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We present homogenization of the viscous incompressible porous media flows under stress boundary conditions at the outer boundary. In addition to Darcy's law describing filtration in the interior of the porous medium, we derive rigorously the effective pressure boundary condition at the outer boundary. It is a linear combination of the outside pressure and the applied shear stress. We use the two-scale convergence in the sense of boundary layers, introduced by Allaire and Conca [SIAM J. Math. Anal., 29 (1997), pp. 343-379] to obtain the boundary layer structure next to the outer boundary. The approach allows establishing the strong L 2 -convergence of the velocity corrector and identifica-

Introduction

The porous media flows are of interest in a wide range of engineering disciplines including environmental and geological applications, flows through filters etc. They take place in a material which consists of a solid skeleton and billions of interconnected fluid filled pores. The flows are characterised by large spatial and temporal scales. The complex geometry makes direct computing of the flows, and also reactions, deformations and other phenomena, practically impossible. In the applications, the mesoscopic modeling is privileged and one search for effective models where the information on the geometry is kept in the coefficients and which are valid everywhere. The technique which allows replacing the physical models posed at the microstructure level by equations valid globally, is called upscaling. Its mathematical variant, which gives also the rigorous relationship between the upscaled and the microscopic models is the homogenization technique.

It has been applied to a number of porous media problems, starting from the seminal work of Tartar [START_REF] Tartar | Convergence of the homogenization process[END_REF] and the monograph [START_REF] Sanchez-Palencia | Non-homogeneous media and vibration theory[END_REF]. Many subjects are reviewed in the book [START_REF] Hornung | Homogenization and Porous Media[END_REF]. See also the references therein.

Frequently, one has processes on multiple domains and model-coupling approaches are needed. Absence of the statistical homogeneity does not allow direct use of the homogenization techniques. Examples of situations where the presence of an interface breaks the statistical homogeneity are

• the flow of a viscous fluid over a porous bed,

• the forced infiltration into a porous medium.
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The tangential flow of an unconfined fluid over a porous bed is described by the law of Beavers and Joseph [START_REF] Beavers | Boundary conditions at a naturally permeable wall[END_REF] and it was rigorously derived in [START_REF] Jäger | On the interface boundary condition of Beavers, Joseph, and Saffman[END_REF] and [START_REF] Marciniak-Czochra | Effective pressure interface law for transport phenomena between an unconfined fluid and a porous medium using homogenization[END_REF] using a combination of the homogenization and boundary layer techniques. The forced injection problem was introduced in [START_REF] Levy | On boundary conditions for fluid flow in porous media[END_REF] and the interface conditions were rigorously established and justified in [START_REF] Carraro | Effective interface conditions for the forced infiltration of a viscous fluid into a porous medium using homogenization[END_REF].

A particular class of the above problems is derivation of the homogenized external boundary conditions for the porous media flows. In the case of the zero velocity at the external boundary of the porous medium, one would impose zero normal component of the Darcy velocity as the homogenized boundary condition. The behavior of the velocity and pressure field close to the flat external boundary, with such boundary condition, has been studied in [START_REF] Jäger | On the Flow Conditions at the Boundary Between a Porous Medium and an Impervious Solid[END_REF], using the technique from [START_REF] Jäger | On the boundary condition on the contact interface between a porous medium and a free fluid[END_REF]. The error estimate in 2D, for an arbitrary geometry has been established in [START_REF] Marušić-Paloka | An Error Estimate for Correctors in the Homogenization of the Stokes and Navier-Stokes Equations in a Porous Medium[END_REF].

The case of the velocity boundary conditions could be considered as "intuitively" obvious. Other class of problems arises when we have a contact of the porous medium with another fluid flow and the normal contact force is given at the boundary. It describes the physical situation when the upper boundary of the porous medium in exposed to the atmospheric pressure and wind (see e.g. [START_REF] Coceal | Canopy model of mean winds through urban areas[END_REF]). Or, more generally, when the fluid that we study is in contact with another given fluid. Assuming that the motion in porous medium is slow enough that the interface Σ between two fluids can be seen as immobile. Intuitively, it is expected that the homogenized pressure will take the prescribed value at the boundary.

In this article we study the homogenization of the stationary Navier-Stokes equations with the given normal contact force at the external boundary and we will find out that the result is more rich than expected.

Setting of the problem

We start by defining the geometry. Let and d be two positive constants.

Let Ω = (0, ) × (-d, 0) ⊂ R 2 be a rectangle. We denote the upper boundary by

Σ = {(x 1 , 0) ∈ R 2 ; x 1 ∈ (0, ) } .
The bottom of the domain is denoted by

Γ = {(x 1 , -d) ∈ R 2 ; x 1 ∈ (0, ) } .
We set Γ = ∂Ω\Σ . Let A ⊂⊂ R 2 be a smooth domain such that A ⊂ (0, 1) 2 ≡ Y . The unit pore is Y * = Y \A. Now we choose the small parameter ε 1 such that ε = /m, with m ∈ N and define

T ε = {k ∈ Z 2 ; ε(k + A) ⊂ Ω } , Y * ε,k = ε(k + Y * ) , A ε k = ε (k + A).
The fluid part of the porous medium is now

Ω ε = Ω\ k∈Tε ε (k + A). Finally, B ε = k∈Tε ε (k + A)
is the solid part of the porous medium and its boundary is

S ε = ∂B ε . Σ Γ B ε ' i A • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
On Σ we prescribe the normal stress and Γ is an impermeable boundary. In the dimensionless form, the Stokes problem that we study reads

-µ ∆u ε + ∇p ε = F , div u ε = 0 in Ω ε , (1) 
T(u ε , p ε ) e 2 = H = (P, Q) on Σ, u ε = 0 on S ε ∪ Γ, (2) 
(u ε , p ε ) is -periodic in x 1 . (3) 
Here T(v, q) denotes the stress tensor and D v the rate of strain tensor

T(v, q) = -2µ Dv + q I , Dv = 1 2 ∇v + (∇v) t
and µ is a positive constant.

Assumption 1. We suppose ∂A ∈ C 3 , F ∈ C 1 (Ω) 2 and P = P (x 1 ), Q = Q(x 1 ) being elements of C 1 per [0, ].
For the existence, uniqueness and regularity of solutions to Stokes problem (1)-

, under Assumption 1, we refer e.g. to [START_REF] Boyer | Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models[END_REF], Sec. 4.7.

Furthermore, we consider the full stationary incompressible Navier-Stokes system

-µ ∆u 1,ε + (u 1,ε ∇)u 1,ε + ∇p 1,ε = F , div u 1,ε = 0 in Ω ε (4) T(u 1,ε , p 1,ε ) e 2 = H = (P, Q) on Σ, u 1,ε = 0 on S ε ∪ Γ (5) (u 1,ε , p 1,ε ) is -periodic in x 1 . (6) 
Existence of a solution for problem (4)-( 6) is discussed in Sec. 5.

