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Collatz conjecture

The trivial cycle is unique (because a Collatz

sequence that becomes periodic converges)

Farid Baleh - Engineer, Bachelor of Mathematics - farid.baleh@gmail.com

2017/03/02

Abstract

A Collatz sequence that is periodic after a certain rank reaches the value 1 (or
converges). Therefore the trivial cycle is unique, and a Collatz sequence that
has an upper bound becomes periodic, and then converges.
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1 Introduction

The Collatz conjecture (or Syracuse conjecture, Ulam conjecture or 3x+1 prob-
lem) claims that the following sequence of natural numbers reaches the value 1
after a certain rank (in this article, it will be specified that the sequence con-
verges):

s0 ≥ 1, and for all natural number n :

sn+1 =

{

sn
2 if sn is even,
3sn + 1 if sn is odd.

3p+1 being even if the natural number p is odd, the compressed sequence (cn)
of the sequence (sn) is defined as follows:
c0 ≥ 1, and for all natural number n :

cn+1 =

{

cn
2 if cn is even,
3cn+1

2 if cn is odd.

An uncompressed (or compressed) sequence that converges continues, after a
certain rank, with the trivial cycle 1-4-2 (or 1-2) that is infinitely repeated.

2 General expression of an odd element of a Col-

latz sequence

Considering the extracted sequence (un) composed of the odd elements of the
sequence (sn), two successive elements have the following relationship:

un =
3un−1 + 1

2k
′

n

(1)

Where k′n is the number of divisions by 2 of the first even element of (sn)
(following un−1) before reaching the first successive odd element of (sn), i.e.
un.
By developing the previous expression:

un =
3nu0

2

∑

n

j=1
k′

j

+
3n−1

2

∑

n

j=1
k′

j

+
3n−2

2

∑

n

j=2
k′

j

+ ...+
30

2k
′

n

Then:

un =
3nu0

2

∑

n

j=1
k′

j

+

n
∑

i=1

3n−i

2

∑

n

j=i
k′

j

After factorization of the u0 multiplier and simplification of the second term:

un =
3n

2

∑

n

j=1
k′

j

[

u0 +
n
∑

i=1

(

3−i ∗ 2

∑

i−1

j=1
k′

j

)]
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Moreover:
∀j ≥ 1 : k′j = 1 + kj

Because the successor of an odd element of (sn) is always an even element.
kj is the number of divisions by 2 of the first even element of (cj) (following
uj−1) before reaching the first successive odd element of (cj), i.e. uj .
Therefore:

n
∑

j=1

k′j = n+

n
∑

j=1

kj and

i−1
∑

j=1

k′j = (i− 1) +

i−1
∑

j=1

kj

∑n

j=1 kj is the number of the even elements, at the rank n, of the compressed
sequence (cn) that follow u0.
By introducing kj , the expression of un becomes:

un =
(3

2

)n 1

2

∑

n

j=1
kj

[

u0 +
1

3

n
∑

i=1

((2

3

)i−1

∗ 2

∑

i−1

j=1
kj

)]

After a shift on the index i, the expression of un, depending on a given odd
element u0, of n and of the n first elements of the sequence (kn), we have that:

un =
(3

2

)n 1

2

∑

n

j=1
kj

[

u0 +
1

3

n−1
∑

i=0

((2

3

)i

∗ 2

∑

i

j=1
kj

)]

Consequently:

un =
1

an

(

u0 +
xn

3

)

(2)

xn and an being defined by the following expressions:

xn =

n−1
∑

i=0

((2

3

)i

∗ 2

∑

i

j=1
kj

)

an =
(2

3

)n

∗ 2

∑

n

j=1
kj (3)

For all n, xn and an are strictly positive. Therefore the sequence (xn) is strictly
increasing. Moreover:

an = xn+1 − xn and xn =

n−1
∑

i=0

ai (4)

Notice that: x0 = 0.
The Excel file used to verify the formula of the equation (2) tends to show that,
for sufficient large n, an → +∞ and xn

3an
→ 1 (which corresponds to un = 1).

