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Abstract—Map building becomes one of the most interesting
research topic in computer vision field nowadays. To acquire
accurate large 3D scene reconstructions, 3D laser scanners are
recently developed and widely used. They produce accurate
but sparse 3D point clouds of the environments. However, 3D
reconstruction of rigidly moving objects along side with the large-
scale 3D scene reconstruction is still lack of interest in many
researches. To achieve a detailed object-level 3D reconstruction,
a single scan of point cloud is insufficient due to their sparsity.
For example, traditional Iterative Closest Point (ICP) registration
technique or its variances are not accurate and robust enough
to registered the point clouds, as they are easily trapped into
the local minima. In this paper, we propose an 3-Point RANSAC
with ICP refinement algorithm to build 3D reconstruction of
rigidly moving objects, such as vehicles, using 2D-3D camera
setup. Results show that the proposed algorithm can robustly
and accurately registered the sparse 3D point cloud.

Index Terms—3D Reconstruction, 2D camera, 3D camera,
Registration, Point Cloud, ICP

I. INTRODUCTION
A. Background

Map building becomes one of the most interesting research
in computer vision field nowadays, due to its wide future
applications such as localization, navigation, and autonomous
driving vehicles. Simultaneously Localization and Mapping
(SLAM) technique is widely used by researchers to build the
3D map of an environment. Multiple cameras and odometry
sensors are involved to serve the system, which allow us
to acquire 3D data of the scene to build the 3D map of
the environment. A benchmark, provide by Geiger et al. [1],
utilized 3D laser scanner as well as 2D cameras on the vehicle,
which produces very accurate but sparse 3D measurement
of the scene. SLAM approach can be used to build a 3D
reconstruction for the static objects such as buildings or streets.

However, in the real world, there are usually not only static
objects, but also moving objects in outdoor environments. It
is very common that the outdoor environment is a dynamic
scene, for instance, people are walking around, vehicles are
running, cyclists are crossing the roads, which make the
outdoor environment barely a completely static scene. When
there are a large number of dynamic objects around, 3D map
building by SLAM will not be accurate. 3D reconstruction in
a dynamic scene is still an unsolved and challenging task.

A complete framework of static map and dynamic object
reconstruction in outdoor environments was proposed by Jiang
et al. [2], [3]. They succeeded to detect and segment the
dynamic objects from the scene to reconstruct the static

scene parts as well as the dynamic objects independently.
The proposed static map building algorithm achieved very
satisfactory performances on realistic outdoor environment.

This paper is a complementary of [2] with a smaller scope.
We mainly focus on improving the reconstruction quality of
the dynamic objects from a moving camera setup. As the
output of the framework, multiple dynamic objects, such as
vehicles, are obtained from different view ports due to the
relative motions between the camera and the objects. In such
kind of scenarios, reconstructing the moving objects from a
moving camera setup is very challenging. To tackle this prob-
lem, the objective of this work is to build a 3D reconstruction
of rigidly moving vehicle, using a 2D-3D calibrated camera
setup.

B. Problem Definition
To reconstruct the rigidly moving objects from a moving

camera setup, we propose to use 3D laser-scanner, such as
Velodyne [4], due to its stability and accuracy in acquiring
the 3D data. Yet, the laser scanner provides only sparse 3D
point cloud, especially for the object that is far away from the
camera. Moreover, the laser scanner does not give us texture
information of the point cloud. We define a high quality 3D
reconstruction as: object is reconstructed accurately, densely
and textured. The dilemma comes when texture is obtained
by using 2D cameras, while the 3D points are acquired from
laser scanner.

Fig. 1: Illustration of Poor 3D Geometric Structure Problem:
left image, the red and blue point clouds are acquired from two
different scans. The right image shows the failure registration
result by using ICP algorithm due to the poor geometric
structure of the point clouds.

A calibrated 2D-3D camera setup can overcome this
dilemma, which means that there exist correspondences be-
tween 2D image points with 3D laser points. For instance,
giving a mobile robot equipped with calibrated 2D and 3D
cameras, one can reconstruct photometric high quality 3D



Fig. 2: Illustration of Small Partially Overlapping Problem: left
image, the red and blue point clouds are acquired from two
different scans. The right image shows the failed registration
result using ICP algorithm.

scenes for static objects by registering a sequence of obser-
vations [2], [3]. Differently, registering the moving objects
are more challenging due to their sparsity, small overlapping
area, and non-uniform point density distribution of the moving
objects. Two typical failure cases are shown in Fig. 1 and
Fig. 2. The registrations using traditional ICP algorithm are
failed due to the reasons of poor 3D geometry structure
and small partially overlapping, respectively. This is due to
traditional ICP algorithm only consider the mean square error
(MSE) minimization between points of two point clouds.
Minimum MSE, doesn’t guarantee it converge into correct
registration.

