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Abstract—This paper addresses the topic of deep neural 

networks (DNN). Recently, DNN has become a flagship in the 
fields of artificial intelligence. Deep learning has surpassed state-
of-the-art results in many domains: image recognition, speech 
recognition, language modelling, parsing, information retrieval, 
speech synthesis, translation, autonomous cars, gaming, etc. DNN 
have the ability to discover and learn complex structure of very 
large data sets. Moreover, DNN have a great capability of 
generalization. More specifically, speech recognition with DNN is 
the topic of our work in this paper. We present an overview of 
different architectures and training procedures for DNN-based 
models. In the framework of transcription of broadcast news, our 
DNN-based system decreases the word error rate dramatically 
compared to a classical system. 
 

Index Terms—speech recognition, deep neural network, 
acoustic modeling   
 

I. INTRODUCTION 

More and more information appear on Internet each day. 
And more and more information is asked by users. This 
information can be textual, audio or video and represents 
multimedia information. About 300 hours of multimedia is 
uploaded per minute [1]. It becomes difficult for companies to 
view, analyze, and mine the huge amount of multimedia data 
on the Web. In these multimedia sources, audio data 
represents a very important part. Spoken content retrieval 
consists in “machine listening” of data and extraction of 
information. Some search engines like Google, Yahoo, etc. 
perform the information extraction from text data very 
successfully and give a response very quickly. For example, if 
the user wants to get information about “Obama”, the list of 
several textual documents will be given by Google in a few 
seconds of search. In contrast, information retrieval from 
audio documents is much more difficult and consists of 
“machine listening” of the audio data and detecting instants at 
which the keywords of the query occur in the audio 
documents. For example, to find all audio documents speaking 
about “Obama”.  

Not only individual users, but also a wide range of 
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companies and organizations are interested by these types of 
applications. Many business companies are interested to know 
what is said about them and about their competitors on 
broadcast news or on TV. In the same way, a powerful 
indexing system of audio data would benefit archives. Well 
organized historical archives can be rich in term of cultural 
value and can be used by researchers or general public.   

Classical approach for spoken content retrieval from audio 
documents is speech recognition followed by text retrieval [2]. 
In this approach, the audio document is transcribed 
automatically using a speech recognition engine and after this 
the transcribed text is used for the information retrieval or 
opinion mining. The speech recognition step is crucial, 
because errors occurring during this step will propagate in the 
following step. 

In this article, we will present the new paradigm used for 
speech recognition: Deep Neural Networks (DNN). This new 
methodology for automatic learning from examples achieves 
better accuracy compared to classical methods.  
In section II, we briefly present automatic speech recognition.  
Section III gives an introduction to deep neural networks.  Our 
speech recognition system and an experimental evaluation are 
described in section IV.  
 

II. AUTOMATIC SPEECH RECOGNITION 

An automatic speech recognition system requires three main 
sources of knowledge: an acoustic model, a phonetic lexicon 
and a language model [3]. Acoustic model characterizes the 
sounds of the language, mainly the phonemes and extra 
sounds (pauses, breathing, background noise, etc.). The 
phonetic lexicon contains the words that can be recognized by 
the system with their possible pronunciations. Language 
model provides knowledge about the word sequences that can 
be uttered. In the state-of-the-art approaches, statistical 
acoustic and language models, and to some extent lexicons, 
are estimated using huge audio and text corpora.  

Automatic speech recognition consists in determining the 
best sequence of words (�� ) that maximize the likelihood: W� = argmax			� ��|����� 													(1) 
where P(X|W), known as  acoustic probability, is the 
probability of the audio signal (X) given the word sequence W. 
This probability is computed using acoustic model. P(W), 
known as  language probability, is the probability a priori of 
the word sequence, computed using the language model. 
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A. Acoustic modeling 

Acoustic modeling is mainly based on Hidden Markov 
Model (HMM). An HMM is a statistical model in which the 
system being modeled is assumed to be a Markov process with 
unobserved (hidden) states [4]. 
 

