as X. In the same spirit, we can define ρ(k) the k-th order
intensity function (see Møller and Waagepetersen, 2004, for more details). If for any
u, v, g(u, v) depends only on u − v, the point process X is said to be second-order
reweighted stationary.

2.2 Modelling the intensity function

We discuss spatial point process models specified by deterministic or random in-
tensity function. Particularly, we consider two important model classes, namely
Poisson and Cox processes. Poisson point processes serve as a tractable model class
for no interaction or complete spatial randomness. Cox processes form major classes
for clustering or aggregation. For conciseness, we focus on the two later classes of
models. We could also have presented determinantal point processes (e.g. Lavancier
et al., 2015) which constitute an interesting class of repulsive point patterns with
explicit moments. This has not been further investigated for sake of brevity. In this
paper, we focus on log-linear models of the intensity function given by (1.1).

2.2.1 Poisson point process

A point process X on D is a Poisson point process with intensity function ρ, assumed
to be locally integrable, if the following conditions are satisfied:

1. for any B ⊆ D with 0 ≤ µ(B) <∞, N(B) ∼ Poisson(µ(B)),

2. conditionally on N(B), the points in X ∩ B are i.i.d. with joint density pro-
portional to ρ(u), u ∈ B.

A Poisson point process with a log-linear intensity function is also called a modu-
lated Poisson point process (e.g. Møller and Waagepetersen, 2007; Waagepetersen,
2008). In particular, for Poisson point processes, ρ(2)(u, v) = ρ(u)ρ(v), and g(u, v) =
1,∀u, v ∈ D.

2.2.2 Cox processes

A Cox process is a natural extension of a Poisson point process, obtained by consid-
ering the intensity function of the Poisson point process as a realization of a random
field. Suppose that Λ = {Λ(u) : u ∈ D} is a nonnegative random field. If the
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conditional distribution of X given Λ is a Poisson point process on D with intensity
function Λ, then X is said to be a Cox process driven by Λ (see e.g. Møller and
Waagepetersen, 2004). There are several types of Cox processes. Here, we consider
two types of Cox processes: a Neyman-Scott point process and a log Gaussian Cox
process.

Neyman-Scott point processes. Let C be a stationary Poisson process
(mother process) with intensity κ > 0. Given C, let Xc, c ∈ C, be independent
Poisson processes (offspring processes) with intensity function

ρc(u;β) = exp(β>z(u))k(u− c;ω)/κ,

where k is a probability density function determining the distribution of offspring
points around the mother points parameterized by ω. Then X = ∪c∈CXc is a
special case of an inhomogeneous Neyman-Scott point process with mothers C and
offspring Xc, c ∈ C. The point process X is a Cox process driven by Λ(u) =
exp(β>z(u))

∑
c∈C k(u− c, ω)/κ (e.g. Waagepetersen, 2007; Coeurjolly and Møller,

2014) and we can verify that the intensity function of X is indeed

ρ(u;β) = exp(β>z(u)).

One example of Neyman-Scott point process is the Thomas process where

k(u) = (2πω2)−d/2 exp(−‖u‖2/(2ω2))

is the density for Nd(0, ω
2Id). Conditionally on a parent event at location c, children

events are normally distributed around c. Smaller values of ω correspond to tighter
clusters, and smaller values of κ correspond to fewer number of parents. The param-
eter vector ψ = (κ, ω)> is referred to as the interaction parameter as it modulates
the spatial interaction (or, dependence) among events.

Log Gaussian Cox process. Suppose that log Λ is a Gaussian random field.
Given Λ, the point process X follows Poisson process. Then X is said to be a log
Gaussian Cox process driven by Λ (Møller and Waagepetersen, 2004). If the random
intensity function can be written as

log Λ(u) = β>z(u) + φ(u)− σ2/2,

where φ is a zero-mean stationary Gaussian random field with covariance function
c(u, v;ψ) = σ2R(v − u; ζ) which depends on parameter ψ = (σ2, ζ)> (Møller and
Waagepetersen, 2007; Coeurjolly and Møller, 2014). The intensity function of this
log Gaussian Cox process is indeed given by

ρ(u;β) = exp(β>z(u)).

One example of correlation function is the exponential form (e.g. Waagepetersen
and Guan, 2009)

R(v − u; ζ) = exp(−‖u− v‖/ζ), for ζ > 0.

Here, ψ = (σ2, ζ)> constitutes the interaction parameter vector, where σ2 is the
variance and ζ is the correlation scale parameter.
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3 Parametric intensity estimation

One of the standard ways to fit models to data is by maximizing the likelihood of the
model for the data. While maximum likelihood method is feasible for parametric
Poisson point process models (Section 3.1), computationally intensive Markov chain
Monte Carlo (MCMC) methods are needed otherwise (Møller and Waagepetersen,
2004). As MCMC methods are not yet straightforward to implement, estimating
equations based on Campbell theorem have been developed (see e.g. Waagepetersen,
2007; Møller and Waagepetersen, 2007; Waagepetersen, 2008; Guan and Shen, 2010;
Baddeley et al., 2014). We review the estimating equations derived from the Poisson
likelihood in Section 3.2-3.3 and from the logistic regression likelihood in Section 3.4.

3.1 Maximum likelihood estimation

For an inhomogeneous Poisson point process with intensity function ρ parameterized
by β, the likelihood function is

L(β) =
∏

u∈X∩D

ρ(u;β) exp

(∫
D

(
1− ρ(u;β)

)
du

)
,

and the log-likelihood function of β is

`(β) =
∑

u∈X∩D

log ρ(u;β)−
∫
D

ρ(u;β)du, (3.1)

where we have omitted the constant term
∫
D

1du = |D|. As the intensity function
has log-linear form (1.1), (3.1) reduces to

`(β) =
∑

u∈X∩D

β>z(u)−
∫
D

exp(β>z(u))du.

Rathbun and Cressie (1994) showed that the maximum likelihood estimator is con-
sistent, asymptotically normal and asymptotically efficient as the sample region goes
to Rd.

3.2 Poisson likelihood

Let β0 be the true parameter vector. By applying Campbell theorem (2.1) to the
score function, i.e. the gradient vector of `(β) denoted by `(1)(β), we have

E`(1)(β) = E
∑

u∈X∩D

z(u)−
∫
D

z(u) exp(β>z(u))du

=

∫
D

z(u) exp(β>0 z(u))du−
∫
D

z(u) exp(β>z(u))du

=

∫
D

z(u)(exp(β>0 z(u))− exp(β>z(u)))du = 0
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when β = β0. So, the score function of the Poisson log-likelihood appears to be an
unbiased estimating equation, even though X is not a Poisson point process. The
estimator maximizing (3.1) is referred to as the Poisson estimator. The properties of
the Poisson estimator have been carefully studied. Schoenberg (2005) showed that
the Poisson estimator is still consistent for a class of spatio-temporal point process
models. The asymptotic normality for a fixed observation domain was obtained by
Waagepetersen (2007) while Guan and Loh (2007) established asymptotic normality
under an increasing domain assumption and for suitable mixing point processes.

Regarding the parameter ψ (see Section 2.2.2), Waagepetersen and Guan (2009)
studied a two-step procedure to estimate both β and ψ, and they proved that, under
certain mixing conditions, the parameter estimates (β̂, ψ̂) enjoy the properties of
consistency and asymptotic normality.

3.3 Weighted Poisson likelihood

Although the estimating equation approach derived from the Poisson likelihood is
simpler and faster to implement than maximum likelihood estimation, it potentially
produces a less efficient estimate than that of maximum likelihood (Waagepetersen,
2007; Guan and Shen, 2010) because information about interaction of events is ig-
nored. To regain some lack of efficiency, Guan and Shen (2010) proposed a weighted
Poisson log-likelihood function given by

`(w;β) =
∑

u∈X∩D

w(u) log ρ(u;β)−
∫
D

w(u)ρ(u;β)du, (3.2)

where w(·) is a weight surface. By regarding (3.2), we see that a larger weight w(u)
makes the observations in the infinitesimal region du more influent. By Campbell
theorem, `(1)(w;β) is still an unbiased estimating equation. In addition, Guan
and Shen (2010) proved that, under some conditions, the parameter estimates are
consistent and asymptotically normal.

Guan and Shen (2010) showed that a weight surface w(·) that minimizes the trace
of the asymptotic variance-covariance matrix of the estimates maximizing (3.2) can
result in more efficient estimates than Poisson estimator. In particular, the proposed
weight surface is

w(u) = {1 + ρ(u)f(u)}−1,

where f(u) =
∫
D
{g(‖v − u‖;ψ)− 1}du and g(·) is the pair correlation function.

For a Poisson point process, note that f(u) = 0 and hence w(u) = 1, which re-
duces to maximum likelihood estimation. For general point processes, the weight
surface depends on both the intensity function and the pair correlation function,
thus incorporates information on both inhomogeneity and dependence of the spatial
point processes. When clustering is present so that g(v − u) > 1, then f(u) > 0
and hence the weight decreases with ρ(u). The weight surface can be achieved by
setting ŵ(u) = {1 + ρ̂(u)f̂(u)}−1. To get the estimate ρ̂(u), β is substituted by
β̃ given by Poisson estimates, that is, ρ̂(u) = ρ(u; β̃). Alternatively, ρ̂(u) can also
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be computed nonparametrically by kernel method. Furthermore, Guan and Shen
(2010) suggessted to approximate f(u) by K(r) − πr2, where K(·) is the Ripley’s
K−function estimated by

K̂(r) =

6=∑
u,v∈X∩D

I[‖u− v‖ ≤ r]

ρ̂(u)ρ̂(v)|D ∩Du−v|
.

Guan et al. (2015) extended the study by Guan and Shen (2010) and considered
more complex estimating equations. Specifically, w(u)z(u) is replaced by a function
h(u;β) in the derivative of (3.2) with respect to β. The procedure results in a
slightly more efficient estimate than the one obtained from (3.2). However, the
computational cost is more important and since we combine estimating equations
and penalization methods (see Section 4.1), we have not considered this extension.

3.4 Logistic regression likelihood

Although the estimating equations discussed in Section 3.2 and 3.3 are unbiased,
these methods do not, in general, produce unbiased estimator in practical imple-
mentations. Waagepetersen (2008) and Baddeley et al. (2014) proposed another
estimating function which is indeed close to the score of the Poisson log-likelihood
but is able to obtain less biased estimator than Poisson estimates. In addition,
their proposed estimating equation is in fact the derivative of the logistic regression
likelihood.

Following Baddeley et al. (2014), we define the weighted logistic regression log-
likelihood function by

`(w;β) =
∑

u∈X∩D

w(u) log

(
ρ(u;β)

δ(u) + ρ(u;β)

)
−
∫
D

w(u)δ(u) log

(
ρ(u;β) + δ(u)

δ(u)

)
du, (3.3)

where δ(u) is a nonnegative real-valued function. Its role as well as an explana-
tion of the name ’logistic method’ will be explained further in Section 5.2. Note
that the score of (3.3) is an unbiased estimating equation. Waagepetersen (2008)
showed asymptotic normality for Poisson and certain clustered point processes for
the estimator obtained from a similar procedure. Furthermore, the methodology
and results were studied by Baddeley et al. (2014) considering spatial Gibbs point
processes.

To determine the optimal weight surface w(·) for logistic method, we follow Guan
and Shen (2010) who minimized the trace of the asymptotic covariance matrix of
the estimates. We obtain the weight surface defined by

w(u) =
ρ(u) + δ(u)

δ(u){1 + ρ(u)f(u)}
,

where ρ(u) and f(u) can be estimated as in Section 3.3.
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4 Regularization techniques

This section discusses convex and non-convex regularization methods for spatial
point process intensity estimation.

