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Abstract 38 

There is a consensus concerning the view that both auditory and motor representations 39 

intervene in the perceptual processing of speech units. However, the question of the functional 40 

role of each of these systems remains seldom addressed and poorly understood. We 41 

capitalized on the formal framework of Bayesian Programming to develop COSMO 42 

(Communicating Objects using Sensory-Motor Operations), an integrative model that allows 43 

principled comparisons of purely motor or purely auditory implementations of a speech 44 

perception task and tests the gain of efficiency provided by their Bayesian fusion.  45 

Here, we show three main results. (i) In a set of precisely defined “perfect conditions”, 46 

auditory and motor theories of speech perception are indistinguishable. (ii) When a learning 47 

process that mimics speech development is introduced into COSMO, it departs from these 48 

perfect conditions. Then auditory recognition becomes more efficient than motor recognition 49 

in dealing with learned stimuli, while motor recognition is more efficient in adverse 50 

conditions. We interpret this result as a general “auditory-narrowband vs. motor-wideband” 51 

property. (iii) Simulations of plosive-vowel syllable recognition reveal possible cues from 52 

motor recognition for the invariant specification of the place of plosive articulation in context, 53 

that are lacking in the auditory pathway. This provides COSMO with a second property, 54 

where auditory cues would be more efficient for vowel decoding and motor cues for plosive 55 

articulation decoding. These simulations provide several predictions, which are in good 56 

agreement with experimental data and suggest that there is natural complementarity between 57 

auditory and motor processing within a perceptuo-motor theory of speech perception.  58 

Keywords: Speech perception, computational modeling, sensory-motor interactions, 59 

adverse conditions, plosive invariance   60 
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The complementary roles of auditory and motor information evaluated in a Bayesian 61 

perceptuo-motor model of speech perception 62 

 63 

On the functional role of auditory vs. motor systems in speech perception 64 

Since the introduction in the 1960s of the so-called Motor Theory of Speech 65 

Perception (Liberman, Cooper, Shankweiler, & Studdert-Kennedy, 1967), it is striking to 66 

remark how the debate pertaining to auditory and motor theories of speech communication 67 

has evolved. There were basically two main periods of reasoning. 68 

The arguments from the 1960s to the 1980s mainly derived from experimental 69 

phonetics and what would now be called laboratory phonology. These were basically focused 70 

on functional questions. Auditory and motor theories were discussed according to their 71 

respective abilities to deal with the question of invariance (see an extensive review by Perkell 72 

& Klatt, 1986). Invariants were thought to exist somewhere in the acoustic signal, providing a 73 

key for abstract and categorical phonologic units from the continuous and physical substance 74 

of phonetics. The debate concerned the nature of these invariants, be this auditory or motor 75 

(see reviews of functional arguments in favor of auditory theories e.g. Diehl, Lotto, & Holt, 76 

2004; Kingston & Diehl, 1994; Kluender 1994; Lotto 2000; Massaro & Oden 1980; Nearey, 77 

1990; or in favor of motor invariance in Liberman et al., 1967; Liberman & Mattingly, 1985, 78 

1989; Liberman & Whalen, 2000; and a review in Galantucci, Fowler, & Turvey, 2006).   79 

Since the 1990s, the arguments have evolved progressively towards experimental data 80 

provided by cognitive neuroscience. With the discovery of mirror neurons (Rizzolatti, Fadiga, 81 

Gallese, & Fogassi, 1996a) and the proposal of a “mirror system” in the human perception of 82 

complex actions (Grafton, Arbib, Fadiga, & Rizzolatti, 1996; Iacoboni et al., 1999; Rizzolatti 83 

et al., 1996b), neurophysiological and behavioral experimental data made it progressively 84 

clear that the motor system plays a role in speech perception (see a recent detailed review in 85 
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Skipper, Devlin & Lametti, 2017). Evidence emerged in two steps. Firstly, neuroanatomical 86 

studies repeatedly showed that parietal and frontal brain areas associated with speech 87 

production were consistently stimulated upon speech perception tasks (e.g. Fadiga, Craighero, 88 

Buccino, & Rizzolatti, 2002; Pulvermüller et al., 2006; Watkins, Strafella, & Paus, 2003; 89 

Wilson, Saygin, Sereno, & Iacoboni, 2004). This was particularly shown in non-standard 90 

conditions involving noise (Binder, Liebenthal, Possing, Medler, &Ward, 2004; Zekveld, 91 

Heslenfeld, Festen, & Schoonhoven, 2006), non-native stimuli (Callan, Callan, & Jones, 92 

2014; Callan, Jones, Callan, & Akahane-Yamada, 2004; Wilson & Iacoboni, 2006), or 93 

conflicting audiovisual inputs (Jones & Callan, 2003; Ojanen et al., 2005; Skipper, van 94 

Wassenhove, Nusbaum, & Small, 2007). Secondly, behavioral studies looked for a causal role 95 

of motor areas in speech perception by altering or modulating the potential efficiency of 96 

speech motor centers, by Transcranial Magnetic Stimulation (TMS), repeated TMS or motor 97 

perturbations. Such studies have shown small but consistent perceptual effects in 98 

categorization or discrimination of speech stimuli, in ambiguous or noisy conditions (e.g., 99 

d’Ausilio et al., 2009; d’Ausilio, Bufalari, Salmas, & Fadiga ,2012; Grabski, Tremblay, 100 

Gracco, Girin, & Sato, 2013; Ito, Tiede, & Ostry, 2009; Meister, Wilson, Deblieck, Wu, & 101 

Iacoboni, 2007; Möttönen, Dutton, & Watkins, 2013; Möttönen & Watkins, 2009; Rogers, 102 

Möttönen, Boyles, & Watkins, 2014; Sato, Tremblay, & Gracco, 2009; Sato et al., 2011; 103 

Shiller, Sato, Gracco, &  Baum, 2009).  104 

In this context, the strong “auditory” vs. “motor” controversy about invariance at the 105 

crossroads of phonetics and phonology that prevailed until the end of the 1980s was almost 106 

completely replaced since the beginning of the 1990s by an integrative view from cognitive 107 

neuroscience, assuming that the motor and auditory systems collaborate in speech perception. 108 

This has the merits of taking into account new experimental insights, but its drawback is that 109 

the question of the respective functions of sensory and motor systems has almost completely 110 
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disappeared from the literature. However, if both auditory and motor processes do intervene 111 

in speech perception (1), the potential specificity and complementarity of these two systems 112 

within a perceptuo-motor speech perception architecture becomes essential. How could it be 113 

useful for speech perception to capitalize on two different systems? How could the motor 114 

system be more helpful in adverse conditions? What specific aspects of computation, for what 115 

kind of information extraction, are respectively implemented by the motor and auditory (if not 116 

visual or somatosensory) components of the speech perception system?  117 

These are the questions we address in the theoretical framework of the “Perception-118 

for-Action-Control Theory” (PACT). PACT is a perceptuo-motor theory of speech perception, 119 

connecting perceptual shaping and motor procedural knowledge in a principled way, in 120 

speech multisensory processing within the human brain (Schwartz, Basirat, Ménard, & Sato, 121 

2012a; Schwartz, Boë, & Abry, 2007). PACT considers that perceptual knowledge is involved 122 

in both speech comprehension and speech control, in a communicative process. The 123 

communication unit through which parity may be achieved, is neither a sound, nor a gesture, 124 

but a perceptually-shaped gesture, that is a perceptuo-motor unit characterized both by its 125 

articulatory coherence, provided by its gestural nature and its perceptual value, necessary for 126 

function. Motor processes could be associated with multisensory processes through audio-127 

visuo-motor binding, enabling a better extraction of adequate cues for further categorization 128 

processes (Basirat, Schwartz, & Sato, 2012; see also Skipper, van Wassenhove, Nusbaum & 129 

Small, 2007). Furthermore, perceptual categorization would benefit from motor information 130 

in addition to auditory and possibly visual clues. This would, improve variability processing 131 

and the extraction of invariance (Schwartz, Abry, Boë, & Cathiard, 2002; Schwartz et al., 132 

2007, 2012a).   133 

In PACT, it is also acknowledged that perception and action are co-structured in the 134 

course of speech development, which involves both producing and perceiving speech items. 135 
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The schedule of perceptuo-motor development in the first few years of age is important in this 136 

context, and seems to incorporate several major steps (Kuhl, 2004; Kuhl et al., 2008). First, 137 

auditory processes mature, enabling categorization of many phonetic contrasts almost from 138 

birth (e.g., Bertoncini, Bijeljac-Babic, Blumstein, & Mehler, 1987; Eimas, Siqueland, 139 

Jusczyk, & Vigorito, 1971; Jusczyk & Derrah, 1987), with an early focus on the sounds of the 140 

infant’s language. This can be as early as 6 months old for vowels (Kuhl, Williams, Lacerda, 141 

Stevens, & Lindblom, 1992) and 10 months old for consonants (Werker & Tees, 1984). Motor 142 

processes evolve later and more slowly, beginning by articulatory exploration of the possible 143 

vocal repertoire, with canonical babbling at around 7 months of age (Davis, MacNeilage, & 144 

Matyear, 2002; MacNeilage, 1998). This continues with a later focus on the sounds of the 145 

phonological system from the end of the first year and through the following ones. 146 

Importantly, canonical babbling, sometimes considered as a purely endogenous process 147 

enabling infants to extensively explore the possibilities of their vocal tracts, seems to be 148 

influenced since its very beginning by the language heard in the surrounding environment. 149 

Such “babbling drift” has been displayed in a number of experiments concerning vowel 150 

formants, consonant-vowel associations and prosodic schemes (e. g. de Boysson-Bardies, 151 

1993; de Boysson-Bardies, Hallé, Sagart, & Durant, 1989; de Boysson-Bardies, Sagart, & 152 

Durant, 1984).  153 

Auditory perception is hence mature and focused before orofacial control occurs. 154 

Furthermore, the connection between the speech perception system and the motor system 155 

through the parieto-frontal dorsal pathway in the cortex does not seem to be completely 156 

mature at birth, but rather evolves throughout the first year of life (Dehaene-Lambertz, 157 

Dehaene, & Hertz-Pannier, 2002; Dehaene-Lambertz  et al., 2006; vs. Kuhl, Ramírez, 158 

Bosseler, Lotus Lin, & Imada, 2014; Imada et al., 2006). Consequently, motor information 159 

would not be mature, focused or fully available for perception until the end of the first year. 160 
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 161 

Computational models of auditory vs. motor theories of speech perception 162 

In the context of debates concerning the potential role of auditory and motor systems 163 

in speech perception, computational models are likely to shed light on them by enabling 164 

quantitative evaluation of some of the theoretical arguments in relation to experimental data. 165 

There are already many computational models of auditory theories of speech perception. 166 

Many, if not all of acoustic speech recognition systems can be construed as such, as they 167 

involve the best statistical analyses of the acoustic content of large speech corpora for speech 168 

understanding (see recent reviews in e.g. Hinton et al., 2012; Huang & Deng, 2010). They 169 

also often incorporate more or less sophisticated computational models of the auditory 170 

analysis of acoustic stimuli in the human brain (e.g. Hermansky, 1998; Deng, 1999). Auditory 171 

theory models also include computational psycholinguistic models of cognitive speech 172 

processing (e.g. Trace: McClelland & Elman, 1986; the Distributed Cohort Model: Gaskell & 173 

Marslen-Wilson, 1997; Parsyn: Luce, Goldinger, Auer & Vitevitch, 2000; see also 174 

Scharenborg, Norris, Ten Bosch & McQueen, 2005).  175 

A widespread mathematical framework, in this domain, is probabilistic modeling, 176 

where a generative, predictive model associates probable acoustic signals with linguistic 177 

categories. Then, perception is cast as a categorization process, in which Bayes theorem is 178 

used to infer the most likely linguistic category given some acoustic stimulus: 179 

 𝑃 𝑂 = 𝑜! 𝑆 = ! ! !!!! ! !!!!
! ! !!!! ! !!!!!

 , 180 

where 𝑃 𝑆 𝑂 = 𝑜!  expresses the probability distribution of acoustic cues for a given 181 

category and 𝑃 𝑂 = 𝑜!  defines prior probabilities of each category.  182 

The origin of such models can be traced back, historically, to Signal Detection Theory 183 

(Tanner & Swets, 1954; Green & Swets, 1966; more recent references include Dayan & 184 

Abbott, 2001; Rouder & Lu, 2005) and its multi-dimensional generalization, the General 185 
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Recognition Theory (Ashby & Townsend, 1986; Ashby & Perrin, 1988). Recent years saw the 186 

resurgence and spread of Bayesian models of speech perception, that consider the 187 

categorization process above to model the optimal, ideal acoustic (or possibly visual, see 188 

footnote 1) information processing system, without any reference to motor processes. Such 189 

“optimal” models include ideal listener models (Feldman, Griffiths & Morgan, 2009; 190 

Sonderegger & Yu, 2010) and ideal adapter models (Clayards, Aslin, Tanenhaus & Jacobs, 191 

2007; Clayards, Tanenhaus, Aslin, & Jacobs, 2008; Kleinschmidt & Jaeger, 2011, 2015), 192 

where categories are either learned in a batch manner (De Boer & Kuhl, 2003; Dillon, Dunbar 193 

& Idsardi, 2013) or acquired and adapted incrementally (McMurray, Aslin & Toscano, 2009; 194 

Vallabha, McClelland, Pons, Werker & Amano, 2007). In this trend, many extensions were 195 

proposed, for instance for dealing with multiple cues (Toscano & McMurray, 2008, 2010) or 196 

with higher-level structures above phonemic representations (e.g., words, syllables), in 197 

hierarchical models (Norris & McQueen, 2008; Feldman, Griffiths & Morgan, 2009b; Kiebel, 198 

Daunizeau, & Friston, 2009; Feldman, Griffiths, Goldwater & Morgan, 2013).   199 

In comparison, there are many less computational motor theory models, basically 200 

because of the lack of easily available articulatory or motor data required for the training of 201 

such models. A few automatic speech recognition systems attempt to introduce articulatory 202 

data into their statistical processes (e.g. Deng & Ma, 2000; Deng, Ramsay, & Sun, 1997; 203 

Frankel, Richmond, King & Taylor, 2000; Sun & Deng, 2002) and a recent series of machine 204 

learning models based on artificial neural networks and applied to articulatory data recorded 205 

through electromagnetic articulography aimed to show the efficiency of articulatory inputs for 206 

phonetic decoding (e.g. Canevari, Badino, d'Ausilio, Fadiga, & Metta, 2013; Castellini et al., 207 

2011). A few variants of Bayesian models of speech perception, because they consider 208 

computations of the speaker’s intentions through motor inversion, can be construed as 209 

involving motor knowledge during perception, although it was not their initial purpose, as 210 
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they were developed instead to model perceptual magnet effects (Feldman & Griffiths, 2007; 211 

Feldman, Griffiths & Morgan, 2009). Other authors attempted to develop formal models 212 

without real articulatory ground truth data to evaluate the possibility of implementing motor 213 

or perceptuo-motor theories of speech perception (e.g. Kröger, Kannampuzha, & Kaufmann, 214 

2014; Kröger, Kannampuzha, & Neuschaefer-Rube, 2009; Moore, 2007). 215 

However, while all these developments basically aim to demonstrate that articulatory 216 

or motor speech decoding is indeed feasible and potentially efficient, none of this research 217 

attempts to really evaluate why and how motor information could be relevant for speech 218 

decoding. Furthermore, it is always difficult in these models to precisely disentangle what 219 

comes from the distribution of articulatory information and what comes from specific choices 220 

in the computational implementation.  221 

This is why the Bayesian implementation of an instance of motor theory 222 

(implementing motor decoding in a Bayesian framework) or perceptuo-motor theory 223 

(including the fusion of auditory and motor information) could enable the functional role of 224 

the motor system to be assessed more clearly and rigorously. This is the objective of the 225 

COSMO model (Communicating Objects using Sensory-Motor Operations) that will be 226 

presented in the next section. 227 

 228 

COSMO, a Bayesian computational framework for assessing the functional role of 229 

auditory vs. motor systems 230 

To attempt to better understand the function of motor information in speech 231 

perception, we have developed over recent years a computational Bayesian framework called 232 