 
Fig. 1. HMM with 3 states, left-to-right topology and self-

loops, commonly used in speech recognition. 
 

HMM is a finite state automaton with N states, composed of 
three components: ��, �, Π�. � is the transition probability 
matrix (��� 	is the transition probability from the state i to the 
state j�.		Π	 is the prior probability vector (�� the prior 
probability of state i), and �   is the emission probability 
vector (bj(x) is the probability of emission of observation x 
being in state j). 

In speech recognition, the main advantage of using HMM is 
its ability to take into account the dynamic aspects of the 
speech. When a person speaks quickly or slowly, the model 
can correctly recognize the speech thanks to the self-loop on 
the states. 

To model the sounds of a language (phones), a three-state 
HMM is commonly chosen (cf. Fig. 1). These states capture 
the beginning, central and ending parts of a phone. In order to 
capture the coarticulation effects, triphone models (a phone in 
a specific context of previous and following phones) are 
preferred to context-independent phone models.  

Until 2012, emission probabilities were represented by a 
mixture of multivariate Gaussian probability distribution 
functions modeled as: 
 ���� = ∑ �� 	!�; #� , Σ� �% &'               (2) 

 
The parameters of Gaussian distributions are estimated 

using the Baum-Welch algorithm.  
A tutorial on HMM can be found in [4]. These models were 

successful and achieved best results until 2012. 

B. Language modeling 

Historically, the most common approach for language 
modeling is based on statistical n-gram model. An n-gram 
model gives the probability of a word wi given the n-1 
previous words: 

 
These probabilities are estimated on a huge text corpus. To 
avoid a zero probability for unseen word sequences, 
smoothing methods are applied, the best known smoothing 
method being proposed by Kneiser-Ney [5].  

C. Search for the best sentence 

The optimal computation of the sentence to recognize is not 
tractable because the search space is too large. Therefore, 
heuristics are applied to find a good solution. The usual way is 
to perform the recognition in two steps:  

• The aim of this first step is to remove words that have 
a low probability to belong to the sentence to 
recognize. A word lattice is constructed using beam 
search.  This word lattice contains best word 
hypotheses. Each hypothesis consist of words, their 
acoustic probabilities, language model probabilities 
and time boundaries of the words.  

• The second step consists in browsing the lattice using 
additional knowledge to generate the best hypothesis. 

Usually, the performance of automatic speech recognition is 
evaluated in terms of Word Error Rate (WER), i.e. the number 
of errors (insertions, deletion and substitutions) divided by the 
number of words in the test corpus. 

III.  DEEP NEURAL NETWORKS 

In 2012, an image recognition system based on Deep Neural 
Networks (DNN) won the Image net Large Scale Visual 
Recognition Challenge (ILSVCR) [6]. Then, DNN were 
successfully introduced in different domains to solve a wide 
range of problems: speech recognition [7], speech 
understanding, parsing, translation [8], autonomous cars [9], 
etc.[10]. Now, DNN are very popular in different domains 
because they allow to achieve a high level of abstraction of 
large data sets using a deep graph with linear and non-linear 
transformations. DNN can be viewed as universal 
approximators. DNN obtained spectacular results and now 
their training is possible thanks to the use of GPGPU 
(General-Purpose Computing on Graphics Processing Units). 

 

 
Fig. 2. Example of one neuron and its connections. 

 

A. Introduction 

Deep Neural Networks are composed of neurons that are 
interconnected. The neurons are organized into layers. The 
first layer is the input layer, corresponding to the data features. 
The last layer is the output layer, which provides the output 
probabilities of classes or labels (classification task).  

The output y of the neuron is computed as the non-linear 
weighted sum of its input. The neuron input xi can be either 
the input data if the neuron belongs to the first layer, or the 
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output of another neuron. An example of a single neuron and 
its connections is given in Figure 2. 

A DNN is defined by three types of parameters [11]: 
• The interconnection pattern between the different 

layers of neurons; 
• The training process for updating the weights wi of 

the interconnections; 
• The activation function f that converts a neuron's 

weighted input to its output activation (cf. equation in 
Fig. 2). 