4.1 Methodology

Regularization techniques were introduced as alternatives to stepwise selection for
variable selection and parameter estimation. In general, a regularization method
attempts to maximize the penalized log-likelihood function `(θ) − η

∑p
j=1 pλj(|θj|),

where `(θ) is the log-likelihood function of θ, η is the number of observations, and
pλ(θ) is a nonnegative penalty function parameterized by a real number λ ≥ 0.

Let `(w;β) be either the weighted Poisson log-likelihood function (3.2) or the
weighted logistic regression log-likelihood function (3.3). In a similar way, we define
the penalized weighted log-likelihood function given by

Q(w;β) = `(w;β)− |D|
p∑
j=1

pλj(|βj|), (4.1)

where |D| is the volume of the observation domain, which plays the same role as
the number of observations η in our setting, λj is a nonnegative tuning parameter
corresponding to βj for j = 1, . . . , p, and pλ is a penalty function described in details
in the next section.

4.2 Penalty functions and regularization methods

For any λ ≥ 0, we say that pλ(·) : R+ → R is a penalty function if pλ is a nonnegative
function with pλ(0) = 0. Examples of penalty function are the

• `2 norm: pλ(θ) = 1
2
λθ2,

• `1 norm: pλ(θ) = λθ,

• Elastic net: for 0 < γ < 1, pλ(θ) = λ{γθ + 1
2
(1− γ)θ2},

• SCAD: for any γ > 2, pλ(θ) =


λθ if θ ≤ λ
γλθ− 1

2
(θ2+λ2)

γ−1 if λ ≤ θ ≤ γλ
λ2(γ2−1)
2(γ−1) if θ ≥ γλ,

• MC+: for any γ > 1, pλ(θ) =

{
λθ − θ2

2γ
if θ ≤ γλ

1
2
γλ2 if θ ≥ γλ.

The first and second derivatives of the above functions are given by Table 1. It is to
be noticed that p′λ is not differentiable at θ = λ, γλ (resp. θ = γλ) for SCAD (resp.
for MC+) penalty.
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Table 1: The first and the second derivatives of several penalty functions.

Penalty p′λ(θ) p′′λ(θ)

`2 λθ λ

`1 λ 0

Elastic net λ{(1− γ)θ + γ} λ(1− γ)

SCAD


λ if θ ≤ λ
γλ−θ
γ−1 if λ ≤ θ ≤ γλ

0 if θ ≥ γλ


0 if θ < λ
−1
γ−1 if λ < θ < γλ

0 if θ > γλ

MC+

{
λ− θ

γ
if θ ≤ γλ

0 if θ ≥ γλ

{
−1
γ

if θ < γλ

0 if θ > γλ

As a first penalization technique to improve ordinary least squares, ridge re-
gression (e.g. Hoerl and Kennard, 1988) works by minimizing the residual sum of
squares subject to a bound on the `2 norm of the coefficients. As a continuous shrink-
age method, ridge regression achieves its better prediction through a bias-variance
trade-off. Ridge can also be extended to fit generalized linear models. However,
the ridge cannot reduce model complexity since it always keeps all the predictors
in the model. Then, it was introduced a method called lasso (Tibshirani, 1996),
where it employs `1 penalty to obtain variable selection and parameter estimation
simultaneously. Despite lasso enjoys some attractive statistical properties, it has
some limitations in some senses (Fan and Li, 2001; Zou and Hastie, 2005; Zou, 2006;
Zhang and Huang, 2008; Zhang, 2010), making huge possibilities to develop other
methods. In the scenario where there are high correlations among predictors, Zou
and Hastie (2005) proposed an elastic net technique which is a convex combination
between `1 and `2 penalties. This method is particularly useful when the number
of predictors is much larger than the number of observations since it can select or
eliminate the strongly correlated predictors together.

The lasso procedure suffers from nonnegligible bias and does not satisfy an oracle
property asymptotically (Fan and Li, 2001). Fan and Li (2001) and Zhang (2010),
among others, introduced non-convex penalties to get around these drawbacks. The
idea is to bridge the gap between `0 and `1, by trying to keep unbiased the estimates
of nonzero coefficients and by shrinking the less important variables to be exactly
zero. The rationale behind the non-convex penalties such as SCAD and MC+ can
also be understood by considering its first derivative (see Table 1). They start by
applying the similar rate of penalization as the lasso, and then continuously relax
that penalization until the rate of penalization drops to zero. However, employing
non-convex penalties in regression analysis, the main challenge is often in the min-
imization of the possible non-convex objective function when the non-convexity of
the penalty is no longer dominated by the convexity of the likelihood function. This
issue has been carefully studied. Fan and Li (2001) proposed the local quadratic ap-
proximation (LQA). Zou and Li (2008) proposed a local linear approximation (LLA)
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which yields an objective function that can be optimized using least angle regres-
sion (LARS) algorithm (Efron et al., 2004). Finally, Breheny and Huang (2011) and
Mazumder et al. (2011) investigated the application of coordinate descent algorithm
to non-convex penalties.

Table 2: Details of some regularization methods.

Method
∑p

j=1 pλj(|βj|)

Ridge
∑p

j=1
1
2
λβ2

j

Lasso
∑p

j=1 λ|βj|

Enet*
∑p

j=1 λ{γ|βj|+
1
2
(1− γ)β2

j }

AL*
∑p

j=1 λj|βj|

Aenet*
∑p

j=1 λj{γ|βj|+
1
2
(1− γ)β2

j }

SCAD
∑p

j=1 pλ(|βj|), with pλ(θ) =


λθ if (θ ≤ λ)
γλθ− 1

2
(θ2+λ2)

γ−1 if (λ ≤ θ ≤ γλ)
λ2(γ2−1)
2(γ−1) if (θ ≥ γλ)

MC+
∑p

j=1

{(
λ|βj| −

β2
j

2γ

)
I(|βj| ≤ γλ) + 1

2
γλ2I(|βj| ≥ γλ)

}
* Enet, AL and Aenet, respectively, stand for elastic net, adaptive

lasso and adaptive elastic net

In (4.1), it is worth emphasizing that we allow each direction to have a different
regularization parameter. By doing this, the `1 and elastic net penalty functions
are extended to the adaptive lasso (e.g. Zou, 2006) and adaptive elastic net (e.g.
Zou and Zhang, 2009). Table 2 details the regularization methods considered in this
study.

5 Numerical methods

We present numerical aspects in this section. For nonregularized estimation, there
are two approaches that we consider. Weighted Poisson regression is explained in
Section 5.1, while logistic regression is reviewed in Section 5.2. Penalized estimation
procedure is done by employing coordinate descent algorithm (Section 5.3). We
separate the use of the convex and non-convex penalties in Section 5.3.1 and 5.3.2.

5.1 Weighted Poisson regression

Berman and Turner (1992) developed a numerical quadrature method to approxi-
mate maximum likelihood estimation for an inhomogeneous Poisson point process.
They approximated the likelihood by a finite sum that had the same analytical form
as the weighted likelihood of generalized linear model with Poisson response. This
method was then extended to Gibbs point processes by Baddeley and Turner (2000).
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Suppose we approximate the integral term in (3.1) by Riemann sum approximation∫
D

ρ(u;β)du ≈
M∑
i

viρ(ui;β)

where ui, i = 1, . . . ,M are points in D consisting of the m data points and M −m
dummy points. The quadrature weights vi > 0 are such that

∑
i vi = |D|. To

implement this method, the domain is firstly partitioned into M rectangular pixels
of equal area, denoted by a. Then one dummy point is placed in the center of
the pixel. Let ∆i be an indicator whether the point is an event of point process
(∆i = 1) or a dummy point (∆i = 0). Without loss of generality, let ui, . . . , um
be the observed events and um+1, . . . , uM be the dummy points. Thus, the Poisson
log-likelihood function (3.1) can be approximated and rewritten as

`(β) ≈
M∑
i

vi{yi log ρ(ui;β)− ρ(ui;β)}, where yi = v−1i ∆i. (5.1)

Equation (5.1) corresponds to a quasi Poisson log-likelihood function. Maximizing
(5.1) is equivalent to fitting a weighted Poisson generalized linear model, which can
be performed using standard statistical software. Similarly, we can approximate the
weighted Poisson log-likelihood function (3.2) using numerical quadrature method
by

`(w;β) ≈
M∑
i

wivi{yi log ρ(ui;β)− ρ(ui;β)}. (5.2)

where wi is the value of the weight surface at point i. The estimate ŵi is obtained as
suggested by Guan and Shen (2010). The similarity beetween (5.1) and (5.2) allows
us to compute the estimates using software for generalized linear model as well.
This fact is in particular exploited in the ppm function in the spatstat R package
(Baddeley and Turner, 2005; Baddeley et al., 2015) with option method="mpl".
To make the presentation becomes more general, the number of dummy points is
denoted by nd2 for the next sections.

5.2 Logistic regression

To perform well, the Berman-Turner approximation often requires a quite large
number of dummy points. Hence, fitting such generalized linear models can be
computationally intensive, especially when dealing with a quite large number of
points. When the unbiased estimating equations are approximated using determin-
istic numerical approximation as in Section 5.1, it does not always produce unbiased
estimator. To achieve unbiased estimator, we estimate (3.3) by

`(w;β) ≈
∑

u∈X∩D

w(u) log

(
ρ(u;β)

δ(u) + ρ(u;β)

)
+
∑

u∈D∩D

w(u) log

(
δ(u)

ρ(u;β) + δ(u)

)
,

(5.3)
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where D is dummy point process independent of X and with intensity function δ.
The form (5.3) is related to the estimating equation defined by Baddeley et al. (2014,
eq. 7). Besides that, we consider this form since if we apply Campbell theorem to
the last term of (5.3), we obtain

E
∑

u∈D∩D

w(u) log

(
δ(u)

ρ(u;β) + δ(u)

)
=

∫
D

w(u)δ(u) log

(
ρ(u;β) + δ(u)

δ(u)

)
du,

which is exactly what we have in the last term of (3.3). In addition, conditional on
X∪D, (5.3) is the weighted likelihood function for Bernoulli trials, y(u) = 1{u ∈ X}
for u ∈ X ∪ D, with

P{y(u) = 1} =
ρ(u;β)

δ(u) + ρ(u;β)
=

exp
(
− log δ(u) + β>z(u)

)
1 + exp

(
− log δ(u) + β>z(u)

) .
Precisely, (5.3) is a weighted logistic regression with offset term − log δ. Thus,
parameter estimates can be straightforwardly obtained using standard software for
generalized linear models. This approach is in fact provided in the spatstat package
in R by calling the ppm function with option method="logi" (Baddeley et al., 2014,
2015).

In spatstat, the dummy point process D generates nd2 points in average in
D from a Poisson, binomial, or stratified binomial point process. Baddeley et al.
(2014) suggested to choose δ(u) = 4m/|D|, where m is the number of points (so,
nd2 = 4m). Furthermore, to determine δ, this option can be considered as a starting
point for a data-driven approach (see Baddeley et al., 2014, for further details).

5.3 Coordinate descent algorithm

LARS algorithm (Efron et al., 2004) is a remarkably efficient method for computing
an entire path of lasso solutions. For linear models, the computational cost is of
order O(Mp2), which is the same order as a least squares fit. Coordinate descent al-
gorithm (Friedman et al., 2007, 2010) appears to be a more competitive algorithm for
computing the regularization paths by costs O(Mp) operations. Therefore we adopt
cyclical coordinate descent methods, which can work really fast on large datasets
and can take advantage of sparsity. Coordinate descent algorithms optimize a target
function with respect to a single parameter at a time, iteratively cycling through all
parameters until convergence criterion is reached. We detail this for some convex
and non-convex penalty functions in the next two sections. Here, we only present
the coordinate descent algorithm for fitting generalized weighted Poisson regression.
A similar approach is used to fit penalized weighted logistic regression.