COSMO. This model enables auditory, motor and perceptuo-motor theories of speech 233 

communication to be implemented and compared in a coherent set of simple probabilistic 234 

equations and processes, based on Bayesian modeling. COSMO was initially developed to 235 
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deal with the emergence of sound systems in human languages (Moulin-Frier, Diard, 236 

Schwartz, & Bessière, 2015; Moulin-Frier, Schwartz, Diard, & Bessière, 2011) and was then 237 

adapted to the study of speech perception in adverse conditions (Moulin-Frier, Laurent, 238 

Bessière, Schwartz, & Diard, 2012). The present article greatly expands the initial study of 239 

Moulin-Frier et al. (2012), which attempted to clearly assess when and how motor 240 

information could be useful for phonetic decoding. 241 

A first part will present the COSMO model, together with an initial crucial result we 242 

obtained with COSMO, which we called the indistinguishability theorem. This theorem shows 243 

that in a set of precisely defined “perfect conditions”, auditory and motor theories of speech 244 

perception are indistinguishable (Moulin-Frier et al., 2012). We will present this theorem in 245 

detail, since it is of great theoretical importance, providing a landmark for any further 246 

comparison of auditory and motor models of speech perception.   247 

Indeed, distinguishing the functional roles of auditory and motor systems for speech 248 

perception can only be achieved by departing from these perfect conditions. This can occur in 249 

one of two major ways, providing the two major contributions of the present paper to the 250 

subject. 251 

Firstly, the learning process can differentiate the auditory and motor systems. We 252 

claim that these two systems evolve differently during learning. The auditory system could 253 

focus rapidly and precisely on the set of learning stimuli provided by the environment, leading 254 

to a system finely tuned to this learning set. This would provide the auditory system with a 255 

“narrow-band” specificity with respect to the learning data. In contrast, the motor system 256 

would “wander” more through the sensory-motor space during its exploration stage, because 257 

of the complexity of the task at hand. Hence it would evolve more slowly and focus less 258 

efficiently on the set of learning stimuli provided by the environment, in agreement with the 259 

developmental timeline described previously. However, it would be able to process a wider 260 
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set of stimuli thanks to the “wandering” phenomenon. This would provide the motor system 261 

with a “wide-band” specificity, making it poorer for learned stimuli, but better at generalizing 262 

about adverse conditions involving unlearned stimuli. This will be developed in Part 2, 263 

together with two predictions associated with this “auditory-narrow, motor-wide” property, 264 

that will be compared to the available experimental data. 265 

Secondly, the two systems can be differentiated in terms of the nature and complexity 266 

of their internal representations, possibly leading to different processing of variability of the 267 

phonological units. Considering simulations of the recognition of plosive-vowel sequences, 268 

we explore the assumption that motor recognition might provide clues as to the invariant 269 

specification of the place of articulation of plosives in context, which is lacking in the 270 

auditory pathway, while the auditory categorization of vowels would be more straightforward 271 

than its motor counterpart. Altogether, this suggests that there should be a natural 272 

complementarity between auditory and motor systems within a perceptuo-motor theory of 273 

speech communication. This will be developed in Part 3, together with two other predictions 274 

that will be discussed in light of available experimental data. 275 

Following the important simulation contributions and predictions, we will end this 276 

paper with a review of some major perspectives and challenges associated with the 277 

development of COSMO, in relation to cognitive processes involved in speech 278 

communication. 279 

 280 

Part 1 – COSMO and the indistinguishability theorem 281 

 282 
In this first part we will introduce the two major pieces of our computational framework. 283 

Firstly, we will present and describe COSMO together with its mathematical specification and 284 

the way it enables modeling of auditory, motor or perceptuo-motor theories of speech 285 

perception. Secondly, we will derive the indistinguishability theorem, already published by 286 
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Moulin-Frier et al. (2012), but which will be explained more precisely in the present paper. 287 

This will provide us with the crucial landmark that will serve for further simulations presented 288 

in parts 2 and 3. 289 

 290 

The COSMO model 291 

COSMO stems from the analysis of spoken communication, which can be broken 292 

down into a minimal set of variables, with a high level of abstraction. 293 

***FIGURE 1 ABOUT HERE*** 294 

As is shown in the upper part of Figure 1, to communicate about an object 𝑂!, the 295 

Speaker Agent performs a motor gesture 𝑀 resulting in a sensory input 𝑆 from which the 296 

Listener Agent retrieves the object 𝑂! (2). The variable 𝐶!"# is a Boolean variable assessing 297 

the communication success: it is True when 𝑂! = 𝑂!.   298 

Our work is based on the hypothesis that the Communicating Agent, is able to act both 299 

as a speaker and a listener, and has internal representations of the whole communication loop, 300 

as shown in the lower part of Figure 1. Consequently, the Communicating Agent model is 301 

made up of (i) a motor system associating motor representations 𝑀 to the object 𝑂! to be 302 

produced and of (ii) a sensory system associating the perceived object 𝑂! to the sensory 303 

representation 𝑆, which are linked by (iii) a sensory-motor system that allows the 304 

consequences of motor commands 𝑀 in terms of sensory inputs 𝑆 to be predicted. At this 305 

stage, 𝑀, 𝑆 and 𝑂 are still generic variables, in order not to lose generality. They will be 306 

instantiated for experiments and made more precise later in this paper.   307 

The model contains two different variables 𝑂! and 𝑂!, one for the intention of the 308 

speaker, the other for the perception of the listener. They are also useful to avoid a directed 309 

loop from a single variable 𝑂 to itself through motor and perceptual variables 𝑀 and 𝑆. 310 

Indeed, such loops are not compatible with straightforward application of Bayes theorem; 311 
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duplication of the variables is a classic solution to circumvent this technical problem (e.g. 312 

state variables are replicated over time for temporal series models). Such duplication between 313 

phonological codes for production and perception, linked by conversion mechanisms, is 314 

compatible with neuropsychological data (Jacquemot, Dupoux, & Bachoud-Lévi, 2007). 315 

Coherence between variables 𝑂! and 𝑂! is imposed by (iv) a Boolean variable 𝐶 when it is set 316 

to True. The variable 𝐶 can also be conceived as the internalization of the 𝐶!"# variable 317 

assessing communication success.  318 

This Communicating Agent model has a name, COSMO, that also happens to recall 319 

the model variables. COSMO is formally defined within the framework of Bayesian 320 

Programming (Bessière, Laugier, & Siegwart, 2008; Bessière, Mazer, Ahuactzin-Larios, & 321 

Mekhnacha, 2013; Lebeltel, Bessière, Diard, & Mazer, 2004) by probability distributions, 322 

which encode the subjective knowledge that the agent has about the relations between its 323 

internal representations. The COSMO model is thus defined by one mathematical object, the 324 

joint probability distribution over all its variables: 𝑃 𝐶 𝑂! 𝑆 𝑀 𝑂! . It contains all the 325 

information the agent has about its internal variables and can be shown to be sufficient to 326 

perform any inference task about these variables, whatever the form. In other words, any 327 

conditional probability over some of these variables, knowing some others, can be computed 328 

from the joint probability distribution. We chose to decompose and simplify this joint 329 

probability distribution as follows (Moulin-Frier et al., 2012):  330 

𝑃 𝐶 𝑂! 𝑆 𝑀 𝑂! = 𝑃 𝑂!
!"#$"

𝑃 𝑀  𝑂!
!"#"$

!"#"!$%&!"

𝑃 𝑆  𝑀)
!"#$%#&
!"#$%

𝑃 𝑂!  𝑆)
!"#!$%&
!"#$$%&%'(

𝑃 𝐶  𝑂! 𝑂!)
!"##$%&!'(&"%

!"##$!!

 . (1) 331 

Various tasks can then be carried out by asking questions to the model, by computing 332 

conditional probability distributions of the form 𝑃 𝑆𝐸𝐴𝑅𝐶𝐻𝐸𝐷  𝑂𝐵𝑆𝐸𝑅𝑉𝐴𝑇𝐼𝑂𝑁𝑆): What is 333 

the probability distribution over the 𝑆𝐸𝐴𝑅𝐶𝐻𝐸𝐷 variables, knowing the value of some 334 

𝑂𝐵𝑆𝐸𝑅𝑉𝐴𝑇𝐼𝑂𝑁𝑆? In the COSMO framework, a speech production task amounts to 335 
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computing a conditional distribution of the form 𝑃 𝑀  𝑂): What is the probability 336 

distribution over motor commands 𝑀 corresponding to the object 𝑂 to be communicated? A 337 

speech perception task amounts to computing a conditional distribution of the form 𝑃(𝑂 | 𝑆): 338 

What is the probability distribution over perceived objects 𝑂, given the sensory input 𝑆? 339 

Within the framework of COSMO, these questions can be instantiated in three 340 

different ways: (i) by replacing 𝑂 by 𝑂! we implement a motor theory focused on the 341 

speaker’s perspective, (ii) by replacing 𝑂 by 𝑂! we implement an auditory theory focused on 342 

the listener’s perspective, (iii) by indifferently using either 𝑂! or 𝑂! and by further 343 

conditioning the computed distribution with the constraint 𝐶 = 𝑇𝑟𝑢𝑒, we implement a 344 

perceptuo-motor theory that ensures the coherence of both representations. This is the 345 

equivalent of explicitly setting the communication success as a goal of the task considered. 346 

Bayesian inference provides a way to compute the conditional probability distributions 347 

corresponding to all these tasks from the joint probability distribution that defines the 348 

COSMO model (Equation (1)). Figure 2 shows the results of these computations and how they 349 

can be interpreted. We now explain further the results of these Bayesian inferences, focusing 350 

on the speech perception task. 351 

***FIGURE 2 ABOUT HERE***  352 

As can be seen in Figure 2, the implementation of an auditory theory of perception 353 

consists of a direct computation of 𝑃(𝑂 | 𝑆) = 𝑃(𝑂! | 𝑆), with no intervention of motor 354 

variables. This is consistent with classical proposals about auditory theories, which deny the 355 

role of motor knowledge in speech perception and consider that it is based exclusively on the 356 

set of auditory processing and categorization mechanisms available in the human brain (e.g. 357 

Diehl et al., 2004). We note that this portion of our model is equivalent to many preceding 358 

models of acoustic categorization, including the Ideal Adapter model of Kleinschmidt & 359 

Jaeger (2015) mentioned previously. 360 
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Likewise, the implementation of a motor theory of perception, i.e., computing 361 

𝑃(𝑂 | 𝑆) = 𝑃(𝑂! | 𝑆) ∝  (𝑃(𝑀 | 𝑂!) 𝑃(𝑆 | 𝑀))!  (Feldman & Griffiths, 2007; Feldman, 362 

Griffiths & Morgan, 2009; Moulin-Frier et al., 2012), is consistent with the view that speech 363 

perception occurs by retrieving the intended motor gestures of the speaker (Liberman & 364 

Mattingly, 1985). Indeed, the motor variable 𝑀 now plays a role in the inference. The 365 

deterministic two-stage process posited by motor theories begins with the retrieval of 𝑀 from 366 

𝑆 through an inverse model, which is followed by the categorization process estimating 𝑂! 367 

from 𝑀 through a motor decoder. In the Bayesian framework, these are replaced by the 368 

computation of the sum over the possible values of the variable 𝑀, weighted by the 369 

probability that they have the sensory consequence 𝑆 and by the probability that they are 370 

associated with 𝑂! the considered object. This is a Bayesian analogue to analysis-by-synthesis 371 

(Halle & Stevens, 1959; Stevens & Halle, 1967; see a review in Bever & Poeppel, 2010). The 372 

deterministic two-stage process, firstly with motor-to-sensory inversion and secondly with 373 

motor decoding, is an approximation of the summation over all 𝑀 values. 374 

Finally, the implementation of a perceptuo-motor theory of perception consists simply 375 

of a mere Bayesian fusion of the predictions of the sensory and motor categorization 376 

processes: 𝑃 [𝑂 = 𝑜]  𝑆 [𝐶 = 𝑇𝑟𝑢𝑒]) ∝ 𝑃([𝑂! = 𝑜] | 𝑆)  (𝑃(𝑀 | [𝑂! = 𝑜]) 𝑃(𝑆 | 𝑀))! . 377 

 378 

Indistinguishability of auditory and motor theories in perfect conditions of learning and 379 

communication 380 

Although purely sensory and purely motor perceptions are described by different 381 

equations (see Figure 2), it can be proven that if three hypotheses defining a set of “perfect 382 

conditions” of learning are verified, the motor and auditory theories of perception make 383 

exactly the same predictions. Therefore, these cannot be distinguished empirically. This 384 

demonstration has been presented previously (Moulin-Frier et al., 2012), but in a less explicit 385 
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formulation. We will present it here again in detail, in its more rigorous form, with three 386 

hypotheses instead of the two used previously. 387 

***FIGURE 3 ABOUT HERE*** 388 

We consider a supervised learning scenario, shown in Figure 3, which features 389 

Learning Agents and a Master Agent, each described as a COSMO agent. To distinguish their 390 

variables, superscripts are added and variables become 𝑂!
!", 𝑂!!"#$%&, 𝑀!", 𝑀!"#$%&, etc.    391 

In the learning scenario, the Learning Agent is provided by the Master Agent with the 392 

following <object, stimulus> pairs. The Master Agent uniformly selects 𝑂!!"#$%& objects, 393 

draws corresponding 𝑀!"#$%& motor commands according to the production model 394 

𝑃(𝑀!"#$%&  | 𝑂!!"#$%&) , which are then transformed by the environment modeled by 395 

𝑃(𝑆!" | 𝑀!"#$%&) and result in sensory 𝑆!" inputs. Furthermore, the variable 𝐶!"#, which 396 

ensures coherence between the 𝑂!!"#$%& and 𝑂!
!"objects, implements a shared attention 397 

mechanism, e.g. deixis, which allows the Learning Agent to retrieve the right objects (𝑂!
!") 398 

from the Master to associate with the 𝑆!" stimuli in its sensory classifiers 𝑃(𝑂!
!" | 𝑆!"). The 399 

Learning Agent builds its sensory classifier through successive random draws, which are 400 

mathematically expressed by the following approximation: 401 

𝑃(𝑂!
!" | 𝑆!") ≈ 𝑃(𝑀!"#$%&  | 𝑂!!"#$%&).𝑃(𝑆!" | 𝑀!"#$%&)! . (2) 402 

In this equation, the sign ≈ expresses the fact that the set of learning stimuli (right part 403 

of the equation) has to be learned in some way from the 𝑃(𝑂!
!" | 𝑆!") distribution (left part of 404 

the equation).  405 

We now define the three hypotheses used in this approach and prove that their 406 

conjunction ensures the indistinguishability of the motor and auditory theories of speech 407 

perception. 408 

i. H1 (the “perfect sensory learning hypothesis”): the sensory classifier is 409 
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perfectly learned from the Master’s productions, i.e. 𝑃(𝑂!
!" | 𝑆!") =410 

𝑃(𝑀!"#$%&  | 𝑂!!"#$%&).𝑃(𝑆!" | 𝑀!"#$%&)! . By replacing the operator ≈ of 411 

Equation (2) by an equality operator =, H1 explicitly states that the sensory 412 

classifier 𝑃(𝑂!
!" | 𝑆!") learned by the agent perfectly encodes all the 413 

information expressed by the combination of the probability distributions 414 

𝑃(𝑀!"#$%&  | 𝑂!!"#$%&) and 𝑃(𝑆!" | 𝑀!"#$%&). These describe the way the 415 

Master performs its motor gestures and the way they are transformed by the 416 

environment. 417 

ii. H2 (the “perfect motor learning hypothesis”): the motor repertoire of the agent 418 

is identical to that of the Master, i.e. 𝑃(𝑀!" | 𝑂!
!") = 𝑃(𝑀!"#$%&  | 𝑂!!"#$%&). 419 

iii. H3 (the “perfect sensory-motor learning hypothesis”): the agent’s sensory-420 

motor system perfectly encodes the properties of the transformation performed 421 

by the environment during the learning process, i.e. 𝑃(𝑆!" | 𝑀!") =422 

𝑃(𝑆!" | 𝑀!"#$%&). 423 

The indistinguishability theorem states that if H1, H2 and H3 hold, then the motor and 424 

sensory instantiations of the speech perception task are indistinguishable.  425 

The proof is straightforward. Starting from Equation (2), which states how the sensory 426 

decoder is learned along the paradigm in Figure 3, hypothesis H1 enables the learning 427 

operator ≈ to be replaced by an equality operator =, while hypotheses H2 and H3 enable the 428 

two terms on the right hand side of Equation (2) to be replaced by 𝑃(𝑀!" | 𝑂!
!") and 429 

𝑃(𝑆!" | 𝑀!") , respectively, which yields: 430 

𝑃(𝑂!
!" | 𝑆!") = 𝑃(𝑀!" | 𝑂!