The widely used activation function is the non-linear 
weighted sum. Using only linear functions, neural networks 
can separate only linearly separable classes. Therefore, non-
linear activation functions are essential for real data. Figure 3 
shows some classical non-linear functions as sigmoid, 
hyperbolic tangent (tanh), RELU (Rectified Linear Units), and 
maxout.  
 

 

 
 

Fig. 3. Sigmoid, RELU, tangent hyperbolic and maxout non-
linear functions  

 

B. Training 

The goal of the training is to reduce the error between the 
outputs computed on the training data and the target values. 
This supervised training consists in estimating the weights wi. 
of all neurons of all layers. Until now, there is no learning 
process that converges to a global optimum. The classical 
learning algorithm is based on stochastic gradient descent and 
only a local optimum can be achieved.  

At each epoch (one epoch consists of one training cycle on 
the whole training set), the cost function E (difference 
between target output and computed output) is computed and 
the weights (	are adjusted using: 

Δ( = *+	 ,-,( 

+ is called the learning rate. In general, the learning rate is 
decreased during the training process [12][13].  

Theoretically, the gradient should be computed using the 
whole training corpus. However, the convergence is very slow 
because the weights are updated only once per epoch. One 
solution of this problem is to use Stochastic Gradient Descent 

(SGD). It consists in computing the gradient on a small set of 
training samples (called mini-batch) and in updating the 
weights after each mini-batch. This speeds up the training 
process. 

During the training, it may happen that the network learns 
features or correlations that are specific to the training data 
rather than generalize the training data to be applicable to the 
test data. This phenomenon is called overfitting. One solution 
is to use a development set that should be as close as possible 
to the test data. On this development set, recognition error is 
calculated at each epoch of the training. When the error begins 
to increase, the training is stopped. This process is called early 
stopping. Another solution to avoid overfitting consists in 
using regularization. It consists in inserting a constraint to the 
error function to restrict the search space of weights.  For 
instance, the sum of the absolute values of the weights can be 
added to the error function [14]. 
One more solution to avoid overfitting is dropout [15]. The 
idea is to “remove” randomly some neurons during the 
training. This prevents neurons from co-adapting too much 
and performs model averaging.  

C. Different DNN architectures 

There are different types of DNN regarding the architecture 
[16]: 

• MultiLayer Perceptron (MLP): each neuron of a 
layer is connected with all neurons of the previous 
layer (feedforward and unidirectional). 

• Recurrent Neural Network (RNN): when it models 
a sequence of inputs (time sequence), the network 
can use information computed at previous time (t-
1) while computing output for time t. Fig. 4 shows 
an example of a RNN for language modeling: the 
hidden layer h(t-1) computed for the word t-1 is 
used as input for  processing the word t [17]. 

 

 
Fig. 4. Example of a RNN. 

 
• Long Short-Term Memory (LSTM) is a special type 

of RNN. The problem with RNN is the fact that the 
gradient is vanishing, and the memory of past 
events decreases. Sepp Hochreiter and Jürgen 
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Schmidhuber [18] have proposed a new recurrent 
model that has the capacity to recall past events. 
They introduced two concepts: memory cell and 
gates. These gates determine when the input is 
significant enough to remember or forget the value, 
and when it outputs a value. Fig. 5 displays the 
structure of an LSTM.  

• Convolutional Neural Network (CNN) is a special 
case of Feedforward Neural Network. The layer 
consists of filters (cf. Fig. 6). The parameters of 
these filters are learned. One advantage of this kind 
of architecture is the sharing of parameters, so there 
are fewer parameters to estimate. In the case of 
image recognition, each filter detects a simple 
feature (like a vertical line, a contour line, etc.). In 
deeper layer, the features are more complex (cf. 
Fig. 7). Frequently, a pooling layer is used. This 
layer allows a non-linear downsampling: max 
pooling (cf. Fig. 8) computes maximum values on 
sub-region. The idea is to reduce the size of the 
data for the following layers. An example of state-
of-the-art acoustic model using CNN is given in 
Fig. 9.  

