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Profiling BCI users based on contralateral activity
to improve kinesthetic motor imagery detection

Sébastien Rimbert1,2,3, Cecilia Lindig-León1,2,3 and Laurent Bougrain2,1,3

Abstract— Kinesthetic motor imagery (KMI) tasks induce
brain oscillations over specific regions of the primary motor
cortex within the contralateral hemisphere of the body part
involved in the process. This activity can be measured through
the analysis of electroencephalographic (EEG) recordings and
is particularly interesting for Brain-Computer Interface (BCI)
applications. The most common approach for classification
consists of analyzing the signal during the course of the motor
task within a frequency range including the alpha band, which
attempts to detect the Event-Related Desynchronization (ERD)
characteristics of the physiological phenomenon. However, to
discriminate right-hand KMI and left-hand KMI, this scheme
can lead to poor results on subjects for which the lateralization
is not significant enough. To solve this problem, we propose
that the signal be analyzed at the end of the motor imagery
within a higher frequency range, which contains the Event-
Related Synchronization (ERS). This study found that 6 out
of 15 subjects have a higher classification rate after the KMI
than during the KMI, due to a higher lateralization during this
period. Thus, for this population we can obtain a significant
improvement of 13% in classification taking into account the
users lateralization profile.

I. INTRODUCTION

Brain-Computer interfaces (BCI) allow users to interact
with a system using brain activity modulation mainly in
electroencephalographic (EEG) signals [1]. One major in-
teraction mode is based on the detection of modulations of
sensorimotor rhythms during a kinesthetic motor imagery
(KMI), i.e, the ability to imagine performing a movement
without executing it [2], [3]. More precisely, alpha (7-13
Hz) and beta rhythms (15-25 Hz) modulations can be ob-
served measuring Event-Related Desynchronization (ERD)
or Synchronization (ERS). In particular, before and during
an imagined movement, there is a gradual decrease of power,
mainly in the alpha band. Furthermore, after the end of the
motor imagery, in the beta band, there is an increase of power
called ERS or post-movement beta rebound [4].

A KMI generates an activity over specific regions of the
primary motor cortex within the contralateral hemisphere of
the body part used in the process [5]. Some BCIs are based
on this contralateral activation to differentiate the cerebral
activity generated by a right-hand KMI from a left-hand
KMI [6]. Usually, the modulation corresponding to a user
interaction is scanned in specific frequency bands such as
Alpha, Beta or Alpha+Beta (8-30 Hz). This activity is mainly
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observed, during the KMI in the 8-30 Hz band, which merge
alpha and beta bands, or after the KMI in the beta band [7].

Detection rates for these two KMI tasks vary with subjects
and could be improved. Indeed, between 15% and 30% of
the users are considered as BCI-illiterate and cannot control a
BCI [8]. In this article, we suggest that some of the so-called
BCI-illiterate subjects have poor performance due to poor
lateralization during the KMI task. Several studies showed
activity only in the contralateral area [9] for a KMI, but other
studies showed that ERD and ERS are also in the ipsilateral
area [10] and could be a problem for BCI classification.

According to our knowledge, no studies compare the
classifier accuracy based on signals observed during the
KMI versus after the KMI. In this article, we hypothesize
the possibility to define specific profile of BCI users based
on the contralateral activity of the ERD and the ERS. We
define three BCI profiles based on accuracy: users with good
accuracy i) during the KMI in the Alpha band, ii) during
the KMI in the Alpha+Beta bands and iii) after the KMI in
the Beta band. We also show that the accuracy is linked to
the absence or presence of a contralateral activity during the
observed periods.

II. MATERIAL AND METHODS

A. Participants

Fiftenn right-handed healthy volunteer subjects took part
in this experiment (11 men and 4 women, 19 to 43 years old).
They had no medical history which could have influenced
the task. All experiments were carried out with the consent
agreement (approved by the ethical committee of INRIA) of
each participant and following the statements of the WMA
declaration of Helsinki on ethical principles for medical
research involving human subjects [11].

B. Electrophysiological data

EEG signals were recorded by the OpenViBE [12] plat-
form from fiftenn right-handed healthy subjects at 256 Hz
using a commercial REFA amplifier developed by TMS
InternationalTM. The EEG cap was fitted with 26 passive
electrodes, namely Fp1; Fpz; Fp2; Fz; FC5; FC3; FC1; FCz;
FC2; FC4; FC6; C5; C3; C1; Cz; C2; C4; C6; CP5; CP3;CP1;
CPz; CP2; CP4; CP6 and Pz, re-referenced with respect to the
common average reference across all channels and placed by
using the international 10-20 system positions to cover the
primary sensorimotor cortex.