!").𝑃(𝑆!" | 𝑀!")! . (3) 431 

The right hand side of Equation (3) has now become the expression of the motor 432 

instantiation of the speech perception task, while the left hand side is the expression of the 433 

perception task instantiated within the framework of the auditory theory (see Figure 2).  434 
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Therefore, if these three hypotheses are verified within a set of “perfect conditions” for 435 

learning, the sensory and motor models rely on the same information and make the same 436 

predictions. They are thus indistinguishable, whatever the test conditions might be.   437 

When the indistinguishability theorem is satisfied, information encoded in the motor 438 

and sensory pathways is redundant. This shows that even when two theories or models are 439 

seemingly different – as the auditory and motor theories of speech perception appear to be – 440 

they may be identical with respect to the computation they perform (as conceptualized by 441 

Marr, 1982, in his three-level framework, in which the same computational task can be carried 442 

out by algorithmic models with different representations; see also Laurent, Schwartz, 443 

Bessière, & Diard, 2013).  444 

Similar arguments are sometimes invoked in papers about auditory theories (e.g. Diehl 445 

et al, 2004, p. 168: “listeners do not recover gestures, but they do perceive the acoustic 446 

consequences of gestures. Any regularities of speech production (e.g., context dependencies) 447 

will be reflected in the acoustic signal and, through general mechanisms of perceptual 448 

learning, listeners come to make use of the acoustic correlates of these production regularities 449 

in judging the phonemic content of speech signals”). The indistinguishability theorem 450 

provides a theoretical basis based on Bayesian modeling to explain such more or less intuitive 451 

claims. More importantly, it suggests that what should drive our understanding of the 452 

respective roles of the auditory vs. motor systems in speech perception is related to what we 453 

are able to learn about them in the course of speech development.  454 

Understanding the potential role and complementarity of the sensory and motor 455 

recognition processes requires departing from the perfect conditions defined previously. 456 

Given the structure of the motor and sensory models, the possible differences between their 457 

predictions of perception tasks are strongly dependent on the information they encode, i.e., on 458 

how they were learned.  459 
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The next parts of this article will introduce two sets of simulations providing two 460 

directions in which auditory and motor theories depart from each other. Furthermore, some 461 

fundamental sources of functional complementarity will be displayed. 462 

 463 

 464 

Part 2 – The “auditory-narrow, motor-wide” framework for speech perception 465 

In this part, we will focus on a generic property of COSMO that we consider largely 466 

independent from the specific implementation choices and that refers to structural aspects of 467 

the way auditory vs. motor decoding can be modeled in a Bayesian framework. This generic 468 

property generates a natural complementarity between auditory and motor decoding 469 

processes, that we summarize by the so-called “auditory-narrow, motor-wide” framework. 470 

Finally we discuss the relationship between simulations and experimental data for speech 471 

perception development and speech processing in noise. 472 

 473 

The sensory branch is narrow-band, the motor branch is wide-band: simulations within 474 

a simplified one-dimensional sensory-motor space 475 

Equations in Figure 2 defining motor vs. sensory categorization show a major 476 

structural difference between the two processes. While sensory perception implements a direct 477 

association between the sensory input 𝑆 and the perceived object 𝑂!, motor perception 478 

appears to be more complex. Indeed the pathway from 𝑆 to 𝑂! involves motor information, 𝑀.  479 

This suggests that motor recognition might require more time or cognitive resources before 480 

convergence in the learning process, compared to sensory recognition. A possible 481 

consequence is that the sensory system should be able to focus more rapidly and efficiently on 482 

the set of exogenous learning stimuli provided by the environment, while the motor system 483 

“wanders” through the sensory-motor space and endogenously explores regions, possibly 484 



THE ROLE OF MOTOR INFORMATION IN SPEECH PERCEPTION 22 

different ones from the exogenous input. This would provide the sensory and motor systems 485 

with what we have called a “narrow-band” vs. “wide-band” specificity with respect to the 486 

learning data. The latter would be less efficient for learned stimuli, but would function better 487 

in adverse conditions involving unlearned stimuli. 488 

This is what we set out to demonstrate, on a highly simplified theoretical framework 489 

based on 1-D motor and sensory variables linked by a sigmoid transformation. In this section 490 

the variables of the COSMO model are constrained to be very simple and are instantiated as 491 

follows: 𝑀 and 𝑆 are 1-D and discrete (with values regularly distributed between -15 and 15), 492 

while 𝑂! and 𝑂! both denote two possible objects 𝑜! and 𝑜!. The Master Agent and the 493 

Learning Agent correspond to two different instances of the COSMO model with the same 494 

parametric forms (mostly Gaussian probability distributions) mathematically encoding the 495 

knowledge stored in the models. The two types of agent only differ by the values of the 496 

parameters of these parametric forms (for instance, means and standard deviations of the 497 

Gaussian probability distributions). We consider a supervised learning situation, where the 498 

parameters of the Master Agent and of the motor-to-sensory transformation performed by the 499 

simulated environment are fixed and the Learning Agent determines values for its parameters 500 

of internal representations through interactions with the Master according to the supervised 501 

learning scenario shown in Figure 3. We now describe the probability distribution forms and 502 

the parameters that are constant throughout learning. The prior objects 𝑃(𝑂!) for both types of 503 

agent are set as uniform probability distributions; objects 𝑜! and 𝑜! are produced by the 504 

Master with the same frequency and the Learning Agent has no prior knowledge of the 505 

frequency of object apparition. 506 

For both types of agent, motor repertoire probability distributions 𝑃(𝑀 | 𝑂!) are 507 

encoded as Gaussian probability distributions. For instance, to select a motor command 508 

corresponding to object 𝑜!, the Master Agent draws a value of 𝑀!"#$%& according to the 509 
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probability distribution 𝑃 𝑀!"#$%&   𝑂!!"#$%& = 𝑜! ) = 𝐺𝑎𝑢𝑠𝑠(𝜇!! ,𝜎!!), where the mean 510 

value 𝜇!! of the Gaussian probability distribution corresponds to a prototypic motor gesture 511 

and the standard deviation 𝜎!! quantifies the variability of the Master Agent’s production. In 512 

the Master Agent model, we set 𝜇!! = −5, 𝜇!! = 5 and 𝜎!! = 𝜎!! = 1 (see Figure 4, bottom 513 

plot). 514 

The motor-to-sensory transformation 𝑃(𝑆 | 𝑀) occurring in the environment is 515 

modeled as Gaussian probability distributions. More precisely, when the Master Agent issues 516 

a motor command 𝑚, the Learning Agent receives a value of the sensory input 𝑆!" drawn 517 

according to the probability distribution 𝑃 𝑆!"  [𝑀!"#$%& = 𝑚]) = 𝐺𝑎𝑢𝑠𝑠 𝜇!! ,𝜎!! , where 518 

the value 𝜇!! = 𝑓 𝑚  is given by a function 𝑓 modeling the motor-to-sensory transformation 519 

and 𝜎!! = 𝜎!"# = 1 is a constant encoding the communication noise at learning time.  520 

***FIGURE 4 ABOUT HERE*** 521 

Next, we consider nonlinear monotonous transformations, to keep some level of 522 

generality. Interestingly, nonlinear motor-to-sensory transformations have been exploited by 523 

the Quantal Theory of Speech (Stevens, 1972) as providing natural category boundaries for 524 

phonetic contrasts. In the Quantal Theory of Speech, it is proposed that such nonlinearities 525 

lead to the existence of articulatory plateaus, where variations in the articulation input lead 526 

essentially to no, or only small, acoustic variations. These are separated by discontinuity 527 

regions, where a small articulatory variation results in a strong acoustic jump. Stevens (1972, 528 

1989) suggested that human languages exploit such discontinuities to set universal phonetic 529 

contrasts. This principle was confirmed in COSMO simulations of the emergence of 530 

phonological systems (Moulin-Frier et al., 2015). In the present study, we define the physical 531 

link 𝑓 between the motor gestures 𝑀 and their sensory consequences 𝑆 as a sigmoid function 532 

𝑓 𝑚 = 𝑏. !"#
!!(!.!)

!"#!!(!.!)
, which is shown in Figure 4 (top left plot). Parameter 𝑎 allows the slope 533 

of the sigmoid function 𝑓 to be tuned and parameter 𝑏 controls its range. We selected a b 534 
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value of 12, slightly lower than the M and S values of 15 and we set 𝑎 to either 0.01 in a 535 

quasi-linear case, or 0.1 to obtain a nonlinear case compatible with the Quantal Theory. The 536 

corresponding probability distributions 𝑃 𝑆!"  𝑂!!"#$%& = 𝑜! ) and 𝑃 𝑆!"  𝑂!!"#$%& =537 

𝑜! ) are displayed in Figure 4 (top right plot). In the nonlinear case they are naturally more 538 

widely separated in sensory space than the equivalent distribution in motor space. 539 

At this stage, we consider that the Master, along with the Learning Agent, have the 540 

same nonlinear transformation between their motor and sensory variables. A major departure 541 

from this assumption would concern differences in vocal tract shape mainly associated with 542 

age and sex. We consider that all agents are equipped with a normalization mechanism 543 

enabling them to transform sensory information provided by the Master into an S value 544 

appropriately situated in their internal sensory space. Such normalization processes exist and 545 

have been displayed since the first months of age (e.g. Kuhl, 1979, 1983; Polka, Masapollo 546 

and Ménard, 2014).  Once the stimuli are transmitted by the Master to the Learning Agent and 547 

have been appropriately normalized, the nonlinear transformation is of no further use to the 548 

Master Agent. Hence, remaining differences between such transformations in the case of the 549 

Master and the Learning Agent play no role in further processing in COSMO. We will return 550 

in the discussion of Part 2 to consider how realistic normalization processes could modify the 551 

present simulations.  552 

In the computer simulations presented below, all Gaussian probability distributions are 553 

truncated: we define a baseline value 𝜀 =  10!! and probability values below this threshold 554 

are set to 𝜀; the probability distribution is normalized afterward (3). This avoids cognitively 555 

implausible numerical precision of probability distributions, which would yield unwanted side 556 

effects. For instance, in classification tasks, when comparing the predictions of Gaussian 557 

models too far from their mean values, an infinitely precise model generalizes too well and 558 

behaves like an analytical model, with a precise classification frontier and abruptly changing 559 
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responses. In the present simulations, probability distributions, truncated in this manner, 560 

degenerate outside of their “competence domains” and classification responses behave 561 

according to chance when exotic stimuli are presented. 562 

 563 

Learning in COSMO  564 

Hypotheses H1, H2 and H3 are at the basis of the indistinguishability theorem, 565 

expressing unrealistic perfect learning conditions. We now add a plausible learning algorithm 566 

to the hypotheses and we will describe how the result departs from ideal learning conditions 567 

and ultimately enables sensory and motor recognition processes to be distinguished. 568 

Learning follows the interaction paradigm introduced as Figure 3. To recapitulate the 569 

learning scenario, both the Master and Learning Agent interact in a simulated environment. 570 

Probability distributions defining the Master Agent and motor-to-sensory transformation of 571 

the environment are set constant during learning. The Master Agent provides the Learning 572 

Agent with <object, stimulus> pairs (later referred to as < 𝑜, 𝑠 >). The Learning Agent 573 

ascertains from this data both its sensory and motor classification systems; more precisely, it 574 

identifies parameters for its sensory prototypes 𝑃(𝑆!" | 𝑂!
!"), internal model 575 

𝑃(𝑆!" | 𝑀!")and motor repertoire 𝑃(𝑀!" | 𝑂!
!"), which are all implemented using Gaussian 576 

probability distributions. To express the fact that the Learning Agent starts without any 577 

knowledge, initial states of all these Gaussian probability distributions are characterized by 578 

values of mean parameters 𝜇 at the center of their domains and initial standard deviation 579 

values 𝜎 that are large relative to the domain size. This approximates to uniform probability 580 

distributions.  581 

To allow fair comparisons of the sensory and motor instantiations of the speech 582 

perception task, the components of the sensory and motor classification systems are learned 583 

independently and using the same data. 584 



THE ROLE OF MOTOR INFORMATION IN SPEECH PERCEPTION 26 

In the sensory recognition system based on a direct association between stimuli and 585 

objects, firstly we learn sensory prototypes of the form 𝑃 𝑆!"  𝑂!
!" = 𝑜 ) = 𝐺𝑎𝑢𝑠𝑠(𝜇!!,𝜎!!) 586 

which correspond to each object. Learning consists of computing a Gaussian probability fit 587 

distribution 𝑃(𝑆!" | 𝑂!
!") from  < 𝑜, 𝑠 > pairs. Each time the Learning Agent receives such a 588 

pair from its Master, the values of the mean 𝜇!! and of the variance 𝜎!! of the corresponding 589 

Gaussian probability distribution are updated accordingly. An extensive study of the 590 

dynamics of learning sensory prototypes and their effects on the resulting classifiers is 591 

provided by Kleinschmidt & Jaeger (2015); as such dynamics are not the focus of our 592 

contribution, we implement a straightforward learning procedure, where the order of learning 593 

data has no effect.  594 

The motor recognition system exploits the same < 𝑜, 𝑠 > pairs to learn both 595 

components of its pathway, namely the internal model of the motor-to-sensory transformation 596 

𝑃(𝑆!" | 𝑀!") and the motor repertoire 𝑃(𝑀!" | 𝑂!
!"). We exploit a Learning by 597 

Accommodation algorithm, which allows learning of the two components at the same time. 598 

Importantly, this algorithm takes into account “babbling drift”, i.e. the fact, presented in the 599 

Introduction, that the agent should not explore systematically and uniformly its sensory-motor 600 

space but rather should focus on regions of interest provided by the Master's sounds. The 601 

accommodation algorithm enables the Learning Agent to progressively focus on the Master's 602 

stimuli, making learning quicker and more efficient (Barnaud, Schwartz, Diard, & Bessière, 603 

2016).  604 

The algorithm involves a simple imitation paradigm without any error measurements. 605 

It works in the following way: 606 

(i) The Learning Agent tries to mimic the sensory input 𝑠 of the < 𝑜, 𝑠 > pair provided 607 

by the Master, by producing a motor command 𝑚 given its current state of knowledge, the 608 

input stimulus 𝑠 and the input object 𝑜. After probabilistic inference, this amounts to 609 
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randomly drawing a value for 𝑚 according to the following probability distribution:  610 

𝑃(𝑀!" | 𝑆!" = 𝑠 𝑂!
!" = 𝑜 ) = 𝑃(𝑀!"  𝑂!

!" = 𝑜 .𝑃 𝑆!" = 𝑠   𝑀!").  (4) 611 

Equation (4) shows that the choice of motor commands 𝑚 is driven by two factors: 612 

first, the need to match the stimulus 𝑠 given by the Master, as predicted by the current state of 613 

knowledge encoded in the internal model 𝑃(𝑆!" | 𝑀!"); second, the tendency to use the same 614 

motor commands that were previously associated with the object 𝑜 communicated by the 615 

Master, as stored in the motor repertoire 𝑃(𝑀!" | 𝑂!
!" ).  616 

(ii) Once selected, the motor command 𝑚 is performed and has a sensory consequence 617 

𝑠′. The Learning Agent then uses the observed correspondence of 𝑠′ and 𝑚 to improve the 618 

internal model by updating the parameters 𝜇!!  and 𝜎!!  of the probability distribution 619 

𝑃 𝑆!"  𝑀!" = 𝑚 ). It also exploits the selected value 𝑚 in its motor repertoire by updating 620 

the 𝜇!! and 𝜎!! parameters of the probability distribution 𝑃(𝑀!"  𝑂!
!" = 𝑜 . 621 

Therefore, the algorithm progressively refines the internal model of motor-to-sensory 622 

mapping, both with some endogenous random exploration due to inaccurate imitation in the 623 

first stages of the learning process and with a progressive focus on the learning stimuli that 624 

result in a better mapping around the regions of the stimuli provided by the Master. In 625 

parallel, the algorithm progressively anchors adequate motor gestures for each object, i.e. 626 

gestures producing sounds that correspond to the sensory distribution produced by the Master 627 

for the object. 628 

 629 

Simulation results 630 

Learning pace: fast and focused sensory learning vs. slow and diffuse motor 631 

learning. 632 

***FIGURE 5 ABOUT HERE***  633 

We use the evolution of entropy 𝐻 𝑃 𝑋 = − 𝑃 𝑋 = 𝑥! log𝑃 𝑋 = 𝑥!!  as a 634 
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numeric indicator that quantifies how much information becomes stored in the probability 635 

distributions of the models. We compare learning speeds using the evolution of  636 

𝐻 𝑃 𝑆!"  𝑂!
!" , the entropy of the sensory model on the one hand and  𝐻 𝑃 𝑆!"  𝑂!