5.3.1 Convex penalty functions

Since `(w;β) given by (5.2) is a concave function of the parameters, the Newton-
Raphson algorithm used to maximize the penalized log-likelihood function can be
done using the iteratively reweighted least squares (IRLS) method. If the current
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estimate of the parameters is β̃, we construct a quadratic approximation of the
weighted Poisson log-likelihood function using Taylor’s expansion:

`(w;β) ≈ `Q(w;β) = − 1

2M

M∑
i

νi(y
∗
i − z>i β)2 + C(β̃), (5.4)

where C(β̃) is a constant, y∗i are the working response values and νi are the weights,

νi = wivi exp(z>i β̃)

y∗i = z>i β̃ +
yi − exp(z>i β̃)

exp(z>i β̃)
.

Regularized Poisson linear model works by firstly identifying a decreasing se-
quence of λ ∈ [λmin, λmax], for which starting with minimum value of λmax such that
the entire vector β̂ = 0. For each value of λ, an outer loop is created to compute
`Q(w;β) at β̃. Secondly, a coordinate descent method is applied to solve a penalized
weighted least squares problem

min
β∈Rp

Ω(β) = min
β∈Rp
{−`Q(w;β) +

p∑
j=1

pλj(|βj|)}. (5.5)

The coordinate descent method is explained as follows. Suppose we have the
estimate β̃l for l 6= j, l, j = 1, . . . , p. The method consists in partially optimizing
(5.5) with respect to βj, that is

min
βj

Ω(β̃1, . . . , β̃j−1, βj, β̃j+1, . . . , β̃p).

Friedman et al. (2007) have provided the form of the coordinate-wise update for
penalized regression using several penalties such as nonnegative garrote (Breiman,
1995), lasso, elastic net, fused lasso (Tibshirani et al., 2005), group lasso (Yuan and
Lin, 2006), Berhu penalty (Owen, 2007), and LAD-lasso (Wang et al., 2007a). For
instance, the coordinate-wise update for the elastic net, which embraces the ridge
and lasso regularization by setting respectively γ to 0 or 1, is

β̃j ←
S

(
M∑
i=1

νjzij(yi − ỹ(j)i ), λγ

)
M∑
i=1

νjz
2
ij + λ(1− γ)

, (5.6)

where ỹ
(j)
i = β̃0 +

∑
l 6=j zilβ̃l is the fitted value excluding the contribution from

covariate zij, and S(z, λ) is the soft-thresholding operator with value

S(z, λ) = sign(z)(|z| − λ)+ =


z − λ if z > 0 and λ < |z|
z + λ if z < 0 and λ < |z|
0 if λ ≥ |z|.

(5.7)
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The update (5.6) is repeated for j = 1, . . . , p until convergence. Coordinate de-
scent algorithm for several convex penalties is implemented in the R package glmnet

(Friedman et al., 2010). For (5.6), we can set γ = 0 to implement ridge and γ = 1
to lasso, while we set 0 < γ < 1 to apply elastic net regularization. For adaptive
lasso, we follow Zou (2006), take γ = 1 and replace λ by λj = λ/|β̃j|τ , where β̃ is

an initial estimate, say β̃(ols) or β̃(ridge), and τ is a positive tuning parameter.
To avoid the computational evaluation for choosing τ , we follow Zou (2006, Section
3.4) and Wasserman and Roeder (2009) who also considered τ = 1, so we choose
λj = λ/|β̃j(ridge)|, where β̃(ridge) is the estimates obtained from ridge regression.
Implementing adaptive elastic net follows along similar lines.

5.3.2 Non-convex penalty functions

Breheny and Huang (2011) have investigated the application of coordinate descent
algorithm to fit penalized generalized linear model using SCAD and MC+, for which
the penalty is non-convex. Mazumder et al. (2011) also studied the coordinate-
wise optimization algorithm in linear models considering more general non-convex
penalties.

Mazumder et al. (2011) concluded that, for a known current estimate θ̃, the
univariate penalized least squares function Qu(θ) = 1

2
(θ − θ̃)2 + pλ(|θ|) should be

convex to ensure that the coordinate-wise procedure converges to a stationary point.
Mazumder et al. (2011) found that this turns out to be the case for SCAD and MC+
penalty, but it cannot be satisfied by bridge (or power) penalty and some cases of
log-penalty.

Breheny and Huang (2011) derived the solution of coordinate descent algorithm
for SCAD and MC+ in generalized linear models cases, and it is implemented in
the ncvreg package of R. Let β̃l be a vector containing estimates β̃l for l 6= j,
l, j = 1, . . . , p, and we wish to partially optimize (5.5) with respect to βj. If we

define g̃j =
∑M

i=1 νjzij(yi − ỹ
(j)
i ) and η̃j =

∑M
i=1 νjz

2
ij, the coordinate-wise update for

SCAD is

β̃j ←


S(g̃j ,λ)

η̃j
if |g̃j| ≤ λ(η̃j + 1)

S(g̃j ,γλ/(γ−1))
η̃j−1/(γ−1) if λ(η̃j + 1) ≤ |g̃j| ≤ η̃jλγ

g̃j
η̃j

if |g̃j| ≥ η̃jλγ,

for any γ > maxj(1 + 1/η̃j). Then, for γ > maxj(1/η̃j) and the same definition of
g̃j and η̃j, the coordinate-wise update for MC+ is

β̃j ←

{
S(g̃j ,λ)

η̃j−1/γ if |g̃j| ≤ η̃jλγ
g̃j
η̃j

if |g̃j| ≥ η̃jλγ,

where S(z, λ) is the soft-thresholding operator given by (5.7).

5.4 Selection of regularization or tuning parameter

It is worth noticing that coordinate descent procedures (and other computation pro-
cedures computing the penalized likelihood estimates) rely on the tuning parameter
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λ so that the choice of λ is also becoming an important task. The estimation using
a large value of λ tends to have smaller variance but larger biases, whereas the es-
timation using a small value of λ leads to have zero biases but larger variance. The
trade-off between the biases and the variances yields an optimal choice of λ (Fan
and Lv, 2010).

To select λ, it is reasonable to identify a range of λ values extending from a
maximum value of λ for which all penalized coefficients are zero to λ = 0 (e.g.
Friedman et al., 2010; Breheny and Huang, 2011). After that, we select a λ value
which optimizes some criterion. By fixing a path of λ ≥ 0, we select the tuning
parameter λ which minimizes WQBIC(λ), a weighted version of the BIC criterion,
defined by

WQBIC(λ) = −2`(w; β̂(λ)) + s(λ) log |D|,

where s(λ) =
∑p

j=1 I{β̂j(λ) 6= 0} is the number of selected covariates with nonzero
regression coefficients and |D| is the observation volume which represents the sample
size. For linear regression models, Y = X>β̂+ε, Wang et al. (2007b) proposed BIC-
type criterion for choosing λ by

BIC(λ) = log
‖Y −X>β̂(λ)‖2

η
+

1

η
log(η)DF(λ),

where η is the number of observations and DF(λ) is the degree of freedom. This
criterion is consistent, meaning that, it selects the correct model with probability
approaching 1 in large samples when a set of candidate models contains the true
model. Their findings is in line with the study of Zhang et al. (2010) for which the
criterion was presented in more general way, called generalized information criterion
(GIC). The criterion WQBIC is the specific form of GIC proposed by Zhang et al.
(2010).

The selection of γ for SCAD and MC+ is another task, but we fix γ = 3.7 for
SCAD and γ = 3 for MC+, following Fan and Li (2001) and Breheny and Huang
(2011) respectively, to avoid more complexities.

6 Asymptotic theory

In this section, we present the asymptotic results for the regularized weighted Poisson
likelihood estimator when considering X as a d-dimensional point process observed
over a sequence of observation domain D = Dn, n = 1, 2, . . . which expands to Rd as
n → ∞. The regularization parameters λj = λn,j for j = 1, . . . , p are now indexed
by n. These asymptotic results also hold for the regularized unweighted Poisson
likelihood estimator. For sake of conciseness, we do not present the asymptotic
results for the regularized logistic regression estimate. The results are very similar.
The main difference is lying in the conditions (C.6) and (C.7) for which the matrices
An,Bn, and Cn have a different expression (see Remark 2).
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6.1 Notation and conditions

We recall the classical definition of strong mixing coefficients adapted to spatial
point processes (e.g. Politis et al., 1998): for k, l ∈ N ∪ {∞} and q ≥ 1, define

αk,l(q) = sup{|P(A ∩B)− P(A)P(B)| : A ∈ F (Λ1), B ∈ F (Λ2),

Λ1 ∈ B(Rd),Λ2 ∈ B(Rd), |Λ1| ≤ k, |Λ2| ≤ l, d(Λ1,Λ2) ≥ q}, (6.1)

where F is the σ-algebra generated by X ∩ Λi, i = 1, 2, d(Λ1,Λ2) is the minimal
distance between sets Λ1 and Λ2, and B(Rd) denotes the class of Borel sets in Rd.

Let β0 = {β01, . . . , β0s, β0(s+1), . . . , β0p}> = {β>01,β>02}> = (β>01,0
>)> denote the

p-dimensional vector of true coefficient values, where β01 is the s-dimensional vector
of nonzero coefficients and β02 is the (p-s)-dimensional vector of zero coefficients.

We define the p× p matrices An(w;β0),Bn(w;β0), and Cn(w;β0) by

An(w;β0) =

∫
Dn

w(u)z(u)z(u)>ρ(u;β0)du,

Bn(w;β0) =

∫
Dn

w(u)2z(u)z(u)>ρ(u;β0)du, and

Cn(w;β0) =

∫
Dn

∫
Dn

w(u)w(v)z(u)z(v)>{g(u, v)− 1}ρ(u;β0)ρ(v;β0)dvdu.

Consider the following conditions (C.1)-(C.8) which are required to derive our
asymptotic results, where o denotes the origin of Rd:

(C.1) For every n ≥ 1, Dn = nE = {ne : e ∈ E}, where E ⊂ Rd is convex, compact,
and contains o in its interior.

(C.2) We assume that the intensity function has the log-linear specification given
by (1.1) where β ∈ Θ and Θ is an open convex bounded set of Rp.

(C.3) The covariates z and the weight function w satisfy

sup
u∈Rd

||z(u)|| <∞ and sup
u∈Rd

|w(u)| <∞.

(C.4) There exists an integer t ≥ 1 such that for k = 2, . . . , 2+t, the product density
ρ(k) exists and satisfies ρ(k) <∞.

(C.5) For the strong mixing coefficients (6.1), we assume that there exists some
t̃ > d(2 + t)/t such that α2,∞(q) = O(q−t̃).

(C.6) There exists a p × p positive definite matrix I0 such that for all sufficiently
large n, |Dn|−1{Bn(w;β0) + Cn(w;β0)} ≥ I0.

(C.7) There exists a p × p positive definite matrix I′0 such that for all sufficiently
large n, we have |Dn|−1An(w;β0) ≥ I′0.
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(C.8) The penalty function pλ(·) is nonnegative on R+, continuously differentiable
on R+\{0} with derivative p′λ assumed to be a Lipschitz function on R+\{0}.
Furthermore, given (λn,j)n≥1, for j = 1, . . . , s, we assume that there exists
(r̃n,j)n≥1, where |Dn|1/2r̃n,j →∞ as n→∞, such that, for n sufficiently large,
pλn,j

is thrice continuously differentiable in the ball centered at |β0j| with
radius r̃n,j and we assume that the third derivative is uniformly bounded.

Under the condition (C.8), we define the sequences an, bn and cn by

an = max
j=1,...s

|p′λn,j
(|β0j|)|, (6.2)

bn = inf
j=s+1,...,p

inf
|θ|≤εn
θ 6=0

p′λn,j
(θ), for εn = K1|Dn|−1/2, (6.3)

cn = max
j=1,...s

|p′′λn,j
(|β0j|)|. (6.4)

These sequences an, bn and cn, detailed in Table 3 for the different methods consid-
ered in this paper, play a central role in our results. Even if this will be discussed
later in Section 6.3, we specify right now that we require that an|Dn|1/2 → 0,
bn|Dn|1/2 →∞ and cn → 0.