To overcome problem that is stated, we propose a series of
registration algorithm, a 3D reconstruction of dynamic objects
using 2D-3D camera setup attached to a moving vehicle, as
the contribution of this paper.

II. LITERATURE REVIEW
Finding feature correspondences is a fundamental problem

in computer vision applications, such as stereo vision [5],
struct-from-motion [6], motion analysis [7], and especially
point cloud registration [17]. In literature, there are many
methods to match the features, such as statistical approach
with similarity measurement [8], feature descriptor based
matching [9]–[11].

One of the most robust descriptor based feature matching
algorithm is Scale Invariant Feature Transform (SIFT) by
Lowe [11]. SIFT is able to detect keypoints and build the
scale invariant and orientation invariant descriptors. Although
descriptor based feature matching is robust and efficient in
rich-texture regions, features from low-texture area are easily
wrongly matched. Thus, feature descriptor matching is gener-
ally reliable in matching highly distinctive features.

For feature matching between successive frames, KLT [12]
feature tracking algorithm is applied to establish the dense cor-
respondences [2]. The main advantage of OF feature tracking
and matching comes from its ability to produce very dense
feature matches unlike the sparse feature matches from feature
descriptors. In addition, a cross validation can be applied to
improve the tracking accuracy and robustness. Since image
sequence (video) is involved in this work, optical flow is the
optimal choice for our case.

One of the most challenging tasks in SLAM is the ego-
motion, which contains the rotation and translation of the
camera, estimation of the camera. Least Square Fitting is a non

iterative registration algorithm firstly proposed by Arun et al.
[13]. The advantage of using Least Square Fitting algorithm
is its nature of efficiency. However, since using Least Square
Fitting algorithm consider all of the matching pairs, it is
very sensitive to outliers. Another technique to estimate rigid
motion between two point clouds is the minimum 3-Point
RANSAC [2] algorithm. This registration algorithm takes
iteration to maximize number of inliers under the RANSAC
framework [14]. The advantage of using 3-Point RANSAC is
its nature to be robust to outliers.

Since the introduction of ICP by Chen and Medioni [15]
and Besl and McKay [16], the algorithm was further developed
into various type of ICP by many researchers to make it more
robust. Rusinkiewicz and Levoy [17] nicely classified these
variance of ICP into six main stages.

III. MATHEMATICAL MODEL

A. 3-Point RANSAC Point Cloud Registration

3-Point RANSAC algorithm can robustly and precisely
estimate the rigid motion parameter R and t between two
3D point clouds in a linear manner. Let X = [x, y, z]T and
Y = [x′, y′, z′]T be two corresponding 3D points under rigid
transformation, we have:

X = RY + t, (1)

where R is the 3 × 3 rotation matrix and t is the 3 × 1
translation matrix. Let g be the Gibbs representation of rotation
matrix R, we have G = [g]× is a 3 × 3 skew-symmetric matrix
where g = e tan θ

2 with e = [ex, ey, ez]
T is the Euler rotation

axis and rotation angle θ. Applying the Cayley Trasformation,
R can be represented as:

R = (I3 + G)−1(I3 − G), (2)

where I3 is a 3 × 3 identity matrix. Replacing Eq. 1 using
Eq. 2 and multiplying (I3 + G) on both sides, we have:

X− Y = −G(X + Y) + t̃, (3)

where t̃ = (I3 + G)t = [t̃x, t̃y, t̃z]
T. Eq. 3 is a linear system

such that the parameters can be estimated using a Linear Least
Square approximation.

To robustly find the good estimation, a Random Sample
Consensus (RANSAC) [14] algorithm is adopted to maximize
the number of inliers. Let N be the number of matching
pairs that have the RMSE less than threshold τ , so called
inliers, we aim to maximize the number of inliers by randomly
select 3 sample matching pairs as candidates to estimate the
transformation matrix:

N = argmax
T

Ξni=1‖Xi − TYi‖2 < τ, (4)

where T =

[
R t
0 1

]
is the desired transformation matrix in

homogeneous coordinate. n is the total number of matching
pairs. Symbol ‖ · ‖2 denotes the l2 − norm. Notation Ξni=1



counts the number of pairs satisfying the criteria that the point-
pair distance is less than threshold τ .