It is the case if the Collatz sequence becomes periodic (see the demonstration
below).
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3 Convergence of a periodic sequence after a

certain rank

We hypothesize that the sequence (sn) is periodic after a certain rank n0.
Therefore it is the case of the sequence (un).
If T is its period:

∀n ≥ n0, un+T = un. In particular: un0+T = un0

In the rest of this paragraph, the sequence (un) is considered after un0
: then

the index n begins to 1 (for exemple, u1 is noted un0+1, successor of un0
).

Consequently, according to the equation (2), with un0
as the first reference

element:
1

aT

(

un0
+

xT

3

)

= un0

Then:
(aT − 1)un0

=
xT

3

Therefore, like un0
and xT are strictly positive:

aT > 1 (5)

3.1 a
n
→ +∞ when n → +∞

For all n, the Euclidean division of n by T implies that: n = qnT + rn, with:
0 ≤ rn < T .
According to the equation (3), by replacing n:

an =
(2

3

)qnT+rn

∗ 2

∑

qnT+rn

j=1
kj

Then:

an =
(2

3

)qnT

∗ 2

∑

qnT

j=1
kj

∗

(2

3

)rn

∗ 2

∑

qnT+rn

j=qnT+1
kj

The sequence (un) being periodic, the sequence (k′n) is also periodic by reference
to equation (1); therefore, it is also the case of the sequence (kn), which implies
the following two equalities:

qnT
∑

j=1

kj = qn ∗

T
∑

j=1

kj

qnT+rn
∑

j=qnT+1

kj =

rn
∑

j=1

kj

And consequently:
an = (aT )

qn ∗ arn (6)
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The expressions of aT and arn being as follows:

aT =
(2

3

)T

∗ 2

∑

T

j=1
kj

arn =
(2

3

)rn

∗ 2

∑

rn

j=1
kj

Moreover, for all n :

arn ≥ I,with: I = inf(ai)i∈[0,T [

rn belonging to the interval [0, T [.
I is a stricly positive number because it is the case of ai, for all i.
Then, for all n: an ≥ (aT )

qn ∗ I

If n → +∞, then qn → +∞ and aT is strictly greater then 1. We can conclude
that:

lim
n→+∞

an = +∞

And that:

lim
n→+∞

1

an
= 0

3.2 xn

an

converges when n → +∞

According to the equation (4) :

xn

an
=

1

an

n−1
∑

i=0

ai =

n−1
∑

i=0

ai

an

Like for the index n previously, the Euclidian division of i by T is expressed by:
i = qiT + ri, with : 0 ≤ ri < T .
According to the equation (6):

For all i: ai = (aT )
qi ∗ ari (7)

The table below gives the values of qi, ri and ai related to the values of the
index i (from 0 to n = qnT + rn).
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i qi ri ai
0 0 0 a0
1 0 1 a1
2 0 2 a2
- - - -

T-1 0 T-1 aT−1

T 1 0 aT ∗ a0
T+1 1 1 aT ∗ a1
T+2 1 2 aT ∗ a2
- - - -

2T-1 1 T-1 aT ∗ aT−1

2T 2 0 a2T ∗ a0
2T+1 2 1 a2T ∗ a1
2T+2 2 2 a2T ∗ a2

- - - -
3T-1 2 T-1 a2T ∗ aT−1

- - - -
qn−1T qn−1 0 a

qn−1

T ∗ a0
qn−1T+1 qn−1 1 a

qn−1

T ∗ a1
qn−1T+2 qn−1 2 a

qn−1

T ∗ a2
- - - -

qnT -1 qn−1 T-1 a
qn−1

T ∗ aT−1

qnT qn 0 a
qn
T ∗ a0

qnT+1 qn 1 a
qn
T ∗ a1

qnT+2 qn 2 a
qn
T ∗ a2

- - - -
qnT + rn − 1 qn rn − 1 a

qn
T ∗ arn−1

qnT + rn qn rn a
qn
T ∗ arn

Therefore, by reference to this table and to the equation (4):

xn = a0T (a0+a1+...+aT−1)+a1T (a0+a1+...+aT−1)+...+a
qn−1

T (a0+a1+...+aT−1)+a
qn
T (a0+a1+...+arn−1)