Our goal is to study behavior of solutions to (1)-( 3) and ( 4)-( 6) in the limit when the small parameter ε → 0.

The main result

Our goal is to describe the effective behavior of the fluid flow in the above described situation. The filtration in the bulk is expected to be described by Darcy's law and we are looking for the effective boundary condition on the upper boundary Σ. To do so, we apply various homogenization techniques, such as two-scale convergence ( [START_REF] Nguetseng | A general convergence result for a functional related to the theory of homogenization[END_REF] , [START_REF] Allaire | Homogenization and two-scale convergence[END_REF]) and the two-scale convergence for boundary layers ( [START_REF] Allaire | Boundary Layers in the Homogenization of a Spectral Problem in Fluid-Solid Structures[END_REF]). We prove the following result:

Theorem 1. Let us suppose Assumption 1 and let (u ε , p ε ) be the solution of problem ( 1)-(3).
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Then there exists an extension of p ε to the whole Ω, denoted again by the same symbol, such that

p ε → p 0 strongly in L 2 (Ω), ( 7 
)
where p 0 is the solution of problem div K(∇p 0 -F) = 0 in Ω, ( 8 
)
p 0 is -periodic in x 1 , n • K (∇p 0 -F) = 0 on Γ, (9) 
p 0 = C π P + Q on Σ, (10) 
with K the permeability tensor, defined by (83), and C π the boundary layer pressure stabilisation constant given by (41).

Next, let (w, π) be the solution of the boundary layer problem (36)-(38).

Then, after extending u ε and w by zero to the perforations, we have

95 u ε (x) -ε P (x 1 ) w(x/ε) ε 2 V weakly in L 2 (Ω), (11) 
u ε (x) ε 2 P (x 1 ) G * w 1 (y) dy δ Σ e 1 + V weak* in M(Ω), (12) 
u ε -ε P (x 1 ) w x ε ε 2 - 2 k=1 w k x ε F k - ∂p 0 ∂x k → 0 strongly in L 2 (Ω), ( 13 
)
where G * is the boundary layer internal interface fluid/solid given by ( 28), V satisfies the Darcy law An analogous result holds for the homogenization of the stationary Navier-Stokes equations ( 4)-( 6)

V = K(F -∇p 0 ) , M ( 
Theorem 2. Under the assumptions on the geometry and the data from Theorem (1), there exist solutions (u 1,ε , p 1,ε ) of problem ( 4)-( 6) such that convergences ( 7), ( 11)-( 13) take place.

Proof of Theorem 1

The proof is divided in several steps. First we derive the a priori estimates.

Then we pass to the two-scale limit for boundary layers, in order to determine the local behavior of the solution in vicinity of the boundary. Once it is achieved, we subtract the boundary layer corrector from the original solution and use the classical two-scale convergence to prove that the residual converges towards the limit that satisfies the Darcy law. At the end we prove the strong convergences.

Step one: A priori estimates

We first recall that in Ω ε Poincaré and trace constants depend on ε in the following way

|φ| L 2 (Ωε) ≤ C ε |∇φ| L 2 (Ωε) ( 14 
)
|φ| L 2 (Σ) ≤ C √ ε |∇φ| L 2 (Ωε) , ∀ φ ∈ H 1 (Ω ε ) , φ = 0 on S ε (15) 
We also recall that the norms |Dv| L 2 (Ωε) and |∇v| L 2 (Ωε) are equivalent, due to the Korn's inequality, which is independent of ε (see e.g. [START_REF] Boyer | Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models[END_REF]).

Here and in the sequel we assume that u ε is extended by zero to the whole Ω. In order to extend the pressure p ε we need Tartar's construction from his seminal paper [START_REF] Tartar | Convergence of the homogenization process[END_REF]. It relies on the related construction of the restriction operator, acting from the whole domain Ω to the pore space Ω ε . In our setting we deal with the functional spaces

X 2 = {z ∈ H 1 (Ω) 2 ; z = 0 for x 2 = -d } X ε 2 = {z ∈ X 2 ; z = 0 on S ε } .
Then, after [START_REF] Tartar | Convergence of the homogenization process[END_REF] and the detailed review in [START_REF] Allaire | One-Phase Newtonian Flow[END_REF], there exists a continuous restric-

120 tion operator R ε ∈ L(X 2 , X ε 2 ), such that div (R ε z) = div z + k∈Tε 1 |Y * ε,k | χ ε,k A ε k div z dx, ∀ z ∈ X 2 , |R ε z| L 2 (Ωε) ≤ C (ε |∇z| L 2 (Ω) + |z| L 2 (Ω) ) , ∀ z ∈ X 2 , |∇R ε z| L 2 (Ωε) ≤ C ε (ε |∇z| L 2 (Ω) + |z| L 2 (Ω) ) , ∀ z ∈ X 2 ,
where χ ε,k denotes the characteristic function of the set Y * ε,k , k ∈ T ε . Through a duality argument, it gives an extension of the pressure gradient and it was found in [START_REF] Lipton | Darcy's law for slow viscous flow past a trationary array of bubbles[END_REF] that the pressure extension p is given by the explicit formula

pε =      p ε in Ω ε 1 |Y * ε,k | Y * ε,k p ε dx in Y * ε,k for each k ∈ T ε . (16) 
For details we refer to [START_REF] Allaire | One-Phase Newtonian Flow[END_REF]. In addition, a direct computation yields

Ωε p ε div (R ε z) dx = Ω pε dx div z dx , ∀ z ∈ X 2 . (17) 
Both the velocity and the pressure extensions are, for simplicity, denoted by the same symbols as the original functions (u ε , p ε ).

It is straightforward to see that:

Lemma 1. Let (u ε , p ε ) be the solution to problem (1), [START_REF] Allaire | One-Phase Newtonian Flow[END_REF]. Then there exists 125 some constant C > 0, independent of ε, such that

|∇u ε | L 2 (Ω) ≤ C √ ε ( 18 
)
|u ε | L 2 (Ω) ≤ C ε 3/2 ( 19 
)
|p ε | L 2 (Ω) ≤ C √ ε . (20) 
Proof. We start from the variational formulation of problem (1), ( 2)

µ Ωε Du ε : Dv dx = Σ H • v dS + Ωε F • v dx, ∀ v ∈ V (Ω ε ) , (21) 
V (Ω ε ) = {v ∈ H 1 (Ω ε ) 2 ; div v = 0, v = 0 on S ε ∪ Γ, v is -periodic in x 1 }
Using u ε as the test function and applying ( 14)-( 15) yield

µ Ωε |Du ε | 2 dx = Σ H • u ε dS + Ωε F • u ε dx ≤ C √ ε|Du ε | L 2 (Ωε) .
Now ( 14) implies ( 18) and ( 19). Since we have extended the pressure to the solid part of Ω, using Tartar's construction, ( 18) and ( 17) imply

|p ε | L 2 (Ω)/R = sup g∈L 2 (Ω)/R Ω p ε g dx |g| L 2 (Ω)/R = sup z∈X2 Ωε p ε div (R ε z) dx |z| H 1 (Ω) 2 ≤ C ε |∇u ε | L 2 (Ω) ,
giving the pressure estimate (20).