C. Protocol
Subjects were asked to perform two different kinesthetic

motor imageries to imagine the feeling of the movement (left
hand and right hand). They were seated in a comfortable
chair with the arms at their sides in front of a computer
screen showing the cue indicated the task to perform. The
whole session consisted of 4 runs containing 10 trials per
task for a total of 40 trials per class.

Two panels were simultaneously displayed on the screen,
which were associated from left to right, to the left hand and
right hand. Each trial was randomly presented and lasted for
12 seconds, starting at second 0 with a cross at the center
of each panel and an overlaid arrow indicating for the next
6 seconds the task to be performed.

Fig. 1. Time scheme for the 2-class setup: left-hand KMI and right-hand
KMI. Each trial was randomly presented and lasted for 12 second(s). During
the first 6 seconds, users were asked to perform the motor imagery indicated
by the task cue. The use of each body part was indicated by the presence
of arrows: an arrow pointing to the left side on the left panel for a left hand
KMI, an arrow pointing to the right side on the right panel for a right hand
KMI. After 6s, the task cue disappeared and the crosses were remaining for
the next 6 seconds indicating the pause period before the next trial started.

Fig. 2. Accuracy results obtained by a Linear Discriminant Analysis (LDA)
and using the CSP algorithm as feature extraction on the 2 classes (left-hand
KMI and right-hand KMI) for 15 subjects. The classification method was
applied on three frequency band (Alpha, Beta and Alpha+Beta) on the ERD
time window (0-6s) and on the ERS time window (6-12s).

D. Common Spatial Pattern
We used the algorithm called Common Spatial Pattern

(CSP) to extract motor imagery features from EEG signals;

this generated a series of spatial filters that were applied to
decompose multi-dimensional data into a set of uncorrelated
components [13]. These filters aim to extract elements that
simultaneously maximize the variance of one class, while
minimizing the variance of the other one. This algorithm
has been used for all conditions: the three frequency bands
(Alpha, Beta and Alpha+Beta) during the ERD (0-6s) and
ERS (6-12s) time windows (Figure 2).

Fig. 3. Topographic map of ERD/ERS% on three frequency bands
(Alpha:7-13 Hz; Beta:15-25 Hz; Alpha+Beta:8-30 Hz) for two KMI tasks
(left-hand and right-hand). Profile 1 represents grand average for Subject
10, 13 and 14, who have better performance during the ERD phase (0-6
seconds) in Alpha band. Profile 2 represents grand average for Subject 2,
4, 5, 6, 7 and 12, who have better performance during the ERS phase (6-12
seconds) in Beta band. Profile 3 represents grand average for Subject 1, 3,
8, 9, 11 and 15, who have better performance during the ERD phase (0-6
seconds) in Alpha+Beta band. The red color corresponds to a strong ERS
and a blue one to a strong ERD.

E. ERD/ERS patterns

To evaluate more precisely the modulation which appeared
during the two different time windows, we computed the
ERD/ERS% using the “band power method” [4] with a
Matlab code. First, the EEG signal was filtered considering



one of the three different frequency bands (7-13 Hz, Alpha
band; 15-25 Hz, Beta band; Alpha+Beta 8-30 Hz) for all
subjects using a 4th-order Butterworth band-pass filter. Then,
the signal was squared for each trial and averaged over trials.
Then it is smoothed using a 250-ms sliding window with a
100 ms shifting step. The averaged power computed for each
window was subtracted and then divided by the averaged
power of a baseline corresponding to a 2s window before
each trial. Finally, the averaged power computed for each
window was subtracted and then divided by the averaged
power of a baseline corresponding 2s before each trial. This
transformation was multiplied by 100 to obtain percentages.
This process can be summarized by the following equation:

ERD/ERS% =
x2 −BL2

BL2
× 100 , (1)

where x2 is the average of the squared signal over all trials
and samples of the studied window, BL2 is the mean of a
baseline segment taken at the beginning of the corresponding
trial, and ERD/ERS% is the percentage of the oscillatory
power estimated for each step of the sliding window. It is
done for all channels separately.

ERD and ERS are difficult to observe from the EEG signal.
Indeed, an EEG signal expresses the combination of activities
from several neuronal sources. One of the most effective
and accurate techniques used to extract events is the average
technique [14]. We decided to use this technique to represent
the modulation of power of the Alpha, Beta and Alpha+Beta
rhythms for two KMIs tasks.