!" , 637 

the entropy of the motor model on the other hand. 𝐻 𝑃 𝑆!"  𝑂!!"#$%& , the entropy of the 638 

probability distribution over the stimuli produced by the Master Agent, which is constant 639 

during learning, is used as a reference. Each of these entropy values is actually a set of 640 

measurements, one for each possible object value. We therefore average them over objects 641 

and, since we have two objects in these 1-D experiments, consider !
!

𝐻 𝑃 𝑆!"  𝑂!
!"

!!
!"  642 

for the sensory model, !
!

𝐻 𝑃 𝑆!"  𝑂!
!"

!!
!"  for the motor model and 643 

!
!

𝐻 𝑃 𝑆!"  𝑂!!"#$%&!!
!"#$%&  as the Master’s reference. 644 

The corresponding curves are displayed in Figure 5 for the two values of nonlinearity 645 

in the motor-to-sensory transformation. This Figure shows that the entropy of the sensory 646 

model converges quickly to a level close to the entropy of the stimuli produced by the Master, 647 

while the entropy of the motor model converges more slowly. In the linear case, the sensory 648 

model is able to converge to exactly the same entropy as that of the Master Agent, whereas it 649 

remains larger in the nonlinear case because the constraint that distributions 𝑃 𝑆!"  𝑂!
!"  are 650 

Gaussian leads to some residual discrepancy between the models of the Master Agent and 651 

Learning Agent.  652 

However, whatever the nonlinearity, the motor model entropy 𝐻 𝑃 𝑆!"  𝑂!
!"  653 

decreases more slowly than the sensory model entropy, indicating slower learning. This 654 

corresponds to our prediction that the inference process is more complex in the motor model.  655 

Hence the learning mechanism is slower and less efficient, since it “visits” portions of the 656 

sensory-motor space that are not available to the sensory recognition system. 657 
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***FIGURE 6 ABOUT HERE*** 658 

To support this point, let us recall that learning the motor 𝑃 𝑆!"  𝑂!
!"  model consists 659 

of learning both 𝑃(𝑆!" | 𝑀!") and 𝑃(𝑀!" | 𝑂!
!" ). We show in Figure 6 an instance of an 660 

internal 𝑃(𝑆!" | 𝑀!") model in the nonlinear case learned by the agent after 20,000 iterations 661 

of learning by the accommodation algorithm. Data presented in Figure 6 first show that the 662 

shape of the motor-to-sensory transformation has been adequately learned. However, it 663 

appears that some regions are learned better than others: these regions, where the variance of 664 

the 𝑃 𝑆!"  𝑀!" = 𝑚 ) distribution is small, correspond to those of the sensory space where 665 

stimuli have been provided by the Master Agent. Other regions, far from the data of the 666 

learning set, have a higher variance. However, the Learning Agent has acquired global 667 

knowledge, which provides the motor learning process with what we could call a more 668 

“diffuse” character. 669 

In this learning process, we have implemented a mechanism that naturally leads to the 670 

departure from both hypotheses H1 and H2 of the “perfect learning conditions”. Since 671 

learning is intrinsically incomplete, the Learning Agent cannot fully internalize all the 672 

production abilities of the Master Agent. This results in complementarity between the sensory 673 

and motor models. While the sensory system can focus on the stimuli provided by the Master 674 

Agent and learn them quickly and efficiently, the motor system has to learn both a sensory-675 

motor model and a motor repertoire. This more complex process is slower and less focused on 676 

the learning set, because it requires exploring an intermediate motor space. However, this can 677 

be useful for unlearned conditions as we will assess next. 678 

 679 

Evaluation of perception: the sensory model is better in clear speech, whereas the 680 

motor model is more robust in noisy conditions. 681 

In this section we compare the models’ robustness to communication noise in an 682 
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evaluation experiment where the Learning Agent interacts with a Master Agent defined in the 683 

same way as previously, except that after the learning phase, we introduce a test phase where 684 

we vary the standard deviation 𝜎!! = 𝜎!"# of the Gaussian probability distribution 685 

𝑃 𝑆!"  𝑀!"#$%& = 𝑚 ), thus encoding various levels of environmental noise.  686 

The Master Agent provides < 𝑜, 𝑠 > pairs of a given noise level and the agent 687 

estimates the object 𝑜′ from the stimulus s using either sensory recognition, i.e. by computing 688 

the probability distribution 𝑃 𝑂!
!"  𝑆!"), or motor recognition, i.e. by computing 689 

𝑃 𝑂!
!"  𝑆!"), as defined in Figure 2. Sensory recognition is implemented as a Gaussian 690 

classifier obtained by probabilistic inversion of the sensory prototypes 𝑃 𝑆!"  𝑂!
!" :  691 

𝑃 𝑂!
!" | 𝑆!" =

! !!"  !!
!"

! !!"  !!
!"

!!
!"

  . 692 

Motor recognition is implemented according to: 693 

 𝑃(𝑂!
!" | 𝑆!") ∝  (𝑃(𝑀!" | 𝑂!

!") 𝑃(𝑆!" | 𝑀!"))!!" . 694 

 Comparing the values of the object intended by the Master Agent, 𝑜, and that 695 

estimated by the Learning Agent, 𝑜′, we compute confusion matrices and define the 696 

recognition rate as the mean of their diagonal coefficients. 697 

***FIGURE 7 ABOUT HERE*** 698 

In Figure 7, we present the mean values of recognition rates for the linear and 699 

nonlinear cases. The scores are provided at three learning stages (after learning 500, 2,000 or 700 

20,000 < 𝑜, 𝑠 > pairs), for a range of noise degradation, from no added noise to stimuli 701 

corrupted by high levels of noise (noise is indexed by variation of the 𝜎!"# value). 702 

First, we observe a large effect of nonlinearity on the sensory classifier, with a sharp 703 

decline of performance with noise in the nonlinear case. This derives from more pointed and 704 

separated probability distributions (Figure 4, top right panel). The observations that follow are 705 

independent of nonlinearity.  706 
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Second, since the sensory system learns rapidly, it has already converged before 500 707 

learning iterations and does not evolve afterwards. It provides good recognition scores 708 

without noise, with a quick degradation of performance when noise is added.  709 

Third, in contrast the motor system appears to learn slowly. At the beginning of the 710 

learning process (top row in Figure 7), it performs very poorly and the decrease of the 711 

recognition rate as noise increases is slower than for the sensory model. When learning 712 

proceeds with more iterations, the motor system performs increasingly well, the general trend 713 

being that it becomes better than the sensory model in noisy conditions, though still remaining 714 

poorer in the absence of noise. At the last stage of the learning process (20,000 iterations) the 715 

two models give rather similar performances (we tend towards the “perfect learning 716 

conditions” of the indistinguishability theorem).  717 

Fourth, and finally, the perceptuo-motor model implementing a Bayesian fusion of the 718 

sensory and motor recognition models according to the Equation shown in Figure 2 performs 719 

better than the two isolated models under all conditions.  720 

***FIGURE 8 ABOUT HERE*** 721 

We now explore how the sensory system is more efficient in the absence of noise and 722 

how the motor system is more efficient in its presence. This is illustrated in Figure 8, where 723 

we display probability distributions for the two objects, for both motor and sensory systems. 724 

Furthermore, we show the example 𝑠!"#$% stimuli for a stimulus under normal conditions, i.e. 725 

without added noise, and 𝑠!"#$% for a stimulus in adverse conditions, i.e. with added noise. 726 

When the “typical” 𝑠!"#$% stimulus is considered, it is close to prototypes of the motor 727 

and sensory models, i.e. to the modes of corresponding probability distributions. However, the 728 

sensory model, being of lower variance than the motor model, yields a less uncertain 729 

probability distribution categorization than the motor process. The two models correctly 730 

recognize object 𝑜! as the cause of the 𝑠!"#$% stimulus, but the sensory model is slightly more 731 
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certain of perception than the motor model is.  732 

When the “noisy” stimulus ( 𝑠!"#$% ) is considered, it is far from prototypes of both 733 

motor and sensory models. However, the motor model, being of greater variance than the 734 

sensory model, generalizes better. Whereas for the sensory model, probability distributions 735 

quickly fall below the 𝜀 threshold we defined, yielding random categorization, the motor 736 

model is more robust and conserves categorization capabilities.  737 

 738 

Concluding Part 2: summary and predictions 739 

The present simulations let a major difference between auditory and motor learning 740 

appear. Auditory learning is rapid and, by definition, perfectly focused on the acoustic stimuli 741 

provided by the Master. In fact, the auditory system in COSMO is an “ideal processor” of 742 

acoustic input, as in many previous Bayesian models (e.g. Norris & McQueen, 2008;  743 

Kleinschmidt & Jaeger, 2015). However, the intrinsic limitation is provided by departures 744 

from exactly what has been learned. This is where the motor system may become relevant. 745 

Indeed, the motor system is intrinsically slower since it has a more complex inference process 746 

to deal with. It is also less well tuned to the learning corpus, because of the existence of an 747 

intermediate motor representation in the inference process. But it is this more complex 748 

learning process that supplies the possibility of wandering around stimuli and configurations 749 

that are not contained in the learning set provided by the environment. This is what makes it 750 

“wider” and hence better able to process unknown stimuli.  751 

It is important to stress at this stage that the auditory-narrow, motor-wide hypothesis 752 

appears to be generic, i.e. intimately related to the basic COSMO structure, because of the 753 

more complex structure of the motor inference process compared with the auditory one (see 754 

Figure 2). We had to propose a number of technical and non-generic choices to perform 755 

simulations in this part of the article. These include: (i) the motor-to-sensory transformation 756 
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was presumed to be nonlinear but monotonous, (ii) the Master was considered to be 757 

physically similar to the Learning Agents, with the same nonlinear motor-to-sensory 758 

transformation, supposing that the normalization process was solved in some way, (iii) only 759 

one Master was introduced into the learning process, while an infant typically has to deal with 760 

a number of Masters to learn from in the environment.  761 

More realistic simulations, involving: non-monotonous motor-to-sensory 762 

transformations, variations of transformations from one agent to the other, possibly in relation 763 

with normalization processes between agents with different sizes and shapes of their vocal 764 

tract, multiple Master Agents in the learning process, would basically result in a large increase 765 

in complexity of the sensory-to-motor inference process and hence in an increase toward the 766 

trend for slow and diffuse motor learning. In some sense, the 1-D simulations presented in 767 

Part 2 minimize the trend towards the auditory-narrow vs. motor-wide contrast, which is 768 

likely to be larger in a more realistic simulation with COSMO – as will be displayed in Part 3. 769 

Therefore, it can safely be claimed that the auditory-narrow motor-wide hypothesis is an 770 

intrinsic property of the COSMO structure, and probably an intrinsic characteristic of motor 771 

vs. auditory decoding in a perceptuo-motor theory of speech perception.  772 

This property of the model generates two predictions, in the sense that two 773 

consequences follow directly from the property. These consequences were not considered 774 

during modeling; they are logically entailed by the model. These predictions are in line with 775 

already available data and observations pertaining to speech development and processing.  776 

Prediction 1 - auditory learning should be more rapid than motor learning 777 

A strong prediction in COSMO is that auditory learning, which typically consists of 778 

learning the sensory distributions P(SAg/OL
Ag), is a simpler process than motor learning i.e. 779 

learning the motor distributions P(MAg/OS
Ag). It is well-known that the auditory system is 780 

developmentally mature before the motor one, as is reviewed in the Introduction, but this is 781 
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generally only related to biological constraints. Firstly, audition begins to mature before birth, 782 

as is displayed by the sensitivity of newborns to language (Mehler, Jusczyk, Lambertz, 783 

Halsted, Bertoncini, & Amiel-Tison, 1988) or to the voice of their mother (DeCasper & Fifer, 784 

1980). Secondly, critical periods seem to shape the course of development of speech 785 

perception and production towards the mature stage (see a recent review in Werker & Hensch, 786 

2015). Importantly, the present simulations suggest that an additional factor could be provided 787 

by the complexity of the learning process. In this respect, it is of interest to mention that even 788 

for vowels, language tuning in production has never been described before 10 months of age 789 

(e.g. de Boysson-Bardies et al., 1989) while it occurs in speech perception as soon as 6 790 

months of age (Kuhl et al., 1992), though infants are capable of producing vowel-like 791 

vocalizations almost since birth and display vocal imitations as early as 4 months of age (Kuhl 792 

& Meltzoff, 1996).  793 

It would be of great interest in this discussion to attempt to correlate observed delays 794 

in the developmental schedule with some measurement of differences in the learning period or 795 

entropy reduction in a Figure such as Figure 5. However, this seems far from any reasonable 796 

prediction at the present state of possible simulations.  797 

Prediction 2 - motor processing should be more important in adverse conditions 798 

This is the major prediction of the auditory-narrow motor-wide hypothesis. Indeed, it 799 

is proposed as an intrinsic COSMO property that the motor system should be less efficient 800 

than the auditory system in learned conditions, while the motor system gains efficiency in 801 

unlearned ones, e.g. in noisy or adverse conditions. A likely consequence of this prediction is 802 

that the motor system should be more involved in such adverse conditions. As reported 803 

previously, this is exactly what is regularly observed for neurocognitive data, with an 804 

increased BOLD (Blood-Oxygen Level Dependent) activity in fMRI (functional Magnetic 805 

Resonance Imaging) data in motor regions for noisy (Binder et al., 2004; Zekveld et al., 806 
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2006), or non-native stimuli (Callan et al., 2004, 2014; Wilson & Iacoboni, 2006). This is also 807 

in line with evidence for motor perturbations seen in auditory perception only in noisy 808 

conditions (e.g. d’Ausilio et al., 2012 vs. 2009), or for ambiguous stimuli around a phonetic 809 

boundary (e.g. Möttönen & Watkins, 2009; Rogers et al., 2014).  810 

 811 

  812 
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Part 3 – Extracting perceptuo-motor invariance in syllabic units  813 

While in the previous part the focus was on generic properties of the COSMO model, 814 

we now move towards non-generic properties associated with the specific way auditory and 815 

motor information is most probably distributed in a specific case of phonetic sequences made 816 

of CV syllables with a C stop consonant and a V oral vowel. This part of the article will deal 817 

with a problem that has long been considered crucial in the debate about auditory vs. motor 818 

theories, namely the invariance problem. The question of invariance has often been raised by 819 

motor theorists around the alleged lack of acoustic invariance for the plosive place of 820 

articulation, considering that in this specific case motor invariance was straightforward (see 821 

below). However, the case of vowels seems different and it has already been suggested that 822 

invariance could be of a different nature for vowel vs. plosive place of articulation, which 823 

would be auditory in one case and articulatory in the other (see Bailly, 1997; Kröger et al., 824 

2009, 2014). Therefore, COSMO appears as a perfect framework for dealing with this 825 

question in a perceptuo-motor framework.  826 

To address the question of auditory vs. motor invariance for vowel vs. plosive place of 827 

articulation, we will need to introduce specific knowledge and hypotheses concerning CV 828 

syllable production, perception and development. Furthermore, simulations will be carried out 829 

on a specific model of the vocal tract, VLAM (variable linear articulatory model), enabling 830 

generation of articulatory and acoustic configurations associated with CV sequences. Finally, 831 

simulations will include specific simplifications about sensory and motor variables, as well as 832 

about the learning process. 833 

In light of this specific implementation of COSMO for syllables, which we will call 834 

COSMO-S, the question we address is: in the distribution of information for plosives and 835 

vowels, is there any potential evidence for differentiation of the motor and auditory systems in 836 

extracting phonetic invariance from acoustic stimuli? We will firstly present a literature 837 
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review on the perception and production of CV syllables in relation to the place of articulation 838 

cues. Then we will describe the vocal tract model VLAM, and the COSMO-S version of 839 