Step two: Two-scale convergence for boundary layers

We recall the definition and some basic compactness results for two-scale convergence for boundary layers due to Allaire and Conca [START_REF] Allaire | Boundary Layers in the Homogenization of a Spectral Problem in Fluid-Solid Structures[END_REF]. In the sequel, if the index y is added to the differential operators D y , ∇ y , div y , then the derivatives are taken with respect to the fast variables y 1 , y 2 instead of x 1 , x 2 .

Let G = (0, 1) × ( -∞ , 0) be an infinite band. The bounded sequence (φ ε ) ε>0 ⊂ L 2 (Ω) is said to two-scale converge in the sense of the boundary layers if there

exists φ 0 (x 1 , y) ∈ L 2 (Σ × G) such that 1 ε Ω φ ε (x) ψ x 1 , x ε dx → Σ G φ 0 (x 1 , y) ψ(x 1 , y) dx 1 dy , (22) 
for all smooth functions ψ(x 1 , y) defined in Σ × G, with bounded support, such

that y 1 → ψ(x 1 , y 1 , y 2 ) is 1-periodic.
We need the following functional space

D 1 = {ψ ∈ C ∞ (G) ; ψ is 1 -periodic in y 1
and compactly supported in

y 2 ∈ (-∞, 0]} Now D 1 # (G) is the closure of D 1 in the norm |ψ| D 1 # (G) = |∇ψ| L 2 (G) .
It should be noticed that such functions do not necessarily vanish as y 2 → -∞. For that kind of convergence we have the following compactness result from [START_REF] Allaire | Boundary Layers in the Homogenization of a Spectral Problem in Fluid-Solid Structures[END_REF]:

Theorem 3. 1. Let us suppose 1 √ ε |φ ε | L 2 (Ω) ≤ C . ( 23 
)
Then there exists φ 0 ∈ L 2 (Σ × G) and a subsequence, denoted by the same indices, such that φ ε → φ 0 two-scale in the sense of boundary layers.

2. Let us suppose

1 √ ε |φ ε | L 2 (Ω) + ε |∇φ ε | L 2 (Ω) ≤ C. ( 25 
)
Then there exists

φ 0 ∈ L 2 (Σ; D 1 # (G)
) and a subsequence, denoted by the same indices, such that φ ε → φ 0 two-scale in the sense of boundary layers [START_REF] Nguetseng | A general convergence result for a functional related to the theory of homogenization[END_REF] ε ∇φ ε → ∇ y φ 0 two-scale in the sense of boundary layers . (

Using the a priori estimates, we now undertake our first passing to the limit.

Before we start we define

C = -∞ j=0 (j e 2 + ∂A ) , M = -∞ j=0 (j e 2 + A) , G * = G\ -∞ j=0 (j e 2 + A ). ( 28 
)
We introduce the space D 1 #0 (G * ) defined similarly as D 1 # (G) but on G * and such that its elements have zero trace on C. Thus, we take

D 1 = {ψ ∈ C ∞ (G * ) ; ψ| C = 0 , ψ is 1 -periodic in y 1 ,
and compactly supported in y 2 ∈ (-∞, 0]} .

Then D 1 #0 (G * ) is its closure in the norm |ψ| D 1 #0 (G * ) = |∇ψ| L 2 (G * )
. Those functions do vanish as y 2 → -∞ due to the zero trace on C that prevents them to 135 tend to a constant.

Lemma 2. Let (v 0 , q 0 ) ∈ L 2 (Σ; D 1 #0 (G * )) × L 2 (Σ; L 2 loc (G *
)) be given by the boundary layer problem

-µ∆ y v 0 + ∇ y q 0 = 0, div y v 0 = 0 in G * , (29) 
-2µ D y v 0 + q 0 I e 2 = H for y 2 = 0 , v 0 = 0 on C, (30) 
(v 0 , q 0 ) is 1-periodic in y 1 , v 0 → 0 as y 2 → -∞ . (31) 
Then

1 ε u ε → v 0 two-scale in the sense of boundary layers (32) 
∇u ε → ∇ y v 0 two-scale in the sense of boundary layers .

Proof. The a priori estimates ( 19) and ( 18) and the compactness theorem 3 imply the existence of some

v 0 ∈ L 2 (Σ; D 1 #0 (G * )) such that v 0 = 0 on M and 1 ε u ε → v 0 two-scale in the sense of boundary layers ( 34 
)
∇u ε → ∇ y v 0 two-scale in the sense of boundary layers . ( 35 
)
Now we take the test function

z ε (x) = z x 1 , x ε ∈ D 1 #0 (G * ) 2 such that div y z = 0 and z(x 1 , • ) = 0 in M in the variational formulation for (1), (2) 2µ ε Ωε εD u ε ε : εD z ε dx - Ωε p ε div z ε dx = Σ H • z ε dS + Ωε F • z ε dx. Since ∂z ε ∂x j = ε -1 ∂z ∂y j + δ 1j ∂z ∂x 1
we get on the limit 2µ

Σ G D y v 0 (x 1 , y) : D y z(x 1 , y) dy dx 1 = Σ H• 1 0 z(x 1 , y 1 , 0)dy 1 dx 1 .
Furthermore, since div u ε = 0 it easily follows that div y v 0 = 0. Thus there exists q 0 ∈ L 2 (Σ; L 2 loc (G * )) such that (v 0 , q 0 ) satisfy ( 29)-(31).

The boundary layer corrector (v 0 , q 0 ) can be decomposed as v 0 = P (x 1 ) w(y) 145 and q 0 = P (x 1 ) π(y) + Q(x 1 ) , where

-µ∆ y w + ∇ y π = 0 , div y w = 0 in G * , (36) 
(-2µ D y w + π I) e 2 = e 1 for y 2 = 0 , w = 0 on C, ( 37 
) (w, π) is 1-periodic in y 1 , w → 0 as y 2 → -∞ . (38) 
Problem (36), (38) is of the boundary layer type. Existence of the solution and exponential decay can be proved as in [START_REF] Jäger | On the boundary condition on the contact interface between a porous medium and a free fluid[END_REF]. We have Theorem 4. Problem (36), (38) has a unique solution (w, π)

∈ D 1 #0 (G * ) × L 2
loc (G * ). Furthermore, there exists a constant C π such that

150 |e α |y2| ( π -C π ) | L 2 (G * ) ≤ C (39) |e α |y2| w | L 2 (G * ) + |e α |y2| ∇ w | L 2 (G * ) ≤ C . ( 40 
)
for some constants C, α > 0 .