Table 3: Details of the sequences an, bn and cn for a given regularization method.

Method an bn cn

Ridge λn max
j=1,...s

{|β0j|} 0 λn

Lasso λn λn 0

Enet λn

[
(1− γ) max

j=1,...s
{|β0j|}+ γ

]
γλn (1− γ)λn

AL max
j=1,...s

{λn,j} min
j=s+1,...p

{λn,j} 0

Aenet max
j=1,...s

{λn,j
(
(1− γ)|β0j|+ γ

)
} γ min

j=s+1,...p
{λn,j} (1− γ) max

j=1,...,s
{λn,j}

SCAD 0* λn
** 0*

MC+ 0* λn − K1

γ|Dn|1/2
** 0*

* if λn → 0 as n→∞
** if |Dn|1/2λn →∞ as n→∞

6.2 Main results

We state our main results here. Proofs are relegated to Appendices A-C.
We first show in Theorem 1 that the penalized weighted Poisson likelihood esti-

mator converges in probability and exhibits its rate of convergence.

Theorem 1. Assume the conditions (C.1)-(C.8) hold and let an and cn be given
by (6.2) and (6.4). If an = O(|Dn|−1/2) and cn = o(1), then there exists a local
maximizer β̂ of Q(w;β) such that ‖β̂ − β0‖ = OP(|Dn|−1/2 + an).
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This implies that, if an = O(|Dn|−1/2) and cn = o(1), the penalized weighted
Poisson likelihood estimator is root-|Dn| consistent. Furthermore, we demonstrate
in Theorem 2 that such a root-|Dn| consistent estimator ensures the sparsity of β̂;
that is, the estimate will correctly set β2 to zero with probability tending to 1 as
n→∞, and β̂1 is asymptotically normal.

Theorem 2. Assume the conditions (C.1)-(C.8) hold. If an|Dn|1/2 → 0,
bn|Dn|1/2 → ∞ and cn → 0 as n → ∞, the root-|Dn| consistent local maximiz-

ers β̂ = (β̂
>
1 , β̂

>
2 )> in Theorem 1 satisfy:

(i) Sparsity: P(β̂2 = 0)→ 1 as n→∞,

(ii) Asymptotic Normality: |Dn|1/2Σn(w;β0)
−1/2(β̂1 − β01)

d−→ N (0, Is),

where

Σn(w;β0) =|Dn|{An,11(w;β0) + |Dn|Πn}−1{Bn,11(w;β0) + Cn,11(w;β0)}
{An,11(w;β0) + |Dn|Πn}−1, (6.5)

Πn =diag{p′′λn,1
(|β01|), . . . , p′′λn,s

(|β0s|)}, (6.6)

and where An,11(w;β0) (resp. Bn,11(w;β0),Cn,11(w;β0)) is the s× s top-left corner
of An(w;β0) (resp. Bn(w;β0),Cn(w;β0)).

As a consequence, Σn(w;β0) is the asymptotic covariance matrix of β̂1. Note
that Σn(w;β0)

−1/2 is the inverse of Σn(w;β0)
1/2, where Σn(w;β0)

1/2 is any square

matrix with Σn(w;β0)
1/2
(
Σn(w;β0)

1/2
)>

= Σn(w;β0).

Remark 1. For lasso and adaptive lasso, Πn = 0. For other penalties, since
cn = o(1), then ‖Πn‖ = o(1). Since ‖An,11(w;β0)‖ = O(|Dn|) from conditions (C.2)
and (C.3), |Dn| ‖Πn‖ is asymptotically negligible with respect to ‖An,11(w;β0)‖.

Remark 2. Theorems 1 and 2 remain true for the regularized weighted logistic
regression likelihood estimates if we extend the condition (C.3) by replacing in the
expression of the matrices An,Bn, and Cn, w(u) by w(u)δ(u)/(ρ(u;β) + δ(u)), u ∈
Dn and by adding supu∈Rd δ(u) <∞.

Remark 3. We want to highlight here the main theoretical differences with the work
by Thurman et al. (2015). First, the methodology and results are available for the
logistic regression likelihood. Second, we consider very general penalty function while
Thurman et al. (2015) only considered the adaptive lasso method. Third, we do not
assume, as in Thurman et al. (2015), that |Dn|−1Mn →M as n → ∞ (where Mn

is An,Bn, or Cn), when M is a positive definite matrix. Instead we assume sharper
condition assuming limn→∞ νmin(|Dn|−1Mn) > 0, where Mn is either An or Bn+Cn

and νmin(M′) is the smallest eigenvalue of a positive definite matrix M′. This makes
the proofs a little bit more technical.
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6.3 Discussion of the conditions

We adopt the conditions (C.1)-(C.6) based on the paper from Coeurjolly and Møller
(2014). In condition (C.1), the assumption that E contains o in its interior can
be made without loss of generality. If instead u is an interior point of E, then
condition (C.1) could be modified to that any ball with centre u and radius r > 0 is
contained in Dn = nE for all sufficiently large n. Condition (C.3) is quite standard.
From conditions (C.2)-(C.5), the matrices An(w;β0), Bn(w;β0) and Cn(w;β0) are
bounded by |Dn| (see e.g. Coeurjolly and Møller, 2014).

Combination of conditions (C.1)-(C.6) are used to establish a central limit theo-

rem for |Dn|−1/2`(1)n (w;β0) using a general central limit theorem for triangular arrays
of nonstationary random fields obtained by Karácsony (2006), which is an exten-
sion from Bolthausen (1982), then later extended to nonstationary random fields
by Guyon (1995). As pointed out by Coeurjolly and Møller (2014), condition (C.6)
is a spatial average assumption like when establishing asymptotic normality of or-
dinary least square estimators for linear models. This condition is also useful to
make sure that the matrix |Dn|−1{Bn(w;β0) + Cn(w;β0)} is invertible. Conditions
(C.6)-(C.7) ensure that the matrix Σn(w;β0) is invertible for sufficiently large n.
Conditions (C.1)-(C.6) are discussed in details for several models by Coeurjolly and
Møller (2014). They are satisfied for a large class of intensity functions and a large
class of models including Poisson and Cox processes discussed in Section 2.2.

Condition (C.8) controls the higher order terms in Taylor expansion of the penalty
function. Roughly speaking, we ask the penalty function to be at least Lipschitz and
thrice differentiable in a neighborhood of the true parameter vector. As it is, the
condition looks technical, however, it is obviously satisfied for ridge, lasso, elastic
net (and the adaptive versions). According to the choice of λn, it is satisfied for
SCAD and MC+ when |β0j|, for j = 1, . . . , s, is not equal to γλn and/or λn.

Theorem 2 requires the conditions an|Dn|1/2 → 0, bn|Dn|1/2 → ∞ and cn →
0 as n → ∞ simultaneously. By requiring these assumptions, the corresponding
penalized weighted Poisson likelihood estimators possess the oracle property and
perform as well as weighted Poisson likelihood estimator which estimates β1 knowing
the fact that β2 = 0.

For the ridge regularization method, bn = 0, preventing from applying Theorem 2
for this penalty. For lasso and elastic net, an = K2bn for some constant K2 > 0
(K2=1 for lasso). The two conditions an|Dn|1/2 → 0 and bn|Dn|1/2 →∞ as n→∞
cannot be satisfied simultaneously. This is different for the adaptive versions where
a compromise can be found by adjusting the λn,j’s, as well as the two non-convex
penalties SCAD and MC+, for which λn can be adjusted. For the regularization
methods considered in this paper, the condition cn → 0 is implied by the condition
an|Dn|1/2 → 0 as n→∞.

7 Simulation study

We conduct a simulation study with three different scenarios, described in Section
7.1, to compare the estimates of the regularized Poisson likelihood (PL) and that
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of the regularized weighted Poisson likelihood (WPL). We also want to explore the
behaviour of the estimates using different regularization methods. Empirical findings
are presented in Section 7.2. Furthermore, we compare, in Section 7.3, the estimates
of the regularized (un)weighted logistic likelihood and the ones of the regularized
(un)weighted Poisson likelihood.

7.1 Simulation set-up

The setting is quite similar to that of Waagepetersen (2007) and Thurman et al.
(2015). The spatial domain is D = [0, 1000] × [0, 500]. We center and scale the
201× 101 pixel images of elevation (x1) and gradient of elevation (x2) contained in
the bei datasets of spatstat library in R (R Core Team, 2016), and use them as
two true covariates. In addition, we create three different scenarios to define extra
covariates:

Scenario 1. We generate eighteen 201 × 101 pixel images of covariates as standard
Gaussian white noise and denote them by x3, . . . , x20. We define z(u) =
x(u) = {x1(u), . . . , x20(u)}> as the covariates vector. The regression
coefficients for z3, . . . , z20 are set to zero.

Scenario 2. First, we generate eighteen 201 × 101 pixel images of covariates as in
the scenario 1. Second, we transform them, together with x1 and x2, to
have multicollinearity. Third, we define z(u) = V>x(u), where x(u) =
{x1(u), . . . , x20(u)}>. More precisely, V is such that Ω = V>V, and
(Ω)ij = (Ω)ji = 0.7|i−j| for i, j = 1, . . . , 20, except (Ω)12 = (Ω)21 = 0, to
preserve the correlation between x1 and x2. The regression coefficients
for z3, . . . , z20 are set to zero.

Scenario 3. We consider a more complex situation. We center and scale the 13 soil
nutrients covariates obtained from the study in tropical forest of Barro
Colorado Island (BCI) in central Panama (see Condit, 1998; Hubbell
et al., 1999, 2005), and use them as the extra covariates. Together with
x1 and x2, we keep the structure of the covariance matrix to preserve
the complexity of the situation. In this setting, we have z(u) = x(u) =
{x1(u), . . . , x15(u)}>. The regression coefficients for z3, . . . , z15 are set
to zero.

The different maps of the covariates obtained from scenarios 2 and 3 are depicted
in Appendix D. Except for z3 which has high correlation with z2, the extra covariates
obtained from scenario 2 tend to have a constant value (Figure 3). This is completely
different from the ones obtained from scenario 3 (Figure 4).

The mean number of points over the domain D, µ, is chosen to be 1600. We
set the true intensity function to be ρ(u;β0) = {β0 + β1z1(u) + β2z2(u)}, where
β1 = 2 represents a relatively large effect of elevation, β2 = 0.75 reflects a relatively
small effect of gradient, and β0 is selected such that each realization has 1600 points
in average. Furthermore, we erode regularly the domain D such that, with the
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same intensity function, the mean number of points over the new domain D 	 R
becomes 400. The erosion is used to observe the convergence of the procedure
as the observation domain expands. We consider the default number of dummy
points for the Poisson likelihood, denoted by nd2, as suggested in the spatstat R

package, i.e. nd2 ≈ 4m, where m is the number of points. With these scenarios, we
simulate 2000 spatial point patterns from a Thomas point process using the rThomas
function in the spatstat package. We also consider two different κ parameters
(κ = 5× 10−4, κ = 5× 10−5) as different levels of spatial interaction and let ω = 20.
For each of the four combinations of κ and µ, we fit the intensity to the simulated
point pattern realizations. We also fit the oracle model which only uses the two true
covariates.

All models are fitted using modified internal function in spatstat (Baddeley
et al., 2015), glmnet (Friedman et al., 2010), and ncvreg (Breheny and Huang,
2011). A modification of the ncvreg R package is required to include the penalized
weighted Poisson and logistic likelihood methods.

7.2 Simulation results

To better understand the behaviour of Thomas processes designed in this study,
Figure 1 shows the plot of the four realizations using different κ and µ. The smaller
value of κ, the tighter the clusters since there are fewer parents. When µ = 400, i.e.
by considering the realizations observed on D	R, the mean number of points over
the 2000 replications and standard deviation are 396 and 47 (resp. 400 and 137)
when κ = 5×10−4 (resp. κ = 5×10−5). When µ = 1600, the mean number of points
and standard deviation are 1604 and 174 (resp. 1589 and 529) when κ = 5 × 10−4

(resp. κ = 5× 10−5).