COSMO for syllable perception and production, together with the way learning is 840 

implemented in COSMO-S. Finally, we will describe simulations with COSMO-S and 841 

explore what light they might shed on the question of vowel vs. plosive place of articulation 842 

invariance. 843 

 844 

Auditory or motor cues for vowel vs. plosive place of articulation 845 

The question of the plosive place of articulation invariance has long been considered 846 

as a crucial test for auditory vs. motor theories of segmental invariance. On the one hand, 847 

partisans of motor theories have regularly mentioned it as a typical case, where auditory 848 

invariance was out of reach while motor invariance would be directly available (Liberman et 849 

al., 1967; Liberman & Mattingly, 1985). On the other hand, the classical objection to the 850 

motor theory is the probable complexity of the cognitive or computational implementation of 851 

the inversion process that would enable the listener to recover the proposed motor invariant 852 

from the acoustic speech input: the labial gesture for bilabials, the tongue apex gesture for 853 

coronals, the tongue dorsum gesture for palato-velars.   854 

Partisans of auditory theories have also searched possible invariant auditory cues that 855 

characterize the plosive place of articulation. The pioneer work by Delattre, Liberman, & 856 

Cooper (1955) on the “acoustic locus” actually served as a precursor for both auditory and 857 

motor proposals on invariance. In the framework of his Quantal Theory, Stevens proposed at 858 

the end of the 1970s that there might be a local spectral invariant for the plosive place of 859 

articulation, located around the position of the acoustic burst and independent of the speaker, 860 

the plosive manner of articulation and the context. Bilabial spectra would be “diffuse falling” 861 

(with energy all over the spectrum but more of it at low frequencies), alveolars would be 862 
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“diffuse raising” (idem but with more energy at high frequencies) and velars would be 863 

compact (with most of the energy packed into the medium) (Blumstein & Stevens, 1979; 864 

Stevens, 1980; Stevens & Blumstein, 1978). Following further proposals by Kewley-Port 865 

(1983), a progressive shift was made towards dynamic cues associating spectral values with 866 

the plosive and the next vowel. At the end of this process, the locus came back with the “locus 867 

equations” introduced by Sussman (Sussman, Fruchter, Hilbert, & Sirosh, 1998; Sussman, 868 

Hoemeke, & Ahmed, 1993; Sussman, McCaffrey, & Matthews, 1991) assuming relational 869 

invariance (correlations between 𝐹2 values for the plosive and the next vowel) as a correlate 870 

of the place of articulation. Importantly, acoustic characterization of the plosive place of 871 

articulation seems basically to rely on spectral data at two instants; plosive release and vowel 872 

climax.  873 

Our proposal is different. In the PACT framework and in light of the perceptuo-motor 874 

developmental schedule described at the beginning of this paper, we presume that in a first 875 

stage, speech perception would benefit from rapidly maturing auditory processing that enables 876 

infants to categorize all CV sequences available in their environments. In this first stage, the 877 

motor system would not be mature and probably not even completely functionally related to 878 

the speech perception system according to Kuhl et al. (2014). Hence, the infants would not 879 

have at their disposal invariant cues for the plosive place of articulation. This question is 880 

debated, with negative results on plosive invariance before 6 months in Bertoncini, Bijeljac-881 

Babic, Jusczyk, Kennedy, & Mehler, 1988; Eimas, 1999; vs. data suggesting the possibility to 882 

discriminate /b/ from /d/ at 6 months of age, Hochmann & Papeo, 2014; and a discussion on 883 

possible confounding effects in Dole, Loevenbruck, Pascalis, Schwartz, & Vilain, 2015.  884 

In a second stage, after 7 months there is progressive coupling and maturation of the 885 

speech motor system. Then, infants could discover that plosive-vowel sequences heard in the 886 

environment are produced by specific movements of the lips for bilabials, and the tongue apex 887 
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or dorsum for alveolars or velars. Hence, the content of the motor repertoire would enhance 888 

perceptual representations and allow invariance to emerge in a perceptuo-motor space.  889 

For vowels, the situation is probably different. Indeed, auditory representations for 890 

oral vowels have been described in a number of studies, and oral vowels seem properly 891 

characterized in all their phonetic dimensions in a bundle of frequency parameters (e.g. (𝐹1-892 

F0) for height, (𝐹2-F1) for place of articulation and 𝐹’2 for rounding; all values are in Barks: 893 

see Ménard, Schwartz, Boë, Kandel, & Vallée (2002). In contrast, the articulatory 894 

characterization of oral vowels is less straightforward (e.g., Boë, Perrier, & Bailly, 1992) and 895 

perturbation experiments suggest that invariants for vowels could be auditory rather than 896 

motor (Savariaux, Perrier, & Orliaguet, 1995; Savariaux, Perrier, Orliaguet, & Schwartz, 897 

1999). It is more in terms of vowel reduction that articulatory dynamics could play a role, 898 

though the debate on this topic was vigorous in the 1980s and 1990s (e.g., Strange (1989) vs. 899 

Nearey  (1989) or Perrier, Lœvenbruck, & Payan (1996) vs. Pitermann (2000)).  900 

Therefore, our hypothesis is that the auditory and motor systems could be 901 

complementary in terms of the content of their representations for phonetic invariance, motor 902 

or gestural cues probably being crucial for the plosive place of articulation, while auditory 903 

parameters would be efficient for vowel characterization (4). This is what we now propose to 904 

test with COSMO. For this aim, since natural articulatory data are sparse, particularly about 905 

perceptuo-motor development early in life, we will use synthetic data in the framework of the 906 

articulatory model of the vocal tract, VLAM. 907 

 908 

VLAM and the generation of synthetic CV syllables  909 

VLAM is a realist vocal tract model (Maeda, 1990) thanks to which seven articulatory 910 

parameters (Jaw, Larynx, TongueBody, TongueDorsum, TongueApex, LipHeight, 911 

LipProtrusion) have been derived from a guided principal component analysis of 912 
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cineradiographic images of the vocal tract. These allow the description of the jaw and larynx 913 

position, and of the tongue and lips shape. The parameters can be interpreted in terms of 914 

phonetic and muscular commands (Maeda & Honda, 1994). The areas of 28 sections of the 915 

vocal tract are estimated as linear combinations of these seven parameters, which then allows 916 

computation of the transfer function and formants (Badin & Fant, 1984) (see Figure 9).  917 

***FIGURE 9 ABOUT HERE*** 918 

In short, VLAM is a geometric model enabling formants from articulatory parameters 919 

to be computed. This model has been evaluated over the last fifteen years in terms of its 920 

ability to generate vowels and plosive stimuli compatible with data from infants (Boë et al., 921 

2013), children and adults (Laurent et al., 2013; Ménard et al., 2002; Ménard, Schwartz, & 922 

Aubin, 2008; Ménard, Schwartz, & Boë, 2004; Schwartz, Boë, Badin, & Sawallis, 2012b). It 923 

is also the articulatory synthesizer of the DIVA (Directions Into Velocities of Articulators) 924 

model of speech production (Guenther, 2006; Guenther, Hampson, & Johnson, 1998).  925 

Here, VLAM is considered as a simplified implementation of the motor-to-auditory 926 

relationship in the human vocal tract (5). It is used both to generate CV syllables thought to be 927 

produced by the Master Agent and as an external simulator of the Learning Agent' vocal tract 928 

so that it can learn from the perceptual consequences of the motor commands it is sending. 929 

VLAM also incorporates a model for vocal tract scaling associated with age, thanks to which 930 

the size increases with age in a nonlinear way compatible with experimental data (see Boë et 931 

al., 2013; Ménard et al., 2002, 2008). However, as in Part 2, we do not consider here vocal 932 

tract differences between the Learning Agent and the Master, supposing that if there were any, 933 

they could be solved by appropriate normalization processes (see Ménard et al., 2002).  934 

Generation of oral vowels 935 

Vowels are defined as articulatory configurations that are not too closed, so as not to 936 

generate noise in their acoustic output. This is characterized in VLAM by setting a constraint 937 
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on the constriction, which is the position of the section of the vocal tract with the smallest 938 

area. The constriction area for vowels is higher than a minimum value of 0.15 cm2. In the 939 

present set of simulations, we only considered the three extreme oral vowels /i, a, u/, which 940 

provide the preferred choice in human languages (see Schwartz, Boë, Vallée & Abry, 1997).  941 

Any speech sound should need all 7 VLAM parameters for its complete generation 942 

and characterization. However, we have attempted to keep the number of free parameters at 943 

the smallest possible value to minimize later computations. Hence, vowels are described here 944 

by three VLAM articulatory parameters (TongueBody, TongueDorsum and LipHeight), all 945 

other parameters being set to a neutral value (resting position). We define motor vowel 946 

prototypes for /a i u/, using average formant values for French vowels (Meunier, 2007) as 947 

targets and selecting values of the three VLAM parameters that best fit the acoustic target. For 948 

each category of vowel, we generated a set of articulatory configurations according to a 949 

Gaussian probability distribution centered on the prototype value.  950 

Generation of stop consonants 951 

Plosives are defined as articulatory configurations achieved just after a complete 952 

closure of the vocal tract, i.e. at the time of acoustic release, which typically generates an 953 

acoustic burst. In the present simulations we characterize plosives by the formants produced 954 

with a constriction close to, but still slightly higher than, zero, so as to be able to compute 955 

formants. We only considered the three extreme plosive places of articulation (labial, alveolar, 956 

velar) that provide the preferred choice in human languages (see Schwartz et al., 2012b). The 957 

unvoiced stop consonants /p, t, k/ corresponding to these places of articulation are more 958 

frequent in human language than their voiced counterparts /b, d, g/, but, in the rest of this 959 

paper, we keep the voiced set of consonants /b, d, g/, because voiced plosives provide the 960 

clearest formant trajectories and enable a better specification of formants at the beginning of 961 

the opening trajectory from the plosive to the next vowel.  962 
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We adopt the view proposed by Öhman (1966) that plosives are local perturbations 963 

(vocal tract closing gestures) of vowel configurations within CV syllables. Therefore, we 964 

synthesize plosives by closing the vocal tract from a vowel position, using the VLAM Jaw 965 

parameter combined with one other articulator, i.e. Jaw and LipHeight for /b/, Jaw and 966 

TongueApex for /d/, and Jaw and TongueDorsum for /g/. Hence, plosives are described by 967 

five parameters (Jaw, TongueBody, TongueDorsum, TongueApex and LipHeight). 968 

Furthermore, the perturbation gesture allowing a consonant to be produced from a vowel is 969 

characterized by two parameters: the variation (Delta) of Jaw and another one from among 970 

LipHeight, TongueApex or TongueDorsum. To obtain a consonant, both articulators should be 971 

combined, so that the vocal tract constriction area reaches a value between 0.05 and 0.15 cm². 972 

More specifically, the set of consonants that can be achieved from a vowel configuration of 973 

the vocal tract is the set of configurations obtained by 1) going through all possible discrete 974 

values of the parameter Jaw and 2) for each of these values selecting the value of the other 975 

articulator (LipHeight, TongueApex or TongueDorsum) such that when the perturbation is 976 

applied to the vowel the constriction area is the closest possible to 0.05 cm². The choice of 977 

modeling a consonant as a perturbation added to a vowel means that consonants and vowels 978 

are linked by maximal co-articulation. 979 

Representation of CV sequences 980 

Once stop consonants and vowels have been defined in terms of articulatory and 981 

acoustic parameters, the question is to define an adequate representation of the trajectory from 982 

C to V, characterizing the syllable in articulatory and acoustic terms. Since we showed in the 983 

previous section that the data converge towards a characterization based on plosive onset and 984 

vowel formants, plosive-vowel syllables are characterized as a pair of two articulatory states: 985 

one for the plosive and the other for the vowel, neglecting the geometry and temporal aspects 986 

of the trajectory linking these two states. Altogether, a CV sequence is associated in VLAM 987 
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with 8 articulatory parameters, 5 for the plosive and 3 for the vowel. 988 

In the acoustic space, vowels are characterized by their first two formants 989 

(𝐹1,𝐹2),which VLAM computes from the articulatory parameters in the open state. For 990 

plosives, where 𝐹1 is basically the same for all configurations (around 250 Hz), 991 

characterization is by 𝐹2 and 𝐹3, computed by VLAM in the closed state. A CV sequence is 992 

associated to 4 acoustic parameters, 2 for the plosive and 2 for the vowel.  993 

***FIGURE 10 ABOUT HERE*** 994 

Figure 10 displays the acoustic properties of the vowels and plosives generated. The 995 

representation of vowels in the (𝐹1,𝐹2) plane is classical, with /i, a, u/ at the corners of the 996 

vowel triangle (Figure 10, top). The representation of plosives in the (𝐹2,𝐹3) plane is less 997 

common (Figure 10, bottom). It has been extensively discussed in Schwartz et al. (2012b). We 998 

observe that there is a trend toward lower (𝐹2,𝐹3) values for /b/, higher values for /d/ and 999 

medium values for /g/. This recalls the “diffuse falling” vs. “diffuse raising” vs. “compact” 1000 

contrasts proposed by Stevens and Blumstein (1978), but with considerable variations of the 1001 

plosive recognition depending on the vowel context.  1002 

***FIGURE 11 ABOUT HERE*** 1003 

We show in Figure 11 the relationship between the 𝐹2 values for plosives and vowels, 1004 

providing a portrait that is globally coherent with the one reported by Sussman et al. (1998) 1005 

for natural speech. 1006 

The two-state implementation of syllabic trajectories is highly simplified in relation to 1007 

natural CV sequences, and a number of more elaborate CV co-articulation models have been 1008 

suggested since the pioneer one proposed by Öhman (1966). However, here we merely aimed 1009 

to generate syllables whose variability patterns were similar to the complexity of real speech 1010 

signals. The syllable material displayed in Figure 10 provides an adequate compromise. It 1011 

corresponds to complex variations in an 8-D articulatory space and resulting in variations in a 1012 
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4-D acoustic space with co-articulation patterns that are globally coherent with those of 1013 

natural syllables. We will next examine how the motor and auditory systems of the COSMO 1014 

model extended to syllables can deal with this variability.  1015 

 1016 

COSMO-S, an extension of the COSMO model to process plosive-vowel syllables 1017 

***FIGURE 12 ABOUT HERE*** 1018 

We have extended the COSMO model to CV syllable processing. The objects, 𝑂! from 1019 

the speaker's point of view, and 𝑂! from a listener's perspective, refer to the syllables we 1020 

consider: /ba/, /bi/, /bu/, /ga/, /gi/, /gu/, /da/, /di/, /du/. Since we model a syllable as a vowel 1021 

state and a consonant state, the variable 𝑆 separates into 𝑆! and 𝑆! , and the variable 𝑀 into 1022 

𝑀! and 𝑀! . Apart from that, the COSMO-S model (see Figure 12, top) shares its global 1023 

structure with COSMO as it is made of the same systems: (i) the auditory system associates 1024 

sensory representations with the corresponding 𝑂! syllable labels; (ii) the sensory-motor 1025 

system associates motor and sensory representations; (iii) the motor system associates motor 1026 

representations with 𝑂! syllable labels. 1027 

  These systems are linked by 𝜆 coherence variables, which are a mathematical tool 1028 

used to force duplicate variables to have the same values at all times during probabilistic 1029 

inference (Bessière et al., 2013; Gilet, Diard, & Bessière, 2011). This provides a mathematical 1030 

implementation of a probabilistic switch, allowing the different parts of the model to be 1031 

activated or deactivated during probabilistic inference, thus permitting constraints coming 1032 

from the different sub-models to be integrated into the global model. Likewise, the 1033 

specification of 𝐶 = 𝑇𝑟𝑢𝑒 in an inference task allows the combination of motor and auditory 1034 

cues. 1035 

The auditory system describes the knowledge the agent has of the link between 𝑂! 1036 

syllables and sensory variables: 𝑆′! (𝐹1 and 𝐹2 for the vowel) and 𝑆′!  (𝐹2 and 𝐹3 for the 1037 
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consonant). These are implemented as 4-D Gaussian probability distributions, the mean 1038 

vectors and covariance matrices of which are estimated during the learning process (see 1039 

below).   1040 

The sensory-motor system describes the knowledge the agent has of the motor-to-1041 

sensory mapping, i.e. of mapping between articulatory gestures 𝑀! (vowel), 𝑀!  (consonant) 1042 

and formant values 𝑆! and 𝑆! . Once again, mappings are described by Gaussian probability 1043 

distributions, where mean vectors and covariance matrices are estimated during the learning 1044 

process (see below).  The term 𝑃(𝑀!  | 𝑀!) encodes a support for consonants that can be 1045 

achieved according to the perturbation hypothesis described in the section ‘Generation of stop 1046 

consonants’. More specifically, for each vowel motor gesture 𝑀!, 𝑃(𝑀!  | 𝑀!) defines a 1047 

probability distribution that is a plateau in the 5-D articulatory space for consonants. It is 1048 

uniform on the possible attainments of consonants obtained by the joint use of the parameter 1049 