In the sense of (39) we write Using (40) yields

C π = lim y2→-∞ π(y) . (41 
1 0 w 2 (y 1 , y 2 ) dy 1 = 0, ∀y 2 ≤ 0. ( 42 
) (42) implies G * w 2 dy = 0. ( 43 
)
Remark 3. Integrating (37) with respect to y 1 yields

e 1 = 1 0 -µ ∂w 1 ∂y 2 e 1 + ∂w 2 ∂y 1 e 1 + 2 ∂w 2 ∂y 2 e 2 + π e 2 (y 1 , 0) dy 1 .
Equating the second components gives

0 = 1 0 -2 µ ∂w 2 ∂y 2 + π (y 1 , 0) dy 1 = 1 0 2 µ ∂w 1 ∂y 1 + π (y 1 , 0) dy 1 = = 1 0 π(y 1 , 0) dy 1 .
If we test (36) with w k and (80) by w and combine, we get

C π = K -1 22 1 0 w 2 1 (y 1 , 0) dy 1 + 1 0 -2µ ∂w k ∂y 2 + π k e 2 (y 1 , 0) w(y 1 , 0) dy 1 .
Finally, we denote

J = {y 2 ∈] -∞, 0] ; (y 1 , y 2 ) ∈ M , y 1 ∈]0, 1[ }. Denoting m A = min{y 2 ∈ [0, 1] ; (y 1 , y 2 ) ∈ A } , M A = max{y 2 ∈ [0, 1] : (y 1 , y 2 ) ∈ A } .
The set J is then a union of disjoint intervals We now know the behavior of (u ε , p ε ) in vicinity of Σ. To get additional information of the behavior far from the boundary we deduce the boundary layer corrector from (u ε , p ε ) and define

J 0 = ] 0, m A [ , J i =]i -1 + M A , i + m a [ , i = 1,
U ε (x) = u ε (x) -ε P (x 1 ) w(x/ε) , P ε (x) = p ε (x) -[P (x 1 ) π(x/ε) + Q(x 1 )] .
The stress tensor T(v, q) = 2µ Dv -q I for such approximation satisfies

T(U ε , P ε ) = T(u ε , p ε ) -P (x 1 ) (2µD y w -πI) - -2µε dP dx 1   w 1 w 2 /2 w 2 /2 0   = T(u ε , p ε )- -   P (x 1 ) 2µ ∂w1 ∂y1 -π + 2µε dP dx1 w 1 -Q µ P (x 1 ) ∂w1 ∂y2 + ∂w2 ∂y1 + ε dP dx1 w 2 µ P (x 1 ) ∂w1 ∂y2 + ∂w2 ∂y1 + ε dP dx1 w 2 P (x 1 ) 2µ ∂w2 ∂y2 -π -Q(x 1 )  
By direct computation we get

-div T(U ε , P ε ) = f ε , (44) 
f ε ≡ F + µε d 2 P dx 2 1 (w + w 1 e 1 ) + dP dx 1 2µ ∂w ∂y 1 -πe 1 + µ∇ y w 1 - dQ dx 1 e 1 , ( 45 
) div U ε = -ε dP dx 1 w 1 in Ω ε , (46) 
U ε = 0 on S ε , U ε = -ε P (x 1 ) w(x/ε) on Γ, (47) 
(-2µ D U ε + P ε I) e 2 = 0 on Σ . ( 48 
)
We want to derive appropriate a priori estimates for (U ε , P ε ). However, according to (46), the divergence of U ε is still too large for our purpose. Thus we need to compute the additional divergence corrector.

Lemma 3. There exists Φ ∈ H 2 (G * ) 2 such that div y Φ = w 1 in G * , (49) 
Φ is 1-periodic in y 1 , Φ = 0 on C , Φ(y 1 , 0) = Ce 2 , (50) 
e γ|y2| Φ ∈ L 2 (G * ) 4 and |Φ(y 1 , y 2 )| ≤ Ce -γ|y2| , for some γ > 0. (51)

Proof. We follow [START_REF] Jäger | On the boundary condition on the contact interface between a porous medium and a free fluid[END_REF] and search for Φ in the form

Φ = ∇ y ψ + curl y h = ∂ψ ∂y 1 - ∂h ∂y 2 , ∂ψ ∂y 2 + ∂h ∂y 1 .
The function ψ solves Again, assuming that U ε is extended by zero to the pores B ε we extend P ε using the formula ( 16) to prove:

170 -∆ y ψ = w 1 (y) in G * , ∂ψ ∂n = 0 on C, (52) 
∂ψ ∂y 2 = d 0 = const. for y 2 = 0, ψ is 1-periodic in y 1 , (53) 
Lemma 4. |∇U ε | L 2 (Ω) ≤ C ε (55) |U ε | L 2 (Ω) ≤ C ε 2 (56) 
|P ε | L 2 (Ω) ≤ C . ( 57 
)
Proof. It is straightforward to see that for the right-hand side, we have

|f ε | L 2 (Ω) ≤ C .
Furthermore

f ε = F -( dP dx 1 C π + dQ dx 1 ) e 1 + g ε , with |g ε | L 2 (Ω) = O( √ ε).
The idea is to test the system (44) with

Ũε = U ε + ε 2 dP dx 1 (x 1 ) Φ x ε , ( 58 
)
where Φ is constructed in lemma 3. By the construction

div Ũε = ε 2 d 2 P dx 2 1 Φ ε 1 with Φ ε (x) = Φ(x/ε) . Thus |div Ũε | L 2 (Ω) ≤ C ε 5/2 .
The weak form of (44) reads

2µ Ωε D U ε : D z dx - Ωε P ε div z dx = Ωε f ε z dx , ∀ z ∈ X ε 2 (59) so that Ωε P ε div z dx ≤ C ( |D U ε | L 2 (Ωε) + ε )| z| H 1 (Ωε) , ∀ z ∈ X ε 2 . ( 60 
)
Next we use identity [START_REF] Jäger | On the Flow Conditions at the Boundary Between a Porous Medium and an Impervious Solid[END_REF] to obtain the estimate

Ω P ε div z dx = Ωε P ε div (R ε z) dx ≤ C ε ( |D U ε | L 2 (Ωε) +ε ) |z| H 1 (Ω) , (61) 
∀ z ∈ X 2 . Since div : X 2 → L 2 (Ω) is a surjective continuous operator, (61) yields | P ε | L 2 (Ω) ≤ C ( ε -1 |D U ε | L 2 (Ωε) + 1 ) . ( 62 
)
Now we take z = Ũε as a test function in (59). To be precise, we observe that Ũε is not exactly in X ε 2 since it is not equal to zero for x 2 = -d. But, that value is exponentially small, of order e -γ/ε , so it can be easily corrected by lifting its boundary value by a negligibly small function. Thus, slightly abusing the notation, we consider it as an element of X ε 2 . Then, due to the (58)

Ωε P ε div Ũε dx = ε 2 Ωε P ε d 2 P dx 2 1 Φ ε 1 dx ≤ C ε |D U ε | L 2 (Ωε) + C ε 2 . (63)
Consequently, we get (55)-(57) .