Figure 1: Realizations of a Thomas process for µ = 400 (row 1), µ = 1600 (row 2),
κ = 5× 10−4 (column 1), and κ = 5× 10−5 (column 2).

Tables 4 and 5 present the selection properties of the estimates using the penal-
ized PL and the penalized WPL methods. Similarly to Bühlmann and Van De Geer
(2011), the indices we consider are the true positive rate (TPR), the false positive
rate (FPR), and the positive predictive value (PPV). TPR corresponds to the ra-
tio of the selected true covariates over the number of true covariates, while FPR
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Table 4: Empirical selection properties (TPR, FPR, and PPV in %) based on 2000
replications of Thomas processes on the domain D	R (µ = 400) for different values
of κ and for the three different scenarios. Different penalty functions are considered
as well as two estimating equations, the regularized Poisson likelihood (PL) and the
regularized weighted Poisson likelihood (WPL).

Method

κ = 5× 10−4 κ = 5× 10−5

Regularized PL Regularized WPL Regularized PL Regularized WPL

TPR FPR PPV TPR FPR PPV TPR FPR PPV TPR FPR PPV

Scenario 1

Ridge 100 100 10 100 100 10 100 100 10 100 100 10

Lasso 100* 27 35 56 0* 98 89 35 34 33 0* 62

Enet 100* 59 18 39 4 36 91 60 21 31 0* 57

AL 100* 1 93 58 0* 100* 88 7 72 35 0* 67

Aenet 100* 6 72 59 0* 99 89 12 61 34 0* 64

SCAD 100* 18 41 66 0* 98 90 17 46 31 0* 56

MC+ 100* 21 36 68 0* 96 90 21 42 30 0* 54

Scenario 2

Ridge 100 100 10 100 100 10 100 100 10 100 100 10

Lasso 100* 25 35 52 1 88 90 38 29 31 0* 55

Enet 100* 52 19 49 4 62 90 60 20 24 1 38

AL 99 4 80 52 0* 100* 87 9 67 36 0* 67

Aenet 99 8 65 53 0* 99 88 14 54 35 0* 65

SCAD 100* 17 43 64 0* 92 88 17 45 28 0* 50

MC+ 100* 18 41 59 1 87 88 21 41 27 0* 50

Scenario 3

Ridge 100 100 13 100 100 13 100 100 13 100 100 13

Lasso 100* 56 24 52 2 87 98 89 15 13 2 20

Enet 100* 76 18 47 4 63 99 94 14 8 2 11

AL 100* 29 42 52 0* 100* 95 77 17 18 2 30

Aenet 100* 38 33 54 0* 99 96 82 16 15 1 25

SCAD 100* 34 33 58 0* 85 95 71 18 13 1 22

MC+ 100* 35 32 56 0* 84 95 71 18 13 1 23

* Approximate value

corresponds to the ratio of the selected noisy covariates over the number of noisy
covariates. TPR explains how the model can correctly select both z1 and z2. Fi-
nally, FPR investigates how the model uncorrectly select among z3 to zp (p = 20
for scenarios 1 and 2 and p = 15 for scenario 3). PPV corresponds to the ratio
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Table 5: Empirical selection properties (TPR, FPR, and PPV in %) based on 2000
replications of Thomas processes on the domain D (µ = 1600) for different values
of κ and for the three different scenarios. Different penalty functions are considered
as well as two estimating equations, the regularized Poisson likelihood (PL) and the
regularized weighted Poisson likelihood (WPL).

Method

κ = 5× 10−4 κ = 5× 10−5

Regularized PL Regularized WPL Regularized PL Regularized WPL

TPR FPR PPV TPR FPR PPV TPR FPR PPV TPR FPR PPV

Scenario 1

Ridge 100 100 10 100 100 10 100 100 10 100 100 10

Lasso 100 26 35 52 0* 100* 98 48 22 56 0* 96

Enet 100 64 16 55 6 50 99 76 14 50 5 45

AL 100 0* 98 50 0 100 96 6 77 55 0* 98

Aenet 100 4 79 54 0* 100* 97 11 60 57 0* 96

SCAD 100 17 50 60 0* 100* 98 18 47 52 0* 90

MC+ 100 22 47 60 0* 97 98 23 42 44 0* 79

Scenario 2

Ridge 100 100 10 100 100 10 100 100 10 100 100 10

Lasso 100 26 33 51 0* 97 98 43 24 52 1 91

Enet 100 56 18 51 5 55 99 69 15 49 4 62

AL 100 1 92 51 0 100 96 10 67 53 0* 99

Aenet 100 4 78 51 0* 100* 97 15 52 53 0* 98

SCAD 100 21 37 53 1 85 96 16 50 45 1 77

MC+ 100 24 35 47 2 76 97 19 47 42 2 72

Scenario 3

Ridge 100 100 13 100 100 13 100 100 13 100 100 13

Lasso 100 69 19 52 1 96 100 95 14 48 4 75

Enet 100 85 16 52 5 71 100 97 14 43 5 62

AL 100 43 32 51 0* 100* 99 86 15 51 2 86

Aenet 100 49 27 52 0* 99 99 89 15 50 3 82

SCAD 100 47 27 43 2 72 99 78 17 40 2 63

MC+ 100 48 26 44 2 75 99 79 17 37 2 61

* Approximate value

of the selected true covariates over the total number of selected covariates in the
model. PPV describes how the model can approximate the oracle model in terms
of selection. Therefore, we want to find the methods which have a TPR and a PPV
close to 100%, and a FPR close to 0.

25



Generally, for both the penalized PL and the penalized WPL methods, the best
selection properties are obtained for a larger value of κ which shows weaker spatial
dependence. For a more clustered one, indicated by a smaller value of κ, it seems
more difficult to select the true covariates. As µ increases from 400 (Table 4) to
1600 (Table 5), the TPR tends to improve, so the model can select both z1 and z2
more frequently.

Ridge, lasso, and elastic net are the regularization methods that cannot satisfy
our theorems. It is firstly emphasized that all covariates are always selected by the
ridge so that the rates are never changed whatever method used. For the penalized
PL with lasso and elastic net regularization, it is shown that they tend to have
quite large value of FPR, meaning that they wrongly keep the noisy covariates more
frequently. When the penalized WPL is applied, we gain smaller FPR, but we suffer
from smaller TPR at the same time. This smaller TPR actually comes from the
unselection of z2 which has smaller coefficient than that of z1.

When we apply adaptive lasso, adaptive elastic net, SCAD, and MC+, we achieve
better performance, especially for FPR which is closer to zero which automatically
improves the PPV. Adaptive elastic net (resp. elastic net) has slightly larger FPR
than adaptive lasso (resp. lasso). Among all regularization methods considered in
this paper, adaptive lasso seems to outperform the other ones.

Considering scenarios 1 and 2, we observe best selection properties for the pe-
nalized PL combined with adaptive lasso. As the design is getting more complex for
scenario 3, applying the penalized PL suffers from much larger FPR, indicating that
this method may not be able to overcome the complicated situation. However, when
we use the penalized WPL, the properties seem to be more stable for the different
designs of simulation study. One more advantage when considering the penalized
WPL is that we can remove almost all extra covariates. It is worth noticing that
we may suffer from smaller TPR when we apply the penalized WPL, but we lose
the only less informative covariates. From Tables 4 and 5, when we are faced with
complex situation, we would recommend the use of the penalized WPL method with
adaptive lasso penalty if the focus is on selection properties. Otherwise, the use of
the penalized PL combined with adaptive lasso penalty is more preferable.

Tables 6 and 7 give the prediction properties of the estimates in terms of biases,
standard deviations (SD), and square root of mean squared errors (RMSE), some
criterions we define by

Bias =

[
p∑
j=1

{Ê(β̂j)− βj}2
] 1

2

, SD =

[
p∑
j=1

σ̂2
j

] 1
2

,RMSE =

[
p∑
j=1

Ê(β̂j − βj)2
] 1

2

,

where Ê(β̂j) and σ̂2
j are respectively the empirical mean and variance of the estimates

β̂j, for j = 1, . . . , p, where p = 20 for scenarios 1 and 2, and p = 15 for scenario 3.
In general, the properties improve with larger value of κ and µ due to weaker

spatial dependence and larger sample size. For the oracle model where the model
contains only z1 and z2, the WPL estimates are more efficient than the PL estimates,
particularly in the more clustered case, agreeing with the findings by Guan and Shen
(2010).
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Table 6: Empirical prediction properties (Bias, SD, and RMSE) based on 2000
replications of Thomas processes on the domain D 	 R (µ = 400) for different
values of κ and for the three different scenarios. Different penalty functions are
considered as well as two estimating equations, the regularized Poisson likelihood
(PL) and the regularized weighted Poisson likelihood (WPL).

Method

κ = 5× 10−4 κ = 5× 10−5

Regularized PL Regularized WPL Regularized PL Regularized WPL

Bias SD RMSE Bias SD RMSE Bias SD RMSE Bias SD RMSE

Scenario 1

Oracle 0.11 0.18 0.21 0.64 0.20 0.67 0.29 0.81 0.86 0.57 0.54 0.78

Ridge 0.11 0.38 0.40 0.72 0.69 1.00 0.28 1.26 1.29 0.98 1.03 1.42

Lasso 0.28 0.32 0.42 1.06 0.32 1.11 0.47 0.99 1.10 1.40 0.73 1.58

Enet 0.24 0.38 0.44 1.28 0.28 1.31 0.45 1.04 1.13 1.59 0.58 1.70

AL 0.10 0.29 0.31 0.87 0.32 0.92 0.38 0.96 1.03 1.18 0.93 1.50

Aenet 0.14 0.30 0.33 0.93 0.39 1.01 0.40 0.96 1.04 1.29 0.82 1.53

SCAD 0.26 0.27 0.38 1.06 0.37 1.12 0.46 0.79 0.91 1.49 0.67 1.64

MC+ 0.28 0.28 0.39 1.04 0.38 1.11 0.47 0.78 0.92 1.48 0.70 1.64

Scenario 2

Oracle 0.12 0.23 0.26 0.71 0.26 0.76 0.30 0.78 0.84 0.59 0.62 0.84

Ridge 0.14 0.46 0.48 0.69 0.93 1.16 0.32 1.23 1.27 0.92 1.15 1.47

Lasso 0.34 0.33 0.48 1.20 0.37 1.26 0.45 0.96 1.06 1.50 0.69 1.65

Enet 0.38 0.40 0.55 1.40 0.35 1.44 0.44 1.03 1.12 1.78 0.49 1.85

AL 0.20 0.33 0.39 0.85 0.32 0.91 0.37 0.93 1.00 1.17 0.86 1.45

Aenet 0.25 0.33 0.42 0.96 0.34 1.02 0.40 0.94 1.02 1.29 0.78 1.51

SCAD 0.38 0.30 0.48 0.95 0.48 1.06 0.44 0.80 0.91 1.53 0.70 1.68

MC+ 0.39 0.30 0.49 1.01 0.49 1.13 0.44 0.80 0.92 1.52 0.71 1.68

Scenario 3

Oracle 0.12 0.46 0.48 0.70 0.26 0.75 0.65 1.14 1.31 0.87 0.88 1.24

Ridge 0.13 1.03 1.04 0.71 1.45 1.62 0.52 3.10 3.14 0.90 2.86 3.00

Lasso 0.20 0.69 0.71 1.26 0.40 1.32 0.51 2.91 2.95 1.93 0.68 2.04

Enet 0.21 0.83 0.86 1.53 0.40 1.58 0.52 2.94 2.99 2.03 0.60 2.12

AL 0.18 0.57 0.60 0.91 0.33 0.97 0.52 2.80 2.85 1.77 0.84 1.96

Aenet 0.22 0.61 0.65 1.04 0.36 1.10 0.52 2.80 2.85 1.86 0.73 2.00

SCAD 0.27 0.61 0.67 1.18 0.59 1.32 0.48 2.49 2.54 1.91 0.64 2.02

MC+ 0.27 0.62 0.68 1.20 0.58 1.33 0.48 2.49 2.54 1.89 0.67 2.00
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Table 7: Empirical prediction properties (Bias, SD, and RMSE) based on 2000
replications of Thomas processes on the domain D (µ = 1600) for different values
of κ and for the three different scenarios. Different penalty functions are considered
as well as two estimating equations, the regularized Poisson likelihood (PL) and the
regularized weighted Poisson likelihood (WPL).