B. ICP Point Cloud Registration

Different from 3-Point RANSAC algorithm, the ICP al-
gorithm establishes the matching pairs by considering the
nearest point from the new model to the reference. Let
X = {X1, ...,Xj} be the reference point cloud, and Y =
{Y1, ...,Yk} be the new model, a point to point ICP matching
pairs can be established by:

Xj ↔ Yk := min{‖Xj − TYk‖2}, (5)

with j ∈ [1, ...,m], k ∈ [1, ...,K], where symbol ↔ denotes
the point to point matching property, and symbol := can be
interpreted as defined by. m and K are the maximum index
of the reference and new model point cloud, respectively.
Eq. 5 builds the matching pairs according to the closest point
distance from reference point cloud to the new model. Since
the ICP has complete point-to-point matching between two
point clouds, its performance is highly depending on the level
of noise or number of inliers.

Eicp = argmin
T̂

1

m

m∑
j=1

‖Xj − T̂Yj‖2, (6)

where Eicp is the normalize root mean square error distance
(RMSE) required to be minimized. T̂ is the refined transfor-
mation matrix after ICP.

IV. METHODOLOGY

A. Point Correspondences

To search for feature correspondences in 3D space, ideally,
3D feature descriptors [18] should be used. However, in prac-
tice, matching the 3D points using 3D descriptors is difficult to
be maintained due to lack of robust 3D feature descriptors [2],
[3]. In contrast, 2D image feature descriptors is much more
robust and reliable in the case of 2D-2D matching. Therefore,
to overcome this problem, we take the advantage of the 2D-
3D camera setup to infer the 3D-3D feature correspondences
based on the detected 2D-2D correspondences.

In details, the point correspondences are not established di-
rectly between 3D feature points, but we infer them indirectly
by building the 2D feature matching pairs from their corre-
sponding image frames. Once corresponding points between
two images are obtained, we associate the 2D features with
their corresponding 3D points by the 2D-3D correspondences
from the calibrated 2D-3D setup. Figure 3 illustrates how the
3D-3D correspondences are established through the inferences
of 2D-2D correspondences.

B. Feature Matching

As discussed about, the SIFT or other feature detectors can
detect only sparse feature points, and those feature points
can be easily lost tracked during a long sequence tracking.
Moreover, since the moving objects in the scene are relatively
small, there are very few features can be detected from

2D-3D Correspondences 2D-3D Correspondences

2D-2D Correspondences

Indirect

3D-3D Correspondences

Frame 1 Frame 2

Fig. 3: Inferring 3D-3D correspondences from 2D-2D feature
correspondences.

the moving objects in most cases. On the contrary, Optical
Flow feature matching can be used instead, which produces
very dense feature matching between two consecutive frames.
Remind that image sequence (video) is involved, OF feature
is the optimal choice for our system. The main advantage
of optical flow feature matching is that every pixel can be
consider as a feature point, such that we have very dense
features. Accordingly, features from moving objects are dense
enough to be tracked and registered.

C. Feature Tracking

In practice, the point density of the 2D image is much denser
than the 3D point cloud. A problem raises that not all the
image points has 3D correspondences. Fig. 4 explicitly shows
the problem that sparse 3D points corresponds to dense 2D
image points.

Valid Features

Projected 3D Points

(a) Valid Features to be Tracked.
Associated Features

Rejected Features

Projected 3D Points

Associated FeatureRejected Feature

(b) Features and 3D Projections Association in the Next
Frame.

Fig. 4: Closest Feature Association Problem.

In this figure, the white dots in both sub-figures represents
the projections from 3D points. The green dots in sub-
figure (a) are the valid features after forward-backward OF



validation, while the crosses (labelled in green or red) in sub-
figure (b) represents the predicted location of the features
using optical flow values in the next frame. In Fig. 4, the
red crosses (lonely features) are rejected due to their having
no 3D correspondences. Note, a correct association is defined
by have a 3D projection within a 5× 5 searching window.

D. 3D Registration Algorithm

1) Registration Pipeline: To achieve long term registration,
we introduce a keyframe-based local sequence registration
pipeline. Instead of taking a global reference frame, we divide
long sequence with keyframes into local sequences., see Fig. 5.

1st

Frame

2nd

Frame

3rd

Frame

4th

Frame

5th

Frame
6th

Frame

7th

Frame

8th

Frame

9th

Frame

TK1 TK2

TL1 TL2 TL3 TL4 TL5 TL6

TK3

Fig. 5: Key-Frame based Registration Pipeline: TK stands
for the transformation between two key frames, while TL
represents the local transformation within the subsequence.

To detect the key frames automatically, a MSE threshold
is defined such that new keyframes are chosen whenever the
MSE of a local sequence is greater than the threshold.