At this point we use the classical two-scale convergence (see e.g. [START_REF] Nguetseng | A general convergence result for a functional related to the theory of homogenization[END_REF], [START_REF] Allaire | Homogenization and two-scale convergence[END_REF]).

For readers' convenience we recall basic definitions and compactness results.

Let Y = [0, 1] 2 and let C ∞ # (Y ) be the set of all C ∞ functions defined on Y and periodic with period 1. We say that a sequence (v ε ) ε>0 , from L 2 (Ω), twoscale converges to a function

v 0 ∈ L 2 (Ω) if lim ε→0 Ω v ε (x) ψ x, x ε dx → Ω Y v 0 (x, y) ψ(x, y)dx dy , for any ψ ∈ C ∞ 0 (Ω; C ∞ # (Y )
). For such convergence we have the following compactness result from [START_REF] Allaire | Homogenization and two-scale convergence[END_REF] and [START_REF] Nguetseng | A general convergence result for a functional related to the theory of homogenization[END_REF] that we shall need in the sequel Theorem 5.

• Let (v ε ) ε>0 be a bounded sequence in L 2 (Ω). Then we can extract a subsequence that two-scale converges to some v 0 ∈ L 2 (Ω × Y ).

• Let (v ε ) ε>0 be a sequence in H 1 (Ω) such that v ε and ε ∇v ε are bounded in L 2 (Ω). Then, there exists a function v 0 ∈ L 2 (Ω; H 1 # (Y )) and a subsequence for which

v ε → v 0 in two-scales, (64) 
ε ∇v ε → ∇ y v 0 in two-scales. ( 65 
)
Lemma 5. Let (U ε , P ε ) be the solution of the residual problem ( 46)-( 48). Then

ε -2 U ε → U 0 in two-scales, (66) 
ε -1 ∇U ε → ∇ y U 0 in two-scales, (67) 
P ε → P 0 in two-scales, (68) 
where

(U 0 , P 0 , Q 0 ) ∈ L 2 (Ω; H 1 # (Y * )) × H 1 (Ω) × L 2 (Ω; L 2 (Y * )/R) is the solu- tion of the two-scale problem -µ ∆ y U 0 + ∇ y Q 0 + ∇ x P 0 = F -( dQ dx 1 + C π dP dx 1 ) e 1 in Y * × Ω, ( 69 
)
div y U 0 = 0 in Y * × Ω, (70) 
U 0 = 0 on S × Ω, (U 0 , Q 0 ) is 1 -periodic in y, (71) 
div x Y U 0 dy = 0 in Ω, Y U 0 dy • n = 0 on Γ, P 0 = 0 on Σ. ( 72 
)
Proof. Using the estimates (55)-(57) we get that there exist

U 0 ∈ L 2 (Ω; H 1 # (Y )) and P 0 ∈ L 2 (Ω × Y ) such that ε -2 U ε → U 0 in two-scales, ε -1 ∇U ε → ∇ y U 0 in two-scales, P ε → P 0 two-scale.
It follows directly that U 0 (x, y) = 0 for y ∈ A.

First, for ψ(x, y) ∈ C ∞ (Y × Ω), periodic in y, such that ψ = 0 for y ∈ A 0 ← Ω dP dx 1 (x 1 ) w 1 x, x ε ψ x, x ε dx = ε -1 Ω div U ε ψ x, x ε dx = - Ω ε ∇ x ψ x, x ε + ∇ y ψ x, x ε • U ε (x) ε 2 dx → (73) → Ω Y U 0 • ∇ y ψ(x, y) dy dx ⇒ div y U 0 = 0 .
We then test equations ( 44)-( 48) with

m ε (x) = m x, x ε , where m ∈ H 1 (Ω; H 1 # (Y )), m = 0 for y ∈ M . 195 0 ← ε Ω f ε m ε dx = 2µ Ω D U ε (x) D y m x, x ε + εD x m x, x ε dx - Ω P ε (x) εdiv x m(x, x/ε) + div y m(x, x/ε) dx → - Ω Y P 0 (x, y) div y m(x, y) dy dx. (74) 
Thus ∇ y P 0 = 0 implying P 0 = P 0 (x) .

Next we test system (44)-(48) with Z ε (x) = Z x, x ε , where Z ∈ H 1 (Ω; H 1 # (Y )), such that div y Z = 0 and Z = 0 for y ∈ A. It yields

Ω [F - dP (x 1 )C π + Q(x 1 ) dx 1 e 1 ] Y Z dy ← Ω f ε Z ε = - Ω P ε (x)div x Z(x, x/ε) dx + 2µ ε Ω D U ε (x) D y Z(x, x ε ) + εD x Z(x, x ε ) dx → (75) → 2µ Ω Y D y U 0 (x, y) D y Z(x, y) dy dx - Ω Y P 0 (x) div x Z(x, y) dy dx .
We conclude that ∇ x P 0 ∈ L 2 (Ω) and (U 0 , P 0 ) satisfies equations ( 69)-( 71).
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The effective filtration velocity boundary conditions are determined by picking a smooth test-function ψ ∈ C ∞ (Ω), periodic in x 1 , ψ = 0 on Σ, and testing

div Ũε = ε 2 dP dx 1 Φ ε 1 18
with it. It gives

- Ωε dP dx 1 (x 1 ) Φ 1 x ε ψ(x) dx = ε -2 Ωε div Ũε (x) ψ(x) dx = = - Ωε ε -2 Ũε (x) • ∇ψ(x) dx - 0 Ũ ε 2 (x 1 , -d) ψ(x 1 , -d) dx 1 . ( 76 
)
The last integral on the right hand side is negligible due to the exponential decay of w and Φ. The first integral on the right hand side, due to (66), converges and, due to the construction of Ũε ,

205 lim ε→0 Ω ε -2 Ũε (x) • ∇ψ(x) dx = lim ε→0 Ω ε -2 U ε (x) • ∇ψ(x) dx = = Ω Y U 0 (x, y) dy • ∇ψ(x) dx .
For the left-hand side in (76) we get

Ω d 2 P dx 2 1 (x 1 ) Φ 1 x ε ψ(x) dx ≤ C √ ε .
Thus

Ω Y U 0 dy • ∇ψ dx = 0 meaning that div x Y U 0 dy = 0 in Ω , Y U 0 dy • n = 0 on Γ.
We still need to determine the boundary condition for P 0 on Σ.