Method

κ = 5× 10−4 κ = 5× 10−5

Regularized PL Regularized WPL Regularized PL Regularized WPL

Bias SD RMSE Bias SD RMSE Bias SD RMSE Bias SD RMSE

Scenario 1

Oracle 0.05 0.11 0.12 0.33 0.15 0.37 0.16 0.45 0.48 0.41 0.22 0.46

Ridge 0.04 0.21 0.21 0.70 0.55 0.90 0.13 0.72 0.73 0.74 0.58 0.94

Lasso 0.14 0.19 0.24 1.03 0.20 1.05 0.23 0.60 0.64 0.99 0.43 1.08

Enet 0.11 0.22 0.24 1.14 0.29 1.17 0.20 0.62 0.65 1.12 0.43 1.20

AL 0.04 0.18 0.18 0.87 0.18 0.89 0.16 0.58 0.60 0.87 0.42 0.96

Aenet 0.05 0.18 0.18 0.96 0.22 0.99 0.17 0.58 0.60 0.90 0.48 1.02

SCAD 0.19 0.18 0.26 1.30 0.34 1.34 0.14 0.53 0.55 1.37 0.51 1.46

MC+ 0.20 0.18 0.27 1.33 0.28 1.36 0.15 0.53 0.55 1.38 0.52 1.48

Scenario 2

Oracle 0.05 0.15 0.16 0.36 0.17 0.40 0.18 0.46 0.49 0.39 0.26 0.47

Ridge 0.05 0.27 0.27 0.69 0.62 0.94 0.17 0.74 0.80 0.78 0.64 1.01

Lasso 0.16 0.20 0.25 1.16 0.24 1.18 0.23 0.60 0.64 1.14 0.43 1.22

Enet 0.17 0.23 0.29 1.24 0.24 1.26 0.23 0.63 0.67 1.33 0.42 1.40

AL 0.07 0.18 0.20 0.85 0.18 0.87 0.18 0.58 0.61 0.83 0.41 0.93

Aenet 0.09 0.19 0.21 0.94 0.20 0.96 0.20 0.59 0.62 0.92 0.41 1.01

SCAD 0.26 0.20 0.33 1.26 0.51 1.36 0.19 0.51 0.55 1.31 0.60 1.44

MC+ 0.26 0.20 0.33 1.31 0.55 1.42 0.19 0.51 0.55 1.32 0.61 1.46

Scenario 3

Oracle 0.13 0.31 0.34 0.43 0.18 0.47 0.31 0.96 1.01 0.75 0.35 0.83

Ridge 0.11 0.84 0.86 0.70 0.96 1.19 0.23 2.50 2.51 1.02 1.43 1.76

Lasso 0.12 0.64 0.65 1.14 0.29 1.17 0.22 2.41 2.42 1.40 0.61 1.52

Enet 0.13 0.71 0.73 1.35 0.30 1.39 0.23 2.42 2.43 1.63 0.56 1.73

AL 0.14 0.55 0.57 0.89 0.18 0.91 0.22 2.37 2.38 1.12 0.67 1.31

Aenet 0.15 0.56 0.58 1.00 0.22 1.03 0.22 2.36 2.37 1.26 0.64 1.41

SCAD 0.24 0.58 0.62 1.41 0.40 1.47 0.24 2.09 2.10 1.50 0.68 1.65

MC+ 0.24 0.58 0.63 1.44 0.42 1.50 0.24 2.09 2.10 1.49 0.71 1.65
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When the regularization methods are applied, the bias increases in general, es-
pecially when we consider the penalized WPL method. The regularized WPL has a
larger bias since this method does not select z2 much more frequently. Furthermore,
weighted method seems to introduce extra bias, even though the regularization is
not considered as in the oracle model. For a low clustered process, the SD using the
penalized WPL is similar to that of the penalized PL which may be because of the
weaker dependence represented by larger κ, making weight surface w(·) closer to 1.
However, a larger RMSE is obtained from the penalized WPL. When we observe
the more clustered process, we obtain smaller SD using the penalized WPL which
explains why in some cases (mainly scenario 3) the RMSE gets smaller.

For the ridge method, the bias is closest to that of the oracle model, but it has
the largest SD. Among the regularization methods, the adaptive lasso method has
the best performance in terms of prediction.

Considering scenarios 1 and 2, we obtain best properties when we apply the
penalized PL with adaptive lasso penalty. As the design is getting much more
complex for scenario 3, when we use the penalized PL with adaptive lasso, the
SD is doubled and even quadrupled due to the overselection of many unimportant
covariates. In particular, for the more clustered process, the better properties are
even obtained by applying the regularized WPL combined with adaptive lasso. From
Tables 6 and 7, when the focus is on prediction properties, we would recommend to
apply the penalized WPL combined with adaptive lasso penalty when the observed
point pattern is very clustered and when covariates have a complex stucture of
covariance matrix. Otherwise, the use of the penalized PL combined with adaptive
lasso penalty is more favorable. Our recommendations in terms of prediction support
as what we recommend in terms of selection.

7.3 Logistic regression

Our concern here is to compare the estimates of the penalized (un)weighted logistic
likelihood to that of the penalized (un)weighted Poisson likelihood with different
number of dummy points. We remind that the number of dummy points comes up
when we discretize the integral terms in (3.2) and in (3.3). In the following, to ease
the presentation, we use the term Poisson estimates (resp. logistic estimates) for
parameter estimates obtained using the regularized Poisson likelihood (resp. the
regularized logistic regression likelihood).

We consider three different numbers of dummy points denoted by nd2. By these
different numbers of dummy points, we want to observe the properties with three
different situations: (a) nd2 < m, (b) nd2 ≈ m, and (c) nd2 > m, where m is the
number of points. In the following, m ≈ 1600 and nd2 = 400, 1600, and 6400. Note
that the choice by default from the Poisson likelihood in spatstat corresponds to
case (c). Baddeley et al. (2014) showed that for datasets with very large number
of points and for very structured point processes, the logistic likelihood method
is clearly preferable as it requires a smaller number of dummy points to perform
quickly and efficiently. We want to investigate a similar comparison when these
methods are regularized.
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Table 8: Empirical selection properties (TPR, FPR, and PPV in %) based on 2000
replications of Thomas processes on the domain D (µ = 1600) for κ = 5× 10−5, for
two different scenarios, and for three different numbers of dummy points. Differ-
ent estimating equations are considered, the regularized (un)weighted Poisson and
(un)weighted logistic regression likelihoods, employing adaptive lasso regularization
method.

Method nd

Scenario 2 Scenario 3

Unweighted Weighted Unweighted Weighted

TPR FPR PPV TPR FPR PPV TPR FPR PPV TPR FPR PPV

Poisson

20 96 35 32 53 0* 96 98 82 16 47 2 79

40 95 6 77 52 0* 95 98 83 16 46 2 77

80 95 4 83 50 0* 94 98 83 16 43 2 74

Logistic

20 94 11 60 49 0* 91 98 72 20 41 2 73

40 94 8 67 50 0* 93 99 81 16 43 2 74

80 94 5 77 50 0* 93 99 83 16 42 2 73

* Approximate value

We only repeat the results for κ = 5 × 10−5 and µ = 1600, and for scenarios 2
and 3. We use the same selection and prediction indices examined in Section 7.2
and consider only the adaptive lasso method.

Table 8 presents selection properties for the Poisson and logistic likelihoods with
adaptive lasso regularization. For unweighted versions of the procedure, the regu-
larized logistic method outperforms the regularized Poisson method when nd = 20,
i.e. when the number of dummy points is much smaller than the number of points.
When nd2 ≈ m or nd2 > m, the methods tend to have similar performances. When
we consider weighted versions of the regularized logistic and Poisson likelihoods,
the results do not change that much with nd and the regularized Poisson likelihood
method slightly outperforms the regularized logistic likelihood method. In addition,
for scenario 3 which considers a more complex situation, the methods tend to select
the noisy covariates much more frequently.

Empirical biases, standard deviation and square root of mean squared errors
are presented in Table 9. We include all empirical results for the standard Poisson
and logistic estimates (i.e. no regularization is considered). Let us first consider
the unweighted methods with no regularization. The logistic method clearly has
smaller bias, especially when nd = 20, which explains why in most situations the
RMSE is smaller. However, for the weighted methods, although the logistic method
has smaller bias in general, it produces much larger SD, leading to larger RMSE
for all cases. When we compare the weighted and the unweighted methods for
logistic estimates, in general, not only do we fail to reduce the SD, but we also have
larger bias. When the adaptive lasso regularization is considered, combined with
the unweighted methods, we can preserve the bias in general and simultaneously
improve the SD, and hence improve the RMSE. The logistic likelihood method
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Table 9: Empirical prediction properties (Bias, SD, and RMSE) based on 2000
replications of Thomas processes on the domain D (µ = 1600) for κ = 5× 10−5, for
two different scenarios, and for three different numbers of dummy points. Differ-
ent estimating equations are considered, the regularized (un)weighted Poisson and
(un)weighted logistic regression likelihoods, employing adaptive lasso regularization
method.

Method nd

Scenario 2 Scenario 3

Unweighted Weighted Unweighted Weighted

Bias SD RMSE Bias SD RMSE Bias SD RMSE Bias SD RMSE

No regularization

Poisson

20 0.37 0.64 0.74 0.29 0.74 0.79 0.28 2.15 2.16 0.42 2.06 2.11

40 0.14 0.63 0.65 0.16 0.73 0.75 0.33 2.47 2.50 0.42 2.32 2.35

80 0.17 0.64 0.66 0.11 0.75 0.76 0.26 2.57 2.58 0.43 2.40 2.43

Logistic

20 0.03 0.69 0.69 0.32 1.34 1.37 0.20 2.31 2.32 0.36 2.95 2.97

40 0.07 0.60 0.61 0.12 0.96 0.97 0.23 2.31 2.32 0.37 2.56 2.58

80 0.10 0.60 0.61 0.14 0.81 0.82 0.25 2.36 2.38 0.42 2.38 2.42

Adaptive lasso

Poisson

20 0.30 0.59 0.67 0.86 0.47 0.98 0.30 2.00 2.03 1.14 0.68 1.33

40 0.20 0.58 0.61 0.86 0.49 0.99 0.33 2.33 2.35 1.18 0.70 1.37

80 0.18 0.59 0.62 0.88 0.51 1.02 0.28 2.41 2.43 1.22 0.71 1.41

Logistic

20 0.19 0.50 0.53 0.95 0.55 1.09 0.23 2.06 2.07 1.26 0.73 1.45

40 0.18 0.52 0.55 0.89 0.52 1.03 0.23 2.15 2.16 1.22 0.72 1.42

80 0.18 0.55 0.58 0.89 0.52 1.03 0.25 2.21 2.22 1.24 0.71 1.43

slightly outperforms the Poisson likelihood method. When the weighted methods
are considered, we obtain smaller SD, but we have larger bias. For weighted versions
of the Poisson and logistic likelihoods, the results do not change that much with nd

and the weighted Poisson method slightly outperforms the weighted logistic method.
From Tables 8 and 9, when the number of dummy points can be chosen as nd2 ≈ m
or nd2 > m, we would recommend to apply the Poisson likelihood method. When
the number of dummy points should be chosen as nd2 < m, the logistic likelihood
method is more favorable. Our recommendations regarding whether weighted or
unweighted methods follow the ones as in Section 7.2.