Jaw and another one (either LipHeight for /b/, TongueApex for /d/ or TongueDorsum for /g/), 1050 

and it is null everywhere else for configurations that are not consonants (because the vocal 1051 

tract is not closed enough) or for configurations that cannot be reached from the 𝑀! vowel 1052 

configuration considered. The term 𝑃(𝑀!  | 𝑀!) implements a constraint coming from the 1053 

physics of the Learning Agent's vocal tract (modeled by VLAM), which does not have to be 1054 

estimated in the learning stage. This constraint is implemented using conditional probability 1055 

tables, assigning a constant value to each achievable consonant gesture and zero probability 1056 

otherwise. 1057 

The motor system describes a state of knowledge of the link between 𝑂! syllable 1058 

labels and articulatory gestures. The structure of the motor system implements a simplified 1059 

co-articulation model based on Öhman’s perturbation hypothesis (Öhman, 1966). This 1060 

explicitly introduces a delta variable describing the perturbation superimposed on the vowel to 1061 

obtain a plosive consonant. Furthermore, we assume in COSMO-S that the Learning Agent 1062 
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would have at its disposal a set of primitive consonant gestures corresponding to the basic 1063 

places of articulation for plosives: combined jaw and lips for bilabials, combined jaw and 1064 

tongue apex for alveolars, and combined jaw and tongue dorsum for velars. The learning 1065 

process would consist of discovering these basic primitive gestures through motor 1066 

exploration, and identifying their correspondence with the CV sequences provided by the 1067 

Master Agent. Therefore, while vowels in the motor repertoire are characterized by their 1068 

articulatory configuration 𝑀′! (TongueBody, TongueDorsum and LipHeight in VLAM), 1069 

plosives are characterized by their primitive gesture 𝐺′! , referring to the articulator used to 1070 

make a plosive consonant in coordination with Jaw (LipHeight for /b/, TongueDorsum for /g/, 1071 

and TongueApex for /d/. 𝐺′!  is thus a categorical variable, with three possible values).  1072 

Variables 𝑀′! and 𝐺′!  are taken to be independent. Hence 1073 

𝑃 𝑀′!  𝐺′!   𝑂!) = 𝑃 𝑀′!   𝑂!).𝑃 𝐺′!   𝑂!). The motor configuration of the plosive in the 1074 

framework of Öhman’s perturbation theory is then defined by Δ′!" , the variation of the 1075 

articulators (the specific combination of Jaw and another specific articulator) necessary to 1076 

achieve a consonant from 𝑀′!. The motor command for the 𝑀′!   consonant is finally obtained 1077 

by the equation 𝑀′! = 𝑀′! +  Δ′!" . The term 𝑃 Δ!!"   𝑀′!  𝐺′!) describes how the 1078 

consonant is produced, depending on the vowel and the specific consonant gesture. This 1079 

shows explicitly that the consonant is conditioned by the vowel, which can be interpreted as 1080 

anticipation. For instance, to produce the sound /ba/, the /a/ is anticipated when /b/ is 1081 

performed, which amounts to having maximal co-articulation. 𝑃 𝑀′!   𝑂!) and 1082 

 𝑃 Δ!!"   𝑀′!  𝐺′!) are described by Gaussian distributions, where the mean vectors and 1083 

covariance matrices are estimated during the learning process (see below). Finally, 1084 

𝑃 𝐺′!   𝑂!) is implemented with a conditional probability table (histogram), the parameters of 1085 

which are also identified during learning.      1086 

The COSMO-S model is thus defined by the joint probability distribution 1087 
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decomposition shown in Figure 12 (bottom).  1088 

Similarly to the summary of Figure 2, the Bayesian inference within the COSMO-S 1089 

model allows computing of conditional probability distributions. Purely motor, purely 1090 

auditory and perceptuo-motor instances of the speech perception task are implemented. 1091 

Because of the complexity of the COSMO-S model, we have not detailed the corresponding 1092 

Bayesian inferences here. However, they can be interpreted exactly as previously:  auditory 1093 

perception is expressed as direct use of the link between auditory representations and the 1094 

corresponding object labels, motor perception as the combination of the motor repertoire with 1095 

an internal model allowing association of motor and sensory representations, and perceptuo-1096 

motor perception as the Bayesian fusion of the auditory and motor categorization processes. 1097 

We will now describe how the Learning Agent acquires the different parts of the model.  1098 

 1099 

Learning in COSMO-S 1100 

Some probability distributions of the model are not learned. Indeed, the prior 𝑃(𝑂!
!"), 1101 

𝑃(𝑂!
!") and 𝑃(𝑀!

!") are set as uniform probability distributions. The biological constraints 1102 

𝑃(𝑀!
!" | 𝑀!

!")  describe the consonants achievable from a given vowel, and are pre-computed 1103 

in VLAM. Finally, probability distributions over coherence variables, 𝑃(𝜆!"
!" | 𝑆!

!"𝑆′!
!"), 1104 

𝑃(𝜆!"
!" | 𝑆!

!"𝑆′!
!"), 𝑃(𝜆!"

!"  | 𝑀!
!" 𝑀′!

!"), 𝑃(𝜆!"
!"  | 𝑀!

!" Δ′!"
!"  𝑀′!

!") and 𝑃(𝐶!" | 𝑂!
!" 𝑂!

!") are 1105 

set as Dirac probability distributions, with 𝑇𝑟𝑢𝑒 value of a probability of 1 for a given 1106 

relationship between the variables on the right hand side, respectively 𝑆!
!" = 𝑆′!

!",  𝑆!
!" =1107 

𝑆′!
!", 𝑀!

!" = 𝑀′!
!", 𝑀!

!" = Δ′!"
!" +𝑀′!

!" and 𝑂!
!" = 𝑂!

!". 1108 

The probability distributions that the Learning Agent apprehends in COSMO-S are the 1109 

same as in the 1-D implementation studied in the previous section: the auditory categorization 1110 

branch 𝑃(𝑂!
!" | 𝑆!

!" 𝑆!
!"), the forward model implementing the motor-to-auditory 1111 
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relationship 𝑃(𝑆!
!" 𝑆!

!"| 𝑀!
!" 𝑀!

!") and the motor repertoire 𝑃(𝑀!
!" 𝑀!

!" | 𝑂!
!"). As 1112 

previously, we learn the auditory and motor branches independently from each other, but with 1113 

the same set of data. This allows a fair comparison between the two branches. 1114 

While the forward model and the motor repertoire were learned in 1-D, a two-stage 1115 

process was implemented in COSMO-S. Indeed, considering the complexity of the motor-to-1116 

auditory relationship within a 12-D space (8 motor plus 4 auditory dimensions), it appeared 1117 

easier to learn the forward model before the motor repertoire. This corresponds well to the 1118 

developmental schedule presented previously (Kuhl, 2004), which led us to proceed in three 1119 

consecutive steps: 1120 

L1. learning the auditory categories; 1121 

L2. learning motor-to-auditory mapping; 1122 

L3. learning the motor repertoire. 1123 

During these three learning phases, the Learning Agent interacts with a Master Agent 1124 

to obtain syllable acoustic stimuli (𝐹2,𝐹3 for the plosive, 𝐹1,𝐹2 for the vowel) taken from 1125 

the data displayed in Figure 10 and, for steps L1 and L3, the corresponding syllable labels as 1126 

well. Phases L2 and L3 are independent of phase L1; hence they will be evaluated separately 1127 

in the following argument.  1128 

 1129 

L1: Learning the auditory categories by association. 1130 

As in our previous experiments, the auditory system, linking auditory representations 1131 

𝑆′!
!" and 𝑆′!

!"and corresponding syllables 𝑂!
!", is learned by association, through interactions 1132 

with the Master Agent. More precisely, the term 𝑃(𝑆′!
!" 𝑆′!

!" | 𝑂!
!") consists of 9 auditory 1133 

prototypes (one for each value of 𝑂!
!") encoded as 4-D Gaussian probability distributions on 1134 

the formant space (𝐹1!, 𝐹2!, 𝐹2! , 𝐹3!), which the agent learns in a supervised manner from 1135 

the Master Agent. This provides <formant values, syllable label> pairs. Auditory recognition 1136 
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𝑃(𝑂!
!"  | 𝑆′!

!"𝑆′!
!") is then implemented by the Bayesian inversion of 𝑃(𝑆′!

!" 𝑆′!
!" | 𝑂!

!"): 1137 

𝑃(𝑂!
!"  | 𝑆′!

!"𝑆′!
!") = !(!!!

!" !!!
!" | !!

!")

!(!!!
!" !!!

!" | !!
!!!! )!

. 1138 

 1139 

L2: Learning the motor-to-auditory mapping by accommodation. 1140 

Since we attempt to learn the sensory-motor system independently of the motor 1141 

repertoire, learning is achieved by a variant of the learning by accommodation algorithm, in 1142 

which the Learning Agent only obtains auditory input from the Master Agent, without object 1143 

labels. Given a syllable acoustic target (𝑠! , 𝑠!), and using its current state of knowledge as 1144 

given by 𝑃(𝑆!
!" 𝑆!

!"| 𝑀!
!" 𝑀!

!"), the Learning Agent carries out imitation tasks, by inferring 1145 

a motor gesture (𝑚! ,𝑚!) likely to reach the target. This gesture is obtained by randomly 1146 

drawing a value (𝑚! ,𝑚!) according to the inversion of the current forward model: 1147 

𝑃 𝑀!
!" 𝑀!

!"  𝑆!
!" = 𝑠! 𝑆!

!" = 𝑠! ) ∝1148 

𝑃 𝑀!
!" .𝑃 𝑆!

!" = 𝑠!  | 𝑀!
!" .𝑃 𝑀!

!" | 𝑀!
!" .𝑃 𝑆!

!" = 𝑠!  | 𝑀!
!" . 1149 

The gesture (𝑚! ,𝑚!) is sent to VLAM, which plays the role of an external vocal tract 1150 

simulator. VLAM outputs the formants (𝑠!∗ , 𝑠!∗) corresponding to the motor command 1151 

(𝑚! ,𝑚!), and the Learning Agent updates the knowledge stored in its internal models. It 1152 

observes that the chosen motor commands produce a given set of formants. This knowledge is 1153 

stored in the probability distributions 𝑃 𝑆!
!" | 𝑀!

!" = 𝑚!  and 𝑃 𝑆!
!" | 𝑀!

!" = 𝑚! , 1154 

which are Gaussian probability distributions evolving as their parameters become updated 1155 

through the learning process.  1156 

The syllable targets provided by the Master Agent to the Learning Agent are taken 1157 

from the data presented in Figure 10. Since the Learning Agent initially has no knowledge 1158 

available, it selects motor gestures randomly. New observations lead to improving the quality 1159 

of the internal model of the motor-to-auditory transformation, which in turn improves the 1160 
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motor inversion that relies on this internal model. This means that the computed probability 1161 

distribution 𝑃 𝑀!
!" 𝑀!

!"  𝑆!
!" = 𝑠! 𝑆!

!" = 𝑠! ) driving the choice of motor gestures and 1162 

allowing imitation of auditory inputs becomes more and more accurate. Thus, the agent 1163 

becomes better and better at reaching its targets. All along the exploration process, the 1164 

learning algorithm remains driven by the targets provided by the Master, rather than by an 1165 

exhaustive sampling of the motor space as in other systems (e.g., Bailly, 1997; Guenther, 1166 

2006).  1167 

 1168 

L3: Learning the motor repertoire by imitation. 1169 

The motor system is learned in a supervised way, in that syllable labels are given to 1170 

the Learning Agent along with the corresponding stimuli. But while in other research the 1171 

articulatory data are provided (Castellini et al., 2011; Canevari et al., 2013), here the Learning 1172 

Agent is only given labeled acoustic data. We use the same <formant values, syllable label> 1173 

pairs that served to learn auditory categorization in step L1, and we use the internal model of 1174 

the motor-to-auditory transformation learned in step L2 to retrieve motor information. Given 1175 

an acoustic target (𝑠! , 𝑠!) and the corresponding syllable label 𝑜!, the Learning Agent infers a 1176 

motor gesture allowing the target to be reached by inversing the motor-to-auditory mapping 1177 

and by using its present state of knowledge of the correspondence between syllables and 1178 

motor gestures. This is done by randomly drawing (𝑚′! ,𝑔′! , 𝛿′!") values according to the 1179 

following probability distribution: 1180 

𝑃
𝑀!

!
!" = 𝑚!

! 𝐺!!
!" = 𝑔!!

Δ!!"
!" = 𝛿!!"

𝑆!
!" = 𝑠! 𝑆!

!" = 𝑠! 𝑂!
!" = 𝑜!

𝜆!"
!" = 1 𝜆!"

!" = 1

∝
𝑃 𝑀!

!" = 𝑚!
!  𝑃 𝑆!

!" = 𝑠!  | 𝑀!
!" = 𝑚!

!

𝑃 𝑀!
!" = 𝑚!

! + 𝛿!!"  | 𝑀!
!" = 𝑚!

! 𝑃 𝑆!
!" = 𝑠!  | 𝑀!

!" = 𝑚!
! + 𝛿!!"

𝑃 𝑀!
!
!" = 𝑚!

! 𝐺!!
!" = 𝑔!! Δ!!"

!" = 𝛿!!"   𝑂!
!" = 𝑜! )
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The correspondence between the chosen motor gesture (𝑚′! ,𝑔′! , 𝛿′!") and the 1181 

syllable label 𝑜! is then used to update parameters of the following probability elements: the 1182 

Gaussian probability distribution 𝑃 𝑀!
!
!"  𝑂!

!"), the histogram 𝑃 𝐺′!
!" | 𝑂!

!"  and the 1183 

Gaussian probability distribution 𝑃 Δ!!"
!"  | 𝑀!

!
!" 𝐺′!

!" . 1184 

 1185 

Simulation results 1186 

Confirming the “auditory-narrowband vs. motor-wideband” portrait in COSMO-1187 

S. 1188 

The aim of the simulations described in this section is to verify how the main 1189 

principles we extracted from the results of the experiments carried out in the 1-D case are 1190 

generalized to the more realistic case of syllable processing. We ran a single learning 1191 

simulation with 4,000,000 <formant values, syllable label> pairs. The first 3,000,000 were 1192 

used during the L2 learning phase, with another 1,000,000 during L3 and the full set of the 1193 

same 4,000,000 values were also used for the L1 learning phase. These were resampled from 1194 

the data presented in Figure 10 and provided to the Learning Agent by the Master Agent. 1195 

Since the L1 learning phase of the sensory model is independent from the L2 and L3 learning 1196 

phases of the perceptuo-motor and motor models and for future comparisons of the auditory 1197 

and motor models of perception to be fair, the same data is used as input to learn the 1198 

components involved in motor and auditory perception. 1199 

***FIGURE 13 ABOUT HERE*** 1200 

Firstly, in Figure 13 we compare the evolution through learning of the entropy 1201 

𝐻 𝑃 𝑆!"  𝑂!
!"  of the auditory model, with the evolution of the entropy 𝐻 𝑃 𝑆!"  𝑂!

!"  1202 

of the motor model. To this end, as in Figure 5 we used the entropy 𝐻 𝑃 𝑆!"  𝑂!!"#$%&  of 1203 

the probability distribution over the stimuli produced by the Master Agent, a constant over the 1204 

learning process, as a reference. As in the 1-D case, we further average these entropies over 1205 
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objects; since we now have 9 possible objects, we consider !
!

𝐻 𝑃 𝑆!"  𝑂!
!"

!!
!"  for the 1206 

auditory model, !
!

𝐻 𝑃 𝑆!"  𝑂!
!"

!!
!"  for the motor model, and 1207 

!
!