Let b be a smooth function defined on Ω×Y , such that div y b = 0 and b = 0 on Γ and b = 0 for y ∈ A . We now use b ε (x) = b(x, x/ε) as a test function in 210 (44)-( 48). We obtain

Ω f ε • b ε dx = 2µ Ω D U ε D x b • , • ε + ε -1 D y b • , • ε dx - ( 77 
) Ω P ε div x b • , • ε dx → 2µ Ω Y D y U 0 D y b dydx - Ω P 0 div x Y b dy dx.
As for the left-hand side, we have

Ω f ε • b ε dx → Ω [F - d(P (x 1 )C π + Q(x 1 )) dx 1 e 1 ] ( Y b dy) dx so that 2µ Ω Y D y U 0 D y b dydx - Ω P 0 div x Y b dy dx = Ω Y b [F - d(P (x 1 )C π + Q(x 1 )) dx 1 e 1 ] dydx.
Using ( 69)-( 72) yields

Ω P 0 div Y b dy dx = - Ω ∇P 0 • Y b dy dx. It implies 2µ Σ Y
b • e 2 dy P 0 dx = 0 and, finally, P 0 = 0 on Σ.

Proving uniqueness of a weak solution for problem (69)-( 72) is straightforward.

Step four: Strong convergence 215

We start by proving the strong convergence for the pressure. We follow the approach from [START_REF] Sanchez-Palencia | Non-homogeneous media and vibration theory[END_REF]. Let {z ε } ε>0 be a sequence in X 2 such that z ε z 0 weakly in H 1 (Ω) .

Then we have

Ω P ε div z ε dx - Ω P 0 div z dx = Ω P ε div (z ε -z) dx + Ω ( P ε -P 0 ) div z dx.
For two integrals on the right-hand side we have lim ε→0 Ω ( P ε -P 0 ) div z dx = 0 and

Ω P ε div (z ε -z) dx = Ωε P ε div R ε (z ε -z) dx = 2µ Ωε D U ε ε εD(R ε (z ε -z) ) dx → 0 as ε → 0 .
Using surjectivity of the operator div : X 2 → L 2 (Ω) we conclude that P ε → P 0 strongly in L 2 (Ω).

Next we prove the strong convergence for the velocity. We define

U 0,ε (x) = 2 k=1 w k (x/ε) F k (x) - ∂ ∂x k P 0 (x) + C π P (x 1 ) + Q(x 1 )
.

Then for the L 2 -norms we have

Ωε U ε ε 2 -U 0,ε 2 dx ≤ C 2µ ε 2 Ωε D U ε ε 2 -U 0,ε 2 dx = = C 2µ ε -2 Ωε | D U ε | 2 dx + 2µ ε 2 Ωε | D U 0,ε | 2 dx - -4µ Ωε D U ε ε ε D U 0,ε dx .
Using the smoothness of U 0 we get, as ε → 0

220 (i) ε 2 Ωε | D U 0,ε | 2 dx = Ωε |D y U 0,ε | 2 dx + O(ε) → Ω×Y * |D y U 0 | 2 dx dy . (ii) 2µ Ω×Y * | D y U 0 | 2 dx = Ω (F - d(P (x 1 )C π + Q(x 1 )) dx 1 e 1 ) Y * U 0 dydx . (iii) 2µε -2 Ωε |D U ε | 2 dx = 2µε -2 Ωε D U ε D Ũε dx + O( √ ε) . (iv) 2µε -2 Ωε D U ε D Ũε dx -ε -2 Ωε P ε div Ũε dx = Ωε (F - d(P (x 1 )C π + Q(x 1 )) dx 1 e 1 ) U ε ε 2 dx + O( √ ε). (v) ε -2 Ωε P ε div Ũε dx = Ωε P ε d 2 P dx 2 1 Φ ε dx → 0 . (vi) (iii), (iv) and (v) ⇒ 2µ ε -2 Ωε |D U ε | 2 dx → Ω [ F - d(P (x 1 )C π + Q(x 1 )) dx 1 e 1 ] Y * U 0 dydx. (vii) Ωε D U ε ε ε D U 0,ε dx → Ω×Y * | D y U 0 | 2 dxdy. Thus lim ε→0 Ωε U ε ε 2 -U 0,ε 2 dx = 0 .

Step five: Weak* convergence of the boundary layer corrector

To prove convergence [START_REF] Coceal | Canopy model of mean winds through urban areas[END_REF] we need to show that

ε -1 P (x 1 ) w(x/ε) P (x 1 ) ( G * w(y) dy)δ Σ weak* in M(Ω) .
Thus we take the test function z ∈ C(Ω) 2 and, using the exponential decay of w, we get

230 1 ε Ω P (x 1 ) w x ε z(x) dx = 1 ε 0 P (x 1 ) 0 ε log ε w x ε z(x) dx 2 dx 1 + O(ε) = = 0 P (x 1 ) z(x 1 , 0) 0 -∞ w x 1 ε , y 2 dy 2 dx 1 + O(ε | log ε|) .
Using the well known property of the mean of a periodic function (see e.g. [START_REF] Sanchez-Palencia | Non-homogeneous media and vibration theory[END_REF])

yields lim ε→0 0 P (x 1 ) z(x 1 , 0) 0 -∞ w x 1 ε , y 2 dy 2 dx 1 = = 0 P (x 1 ) z(x 1 , 0) 0 -∞ 1 0 w(y) dy 1 dy 2 dx 1 = = 0 P (x 1 ) z(x 1 , 0) G * w(y) dy dx 1 = G * w(y) dy P (x 1 ) δ Σ | z . 4.6.
Step six: Separation of scales and the end of the proof of Theorem 1

We can separate the variables in ( 69)-( 72) by setting

U 0 (x, y) = 2 k=1 w k (y) F k (x) - ∂ ∂x k (Q(x 1 ) + C π P (x 1 ) + P 0 (x) ) , (78) 
Q 0 (x, y) = 2 k=1 π k (y) F k (x) - ∂ ∂x k (Q(x 1 ) + C π P (x 1 ) + P 0 (x) ) , (79) 
with

235 -µ∆w k + ∇π k = e k , div w k = 0 in Y * , (80) 
w k = 0 on S, (w k , π k ) is 1 -periodic. (81) 
Inserting the separation of scales formulas (78)-( 79) into (69)-(72) yields

         div K [ F -∇ (P 0 + C π P + Q) ] = 0 in Ω, P 0 = 0 on Σ, P 0 is -periodic in x 1 , n • K [ F -∇ (P 0 + C π P + Q) ] = 0 on Γ. . (82) 
Here

K = [K ij ] = [ Y w i j dy] (83) 
stands for the positive definite and symmetric permeability tensor. System (82) a well-posed mixed boundary value problem for a linear elliptic equation for P 0 .