III. RESULTS

A. Three BCI user profiles

Table 2 shows the best accuracy obtained for each subject
on a discriminative task of left-hand and right-hand KMI
according to the three profiles defined in Section I. Thus,
6 subjects have a higher accuracy looking at the Beta band
after the KMI, 3 subjects have a higher accuracy looking at
the Alpha band during the KMI and 6 subjects have a higher
accuracy looking at the Alpha+Beta band during the KMI.
The best averaged accuracy over subjects were obtained con-
sidering modulations during KMI (in alpha or in alpha+beta
bands). However, looking at the individual performances, we
can see that 6 subjects were better considering the beta band
after the KMI. For this population we can obtain a significant
improvement of 13% in classification considering the activity
after the KMI versus during the KMI. Using the best profile
for each subject improves the averaged accuracy of 6%.

B. Classification rate and contralateral ERD/ERS activity

Subjects with a higher accuracy in the Beta band after the
KMI (Profile 2) have a strong ERS in contralateral during
this period and a bilateral desynchronization during the KMI
in the Alpha and Alpha+Beta bands (see subject 2, Fig. 4).
This result is confirmed by the grand average map (Fig.
3) which shows also an ipsilateral ERD after the KMI.
Finally, bilaterally ERD during the KMI, contralateral ERS
and ipsilaterad ERD after the KMI could explain the high

accuracy for these subjects. To validate our hypothesis, we
show that the contralateral activity of subject 2 is higher for
KMIs tasks on the post-KMI period in the Beta band (Fig.
5).

Conversely, subjects with a higher accuracy in the Alpha
and Alpha+Beta bands during the KMI (Profiles 1 and 3)
have a strong contralateral ERD during the task (Fig. 3
and Fig. 4). After the KMI, in the three frequency bands,
they have no contralateral ERS or no Beta rebound on the
motor cortex (see subject 10, Fig. 4). Figure 6 shows that the
contralateral activity of subject 10 is higher for KMIs tasks
during the KMI period in the Alpha band.

Fig. 4. Topographic map of ERD/ERS% in three frequency bands (Alpha:7-
13 Hz; Beta:15-25 Hz; Alpha+Beta:8-30 Hz) for two KMI tasks (left hand
and right hand). Subject 10 is representative of Profile 1. Subject 2 is
representative of Profile 2. Subject 11 is representative of Profile 3. The
red color corresponds to a strong ERS and a blue one to a strong ERD.
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Fig. 5. Box plots of the power spectrum for Subject 2 (Profile 2) within the
Alpha band and the Beta band over electrodes C3 and C4 for right hand and
left hand KMIs. It can be noticed that there is a higher difference between
the contralateral activity during the post-KMI period in the Beta band.
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Fig. 6. Box plots of the power spectrum for Subject 10 (Profile 1) within
the alpha band and the beta band over electrodes C3 and C4 for right hand
and left KMIs. It can be noticed that there is a higher difference between
the contralateral activity during the KMI period in the alpha band.

IV. DISCUSSION

Subjects carried out left-hand KMIs and right-hand KMIs.
Results show that 6 out of 15 subjects had a higher classi-
fication accuracy based on the post-KMI period in the beta
band. This specific accuracy is due to a higher lateralization
of ERD and ERS during this period.

Our study shows results which could allow to design an
adaptive BCI based on contralateral activity on the motor
cortex. The importance of BCI users profiles, especially for
patients with severe motor impairments has already been
established by other studies [15]. Moreover, it appears that
there can be important changes of the contralateral activity
under the choice of the frequency band [16], [17]. This
is why, if we expect designing an adaptive BCI based on
the specific contralateral activity of the motor cortex, it is
necessary to merge these two methods.

More subjects are necessary to precise this BCI user
profile. However, we investigated other KMIs (not detailed
in this article), especially combined KMI (i.e. right-hand
and left-hand KMI together versus right-hand KMI) and it
appears that some subjects have the same BCI profile.

V. CONCLUSIONS

In this article, we analyzed classification accuracies to
discriminate right-hand and left-hand kinesthetic motor im-
ageries. More specifically, we distinguished two periods (i.e.,
during the KMI and after the KMI) for three frequency bands
(Alpha, Beta and Alpha+Beta). We defined three BCI profiles
based on the accuracy of 15 subjects: users with a good
accuracy i) during the KMI in the alpha band, ii) during
the KMI in the Alpha+Beta band and iii) after the KMI in
the Beta band. This work showed that 6 out of 15 subjects
had a higher classification accuracy after the KMI in the
beta band, due to a contralateral ERS activity on the motor
cortex. Finally, taking into account the user’s lateralization
profile, we obtained a significant improvement of 13% in
classification for these subjects. This study show that users
with a low accuracy analyzing the EEG signals during the
KMI cannot be considered as BCI-illiterate. Thus, in future

work, an automatic method to profile BCI users will be done
allowing to design an adaptive BCI based on the best period
to observe a contralateral activity on the motor cortex.
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