𝐻 𝑃 𝑆!"  𝑂!!"!"#$!!
!"#$%&  as the Master’s reference.  1208 

We observe that, as with the 1-D model, the entropy of the auditory model converges 1209 

quickly to a level close to the entropy of the stimuli produced by the Master, whereas the 1210 

entropy of the motor model converges more slowly(6).  1211 

***FIGURE 14 ABOUT HERE*** 1212 

To better display how exploration and learning proceed in COSMO-S, we show in 1213 

Figure 14 the motor gestures 𝑚!
! selected by the Learning Agent to attempt to reproduce the 1214 

auditory targets provided by the Master Agent at five stages in the learning process: before 1215 

any learning took place, during the L2 learning phase, between L2 and L3, during L3, and at 1216 

the end of the learning process. We observe that learning enables progressive focusing of the 1217 

vowel articulatory gestures around given areas in the articulatory space, corresponding to 1218 

adequate commands for the three vowels /a, i, u/, but the size of the possible motor 1219 

configurations remains wide.  1220 

***FIGURE 15 ABOUT HERE*** 1221 

Comparatively, we display in Figure 15 the actual productions of the Learning Agent 1222 

in acoustic space at the same five steps in the learning process: the size of the available 1223 

auditory space is more reduced around the three vowels /a i u/ provided by the Master Agent 1224 

at the end of the learning process. 1225 

***FIGURE 16 ABOUT HERE*** 1226 

To evaluate the global categorization ability of the auditory, motor and perceptuo-1227 

motor branches in COSMO-S at the end of the learning process with 4,000,000 iterations, we 1228 

exploited the same methodology as with the 1-D implementation of COSMO. We took as 1229 
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input the formant values (𝐹2,𝐹3 for the consonant, 𝐹1,𝐹2 for the vowel) produced by the 1230 

Master Agent (and displayed in Figure 10). We added a given level of noise by adding a 1231 

Gaussian perturbation to each formant value, with a given variance indexed by the noise level. 1232 

We present these stimuli to the auditory, motor, or perceptuo-motor classifier defined in 1233 

COSMO-S according to the equations derived from Figure 2. In practice, we used exact 1234 

inferences for evaluation: stimuli were not sampled from the Master Agent and then decoded, 1235 

rather the whole probability distribution of stimuli was used to directly compute the resulting 1236 

confusion matrices for each classifier. The original object 𝑂!!"#$%& was compared with the 1237 

decoded object 𝑂!
!"#$% or 𝑂!

!"#$%depending on the model considered. Average diagonal 1238 

values of the confusion matrices provide recognition scores that are displayed in Figure 16. 1239 

The pattern of results is similar to that obtained with 1-D simulations. For clean 1240 

stimuli (Figure 16, noise = 0), the auditory model is more accurate than the motor one. The 1241 

difference is small, considering the large difference in entropies at the end of the learning 1242 

process (see Figure 13), but this is because the distributions to categorize are well separated in 1243 

these simulations. The difference would be larger in less clean learning configurations. When 1244 

noise is added, the motor system performance decreases less rapidly than the auditory one, 1245 

and it becomes more accurate for noise levels greater than 0.5. The perceptuo-motor model 1246 

capitalizes on the fusion of the two branches to provide better scores than the separate 1247 

auditory and motor models, at all noise levels. 1248 

Assessing auditory vs. motor invariance for the place of articulation of vowels 1249 

and plosives in COSMO-S. 1250 

We now explore our second proposal about auditory-motor complementarity, 1251 

assessing how phonemic invariance could be represented in the auditory or motor branches in 1252 

COSMO-S. 1253 

The situation for vowels has already been presented in Figures 14 and 15. It is in 1254 
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agreement with our predictions; while the acoustic characterization of vowels is rather 1255 

straightforward (see the final learning stage in Figure 15), the distribution of motor variables 1256 

is more disordered (see the final learning stage in Figure 14). 1257 

***FIGURE 17 ABOUT HERE*** 1258 

For plosives, the acoustic configuration is more complicated than for vowels. Indeed, 1259 

Figure 10 shows how intricate the formant configurations are for each plosive, due to vowel 1260 

co-articulation. This is where the motor system could play a crucial role. Indeed, in Figure 17 1261 

we display the evolution of the motor variable 𝑃 𝐺′!
!" | 𝑂!

!"  distribution for the 9 objects 1262 

𝑂!
!". Each subplot displays the evolution of the probabilities of the three possible gestures 1263 

(LipHeight, TongueDorsum and TongueApex) for each object at each learning stage. It 1264 

appears that for 8 cases out of 9, the identification of the correct gesture has been successful: 1265 

LipHeight for /ba, bi, bu/, TongueDorsum for /ga, gi, gu/ and TongueApex for /da, di, du/. 1266 

This means that the Learning Agent has selected a gesture compatible with that performed by 1267 

the Master Agent, and that motor invariance is within reach through the existence of the 𝐺′!
!" 1268 

parameter in the motor repertoire. 1269 

However, there is one case where adequate identification has partly failed: for the 1270 

object /gi/, the probability of the TongueApex gesture remains high, even though this is not the 1271 

adequate gesture for the velar in /gi/. The reason is clear: looking at Figure 10, it can be seen 1272 

that the acoustic regions for /di/ and for /gi/ are partially superimposed. This is probably due 1273 

to an acoustic description of the plosives that is too simplified (e.g. lacking higher formants, 1274 

burst fine characteristics or spectral dynamics, which could all play a part in improving the 1275 

/di/-/gi/ contrast). However, even if there was an articulatory ambiguity, we may suppose that 1276 

hyper-articulation by the Master Agent could guide the Learning Agent to solve the problem. 1277 

In a further simulation, we implemented this process by having a Master Agent discarding 1278 

productions before reaching an acoustic zone where both /di/ and /gi/ could be produced. With 1279 
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such a dataset for /gi/ production, the recovery of adequate gestures is perfect, as displayed in 1280 

Figure 18. 1281 

***FIGURE 18 ABOUT HERE*** 1282 

 1283 

Concluding Part 3: Summary and predictions 1284 

The simulations with COSMO-S enable a significant gap in complexity to be crossed 1285 

and the possibility of implementing and testing the COSMO model in a high dimension (8 1286 

articulatory + 4 acoustic parameters) could be assessed. These provide two major results. 1287 

Firstly, we confirmed the auditory-narrow motor-wide portrait introduced in Part 2. 1288 

Once again we obtain both quicker and more efficient learning of acoustic stimuli in the 1289 

sensory compared with the motor pathway (Figures 13-15), resulting in better auditory 1290 

recognition scores than motor ones without noise, but also a superiority of the motor decoding 1291 

process in noisy conditions (Figure 16). In consequence, altogether the perceptuo-motor 1292 

model performs better than both the auditory and the motor pathways whatever the noise level 1293 

(Figure 16). This was expected, given that the auditory-narrow motor-wide hypothesis is 1294 

considered to be generic and independent of the underlying specific implementation. 1295 

However, it is of interest to confirm that it is displayed in a much more complex and realistic 1296 

sensory-motor environment in COSMO-S compared with the 1-D simulations of Part 2. 1297 

Interestingly, the motor-to-sensory transformation in COSMO-S, associated with VLAM, is 1298 

no longer monotonous. Altogether, and unsurprisingly, the increase in complexity even results 1299 

in a much larger difference in learning speed and efficiency between auditory and motor 1300 

inference in COSMO-S compared with 1-D simulations (compare Figures 5 and 13). 1301 

Secondly, the analysis of the information content of auditory vs. motor representations 1302 

lets a natural complementarity appear, with plosives on one side, difficult to characterize in 1303 

the auditory space, but clearly associated with a motor or gestural invariant in the motor 1304 
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repertoire, and vowels on the other side, for which the auditory characterization is more 1305 

efficient than the motor one. 1306 

The potential limitations of this study are related to the nature of the hypotheses we 1307 

introduced to make the implementation of tractable simulations possible. Firstly, we had to 1308 

base our work on artificial synthetic CV sequences. Indeed, COSMO requires a sensory-motor 1309 

model able to process stimuli characterized in the motor (articulatory) and sensory (acoustic) 1310 

spaces. No currently available speech production model can produce completely realistic 1311 

speech stimuli. Thus we needed to restrict our simulations to synthetic stimuli generated by 1312 

the model we had at our disposal, i.e. VLAM. However, the realism of formant data in our 1313 

simulations, and the relative complexity of the material that we provided for processing in 1314 

COSMO-S, make us confident that real speech is not out of reach of COSMO development.  1315 

A second hypothesis in COSMO-S is the assumption that the Learning Agent has at its 1316 

disposal a set of primitive coordination gestures, i.e. Jaw/Lips, Jaw/Tongue Apex or 1317 

Jaw/Tongue Dorsum, corresponding respectively to labial, alveolar and velar places of 1318 

articulation. This hypothesis deserves further comment. It is consistent with data on infant 1319 

imitation showing that infants have at their disposal basic facial gestures that they can identify 1320 

from birth on the face of their communicating partner (Meltzoff & Moore, 1977). The 1321 

Articulatory Organ Hypothesis developed in the Haskins Labs at the beginning of the 2000s 1322 

(see e.g., Best & McRoberts, 2003; Goldstein & Fowler, 2003) exploits precisely this kind of 1323 

assumption to describe perception and control in the framework of Articulatory Phonology. It 1324 

supposes that infants are able to detect in a speech signal the primary articulatory organ that 1325 

produced it. Current simulations provide this hypothesis with some computational basis.  1326 

These two results, “auditory-narrow, motor-wide” and “auditory-vowel, motor-1327 

plosive” provide two major sets of experimental predictions. 1328 

 1329 
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Prediction 3 - early speech perception should be mostly auditory before the onset 1330 

of babbling, then become progressively perceptuo-motor  1331 

The PACT proposal is that speech perception should make use of only the auditory 1332 

pathway in the first months of age, then progressively capitalize on feedback from the motor 1333 

system when it is mature and mainly since babbling onset around 7 months. This appears to 1334 

be reinforced in the context of the auditory-narrow, motor-wide hypothesis. The learning 1335 

pattern in Figure 13 strongly confirms the view that auditory perception should be mature 1336 

long before motor information could be used for phonetic decoding. Considering the potential 1337 

role of the motor system for perception in noisy conditions, it could be suggested that as this 1338 

is still immature at the first months of age, it should not intervene specifically in adverse 1339 

conditions, before some significant degree of sensory-motor development. Basically, it is after 1340 

babbling onset that infants can obtain a useful amount of information on the motor inference 1341 

branch. 1342 

This is exactly what was described in a recent MEG (Magnetoencephalography) study 1343 

on infants' brain responses to native vs. non-native stimuli at two developmental stages in the 1344 

first year of age (Kuhl et al., 2014). Indeed, the data in this study showed that infants at 7 1345 

months of age do not display a significantly different involvement of the motor regions 1346 

(including Broca’s area and the cerebellum) for native vs. non-native speech. In contrast, at 1347 

11-12 months of age, i.e. after a significant amount of perceptuo-motor learning has occurred, 1348 

following babbling onset at around 7 months, there is more involvement of motor regions for 1349 

non-native compared with native stimuli. 1350 

 1351 

 Prediction 4 - plosive place of articulation invariance should require motor 1352 

knowledge 1353 

The last prediction is related to the second result obtained with COSMO-S about the 1354 
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“auditory-vowel, motor-plosive” hypothesis. The corresponding results in COSMO-S suggest 1355 

that the identification of invariant cues for the plosive place of articulation should strongly 1356 

depend on the acquisition of motor representations associated with sensory input in the motor 1357 

inference process. 1358 

As mentioned in the Introduction, a number of experimental data do indeed suggest 1359 

that infants cannot detect the plosive place of articulation invariance before 6 months of age. 1360 

A recent study by Hochmann & Papeo (2014) exploiting a novel methodology based on 1361 

pupillometry provided a hint that the “b” vs. “d” contrast could be displayed independently in 1362 

vowel context at 6 months. However, auditory and visual information could be at the basis of 1363 

this result (Dole et al., 2015). Importantly, another recent study in our group, exploiting an 1364 

inter-sensory matching procedure, provided different results compatible with the present 1365 

prediction. This procedure provided no evidence for articulation plosive identification 1366 

independent of vowel context at 6 months of age, but some such evidence was seen at 9 1367 

months. Importantly, infants’ perceptual abilities appeared to be related to their motor abilities 1368 

in babbling (Dole, Loevenbruck, Pascalis, Schwartz, & Vilain, 2016).  1369 

The present prediction should not be generalized to the proposal that there would be 1370 

no involvement at all of the motor system in speech perception before babbling onset. Indeed, 1371 

Bruderer, Danielson, Kandhadai & Werker (2015) demonstrated that teething displays used to 1372 

control infants' tongues in their mouths may interfere with the perception of non-native 1373 

stimuli related to the corresponding induced tongue shapes for 6 month old subjects. The 1374 

important point of our prediction is that the plosive place of articulation requires learning the 1375 

sensory-to-motor correspondence in complete CV sequences that are out of reach before the 1376 

onset of babbling.  1377 

Finally, it is of interest that a recent analysis of fMRI responses to CV syllables using 1378 

multivariate decoding shows that plosive place of articulation is indeed specifically found to 1379 
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be represented in regions of the brain associated with speech production, including the 1380 

posterior ventral frontal cortex, the basal ganglia, and the cerebellum (Correia, Jansma & 1381 

Bonte, 2015). 1382 

  1383 
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 1384 

Part 4 - Three challenges for a perceptuo-motor theory of speech perception 1385 

At the end of this research, we have at our disposal the first Bayesian Perceptuo-Motor 1386 

model of speech perception, COSMO, together with various implementations (from 1-D to 1387 

COSMO-S). Furthermore, we have two major results about “non-perfect” learning conditions, 1388 

enabling to depart from the indistinguishability theorem: the “auditory-narrow, motor-wide” 1389 

and “auditory-vowel, motor-plosive” properties. This model opens a number of perspectives 1390 

for future developments. We will discuss three major directions for research in the field of 1391 

perceptuo-motor interactions involving potential developments in COSMO. 1392 

 1393 

Challenge 1: Perceptuo-motor complementarity and Perceptuo-motor fusion  1394 

The Introduction showed how publications in the field shifted from almost purely 1395 

functional arguments about the auditory vs. motor controversy, somewhat lacking of 1396 

experimental data, to convincing experimental neurocognitive data supporting the role of the 1397 

motor system, but somewhat lacking of functionalist views about why the motor system could 1398 

be useful at all. The present study attempted to provide such functionalist arguments. Future 1399 

studies should attempt to provide more data about when, how and why the motor system 1400 

could enhance auditory perception. Furthermore, a perceptuo-motor theory of speech 1401 

perception requires a fusion process enabling efficient combination of auditory (if not visual 1402 

or somatosensory) and motor information for speech decoding. 1403 

Interestingly, audiovisual speech perception research has asked more or less the same 1404 

questions for about the last forty years. It was shown how auditory and visual inputs could be 1405 

complementary to a certain extent (e.g. Summerfield, 1987; Robert-Ribes, Schwartz, 1406 

Lallouache, & Escudier, 1998). Audio-visual fusion led to many theoretical and 1407 

methodological developments, proposing that it could be optimal in the Bayesian sense (see 1408 
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Massaro and the Fuzzy-Logical Model of Perception, 1987, 1998; in relation with Ernst & 1409 

Banks, 2002), and that within fusion each sensory modality could possibly be weighted 1410 

according to its reliability, depending on context, language, subjects, etc. (Schwartz, 2010). 1411 

Perceptuo-motor complementarity and fusion should thus be set at a high position in 1412 

the research agenda on perceptuo-motor speech perception, just as they were in past research 1413 

on audiovisual speech perception. 1414 

 1415 

Challenge 2 – Integrating speech perception and speech production in a common 1416 

framework  1417 

Accumulating evidence for the role of motor knowledge in speech perception may be 1418 

combined with accumulating evidence for the role of perceptual representations and processes 1419 

in speech motor control (see reviews in Guenther, Hampson & Johnson, 1998; Perrier, 2005). 1420 

Importantly, the current perceptuo-motor model of speech perception capitalizes on a set of 1421 

computational bricks traditionally involved in speech production models. Thus, sensory and 1422 

motor representations are associated thanks to internal forward or inverse models (e.g. 1423 

Guenther, Ghosh & Tourville, 2006; Houde & Nagarajan, 2011; Hickok, 2012; Patri, Diard & 1424 