 

 
Fig. 5. Example of LSTM with three gates: input gate, forget 

gate, output gate and a memory cell (from [19]). 
 
 

The main advantage of RNN and LSTM is their ability to 
take into account temporal evolution of the input features. 
These models are widely used for natural language processing. 
Strong point of CNN is the translation invariance, i.e. the skill 
of discover structure patterns regardless the position. For 
acoustic modelling all these structures can be exploited.  
 
 

 

Fig. 6. Example of a convolution with a filter .1 0 10 1 01 0 11 
Original image is in green, filter applied on bottom right of 
image is in orange and convolution result is in pink. 

 
A difficult DNN issue is the choice of the hyperparameters: 

number of hidden layers, number of neurons per layer, choice 
of non-linear functions, choice of learning rate adaptation 
function. Often, some hyperparameters are adjusted 
experimentally (trial and error), because they depend on the 
task, the size of the database and data sparsity.  

D. DNN-based  acoustic model 

As said previously, for acoustic modeling, HMM with 3 
left-to-right states are used to model each phone or contextual 
phone (triphone). Typically, there are several thousand of 
HMM states in a speech recognition system.  

 In DNN-based acoustic model, contextual phone HMMs 
are keeped but all the Gaussian mixtures of the HMM states 
(equation 2) are replaced by DNN.  Therefore, DNN-based 
acoustic model computes the observation probability bj(x) of 
each HMM phone state given the acoustic signal using DNN 
networks [21]. The input of the DNN will be the acoustic 
parameters at time t. The DNN outputs correspond to all 
HMM states, one output neuron for one HMM state.  

In order to take into account contextual effects, the acoustic 
vectors from a time window centered on time t (for instance 
from time t-5 to t+5) are put together. 

To train the DNN acoustic model, the alignment of the 
training data is necessary: for each frame, the corresponding 
HMM state that generated this frame should be known. This 
alignment of the training data is performed using a classical 
GMM-HMM model. 

 

 
Fig. 7. Feature visualization of convolutional network trained 

on ImageNet from Zeiler and Fergus [20]. 
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Fig. 8. Max pooling  with a 2x2 filter (from www.wildml.com) 
 
 

E. Language model using DNN 

A drawback of classical N-gram language models (LM) is 
their weak ability of generalization: if a sequence of words 
was not observed during training, N-gram model will give 
poor probability estimation. To address this issue, one solution 
is to move to a continuous space representation. Neural 
networks are efficient for carrying out such a projection. To 
take into account the temporal structure of language (word 
sequences), RNN have been largely studied. The best NN-
based language models use LSTM and RNN [23][24]. 

 
 

 
Fig. 9. The very deep convolutional system proposed by IBM 

for acoustic modeling: 10 CNN, 4 pooling, 3 full connected 
(FC MLP) (from [22]). 

 

IV.  KATS (KALDI BASED TRANSCRIPTION SYSTEM) 

In this section we present the KATS speech recognition 
system developed in our speech group. This system is built 
using Kaldi speech recognition toolkit, freely available under 
the Apache License. Our KATS system can use GMM-based 
and DNN-based acoustic models. 

A. Corpus 

The training and test data were extracted from the radio 
broadcast news corpus created in the framework of the 
ESTER project [25]. This corpus contains 300 hours of 
manually transcribed shows from French-speaking radio 
stations (France Inter, Radio France International and TVME 
Morocco). Around 250 h were recorded in studio and 50h on 
telephone. 11 shows corresponding to 4 hours of speech 
(42000 words) were used for evaluation. 

B. Segmentation 

The first step of our KATS system consists in segmentation 
and diarization. This module splits and classifies the audio 
signal into homogeneous segments: non-speech segments 
(music and silence), telephone speech and studio speech. For 
this, we used the toolkit developed by LIUM [27]. We 
processed separately telephone speech and studio speech in 
order to estimate two sets of acoustic models; studio models 
and telephone models. 