Then:

xn =
(

qn−1
∑

i=0

aT
i
)(

T−1
∑

i=0

ai

)

+ a
qn
T

(

rn−1
∑

i=0

ai

)

We have:

xT =

T−1
∑

i=0

ai and

qn−1
∑

i=0

aT
i =

1− a
qn
T

1− aT
(because qn−1 = qn − 1; see table) and xrn =

rn−1
∑

i=0

ai

Therefore:

xn =
(1− a

qn
T

1− aT

)

xT + a
qn
T xrn
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Consequently, according to the previous formula and to the equation (6):

xn

an
=

1

(aT )qn ∗ arn

[(1− a
qn
T

1− aT

)

xT + a
qn
T xrn

]

Then:
xn

an
=

1

arn

[(1− ( 1
aT

)qn

aT − 1

)

xT + xrn

]

When n → +∞, then qn → +∞ and 1
aT

is strictly lower than 1, according to

(5). Consequently, ( 1
aT

)qn tends to 0, which implies that the sequence (xn

an
) is

convergent because it tends to the stricly positive following limit:

1

arn

[( 1

aT − 1

)

xT+xrn

]

=
1

arn

(

3un0
+xrn

)

= 3urn (see equality before (5) and equation (2))

Remark that the sequence ( xn

3an
) tends to the limit urn , this natural number

belonging to the following set of T elements: un0
, un0+1, ..., un0+T−1. As this

limit is necessarily unique, that fact tends to show that there is only one element
in this set, and then T = 1 and urn = un0

. At this point of that demonstration,
let simply precise that ( xn

3an
) converges.

3.3 u
n
→ 1 if n → +∞

According to the equation (2) (replacing u0 by un0
), un is the sum of two

convergent sequences:
un0

an
and 1

3 (
xn

an
).

Therefore the sequence (un) converges when n → +∞. If l is its limit (l is
greater or equal to 1 because it is the case of un, for all n). Note that we also
have: l = urn (see end of section 3.2).
After a certain rank, un is equal to the number l (due to the fact this is a
sequence of natural numbers).
According to the equation (1), and for sufficient large n:

un+1 =
3un + 1

21+kn+1

Therefore:

l =
3l+ 1

21+kn+1

Which implies the following equality:

l(21+kn+1 − 3) = 1

The product of these two natural numbers is equal to 1.
Consequently, each of theses two numbers is equal to 1. Effectively, if pq = 1 (p
and q being integers), q divides 1 (because p = 1

q
), which implies that q = 1 (1
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is divisible only by itself), and then p = 1.
Therefore: l = 1.
Moreover kn+1 = 1, due to the fact that 21+kn+1 − 3 = 1. The sequence (kn)
tends towards 1.
Therefore, un = 1 after a certain rank, and the Collatz sequence (sn) converges.

Note that this last demonstration proves also that if two successive elements
of the sequence (un) are equal, then this sequence converges and tends towards
1.

Moreover, we can remark that, at the end of section 3.2, we found that the
limit of the sequence ( xn

3an
) is equal to urn ; as T = 1 and l = 1, we have rn = 0,

and then urn = un0
= 1, which is consistent.

4 Conclusion

A Collatz sequence that is periodic after a certain rank converges, i.e. it reaches
the value 1.
Therefore, the Collatz trivial cycle 1-4-2 (or 1-2 for a compressed sequence) is
unique, which solves a half of the Collatz conjecture.
Note that a consequence of this demonstration is the following: a Collatz se-
quence that is upper bounded is convergent.
Effectively, such a sequence becomes periodic after a certain rank, with a max-
imum period that is equal to the number of odd elements of the sequence (un)
lower than its maximum.
To prove the Collatz conjecture, it is for example sufficient to demonstrate that
each Collatz sequence has an upper bound.
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