Nevertheless, it is important to note that P 0 is not the limit or homogenized pressure since

p ε (x) = P ε (x) + π x ε P (x 1 ) + Q(x 1 ) . Obviously p ε p 0 ≡ P 0 + C π P + Q .
This ends the proof of theorem 1 since the limit pressure is p 0 and it satisfies the boundary value problem ( 8)- [START_REF] Carraro | Effective interface conditions for the forced infiltration of a viscous fluid into a porous medium using homogenization[END_REF].

Proof of Theorem 2

We start by proving that problem (4)-( 6) admits at least one solution satisfying estimates ( 18)- [START_REF] Jäger | Asymptotic Analysis of the Laminar Viscous Flow Over a Porous Bed[END_REF].
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It is well known that in the case of the stress boundary conditions, the inertia term poses difficulties and existence results for the stationary Navier-Stokes system can be obtained only under conditions on data and/or the Reynolds number (see e.g. [START_REF] Conca | The Stokes and Navier-Stokes equations with boundary conditions involving the pressure[END_REF]). Presence of many small solid obstacles in the porous media flows corresponds to a small Reynolds number, expressed through the 245 presence of ε in Poincaré's and trace estimates ( 14) and [START_REF] Helmig | Model coupling for multiphase flow in porous media[END_REF].

In order to estimate the inertia term we need fractional order Sobolev spaces.

we recall that

H 1/2 (Ω) 2 = {z ∈ L 2 (Ω) 2 | Ez ∈ H 1/2 (R 2 ) 2 }, where E : H 1 (Ω) 2 → H 1 (R 2 ) 2
is the classical Sobolev extension map. It is defined on the spaces H α (Ω), α ∈ (0, 1) through interpolation (see [START_REF] Constantin | Navier-Stokes equations[END_REF], Chapter 6).

Next, after [START_REF] Constantin | Navier-Stokes equations[END_REF], Chapter 6, one has

Ωε (u 1,ε ∇)u 1,ε • v dx ≤ C|u 1,ε | H 1/2 (Ω) 2 |∇u 1,ε | L 2 (Ω) 2 |v| H 1/2 (Ω) 2 , ∀v ∈ V (Ω ε ). (84) 
Using ( 14) in (84) yields

Ωε (u 1,ε ∇)u 1,ε • u 1,ε dx ≤ Cε|∇u 1,ε | 3 L 2 (Ω) 2 . ( 85 
)
Now it is enough to have an a priori estimate for the H 1 -norm. With such 250 estimate the standard procedure would give existence of a solution. It consists of defining a finite dimensional Galerkin approximation and using the a priori estimate and Brouwer's theorem to show that it admits a solution satisfying a uniform H 1 -a priori estimate. Finally, we let the number of degrees of freedom in the Galerkin approximation tend to infinity and obtain a solution through 255 the elementary compactness. For more details we refer to the textbook of Evans [START_REF] Evans | Partial Differential Equations: Second Edition[END_REF], subsection 9.1.

We recall that the variational form of ( 4)-( 6) is

L ε u 1,ε , v = 2µ Ωε Du 1,ε : Dv dx + Ωε (u 1,ε ∇)u 1,ε • v dx- - Ωε F • v dx - Σ H • v dS = 0, ∀v ∈ V (Ω ε ). (86) 
Then, for ε ≤ ε 0 ,

L ε u 1,ε , u 1,ε ≥ 2µ|Du 1,ε | 2 L 2 (Ωε) 4 -Cε|Du 1,ε | 3 L 2 (Ωε) 4 -C √ ε|Du 1,ε | L 2 (Ωε) 4 ≥ ≥ C 1 ε 2 > 0, if |Du 1,ε | L 2 (Ωε) 4 = 1 √ ε . ( 87 
)
As a direct consequence of (87), Brouwer's theorem implies existence of at least one solution for the N dimensional Galerkin approximation corresponding to (86) (see [START_REF] Evans | Partial Differential Equations: Second Edition[END_REF], subsection 9.1). After passing to the limit N → +∞, we obtain existence of at least one solution u ε for problem (86), such that |Du 

1,ε | 2 L 2 (Ωε) 4 ≤ C √ ε|Du 1,ε | 2 L 2 (Ωε) 4 + C √ ε|Du 1,ε | L 2 (Ωε) 4 ,
implying estimates ( 18)-( 20).

Now we have

Ωε (u 1,ε ∇)u 1,ε • v ≤ Cε|∇u 1,ε | 2 L 2 (Ω) 2 |∇v| L 2 (Ω) 2 ≤ Cε 2 |∇v| L 2 (Ω) 2 , ∀v ∈ V (Ω ε ) (88) 
and we conclude that in the calculations from subsections 4.2-4.4 the inertia term does not play any role. Hence it does not contribute to the homogenized 260 problem either. This observation concludes the proof of Theorem 2.

Numerical confirmation of the effective model

In this section we use a direct computation of the boundary layer corrector (36-38) and the microscopic problem (1-3) to numerically confirm the estimate (39)

|π -C π | L 2 (G * ) = O( √ )
and the strong convergence of the effective pressure [START_REF] Boyer | Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models[END_REF]. For the pressure we find out

|p -p 0 | L 2 (Ω) = O( √ ),
which is consistent with the corrector type results from [START_REF] Jäger | On the boundary condition on the contact interface between a porous medium and a free fluid[END_REF].

Confirmation of boundary layer estimate

We start with estimate (39). For this we need to compute the value C π gives an accurate approximation. Furthermore, the cut-off boundary layer is computed by the finite element method. Thus, we compute C h π,cut , where the superscript h indicates the Galerkin approximation, and we have to assure that the discretization error |C π,cut -C h π,cut | is small enough.

For the numerical approximation we first introduce the cut-off domain

G * l := G\ -l j=0 
(j e 2 + A)

and then consider the following cut-off boundary layer problem Problem 1 (Cut-off boundary layer problem). Find w and π, both 1-periodic in y 1 , such that it holds in the interior

-µ∆ y w l + ∇ y π l = 0 in G * l , (89) 
∇ • w l = 0 in G * l , (90) 
and on the boundaries (-2µD y w l + π l I) = e 1 for y 2 = 0, (91)

w l = 0 on C (92) w l,2 = ∂w l,1 ∂y 2 = 0 on Γ l , (93) 
where Γ l = (0, 1) × l is the lower boundary of the cut-off domain.

The inclusions are defined as in Figure 1. The solid domain A is (a) circular in the isotropic case with radius r = 0.25 and center (0.5, 0.5), see Problem (89)-( 93) is approximated by the finite element method (FEM) using a Taylor-Hood element [START_REF] Taylor | A numerical solution of the Navier-Stokes equations using the finite element technique[END_REF] with bi-quadratic elements for the velocity and bilinear for the pressure. Since the inclusions are curvilinear we use a quadratic description of the finite element boundaries (iso-parametric finite elements). The stabilized pressure value of the boundary layer is defined in our computations as C h π,cut := π l,h (y 1 , l), i.e. it is the pressure value at the lower boundary of G * l . To define the value C h π,cut we have performed a test with increasing l to obtain the minimal length l of the cut-off domain for which the pressure value reaches convergence (up to machine precision). A shorter domain would introduce a numerical error and a longer domain would increase the computational costs without adding more accuracy.