8 Application to forestry datasets

In a 50-hectare region (D = 1, 000m × 500m) of the tropical moist forest of Barro
Colorado Island (BCI) in central Panama, censuses have been carried out where all
free-standing woody stems at least 10 mm diameter at breast height were identified,
tagged, and mapped, resulting in maps of over 350,000 individual trees with more
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than 300 species (see Condit, 1998; Hubbell et al., 1999, 2005). It is of interest
to know how the very high number of different tree species continues to coexist,
profiting from different habitats determined by e.g. topography or soil properties
(see e.g. Waagepetersen, 2007; Waagepetersen and Guan, 2009). In particular, the
selection of covariates among topological attributes and soil minerals as well as the
estimation of their coefficients are becoming our most concern.

Figure 2: Maps of locations of BPL trees (top left), elevation (top right), slope
(bottom left), and concentration of phosporus (bottom right).

We are particularly interested in analyzing the locations of 3,604 Beilschmiedia
pendula Lauraceae (BPL) tree stems. We model the intensity of BPL trees as a log-
linear function of two topological attributes and 13 soil properties as the covariates.
Figure 2 contains maps of the locations of BPL trees, elevation, slope, and concen-
tration of Phosporus. BPL trees seem to appear in greater abundance in the areas
of high elevation, steep slope, and low concentration of Phosporus. The covariates
maps are depicted in Figure 4.

We apply the regularized (un)weighted Poisson and the logistic likelihoods, com-
bined with adaptive lasso regularization to select and estimate parameters. Since
we do not deal with datasets which have very large number of points, we can set the
default number of dummy points for Poisson likelihood as in the spatstat package,
i.e. the number of dummy points can be chosen to be larger than the number of
points, to perform quickly and efficiently. It is worth emphasizing that we center and
scale the 15 covariates to observe which one has the largest effect on the intensity.
The results are presented in Table 10: 12 covariates for the Poisson likelihood and
11 for the logistic method are selected out of the 15 covariates using the unweighted
methods while only 5 covariates (both for the Poisson and logistic methods) are
selected using the weighted versions. The unweighted methods tend to overfit the
model by overselecting unimportant covariates.

The weighted methods tend to keep out the uninformative covariates. Both
Poisson and logistic estimates own similar selection and estimation results. First,
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Table 10: Barro Colorado Island data analysis: Parameter estimates of the re-
gression coefficients for Beilschmiedia pendula Lauraceae trees applying regularized
(un)weighted Poisson and logistic regression likelihoods with adaptive lasso regular-
ization.

Unweighted method Weighted method

Poisson estimates Logistic estimates Poisson estimates Logistic estimates

Elev 0.39 0.40 0.41 0.45

Slope 0.26 0.32 0.51 0.60

Al 0 0 0 0

B 0.30 0.30 0 0

Ca 0.10 0.15 0 0

Cu 0.10 0.12 0 0

Fe 0.05 0 0 0

K 0 0 0 0

Mg -0.17 -0.18 0 0

Mn 0.12 0.13 0.23 0.24

P -0.60 -0.60 -0.50 -0.52

Zn -0.43 -0.46 -0.35 -0.37

N 0 0 0 0

N.min -0.12 -0.10 0 0

pH -0.14 -0.14 0 0

Nb of cov. 12 11 5 5

we find some differences on estimation between the unweighted and the weighted
methods, especially for slope and Manganese (Mn), for which the weighted methods
have approximately two times larger estimators. Second, we may loose some nonzero
covariates when we apply the weighted methods, even though it is only for the
covariates which have relatively small coefficient. Boron (B) has high correlation
with many of the other covariates, particularly with those which are not selected.
This is possibly why Boron, which is selected and may have nonnegligible coefficient
in the unweighted methods, is not chosen in the model. This may explain why the
weighted methods introduce extra biases. However, since the situation appears to
be quite close to the scenario 3 from the simulation study, the weighted methods
are more favorable in terms of both selection and prediction.

In this application, we do not face any computational problem. Nevertheless, if
we have to model a species of trees with much more points, the default value for nd
will lead to numerical problems. In such a case, the logistic likelihood would be a
good alternative.

These results suggest that BPL trees favor to live in areas of higher elevation
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and slope. This result is different from the findings by Waagepetersen (2007) and
Guan and Loh (2007) which concluded based on standard error estimation that BPL
trees do not really prefer either high or low altitudes. However, we have the same
conclusion with the analysis by Guan and Shen (2010) and Thurman et al. (2015)
that BPL trees prefer to live on higher altitudes. Further, higher levels of Manganese
(Mn) and lower levels of both Phosporus (P) and Zinc (Zn) concentrations in soil
are associated with higher appearance of BPL trees.

9 Conclusion and discussion

We develop regularized versions of estimating equations based on Campbell theorem
derived from the Poisson and the logistic likelihoods. Our procedure is able to esti-
mate intensity function of spatial point processes, when the intensity is a function
of many covariates and has a log-linear form. Furthermore, our procedure is also
generally easy to implement in R since we need to combine spatstat package with
glmnet and ncvreg packages. We study the asymptotic properties of both regular-
ized weighted Poisson and logistic estimates in terms of consistency, sparsity, and
normality distribution. We find that, among the regularization methods considered
in this paper, adaptive lasso, adaptive elastic net, SCAD, and MC+ are the methods
that can satisfy our theorems.

We carry out some scenarios in the simulation study to observe selection and
prediction properties of the estimates. We compare the penalized Poisson likelihood
(PL) and the penalized weighted Poisson likelihood (WPL) with different penalty
functions. From the results, when we deal with covariates having a complex covari-
ance matrix and when the point pattern looks quite clustered, we recommend to
apply the penalized WPL combined with adaptive lasso regularization. Otherwise,
the regularized PL with adaptive lasso is more preferable. The further and more
careful investigation to choose the tuning parameters may be needed to improve
the selection properties. We note the bias increases quite significantly when the
regularized WPL is applied. When the penalized WPL is considered, a two-step
procedure may be needed to improve the prediction properties: (1) use the penal-
ized WPL combined with adaptive lasso to chose the covariates, then (2) use the
selected covariates to obtain the estimates. This post-selection inference procedure
has not been investigated in this paper.

We also compare the estimates obtained from the Poisson and the logistic likeli-
hoods. When the number of dummy points can be chosen to be either similar to or
larger than the number of points, we recommend the use of the Poisson likelihood
method. Nevertheless, when the number of dummy points should be chosen to be
smaller than the number of points, the logistic method is more favorable.

A further work would consist in studying the situation when the number of the
covariates is much larger than the sample size. In such a situation, the coordi-
nate descent algorithm used in this paper may cause some numerical troubles. The
Dantzig selector procedure introduced by Candes and Tao (2007) might be a good
alternative as the implementaion for linear models (and for generalized linear mod-
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els) results in a linear programming. It would be interesting to bring this approach
to spatial point process setting.
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A Auxiliary Lemma

The following result is used in the proof of Theorems 1-2. Throughout the proofs,
the notation Xx = OP(xn) or Xb = oP(xn) for a random vector Xn and a sequence of
real numbers xn means that ‖Xn‖ = OP(xn) and ‖Xn‖ = oP(xn). In the same way
for a vector Vn or a squared matrix Mn, the notation Vn = O(xn) and Mn = O(xn)
mean that ‖Vn‖ = O(xn) and ‖Mn‖ = O(xn).

Lemma 1. Under the conditions (C.1)-(C.6), the following convergence holds in
distribution as n→∞

{Bn(w;β0) + Cn(w;β0)}−1/2`(1)n (w;β0)
d−→ N (0, Ip). (A.1)

Moreover as n→∞,
|Dn|−

1
2 `(1)n (w;β0) = OP(1). (A.2)

Proof. Let us first note that using Campbell Theorems (2.1)-(2.2)

Var[`(1)n (w;β0)] = Bn(w;β0) + Cn(w;β0).

The proof of (A.1) follows Coeurjolly and Møller (2014). Let Ci = i+ (−1/2, 1/2]d

be the unit box centered at i ∈ Zd and define In = {i ∈ Zd, Ci ∩ Dn 6= ∅}. Set

Dn =
⋃
i∈In

Ci,n, where Ci,n = Ci ∩Dn. We have

`(1)n (w;β0) =
∑
i∈In

Yi,n

where

Yi,n =
∑

u∈X∩Ci,n

w(u)z(u)−
∫
Ci,n

w(u)z(u) exp(β>0 z(u))du.

For any n ≥ 1 and any i ∈ In, Yi,n has zero mean, and by condition (C.4),

sup
n≥1

sup
i∈In

E(‖Yi,n‖2+δ) <∞. (A.3)
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If we combine (A.3) with conditions (C.1)-(C.6), we can apply Karácsony (2006,
Theorem 4), a central limit theorem for triangular arrays of random fields, to ob-
tain (A.1) which also implies that

{Bn(w;β0) + Cn(w;β0)}−1/2`(1)n (w;β0) = OP(1)

as n → ∞. The second result (A.2) is deduced from condition (C.6) which in
particular implies that |Dn|1/2{Bn(w;β0) + Cn(w;β0)}−1/2 = O(1).

B Proof of Theorem 1

In the proof of this result and the following ones, the notation κ stands for a generic
constant which may vary from line to line. In particular this constant is independent
of n, β0 and k.

Proof. Let dn = |Dn|−1/2+an, and k = {k1, k2, . . . , kp}> ∈ Rp. We remind the reader
that the estimate of β0 is defined as the maximum of the function Q (given by (4.1))
over Θ, an open convex bounded set of Rp. For any k such that ‖k‖ ≤ K < ∞,
β0 +dnk ∈ Θ for n sufficiently large. Assume this is valid in the following. To prove
Theorem 1, we follow the main argument by Fan and Li (2001) and aim at proving
that for any given ε > 0, there exists K > 0 such that for n sufficiently large

P

(
sup
‖k‖=K

∆n(k) > 0

)
≤ ε, where ∆n(k) = Q(w;β0 + dnk)−Q(w;β0). (B.1)

Equation (B.1) will imply that with probability at least 1 − ε, there exists a local
maximum in the ball {β0 +dnk : ‖k‖ ≤ K}, and therefore a local maximizer β̂ such
that ‖β̂ − β0‖ = OP(dn). We decompose ∆n(k) as ∆n(k) = T1 + T2 where

T1 =`n(w;β0 + dnk)− `n(w;β0)

T2 =|Dn|
p∑
j=1

(
pλn,j

(|β0j|)− pλn,j
(|β0j + dnkj|)

)
.

Since ρ(u; ·) is infinitely continuously differentiable and `
(2)
n (w;β) = −An(w;β),

then using a second-order Taylor expansion there exists t ∈ (0, 1) such that

T1 = dnk
>`(1)n (w;β0)−

1

2
d2nk

>An(w;β0)k

+
1

2
d2nk

> (An(w;β0)−An(w;β0 + tdnk)) k.

Since Θ is convex and bounded and since w(·) and z(·) are uniformly bounded by
conditions (C.2)-(C.3), there exists a nonnegative constant κ such that

1

2
‖An(w;β0)−An(w;β0 + tdnk)‖ ≤ κdn|Dn|.
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Let νmin(M) be the smallest eigenvalue of a squared matrix M. By condition (C.7),

ν̌ := lim inf
n→∞

νmin(|Dn|−1An(w;β0)) = lim inf
n→∞

k> (|Dn|−1An(w;β0)) k

‖k‖2
> 0.

Hence

T1 ≤ dn‖`(1)n (w;β0)‖ ‖k‖ −
ν̌

2
d2n|Dn|‖k‖2 + κd3n|Dn|.