2) Initialization and ICP Refinement: Sparsity and poor
geometric structure (see Fig. 1) make ICP is not effective to
register point clouds in our case, it will easily trapped in local
minima. Even though 3-Point RANSAC can register the point
clouds nicely, registration through transformation propagation
leads to an error accumulation problem. It is already reduced
by using pipeline in Fig. 5. However, to achieve a high quality
registration, a refinement step is necessary. Therefore, combin-
ing 3-Point RANSAC as initialization and ICP for refinement
can perform a very effective registration (see Fig. 8).

3-Point RANSAC ICP Re!nement
Estimated

3D Point

Cloud

3D

Point

Cloud

Registered

3D Point

Cloud

Fig. 6: Key-Frame based Registration Pipeline
3) Recognizing Part of Vehicle: ICP refinement doesn’t

guarantee correct registration in all case. It fails in registering
two point clouds with small partial overlapping (see Fig. 2).
In this case, the ICP tries to minimize the registration error by
rotating and translating the model, which produces incorrect
registration.

To avoid that situation, the registration should be performed
only for set of points that share the same side of the object
(Figure 7a). Normal vector is able to give that information.
Thus, by using normal vector, we are able to obtain those set
of point.

To differentiate the faces of rigid object, a plane fitting
algorithm performed. A plane is defined as z = ax+ by + c.
By using 3 non-colinear points, we can define a plane. To
robustnessly fit the plane, the RANSAC framework is applied.
Figure 7a and 7b shows the fitted back-side planes and left-
side planes, respectively. Getting the fitted planes, only the

points close to the fitted planes will be considered to perform
registration.

V. RESULT AND EVALUATIONS

To evaluate the performances of the proposed algorithm,
experiments are conducted on realistic outdoor environment
by using KITTI dataset [1]. The descriptions of the dataset
are summarized in Table I. The software is developed using
a computer with Intel Quad Core i7-2640M, 2.80GHz, 7.8GB
Memory.

TABLE I: Dataset Profile
Name of Dataset Van Dataset
Number of Frame 44
Number of Side 3

Transition Frame Left-Back 1-30
Right-Back 31-44

Number of Keyframe
Produced 11

To evaluate the performances with and without registration
refinement, Mean Square Error (MSE) is chosen to quantify
the performance. 3D point cloud from first frame is considered
as a global reference model. And the registration error is
defined as MSE of corresponding 3D points from registered
model to the global reference model.

Figure 8 shows that both ICP refinement with and without
interpolation (red and blue plot) have registration failure in
around frame 30-35. These frames is when small partial
overlapping occurred (see Fig. 9). Also, a denser point cloud
interpolation is applied to increase the stability of the ICP reg-
istration.Satisfactory result appear for refinement with the pro-
posed algorithm with plane fitting (green plot). After dividing
different parts of vehicle by considering the normal consensus
of point cloud subset, registration performed accurately, even
for small partially overlapping cases.

Figure 10 shows qualitative results of overall registration
from three different viewports. 3D point clouds from multiple
frames are registered very satisfactorily. Comparing to single
scan point cloud by 3D laser scanner (see Fig. 1 and Fig. 2)
the the registered 3D point cloud of vehicle have much denser
points and richer geometry structure details.

VI. CONCLUSION AND FUTURE WORK

In extreme cases, Iterative Closest Point (ICP) or its variance
is not able to perform registration correctly. It easily trapped
in the local minima. Highly sparse 3D point cloud, small
partial overlap, existence of noise and inliers, create a new
challenge to perform a registration, especially a registration
dedicated to long sequence. Feature point reduction and error
accumulation is the main problem in long sequence 3D point
cloud registration. To overcome all of the problem defined,
we took advantages from a calibrated setup of 2D-3D camera
and proposed a algorithm for long sequence registration.
The algorithm conducted in realistic outdoor environment by
using KITTI dataset [1]. From experiments, the proposed
algorithm produced very satisfying results both quantitatively
and qualitatively.
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Fig. 7: Different Part the Rigid Vehicle.
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Fig. 8: Comparison of Different Registration Algorithms.

(a) Image from Frame 30. (b) 3D Model.

Fig. 9: Poor 3D Geometric Structure Frame.

(a) Back-left View. (b) Back-right View. (c) Top View.

Fig. 10: Registration Results using Our Algorithm.

However, the algorithm is still not sufficiently generic based
on the assumption of plane fitting is adequate. To robustify
the registration, robust estimation techniques, such as M-
Estimator, can be applied to the algorithm. Furthermore, 2D
images can also be employed as additional information to build
up the Absolute Pose Estimation problem to estimate camera
poses to register the point cloud.
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