C. Parametrization 

The speech signal is sampled at 16 kHz. For analysis, 25 ms 
frames are used, with a frame shift of 10 ms. 13 MFCC were 
calculated for each frame completed by the 13 delta and 13 
delta-delta coefficients leading to a 39-dimension observation 
vector. In all experiments presented in this paper, we used 
MCR (Mean Cepstral Removal). 

D. Acoustic models 

In order to compare GMM-HMM and DNN-HMM acoustic 
models, we used the same HMM models with 4048 senones. 
The only difference is the computation of the emission 
probability (bj(x) of equation 2): for GMM-HMM it is a 
mixture of Gaussians, for DNN-HMM, it is a deep neural 
network. Language model and lexicon stay the same. For 
GMM-HMM acoustic models, we used 100k Gaussians. For 
DNN, the input of the network is the concatenation of 11 
frames (from t-5 to t+5) of 40 parameters. The network is a 
MLP with 6 hidden layers of 2048 neurons per layer (cf. Fig. 
10). The output layer has 4048 neurons (corresponding to 
4048 senones). The total number of parameters in DNN-HMM 
is about 30 millions. 

E. Language models and lexicon 

Language models were trained of huge text corpora: 
newspaper corpus (Le Monde, L’Humanité), news wire 
(Gigaword), manual transcriptions of training corpus and web 
data. The total size was 1.8 billion words. The n-gram 
language model is a linear combination of LM models trained 
on each text corpus. In all experiments presented in this paper, 
only a 2-gram model is used with 40 million bigrams and a 
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lexicon containing 96k words and 200k pronunciations.  
 

 
Fig. 10. Architecture of the DNN used in KATS system. 

 

F. Recognition results 

Recognition results in terms of word error rate for the 11 
shows are presented in Table 1. The confidence interval of 
these results is about +/- 0.4 %. Two systems are compared. 
These systems use the same lexicon and the same language 
models but differ by their acoustic models: GMM-HMM and 
DNN-HMM, so, the comparison is fair. For all shows, the 
DNN-based system outperforms the GMM-based system. The 
WER difference is 5.3% absolute, and 24% relative. The 
improvement is statistically significant. The large difference in 
performance between the two systems suggests that DNN-
based acoustic models achieves better classification and has 
generalization ability.  
  

Shows # words 
GMM- 
HMM 

DNN- 
HMM 

20070707_rfi (France) 5473 23.6 16.5 
20070710_rfi (France) 3020 22.7 17.4 
20070710_france_inter 3891 16.7 12.1 
20070711_france_inter 3745 19.3 14.4 
20070712_france_inter 3749 23.6 16.6 
20070715_tvme (Morocco) 2663 32.5 26.5 
20070716_france_inter 3757 20.7 17.0 
20070716_tvme (Morocco) 2453 22.8 17.0 
20070717_tvme (Morocco) 2646 25.1 20.1 
20070718_tvme (Morocco) 2466 20.2 15.8 
20070723_france_inter      8045 22.4 17.4 
Average 41908 22.4 17.1 

 
Table 1. Word Error Rate (%) for the 11 shows obtained using the 
GMM-HMM and DNN-HMM KATS systems. 
 
 

 

V. CONCLUSION 

From 2012, deep learning has shown excellent results in 
many domains: image recognition, speech recognition, 
language modelling, parsing, information retrieval, speech 
synthesis, translation, autonomous cars, gaming, etc. In this 
article, we presented deep neural networks for speech 
recognition: different architectures and training procedures for 
acoustic and language models are visited. Using our speech 
recognition system, we compared GMM and DNN acoustic 
models. In the framework of broadcast news transcription, we 
shown that the DNN-HMM acoustic model decreases the 
word error rate dramatically compared to classical GMM-
HMM acoustic model (24% relative significant improvement).  

The DNN technology is now mature to be integrated into 
products. Nowadays, main commercial recognition systems 
(Microsoft Cortana, Apple Siri, Google Now and Amazon 
Alexa) are based on DNNs. 
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