Regarding the term T2,

T2 ≤ T ′2 := |Dn|
s∑
j=1

(
pλn,j

(|β0j|)− pλn,j
(|β0j + dnkj|)

)
since for any j the penalty function pλn,j

is nonnegative and pλn,j
(|β0j|) = 0 for

j = s+ 1, . . . , p.
Since dn|Dn|1/2 = O(1), then by (C.8), for n sufficiently large, pλn,j

is twice
continuously differentiable for every βj = β0j + tdnkj with t ∈ (0, 1). Therefore
using a third-order Taylor expansion, there exist tj ∈ (0, 1), j = 1, . . . , s such that

−T ′2 = dn|Dn|
s∑
j=1

kjp
′
λn,j

(|β0j|) sign(β0,j) +
1

2
d2n|Dn|

s∑
j=1

k2jp
′′
λn,j

(|β0j|)

+
1

6
d3n|Dn|

s∑
j=1

k3jp
′′′
λn,j

(|β0j + tjdnkj|).

Now by definition of an and cn and from condition (C.8), we deduce that there exists
κ such that

T ′2 ≤ andn|Dn| |k>1|+ 1

2
cnd

2
n|Dn|‖k‖2 + κd3n|Dn|

≤
√
sandn|Dn|‖k‖+

1

2
cnd

2
n|Dn|‖k‖2 + κd3n|Dn|

from Cauchy-Schwarz inequality. Since cn = o(1), dn = o(1) and andn|Dn| =
O(d2n|Dn|), then for n sufficiently large

∆n(k) ≤ dn‖`(1)n (w;β0)‖ ‖k‖ −
ν̌

4
d2n|Dn|‖k‖2 + 2

√
sd2n|Dn|‖k‖

We now return to (B.1): for n sufficiently large

P

(
sup
‖k‖=K

∆n(k) > 0

)
≤ P

(
‖`(1)n (w;β0)‖ >

ν̌

4
dn|Dn|K − 2

√
sdn|Dn|

)
Since dn|Dn| = O(|Dn|1/2), by choosing K large enough, there exists κ such that

for n sufficiently large

P

(
sup
‖k‖=K

∆n(k) > 0

)
≤ P

(
‖`(1)n (w;β0)‖ > κ|Dn|1/2

)
≤ ε

for any given ε > 0 from (A.2).
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C Proof of Theorem 2

To prove Theorem 2(i), we provide Lemma 2 as follows.

Lemma 2. Assume the conditions (C.1)-(C.6) and condition (C.8) hold. If an =
O(|Dn|−1/2) and bn|Dn|1/2 → ∞ as n → ∞, then with probability tending to 1, for
any β1 satisfying ‖β1 − β01‖ = OP(|Dn|−1/2), and for any constant K1 > 0,

Q
(
w; (β1

>,0>)>
)

= max
‖β2‖≤K1|Dn|−1/2

Q
(
w; (β1

>,β2
>)>
)
.

Proof. It is sufficient to show that with probability tending to 1 as n→∞, for any
β1 satisfying ‖β1 − β01‖ = OP(|Dn|−1/2), for some small εn = K1|Dn|−1/2, and for
j = s+ 1, . . . , p,

∂Q(w;β)

∂βj
< 0 for 0 < βj < εn, and (C.1)

∂Q(w;β)

∂βj
> 0 for − εn < βj < 0. (C.2)

First note that by (A.2), we obtain ‖`(1)n (w;β0)‖ = OP(|Dn|1/2). Second, by
conditions (C.2)-(C.3), there exists t ∈ (0, 1) such that

∂`n(w;β)

∂βj
=
∂`n(w;β0)

∂βj
+ t

p∑
l=1

∂2`n(w;β0 + t(β − β0))

∂βj∂βl
(βl − β0l)

= OP(|Dn|1/2) +OP(|Dn||Dn|−1/2) = OP(|Dn|1/2).

Third, let 0 < βj < εn and bn the sequence given by (6.3). By condition (C.8), bn
is well-defined and since by assumption bn|Dn|1/2 → ∞, in particular, bn > 0 for n
sufficiently large. Therefore, for n sufficiently large,

P

(
∂Q(w;β)

∂βj
< 0

)
= P

(
∂`n(w;β)

∂βj
− |Dn|p′λn,j

(|βj|) sign(βj) < 0

)
= P

(
∂`n(w;β)

∂βj
< |Dn|p′λn,j

(|βj|)
)

≥ P

(
∂`n(w;β)

∂βj
< |Dn|bn

)
= P

(
∂`n(w;β)

∂βj
< |Dn|1/2|Dn|1/2bn

)
.

P (∂Q(w;β)/∂βj < 0) −→ 1 as n → ∞ since ∂`n(w;β)/∂βj = OP(|Dn|1/2) and
bn|Dn|1/2 −→∞. This proves (C.1). We proceed similarly to prove (C.2).
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Proof. We now focus on the proof of Theorem 2. Since Theorem 2(i) is proved by
Lemma 2, we only need to prove Theorem 2(ii), which is the asymptotic normality
of β̂1. As shown in Theorem 1, there is a root-|Dn| consistent local maximizer β̂ of
Q(w;β), and it can be shown that there exists an estimator β̂1 in Theorem 1 that

is a root-(|Dn|) consistent local maximizer of Q
(
w; (β1

>,0>)>
)

, which is regarded

as a function of β1, and that satisfies

∂Q(w; β̂)

∂βj
= 0 for j = 1, . . . , s, and β̂ = (β̂

>
1 ,0

>)>.

There exists t ∈ (0, 1) and β̆ = β̂ + t(β0 − β̂) such that

0 =
∂`n(w; β̂)

∂βj
− |Dn|p′λn,j

(|β̂j|) sign(β̂j)

=
∂`n(w;β0)

∂βj
+

s∑
l=1

∂2`n(w; β̆)

∂βj∂βl
(β̂l − β0l)− |Dn|p′λn,j

(|β̂j|) sign(β̂j)

=
∂`n(w;β0)

∂βj
+

s∑
l=1

∂2`n(w;β0)

∂βj∂βl
(β̂l − β0l) +

s∑
l=1

Ψn,jl(β̂l − β0l)

− |Dn|p′λn,j
(|β0j|) sign(β0j)− |Dn|φn,j, (C.3)

where

Ψn,jl =
∂2`n(w; β̆)

∂βj∂βl
− ∂2`n(w;β0)

∂βj∂βl

and φn,j = p′λn,j
(|β̂j|) sign(β̂j) − p′λn,j

(|β0j|) sign(β0j). We decompose φn,j as φn,j =
T1 + T2 where

T1 = φn,jI(|β̂j − β0j| ≤ r̃n,j) and T2 = φn,jI(|β̂j − β0j| > r̃n,j)

and where r̃n,j is the sequence defined in the condition (C.8). Under this condition,
the following Taylor expansion can be derived for the term T1: there exists t ∈ (0, 1)
and β̌j = β̂j + t(β0j − β̂j) such that

T1 = p′′λn,j
(|β0j|)(β̂j − β0j)I(|β̂j − β0j| ≤ r̃n,j)

+
1

2
(β̂j − β0j)2p′′′λn,j

(|β̆j|)sign(β̌j)I(|β̂j − β0j| ≤ r̃n,j)

= p′′λn,j
(|β0j|)(β̂j − β0j)I(|β̂j − β0j| ≤ r̃n,j) +OP(|Dn|−1)

where the latter equation ensues from Theorem 1 and condition (C.8). Again, from

Theorem 1, I(|β̂j − β0j| ≤ r̃n,j)
L1

−→ 1 which implies that I(|β̂j − β0j| ≤ r̃n,j)
P−→ 1, so

T1 = p′′λn,j
(|β0j|)(β̂j − β0j)

(
1 + oP(1)

)
+OP(|Dn|−1).

Regarding the term T2, since p′λ is a Lipschitz function, there exists κ ≥ 0 such
that

T2 ≤ κ|β̂j − β0j| I(|β̂j − β0j| > r̃n,j).
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By Theorem 1, |β̂j − β0j| = OP(|Dn|−1/2) and I(|β̂j − β0j| > r̃n,j) = oP(1), so
T2 = oP(|Dn|−1/2) and we deduce that

φn,j = p′′λn,j
(|β0j|)(β̂j − β0j)

(
1 + oP(1)

)
+ oP(|Dn|−1/2). (C.4)

Let `
(1)
n,1(w;β0) (resp. `

(2)
n,1(w;β0)) be the first s components (resp. s× s top-left

corner) of `
(1)
n (w;β0) (resp. `

(2)
n (w;β0)). Let also Ψn be the s× s matrix containing

Ψn,jl, j, l = 1, . . . , s. Finally, let the vector p′n, the vector φn and the s × s matrix
Mn be

p′n = {p′λn,1
(|β01|) sign(β01), . . . , p

′
λn,s

(|β0s|) sign(β0s)}>,
φn = {φn,1, . . . , φn,s}>, and

Mn = {Bn,11(w;β0) + Cn,11(w;β0)}−1/2.

We rewrite both sides of (C.3) as

`
(1)
n,1(w;β0) + `

(2)
n,1(w;β0)(β̂1 − β01) + Ψn(β̂1 − β01)− |Dn|p′n − |Dn|φn = 0. (C.5)

By definition of Πn given by (6.6) and from (C.4), we obtain φn = Πn(β̂1−β01)
(
1+

oP(1)
)

+ oP(|Dn|−1/2). Using this, we deduce, by premultiplying both sides of (C.5)
by Mn, that

Mn`
(1)
n,1(w;β0)−Mn

(
An,11(w;β0) + |Dn|Πn

)
(β̂1 − β01)

= O(|Dn| ‖Mnp
′
n‖) + oP(|Dn| ‖MnΠn(β̂1 − β01)‖)

+ oP(‖Mn‖ |Dn|1/2) +OP(‖MnΨn(β̂1 − β01)‖).

The condition (C.6) implies that there exists an s×s positive definite matrix I′′0 such
that for all sufficiently large n, we have |Dn|−1(Bn,11(w;β0) + Cn,11(w;β0)) ≥ I′′0,
hence ‖Mn‖ = O(|Dn|−1/2).

Now, ‖Ψn‖ = OP(|Dn|1/2) by conditions (C.2)-(C.3) and by Theorem 1, and
‖β̂1 − β01‖ = OP(|Dn|−1/2) by Theorem 1 and by Theorem 2(i). Finally, since by
assumption an = o(|Dn|−1/2), we deduce that

‖MnΨn(β̂1 − β01)‖ = OP(|Dn|−1/2) = oP(1),

|Dn| ‖MnΠn(β̂1 − β01)‖ = oP(1),

‖Mn‖ |Dn|1/2 = O(1),

|Dn| ‖Mnp
′
n‖ = O(an|Dn|1/2) = o(1).

Therefore, we have that

Mn`
(1)
n,1(w;β0)−Mn

(
An,11(w;β0) + |Dn|Πn

)
(β̂1 − β01) = oP(1).

From (A.1), Theorem 2(i) and by Slutsky’s Theorem, we deduce that

{Bn,11(w;β0) + Cn,11(w;β0)}−1/2{An,11(w;β0) + |Dn|Πn}(β̂1 − β01)
d−→ N (0, Is)
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as n→∞, which can be rewritten, in particular under (C.7), as

|Dn|1/2Σn(w;β0)
−1/2(β̂1 − β01)

d−→ N (0, Is)

where Σn(w,β0) is given by (6.5).

D Map of covariates

Figure 3: Maps of covariates designed in scenario 2. The first two top left images
are the elevation and the slope. The other 18 covariates are generated as standard
Gaussian white noise but transformed to get multicollinearity.

Figure 4: Maps of covariates used in scenario 3 and in application. From left
to right: Elevation, slope, Aluminium, Boron, and Calcium (1st row), Copper,
Iron, Potassium, Magnesium, and Manganese (2nd row), Phosporus, Zinc, Nitrogen,
Nitrigen mineralisation, and pH (3rd row).
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