Perrier, 2015).  1425 

This suggests that it could be possible to develop an integrated framework associating 1426 

speech perception and speech production models within the same theoretical architecture. 1427 

This is one aim of the COSMO architecture (see Moulin-Frier et al., 2012, 2015). 1428 

Interestingly, the same objective has been introduced in recent phonological models (see e.g. 1429 

Boersma, 2011, Boersma & Hamman, 2008).  1430 

 1431 

Challenge 3 – From computational architecture to neurocognitive implementation 1432 

It is widely acknowledged, at least since Marr (1982), that cognitive systems can be 1433 
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analyzed at different levels, three in Marr’s proposal: computational, algorithmic, and 1434 

representational and implementation levels. These levels are independent to a certain extent, 1435 

but the computational and algorithmic architectures may shed light on the way neurocognitive 1436 

implementation could be realized. Conversely, neurocognitive constraints could suggest some 1437 

proposals for algorithmic considerations. 1438 

At this stage, we did not elaborate in any way the possible neurocognitive means by 1439 

which the various components in COSMO could be implemented in the human brain. This is 1440 

not to say that such an enterprise, relating computation and implementation levels, is out of 1441 

reach, as was clearly displayed by the authors of the DIVA model of speech production 1442 

(Guenther et al., 2006). Considering the increasing amount of details provided by 1443 

neuroscience about the neural coding of speech perception and production in the auditory and 1444 

motor cortex (see e.g. Bouchard, Mesgarani, Johnson & Chang, 2013; Cheung, Hamiton, 1445 

Johnson, & Chang, 2016; Formisano, De, Bonte, & Goebel, 2008; Pasley et al., 2012), it is 1446 

now a challenging but intriguing and probably necessary enterprise to attempt to elaborate 1447 

further the possible relationships between computational models such as COSMO and neural 1448 

responses in a number of experimental tasks.  1449 

 1450 

Conclusion 1451 

This paper develops an original perspective in the debate between auditory and motor 1452 

theories of speech perception. Research in the cognitive neurosciences led to the now well-1453 

accepted views that (i) motor areas are activated during speech perception, and (ii) motor 1454 

knowledge seems to play a certain role in speech perceptual processing in the human brain. 1455 

From these points of view, we attempted to evaluate the precise functional role of motor 1456 

knowledge. In the framework of PACT, a perceptuo-motor theory of speech perception, we 1457 

explored these questions in computational terms, thanks to COSMO, the first Bayesian 1458 
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perceptuo-motor model of speech communication.  1459 

We showed here for the first time that, in conditions that are perfect in a certain sense, 1460 

the information content of the auditory and motor branches of a perceptuo-motor speech 1461 

processing system are exactly the same. We introduced realistic learning conditions and 1462 

showed that they let a natural complementarity emerge between a “narrow-band” auditory 1463 

system that is more efficient in good communication conditions, and a “wide-band” motor 1464 

system that is more efficient in adverse conditions. Our simulations also suggest that 1465 

invariants providing the phonetic characterization of phonological units could be perceptuo-1466 

motor rather than auditory or motor, and show how this could be achieved, with auditory cues 1467 

for vowels and motor cues for the plosive place of articulation.  1468 

COSMO simulations lead to a number of experimental predictions. Some of these are 1469 

already being tested, with data in agreement with predictions. Others require more 1470 

experimental efforts. COSMO also opens a number of perspectives in domains such as: the 1471 

fusion of perceptual and motor inference in phonetic decoding; the co-development of 1472 

computational models of speech production and speech perception; the possibility to apply 1473 

COSMO simulations to a number of neurocognitive data on the coding and processing of 1474 

speech in the human brain. 1475 

This research has placed computational simulations at the heart of the debate about the 1476 

role of perceptual and motor knowledge in the speech perception process. Considering the 1477 

rapidly increasing amount of experimental evidence and data available about the perceptuo-1478 

motor relationship in speech communication, it seems that mathematical models can be of 1479 

great help in clarifying arguments, precising mechanisms and suggesting new predictions and 1480 

experimental paradigms. Perceptuo-motor complementarity, invariance, fusion and 1481 

development are crucial steps in the agenda of future research into the cognitive bases of 1482 

speech communication. The first pieces in the elaboration of the COSMO model described 1483 
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and discussed in the present paper provide convincing elements for pursuing this direction.  1484 
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Footnotes 1975 

(1) It is well known that other sensory systems may intervene in speech perception: 1976 

such as vision, through lip-reading (Sumby & Pollack, 1954; McGurk & MacDonald, 1976; 1977 

Summerfield, 1987) but also possibly somato-sensory processing (Fowler & Dekle, 1991; Ito, 1978 

Tiede & Ostry, 2009; Treille et al., 2014). However, in this paper we will focus on the 1979 

auditory vs. motor systems, acknowledging that these other sensory systems could be 1980 

incorporated as additional sensory inputs inside a perceptuo-motor framework.  1981 

 (2) Here, we use the term “communication object” in a broad sense, conflating 1982 

different levels of analysis (phonetics, phonology, syntax, semantics). In this paper, objects 1983 

will only refer to phonological entities. 1984 

(3) Technically, probability values below the 𝜀 threshold are set to 𝜀 during perception 1985 

inference, but are set to 0 during learning. This makes learning approximate but fast, as 1986 

portions of spaces with very low probabilities are dismissed altogether. 1987 

(4) Notice that the visual system could intervene in this process, especially considering 1988 

the natural complementarity of auditory and visual representations in the depiction of vowels 1989 

and plosives (Summerfield, 1987; Robert-Ribes et al., 1998). 1990 

(5) VLAM is actually an articulatory rather than a motor model of speech production. 1991 

VLAM inputs are parameters controlling the shape of the tongue and lips and the position of 1992 

the jaw, which are themselves the results of motor commands at a higher level (see e.g. 1993 

Perrier et al., 1996; Perrier, 2005). We consider as a simplification that VLAM articulatory 1994 

parameters are part of the control system and hence could provide “motor commands” at a 1995 

certain level of representation in the motor pathway. 1996 

(6) While we display mean entropies in this Figure, averaging over the 9 syllables, 1997 

there are actually differences between entropy dynamics among the different syllables, 1998 

particularly in the motor space. This is clearly seen in Figure 14, where it appears that 1999 
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convergence is more rapid for /u/ than for the other two vowels. The likely reason is that the 2000 

available articulatory space for achieving the adequate formants is more restricted for /u/ in 2001 

the available 3-D articulatory space in VLAM. Notice that slower articulatory convergence 2002 

(displayed in Figure 14) can occur in spite of rapid acoustic convergence (as displayed by the 2003 

rapid formant convergence for /i/ in Figure 14). It is beyond the scope of the present paper to 2004 

discuss the importance and significance of these differences in convergence among vowels, 2005 

plosives or syllables.  2006 

  2007 
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 2008 

Figure 1. The communication situation, which involves a speaker agent and listener agents 2009 

interacting within an environment, is internalized in communicating agents. Top, model of the 2010 

communication situation: the speaker wants to mention a linguistic object (in a broad sense, 2011 

see footnote 2) OS. She/he produces a motor gesture M leading to the production of a sound S 2012 

propagating in the environment towards the listeners who recover linguistic objects OL. The 2013 

success of communication is estimated by the Boolean variable CEnv. Bottom, all variables are 2014 

internalized to provide a cognitive model of the communicating agent.  2015 
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 2017 

Figure 2. Probabilistic inferences for production and perception tasks instantiated within the 2018 

framework of the motor, auditory and perceptuo-motor theories. The ∝ symbol denotes 2019 

proportionality, i.e. to correctly obtain probability distributions, the expression shown has to 2020 

be normalized. The denominations of the components of each equation refer to their possible 2021 

interpretation in terms of cognitive processes:  2022 

- sensory targets refer to the set of sensory distributions for each object (typically, 2023 

“sensory” would be replaced by “auditory” in a basic auditory theory of speech 2024 

perception, or possibly “audio-visual” in a modified version taking into account lip-2025 

reading: see note (1)), 2026 

- motor repertoire refers to the set of motor distributions for each object, 2027 

- sensory production refers to the distribution of sensory data (typically sounds) for each 2028 

object, 2029 

- motor production refers to the distribution of motor commands (typically articulatory 2030 

gestures) for each object, 2031 

- sensory classifier refers to the possibility of recovering the object from the stimulus 2032 

input (typically the sound), 2033 

- motor decoder refers to the possibility (thanks to the Bayesian summation) of 2034 

recovering the object from the motor commands (or, in some variants of motor 2035 
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theories, the articulatory gesture), 2036 

- direct model refers to the possibility of predicting sensory information from the motor 2037 

command (typically sound from the gesture), 2038 

- inverse model refers to the possibility of recovering the motor command from sensory 2039 

information (typically the gesture from sound). 2040 

 2041 

  2042 
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 2043 

Figure 3. Schema of the supervised learning scenario, where the Master Agent provides the 2044 

Learning Agent with <object, stimulus> pairs. 2045 
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 2048 

Figure 4. Summary of the stimulus production process of the Master Agent. Its motor 2049 

repertoire is shown in the lower left panel. The model 𝑓 of the motor-to-sensory 2050 

transformation is shown in the upper left panel, for two values of the nonlinearity parameter 2051 

(𝑎 = 0.01 for the quasi-linear case and 𝑎 = 0.1 for the nonlinear case). The probability 2052 

distributions of the resulting sensory inputs received by the Learning Agent are shown in the 2053 

upper right panel. 2054 

 2055 

  2056 
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 2057 

Figure 5. Evolution of entropies of the sensory and motor models of the Learning Agents and 2058 

production system of the Master Agent, as a function of the number of iterations of the 2059 

learning algorithm, averaged over the possible object values. Left column: linear case; right 2060 

column: nonlinear case. In each case, 12 different simulations were run, corresponding to 2061 

random initializations of the learning process. The standard deviations shown are computed 2062 

over these 12 different simulations. 2063 
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 2064 

Figure 6. An instance of the learned internal model of the motor-to-sensory transformation, 2065 

after 20,000 learning iterations, in a nonlinear setting (𝑎 = 0.1). For each motor gesture 𝑚 of 2066 

the x-axis, the probability distribution over resulting sensory stimulus 𝑃(𝑆 | [𝑀 = 𝑚]) is read 2067 

vertically, with the color code indicating probability (white to yellow to red to black color-2068 

map (light gray to black), in order of increasing probability value). Black regions (resp. 2069 

yellow/light gray) therefore correspond to low-variance (resp. high variance) Gaussian 2070 

probability distributions, that is to say, well-explored (resp. poorly explored) portions of the 2071 

motor-to-sensory transformation.  2072 

  2073 
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 2074 

Figure 7. Evolution of correct recognition scores of motor, sensory and perceptuo-motor 2075 

models of perception, as a function of environment noise. In each case, 12 different 2076 

simulations were run, corresponding to random initializations of the learning process. The 2077 

standard deviations shown are computed over these 12 different simulations. 2078 

  2079 
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 2080 

Figure 8. Illustration (linear case, after 1,200 learning iterations) of sensory (top row) and 2081 

motor (bottom row) categorization processes on example stimuli 𝑠!"#$% in adverse conditions 2082 

(left column) and 𝑠!"#$% in normal conditions (right column), as probabilistic inference from 2083 

learned prototypes (center column).  2084 
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 2086 

 2087 

 Figure 9. The vocal tract VLAM model. Left: the seven articulatory parameters (Jaw, Lip 2088 

Height and Protrusion, Tongue Body, Dorsum and Apex, and Larynx) enable the vocal tract 2089 

shape to be driven. The Constriction is defined by the position where the vocal tract area is 2090 

minimum. Vowels are constrained to have an area greater than 0.15 cm2. Plosives are 2091 

constrained to between 0.05 and 0.15 cm2. Right: plots of the regions of the acoustic space 2092 

(top: (𝐹1,𝐹2) plane, bottom: (𝐹2,𝐹3) plane) that result from articulatory configurations in 2093 

VLAM. 2094 
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 2096 

Figure 10. Synthetic syllables in acoustic space. Top: (𝐹2,𝐹1) for vowels. Bottom: (𝐹2,𝐹3) 2097 

for plosives in each syllabic context. 2098 
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 2100 
Figure 11. Locus displays for VLAM simulations (color marks annotated with /ba/, /bi/, /bu/, 2101 

etc.) compared with locus equations provided by Sussman (1998) (portions of straight lines 2102 

annotated with [d], [b], etc.). For VLAM simulations, each mark is displayed at the position 2103 

corresponding to the 𝐹2 value for the vowel on the x-axis, and the 𝐹2 value for the consonant 2104 

on the y-axis. Sussman’s locus equations are derived by pooling the same frequency 2105 

coordinates for natural utterances from 20 American English speakers (see Sussman, 1998, 2106 

Fig. 5). Sussman provides one equation for /b/, one for /d/ and two separate equations for /g/: 2107 

one when the context vowel is front and the plosive is therefore palatal, and another one when 2108 

the context vowel is back and the plosive is therefore velar.   2109 
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 2110 

Figure 12. The COSMO-S model for processing syllables. This is illustrated by a graphical 2111 

representation (Top), and by the decomposition of its joint probability distribution as a 2112 

product of probabilistic terms (Bottom). In red (left part), the motor system, in green (middle 2113 

part), the sensory-motor system, in blue (right part), the auditory system.  2114 
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 2116 

Figure 13. Evolution of entropies of the auditory and motor models of the Learning Agents 2117 

and production system of the Master Agent, as a function of the number of iterations of the 2118 

learning algorithm, averaged over the possible object values, in the syllable experiment. For 2119 

the auditory model, learning corresponds to the sensory learning phase L1 with 4,000,000 2120 

iterations. For the motor model, learning starts with the sensory-motor learning phase L2 with 2121 

3,000,000 iterations followed by the motor learning phase L3 from 3,000,000 to 4,000,000 2122 

iterations.  2123 



THE ROLE OF MOTOR INFORMATION IN SPEECH PERCEPTION 101 

 2124 

Figure 14. Illustrating exploration in the motor space in COSMO-S. Each graph displays 2125 

samples from the probability distributions 𝑃(𝑀′!
!" | 𝑆!

!" = 𝑠! 𝑂!
!" = 𝑜! 𝜆!"

!" = 1 ) in the 2126 

three-dimensional space TB (Tongue Body), TD (Tongue Dorsum) and LH (Lip Height), with 2127 

𝑠! the vowel acoustic target and 𝑜! the corresponding syllable label. Motor variables are 2128 

specified by normalized values between 0 and 25. Each panel shows 500 samples taken at 500 2129 

successive time-steps (one sample per learning iteration), during five stages of the exploration 2130 

process (see caption of each panel). The bottom right panel shows, for comparison, the motor 2131 

distribution of the Master Agent.   2132 
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 2134 

Figure 15. Illustrations of the exploration in the vowel space in COSMO-S. Each graph 2135 

displays the images in the acoustic (𝐹2,𝐹1) plane of the exact same motor samples as in 2136 

Figure 14, via the articulatory-to-acoustic transformation. Each panel concerns the same five 2137 

stages of the exploration process as in Figure 14. For comparison, the bottom right panel 2138 

shows the stimulus distribution of the Master Agent. 2139 
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 2141 

Figure 16. Results of the classification process for syllables presented at various levels of 2142 

noise. The correct recognition rates for the auditory, motor and perceptuo-motor 2143 

implementations of the perception task in the COSMO-S model are displayed. Right plot: 2144 

zoom of the left plot at low levels of noise highlights the inversion of performance between 2145 

the auditory system (better under normal conditions) and the motor system (better at noisy 2146 

conditions). 2147 
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 2149 

Figure 17. Learning the place of articulation for plosives. Evolution of the probabilities of the 2150 

motor variable 𝑃 𝐺′!
!" | 𝑂!

!"  with the number of iterations in learning, for the 9 objects 𝑂!
!" 2151 

(see text). 2152 
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 2154 

Figure 18. The role of hyperarticulation in the emergence of phonological categories. 2155 

Evolution of the probabilities of the motor variable 𝑃 𝐺′!
!" | 𝑂!

!"  with the number of 2156 

iterations in learning, for the object 𝑂!
!" =/𝑔𝑖/, comparing the cases where learning is 2157 

without (left, identical to the middle panel of Figure 16) or with (right) hyper-articulation by 2158 

the Master Agent (see text).  2159 
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