In Table 1 the values of π l,h (y 1 , l) for increasing number of inclusions l are reported. It can be observed that one inclusion is enough to get the exact value C π = 0 for the circular inclusions. In case of elliptical inclusions the pressure is stabilized for l ≥ 7 and the effect of the cut-off domain can be seen only for smaller domains. Figure 2 shows a visualization of the boundary layer pressure Therefore for the convergence study of the effective pressure, we consider as exact value for ellipses C π = 0.2161642.

After computing the constant C h π,cut we proceed with the confirmation of the estimate (39) and plot in Figure 3 the convergence curves. We confirm the expected convergence rate

|π -C π | L 1 (G * ) = O( ) and |π -C π | L 2 (G * ) = O( √ ).

Confirmation of effective pressure values

The next step is the confirmation of the estimate [START_REF] Boyer | Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models[END_REF]. For a stress tensor defined by the constant contact stress (P, Q) and a right hand side which depends only on x 2 we have the analytical exact solution for the effective pressure

p 0 (x 2 ) = C π P + Q - 0 x2 f 2 (z) dz - K 12 K 22 0 x2 f 1 (z) dz. (94) 
To compute it we need the vales K 12 and K 22 of the permeability tensor. These are defined as follows with the 1-periodic solution w i c (i = 1, 2) of the i th cell problem

K ij := Y * w i c,j dx, 29 10 -3 10 
-∆w i c + ∇π i c = e i in Y * , ∇ • w i c = 0 in Y * , w i c = 0 on ∂A
where Y * is the unit pore domain of the cell problem with the corresponding 305 inclusion A. The inclusions are defined as in our previous work [START_REF] Carraro | Pressure jump interface law for the Stokes-Darcy coupling: Confirmation by direct numerical simulations[END_REF]. They correspond to one cell of problem (89)-( 93) and they are shown on Figure 1.

Therefore, we use the values of the permeability tensor computed therein and reported in Table 2. We use the extension pε h (16) for the microscopic pressure, where the subscript denotes the finite element approximation of the microscopic 310 problem obtained with Taylor-Hood elements, as for the cut-off boundary layer. With the expression of the effective pressure and the extension pressure we compute the convergence estimates. For the test case we use the values (P, Q)

for the normal component of the stress tensor and f (x) for the right hand side, needed in formula (94), as reported in Table 3. The results with the expected convergence rates are depicted in Figure 4. Finally, figures 5 and 6 show the velocity components, the velocity magnitude and the pressure in the microscopic problem for circles and ellipses. To simplify the visualization these figures show a microscopic problem with nine inclusions, so that the boundary layer is clearly visible. 320

Conclusion

The novelty of the result is in the boundary condition on Σ. The value of the Darcy pressure on the upper boundary Σ is now prescribed and its value depends not only on the given applied pressure force Q but also on the shear Thus, in interior of the domain, the velocity is plain Darcean, while in vicinity of the upper boundary, a boundary layer term ε P (x 1 ) w(x/ε) dominates.

The result can be used for the development of the model-coupling strategies, see [START_REF] Helmig | Model coupling for multiphase flow in porous media[END_REF] and [START_REF] Mosthaf | A coupling concept for two-phase compositional porous medium and single-phase compositional free flow[END_REF].

  Ω) denotes the set of Radon measures on Ω and δ Σ is the Dirac measure concentrated on Σ, i.e. δ Σ |ψ = Σ ψ(x 1 , 0) dx 1 .
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 121212 If ∂A ∈ C 3 then the regularity theory for the Stokes operator applies and (39), (40) hold pointwise. For more details on the regularity see e.g.[START_REF] Boyer | Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models[END_REF]. 155 Let the solution w to system (36)-(38) be extended by zero to M . Let b > a > 0 be arbitrary constants. Then we have (y 1 , b) dy 1 -(y 1 , a) dy 1 .

  2, . . .. It is easy to see that the mapping t → 1 0 π(y 1 , t) dy 1 is constant on each of the intervals J i . If those constants are denoted by c i then c 0 = 0 and lim i→∞ c i = C π . 160 Remark 4. Let us suppose that the boundary layer geometry has the mirror symmetry with respect to the axis {y 1 = 1/2}. Then w 2 and π are uneven functions with respect to the axis and C π = 0. In particular, this result applies to the case of circular inclusions. 4.3. Step three: Derivation of the Darcy law via classical two-scale convergence 165

with n = (n 1 , n 2 ) 1 (y 1 ,

 1211 being the exterior unit normal on C and t = (-n 2 , n 1 ) the tangent. The constant d 0 is chosen in a way that problem (52)-(53) admits a solution. By simple integration it turns out that d 0 = -G * w 1 (y) d y. Since the right-hand side is in H 1 (G * ), the problem has a solution ψ ∈ H 3 (G * ) that can be chosen to have an exponential decay |ψ| H 1 (G * ∩{|y2|>s}) ≤ C e -γs .(54)Next we use the trace theorem and construct a y 1 -periodic function h ∈ H 3 (G * ) such that∂h ∂t = curl h • n = 0 , ∂h ∂n = curl h • t = -0) = 0 (achieved if we take h(y 1 , 0) = const. ) .The function Φ, constructed above, satisfies (49) and (50). Exponential decay (54) of ψ implies exponential decay of h in the same sense and, finally, gives (51).
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  which is the limit value of the boundary layer pressure π for y 2 → ∞, see (41). Since the boundary layer problem is defined on an unbounded domain, we need to cut the domain and compute C π,cut , which is the approximation of C π on a cut-off domain with |y 2 | large enough so that the difference |C π -C π,cut | is smaller than the machine precision. Since the value π(y) stabilizes to C π exponentially fast, we expect that a boundary layer with a few unit cells
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µ P (x 1 )Table 3 :

 13 Q(x 1 ) f 1 (x) f 2 (x) C π ellipses C π Values used for the computations.

Figure 4 :

 4 Figure 4: Confirmation of convergence for the microscopic problem.

(a) u 1 (b) u 2 (

 12 

Figure 5 : 1 (b) u 2 (

 512 Figure 5: Visualization of the microcopic velocity and pressure with elliptical inclusions.

Figure 6 :

 6 Figure 6: Visualization of the microcopic velocity and pressure with circular inclusions.

  1,ε | L 2 (Ωε) 4 ≤

	1/ √	ε. After plugging this information into estimate (85), equation (86) yields
	the energy estimate
		2µ|Du

Table 1 :
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π in the cut-off domain with seven inclusions. A convergence check with global 300 refined meshes have shown that the discretization error is of the order O(10 -8 ).
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